Detecting quasi-cliques in massive sparse multi digraphs

Maurício G. C. Resende

Algorithms & Optimization Research Dept.

AT&T Labs Research

Florham Park, New Jersey

mgcr@research.att.com
http://www.research.att.com/~mgcr

Joint work with James Abello, Panos Pardalos, & Sandra Sudarsky

August 2000

Summary of talk

- Data explosion
- Massive graphs arising from telephone call detail database
- Structure of call detail graph
- Searching for large cliques and bicliques
- Some experimental results

Data explosion

(Abello, Pardalos, & R., Eds., "Handbook of Massive Data Sets," Kluwer, 2001)

- Proliferation of massive data sets brings with it computational challenges
- Data avalanche arises in a wide range of scientific and commercial applications
- Today's data sets are of high dimension and are made up of huge numbers of observations:
 - More often they overwhelm rather than enlighten
- Outstripped the capabilities of traditional data measurement, data analysis, and data visualization tools

Data explosion

- A variety of massive data sets can be modeled as a very large multi-digraph
 - Special set of edge attributes represent special characteristics of application
- WWW: nodes are pages, edges are links pointing from one page to another
- Telephone call graph is another example ...

Call detail

- Every phone call placed on AT&T network generates a record (~ 200 bytes) with:
 - Originating & terminating numbers
 - Start time & duration of call
 - Other billing information
- The collection of these records is known as the Call Detail Database

Call detail

- AT&T system (currently) generates:
 - 250 million records per day (on average)
 - 320 million records on busy day
 - 18 terabytes of data per year
- Data is accessed for:
 - Billing & customer inquiries
 - Marketing & traffic engineering

Call detail graph

- G = (V, E) is a directed graph:
 - *V* is the set of phone numbers
 - E is the set of phone calls
 - $(u,v) \in E$ implies that phone u called phone v
- G quickly grows into a huge graph
 - Hundreds of millions of nodes and billions of edges
 - Our goal is to work with one year of data (~ 1 Tb)

Structure of call detail graph

- Consider a 12-hour call detail graph
 - 123 million records: edges

Connected components

Depth first search (DFS) tree

DFS trees in largest CC

Subgraph induced by DFS tree nodes

- Most subgraphs induced by DFS tree nodes are very sparse: | E | < log(|V|)
- Few are dense: |E| > sqrt(|V|) with at most 32 nodes

Dense subgraphs

- Dense subgraphs could be
 - within G (DFS tree)
 - among different G (DFS tree)
- Counting edges:
 - most are within G (DFS tree)
 - leaves few edges between different G (DFS tree)

Macro structure of call detail graph

Searching for dense subgraphs

- We look for two types of subgraphs
 - cliques or quasi-cliques
 - bicliques or quasi-bicliques

Clique case

- We illustrate the approach with the clique case.
 - We work on connected component of transmittal nodes (no cliques in sources or sinks)
 - Breadth first search decomposition
 - Peeling off vertices to focus in on large cliques
 - Finding cliques in a subgraph

Breadth first search decomposition

 Given a graph G one can decompose its vertices into levels

There are no cliques spanning three or more levels.

BFS: distribution of nodes per level

Edge ordering

- Use levels to order edges (k = 0, 1, 2, ...)
 - Edges in level k

Chunking & peeling

- Start with all edges in E (set is massive)
- Repeat
 - Create a subgraph G' with one or more chunks
 - Find large clique (of size c') in G'
 - Peel from G all vertices v with deg(v) < c'

•
$$E = E(G)$$

Peeling

Peeling is applied recursively

Peeling with degree = 2

reduction from 3.4 M edges to 3.0 M edges

Peeling with degree = 14

reduction from 3.0 M edges to 18.3 K edges

Finding cliques

- GRASP for max clique
 - multi-start
 - construct clique using randomized greedy algorithm
 - attempt to improve clique using 2-exchange local search
 - store all cliques found in construction & local search

Greedy vertex choice

• Choose $v \in N(S)$ with max $\deg_{N(S)} \{v \in N(S)\}$.

(2,1) exchange local search

- for each vertex v in clique S
 - while \exists an edge $(x, y) \in E$ with x and y adjacent to all vertices in $S \setminus \{v\}$
 - remove v from S and add x and y to S:

 $S = S \setminus \{v\} \cup \{x\} \cup \{y\}$

clique of size 4

Software platform

external & semi-external memory algorithms

Software platform

computing cliques

Mining for cliques

examples

- 12 hours of calls
 - 53M nodes, 170M edges
 - 3.6M connected components (only 302K had more than three nodes)
 - 255 self loops, 2.7M pairs, and 598K triplets
 - Giant CC has 45M nodes
 - Found cliques of size up to 30 nodes in giant CC.
 - Found quasi-cliques of size 44 (90% density), 57 (80%), 65 (70%), and 98 (50%) in giant CC.

Concluding remarks

- We developed algorithms and systems for mining dense subgraphs is massive graphs.
- Subgraphs currently handled:
 - Cliques and quasi-cliques
 - Bicliques and quasi-bicliques
- We have explored data sets up to one week of calls, but aim to handle one year.
- Parallelization under way to speed up computations.

