
On the implementation of a swapOn the implementation of a swap--based local based local
search procedure for the search procedure for the pp--median problemmedian problem

Renato F. WerneckRenato F. Werneck
Princeton University

(Research done while at
AT&T Labs Research)

Mauricio G. C. Mauricio G. C. ResendeResende
AT&T Labs Research

Resende and Werneck Local search for the p-median problem

The The pp--median Problemmedian Problem
• Also known as the k-median problem.
• Input:

– a set U of n users (or customers);
– a set F of m potential facilities;
– a distance function (d: U × F → ℜ);
– the number of facilities p to open (0 < p < m).

• Output:
– a set S ⊆ F with p open facilities.

• Goal:
– minimize the sum of the distances from each user to

the closest open facility.

Resende and Werneck Local search for the p-median problem

ExampleExample

50 customers

Resende and Werneck Local search for the p-median problem

ExampleExample

16 potential facilities

Resende and Werneck Local search for the p-median problem

ExampleExample

assume p=5
(5 facilities will be opened)

Resende and Werneck Local search for the p-median problem

ExampleExample

This is a valid solution.

Resende and Werneck Local search for the p-median problem

ExampleExample

This is a valid solution with the proper assignments.

Resende and Werneck Local search for the p-median problem

Local SearchLocal Search
Basic Steps:

1. Start with some valid solution.
2. Look for a pair of facilities (fi, fr) such that:

• fi does not belong to the solution;
• fr belongs to the solution;
• swapping i and r improves the solution.

3. If (2) is successful, swap fi and fr and repeat (2); else
stop (a local minimum was found).

Resende and Werneck Local search for the p-median problem

Local Search Local Search -- ExampleExample

original solution

Resende and Werneck Local search for the p-median problem

Local Search Local Search -- ExampleExample

original solution
(not a local optimum)

Resende and Werneck Local search for the p-median problem

Local Search Local Search -- ExampleExample

improved solution

Resende and Werneck Local search for the p-median problem

Local Search Local Search -- ExampleExample

improved solution
(with wrong assignments)

Resende and Werneck Local search for the p-median problem

Local Search Local Search -- ExampleExample

improved solution
(with proper assignments)

Resende and Werneck Local search for the p-median problem

Local SearchLocal Search
• Introduced in [Teitz and Bart, 1968].
• Widely used in practice:

– On its own:
• [Whitaker, 1983];
• [Rosing, 1997].

– As a subroutine of metaheuristics:
• [Rolland et al., 1996] - Tabu Search
• [Voss, 1996] - “Reverse Elimination” (Tabu Search)
• [Hansen and Mladenović, 1997] - VNS
• [Rosing and ReVelle, 1997] - “Heuristic Concentration”
• [Hansen et al., 2001] - VNDS

Resende and Werneck Local search for the p-median problem

Previous ImplementationsPrevious Implementations
• Straightforward implementation:

– For each candidate pair of facilities, compute profit:
• p(m–p) = O(pm) pairs;
• O(n) time to compute profit in each case;
• O(pmn) total time (cubic).

• In 1983, Whitaker proposed a much better
implementation (named Fast Interchange).

• Key observation:
– Given a candidate for insertion, the best removal can

be computed in O(n+m) time.
– There are O(m) candidates, so the overall running

time is quadratic.

Resende and Werneck Local search for the p-median problem

Our ImplementationOur Implementation
• We propose another implementation:

– same worst case complexity;
– faster in practice, especially for large instances.

• Key idea: use information gathered in early
iterations to speed up later ones.
– Solution changes very little between iterations:

• swap has a local effect.

– Whitaker’s implementation does not use this:
• iterations are independent.

– We use extra memory to avoid repeating previously
executed calculations.

Resende and Werneck Local search for the p-median problem

DeletionDeletion
• For each facility fr in the solution, compute amount

lost if it were deleted from the solution (and not
replaced);

• That’s the cost of transferring all facilities assigned
to fr to their second closest facilities:

• Save the result: loss is an array.

∑
=

−=
rfuu

rr fuduudfloss
)(:

2
1

)],())(,([)(
φ

φ

Notation:
–φ1(u): facility in the solution that is closest to u;
–φ2(u): second closest facility to u in the solution.

Resende and Werneck Local search for the p-median problem

InsertionInsertion
• For each facility fi not in the solution, compute

amount gained if it were inserted (and no facility
removed);

• That’s the amount saved by transferring to fi users
that are closer to it than to their current facilities:

• Save the result: gain is also an array.

∑
∈

−=
Uu

ii fuduudfgain)},())(,(,0max{)(1φ

Resende and Werneck Local search for the p-median problem

SwapSwap
• We are interested in how profitable a swap is:

)()(),(riri flossfgainffprofit −=

Resende and Werneck Local search for the p-median problem

SwapSwap
• We are interested in how profitable a swap is.

– It would be nice if the profit were

– But it isn’t: fi and fr “interact” with each other.
– The correct expression is

(for a properly defined extra function).
– extra can be thought of as a correction factor.

),()()(),(ririri ffextraflossfgainffprofit +−=

)()(),(riri flossfgainffprofit −=

Resende and Werneck Local search for the p-median problem

Correction FactorCorrection Factor
• Things will “go wrong” for a user u iff:

– fr is the facility that is closest to u; and
– One of two things happens:

1. The new facility is closer to u than φ1(u) is.
– When computing loss, we predicted that u would be

reassigned to φ2(u). This will not happen.
– Loss overestimated by [d(u, φ2(u)) – d(u, fr)].

2. The new facility is farther to u than φ1(u), but closer
than φ2(u).
– When computing loss, we predicted that u would be

reassigned to φ2(u), but it should be reassigned to fi.
– Loss overestimated by [d(u, φ2(u)) – d(u, fi)].

• Note that in both “wrong” cases we have
overestimated the loss; extra will be additive.

φ1(u)

φ2(u)

u
fi

φ1(u)

u

fi
φ2(u)

Resende and Werneck Local search for the p-median problem

Correction FactorCorrection Factor
• Things will “go wrong” for a user u iff:

– fr is the facility that is closest to u; and
– One of two things happens:

1. The new facility is closer to u than φ1(u) is.
– Prediction: u will have to be reassigned to φ2(u);
– Fact: not necessary, φ1(u) will take care of it.
– Loss overestimated by [d(u, φ2(u)) – d(u, fr)].

2. The new facility is farther to u than φ1(u), but closer
than φ2(u).
– Prediction: u reassigned to φ2(u);
– Fact: u reassigned to fi.
– Loss overestimated by [d(u, φ2(u)) – d(u, fi)].

• Note that in both “wrong” cases we have
overestimated the loss; extra will be additive.

φ1(u)

φ2(u)

u
fi

φ1(u)

u

fi
φ2(u)

Resende and Werneck Local search for the p-median problem

Correction FactorCorrection Factor
– From the conditions in the previous slide, we can

determine what extra must be:

– Simplifying, we get

– This can be computed in O(mn) time for all pairs.
– extra will be a matrix.

∑

∑

≤<
∧=

<≤
∧=

−+

−=

))](,())(,(),([
])([:

2

))](,(),())(,([
])([:

2

21
1

21
1

)],())(,([

)],())(,([),(

uuduudfud
fuu

r

uudfuduud
fuu

iri

i
r

i
r

fuduud

fuduudffextra

φφ
φ

φφ
φ

φ

φ

∑
<

∧=

−=
))](,(),([

])([:
2

2
1

)}],(),,(max{))(,([),(
uudfud

fuu
riri

i
r

fudfuduudffextra
φ

φ
φ

Resende and Werneck Local search for the p-median problem

Our ImplementationOur Implementation
• So we have to compute three structures:

• Each of them is a summation over the set of users:

∑
=

−=
rfuu

rr fuduudfloss
)(:

2
1

)],())(,([)(
φ

φ

∑
∈

−=
Uu

ii fuduudfgain)},())(,(,0max{)(1φ

– We can compute the contribution of each user
independently.

∑
<

∧=

−=
))](,(),([

])([:
2

2
1

)}],(),,(max{))(,([),(
uudfud

fuu
riri

i
r

fudfuduudffextra
φ

φ
φ

Resende and Werneck Local search for the p-median problem

Our ImplementationOur Implementation
function updateStructures (S,u,loss,gain,extra,φ1,φ2)

fr = φ1(u);
loss[fr] += d(u,φ2(u)) - d(u,φ1(u));
forall (fi∉S) do {

if (d(u,fi)<d(u,φ2(u))) then
gain[fi] += max{0, d(u,φ1(u)) - d(u,fi)};

extra[fi,fr] += d(u,φ2(u)) – max{d(u,fi), d(u,fr)};

endif

endforall

end updateStructures

– We can compute the contribution of each user
independently.

– O(m) time per user.

Resende and Werneck Local search for the p-median problem

Our ImplementationOur Implementation
• So each iteration of our method is as follows:

1. Determine closeness information: O(pm) time;
2. Compute gain, loss, and extra: O(mn) time;
3. Use gain, loss, and extra to find best swap: O(pm) time.

• That’s the same as Whitaker’s implementation, but
– much more complicated;
– uses much more memory:

• extra is an O(pm)-sized matrix.

• Why would this be better?
– Don’t need to compute everything in every iteration;
– we just need to update gain, loss, and extra;
– only contributions of affected users are recomputed.

Resende and Werneck Local search for the p-median problem

Our ImplementationOur Implementation
function localSearch (S,φ1,φ2)

A := U;

resetStructures(gain,loss,extra);

while (TRUE) do {

forall (u∈A) do updateStructures (S,u,gain,loss,extra,φ1,φ2);
(fr,fi,profit) := findBestNeighbor (gain,loss,extra);

if (profit ≤ 0) then break;

A := ∅;
forall (u∈U) do

if ((φ1(u)=fr) or (φ2(u)=fr) or (d(u,fi)<d(u,φ2(u)))) then
A := A∪{u};

endif;
endforall
forall (u∈A) do undoUpdateStructures(S,u,gain,loss,extra,φ1,φ2);
insert(S,fi);
remove(S,fr);
updateClosest(S,fi,fr,φ1,φ2);

endwhile
end localSearch

Resende and Werneck Local search for the p-median problem

Our ImplementationOur Implementation
function localSearch (S,φ1,φ2)

A := U;

resetStructures(gain,loss,extra);

while (TRUE) do {

forall (u∈A) do updateStructures (S,u,gain,loss,extra,φ1,φ2);
(fr,fi,profit) := findBestNeighbor (gain,loss,extra);

if (profit ≤ 0) then break;

A := ∅;
forall (u∈U) do

if ((φ1(u)=fr) or (φ2(u)=fr) or (d(u,fi)<d(u,φ2(u)))) then
A := A∪{u};

endif;
endforall
forall (u∈A) do undoUpdateStructures(S,u,gain,loss,extra,φ1,φ2);
insert(S,fi);
remove(S,fr);
updateClosest(S,fi,fr,φ1,φ2);

endwhile
end localSearch

Input: solution to be changed and
related closeness information.

Resende and Werneck Local search for the p-median problem

Our ImplementationOur Implementation
function localSearch (S,φ1,φ2)

A := U;

resetStructures(gain,loss,extra);

while (TRUE) do {

forall (u∈A) do updateStructures (S,u,gain,loss,extra,φ1,φ2);
(fr,fi,profit) := findBestNeighbor (gain,loss,extra);

if (profit ≤ 0) then break;

A := ∅;
forall (u∈U) do

if ((φ1(u)=fr) or (φ2(u)=fr) or (d(u,fi)<d(u,φ2(u)))) then
A := A∪{u};

endif;
endforall
forall (u∈A) do undoUpdateStructures(S,u,gain,loss,extra,φ1,φ2);
insert(S,fi);
remove(S,fr);
updateClosest(S,fi,fr,φ1,φ2);

endwhile
end localSearch

All users affected in the beginning
(gain, loss, and extra must be

computed for all of them).

Resende and Werneck Local search for the p-median problem

Our ImplementationOur Implementation
function localSearch (S,φ1,φ2)

A := U;

resetStructures(gain,loss,extra);

while (TRUE) do {

forall (u∈A) do updateStructures (S,u,gain,loss,extra,φ1,φ2);
(fr,fi,profit) := findBestNeighbor (gain,loss,extra);

if (profit ≤ 0) then break;

A := ∅;
forall (u∈U) do

if ((φ1(u)=fr) or (φ2(u)=fr) or (d(u,fi)<d(u,φ2(u)))) then
A := A∪{u};

endif;
endforall
forall (u∈A) do undoUpdateStructures(S,u,gain,loss,extra,φ1,φ2);
insert(S,fi);
remove(S,fr);
updateClosest(S,fi,fr,φ1,φ2);

endwhile
end localSearch

Initialize all positions of
gain, loss, and
extra to zero.

Resende and Werneck Local search for the p-median problem

Our ImplementationOur Implementation
function localSearch (S,φ1,φ2)

A := U;

resetStructures(gain,loss,extra);

while (TRUE) do {

forall (u∈A) do updateStructures (S,u,gain,loss,extra,φ1,φ2);
(fr,fi,profit) := findBestNeighbor (gain,loss,extra);

if (profit ≤ 0) then break;

A := ∅;
forall (u∈U) do

if ((φ1(u)=fr) or (φ2(u)=fr) or (d(u,fi)<d(u,φ2(u)))) then
A := A∪{u};

endif;
endforall
forall (u∈A) do undoUpdateStructures(S,u,gain,loss,extra,φ1,φ2);
insert(S,fi);
remove(S,fr);
updateClosest(S,fi,fr,φ1,φ2);

endwhile
end localSearch

Add contributions of all affected
users to gain, loss, and extra.

Resende and Werneck Local search for the p-median problem

Our ImplementationOur Implementation
function localSearch (S,φ1,φ2)

A := U;

resetStructures(gain,loss,extra);

while (TRUE) do {

forall (u∈A) do updateStructures (S,u,gain,loss,extra,φ1,φ2);
(fr,fi,profit) := findBestNeighbor (gain,loss,extra);

if (profit ≤ 0) then break;

A := ∅;
forall (u∈U) do

if ((φ1(u)=fr) or (φ2(u)=fr) or (d(u,fi)<d(u,φ2(u)))) then
A := A∪{u};

endif;
endforall
forall (u∈A) do undoUpdateStructures(S,u,gain,loss,extra,φ1,φ2);
insert(S,fi);
remove(S,fr);
updateClosest(S,fi,fr,φ1,φ2);

endwhile
end localSearch

Determine the best swap to make.

Resende and Werneck Local search for the p-median problem

Our ImplementationOur Implementation
function localSearch (S,φ1,φ2)

A := U;

resetStructures(gain,loss,extra);

while (TRUE) do {

forall (u∈A) do updateStructures (S,u,gain,loss,extra,φ1,φ2);
(fr,fi,profit) := findBestNeighbor (gain,loss,extra);

if (profit ≤ 0) then break;

A := ∅;
forall (u∈U) do

if ((φ1(u)=fr) or (φ2(u)=fr) or (d(u,fi)<d(u,φ2(u)))) then
A := A∪{u};

endif;
endforall
forall (u∈A) do undoUpdateStructures(S,u,gain,loss,extra,φ1,φ2);
insert(S,fi);
remove(S,fr);
updateClosest(S,fi,fr,φ1,φ2);

endwhile
end localSearch

Swap will be performed
only if profitable.

Resende and Werneck Local search for the p-median problem

Our ImplementationOur Implementation
function localSearch (S,φ1,φ2)

A := U;

resetStructures(gain,loss,extra);

while (TRUE) do {

forall (u∈A) do updateStructures (S,u,gain,loss,extra,φ1,φ2);
(fr,fi,profit) := findBestNeighbor (gain,loss,extra);

if (profit ≤ 0) then break;

A := ∅;
forall (u∈U) do

if ((φ1(u)=fr) or (φ2(u)=fr) or (d(u,fi)<d(u,φ2(u)))) then
A := A∪{u};

endif;
endforall
forall (u∈A) do undoUpdateStructures(S,u,gain,loss,extra,φ1,φ2);
insert(S,fi);
remove(S,fr);
updateClosest(S,fi,fr,φ1,φ2);

endwhile
end localSearch

Determine which users will be
affected (those who are close
to at least one of the facilities

involved in the swap).

Resende and Werneck Local search for the p-median problem

Our ImplementationOur Implementation
function localSearch (S,φ1,φ2)

A := U;

resetStructures(gain,loss,extra);

while (TRUE) do {

forall (u∈A) do updateStructures (S,u,gain,loss,extra,φ1,φ2);
(fr,fi,profit) := findBestNeighbor (gain,loss,extra);

if (profit ≤ 0) then break;

A := ∅;
forall (u∈U) do

if ((φ1(u)=fr) or (φ2(u)=fr) or (d(u,fi)<d(u,φ2(u)))) then
A := A∪{u};

endif;
endforall
forall (u∈A) do undoUpdateStructures(S,u,gain,loss,extra,φ1,φ2);
insert(S,fi);
remove(S,fr);
updateClosest(S,fi,fr,φ1,φ2);

endwhile
end localSearch Disregard previous contributions from

affected users to gain, loss, and extra.

Resende and Werneck Local search for the p-median problem

Our ImplementationOur Implementation
function localSearch (S,φ1,φ2)

A := U;

resetStructures(gain,loss,extra);

while (TRUE) do {

forall (u∈A) do updateStructures (S,u,gain,loss,extra,φ1,φ2);
(fr,fi,profit) := findBestNeighbor (gain,loss,extra);

if (profit ≤ 0) then break;

A := ∅;
forall (u∈U) do

if ((φ1(u)=fr) or (φ2(u)=fr) or (d(u,fi)<d(u,φ2(u)))) then
A := A∪{u};

endif;
endforall
forall (u∈A) do undoUpdateStructures(S,u,gain,loss,extra,φ1,φ2);
insert(S,fi);
remove(S,fr);
updateClosest(S,fi,fr,φ1,φ2);

endwhile
end localSearch

Finally, perform the swap.

Resende and Werneck Local search for the p-median problem

Our ImplementationOur Implementation
function localSearch (S,φ1,φ2)

A := U;

resetStructures(gain,loss,extra);

while (TRUE) do {

forall (u∈A) do updateStructures (S,u,gain,loss,extra,φ1,φ2);
(fr,fi,profit) := findBestNeighbor (gain,loss,extra);

if (profit ≤ 0) then break;

A := ∅;
forall (u∈U) do

if ((φ1(u)=fr) or (φ2(u)=fr) or (d(u,fi)<d(u,φ2(u)))) then
A := A∪{u};

endif;
endforall
forall (u∈A) do undoUpdateStructures(S,u,gain,loss,extra,φ1,φ2);
insert(S,fi);
remove(S,fr);
updateClosest(S,fi,fr,φ1,φ2);

endwhile
end localSearch

Update closeness information
for next iteration.

Resende and Werneck Local search for the p-median problem

BottlenecksBottlenecks
function localSearch (S,φ1,φ2)

A := U;

resetStructures(gain,loss,extra);

while (TRUE) do {

forall (u∈A) do updateStructures (S,u,gain,loss,extra,φ1,φ2);
(fr,fi,profit) := findBestNeighbor (gain,loss,extra);

if (profit ≤ 0) then break;

A := ∅;
forall (u∈U) do

if ((φ1(u)=fr) or (φ2(u)=fr) or (d(u,fi)<d(u,φ2(u)))) then
A := A∪{u};

endif;
endforall
forall (u∈A) do undoUpdateStructures(S,u,gain,loss,extra,φ1,φ2);
insert(S,fi);
remove(S,fr);
updateClosest(S,fi,fr,φ1,φ2);

endwhile
end localSearch

3

3

2

1 1. Updating closeness information;

2. finding the best swap to make;

3. updating auxiliary structures.

Resende and Werneck Local search for the p-median problem

Bottleneck 1 Bottleneck 1 –– ClosenessCloseness
function localSearch (S,φ1,φ2)

A := U;

resetStructures(gain,loss,extra);

while (TRUE) do {

forall (u∈A) do updateStructures (S,u,gain,loss,extra,φ1,φ2);
(fr,fi,profit) := findBestNeighbor (gain,loss,extra);

if (profit ≤ 0) then break;

A := ∅;
forall (u∈U) do

if ((φ1(u)=fr) or (φ2(u)=fr) or (d(u,fi)<d(u,φ2(u)))) then
A := A∪{u};

endif;
endforall
forall (u∈A) do undoUpdateStructures(S,u,gain,loss,extra,φ1,φ2);
insert(S,fi);
remove(S,fr);
updateClosest(S,fi,fr,φ1,φ2);

endwhile
end localSearch

Resende and Werneck Local search for the p-median problem

Bottleneck 1 Bottleneck 1 –– ClosenessCloseness
• Two kinds of change may occur with a user:

1. The new facility (fi) becomes its closest or second
closest facility:
• Update takes constant time.

2. The facility removed (fr) was the user’s closest or
second closest:
• Need to look for a new second closest;
• Takes O(p) time.

• The second case could be a bottleneck, but in
practice only a few users fall into this case.
– Only these need to be tested.
– [Hansen and Mladenović, 1997].

Resende and Werneck Local search for the p-median problem

Bottleneck 2 Bottleneck 2 –– Best NeighborBest Neighbor
function localSearch (S,φ1,φ2)

A := U;

resetStructures(gain,loss,extra);

while (TRUE) do {

forall (u∈A) do updateStructures (S,u,gain,loss,extra,φ1,φ2);
(fr,fi,profit) := findBestNeighbor (gain,loss,extra);

if (profit ≤ 0) then break;

A := ∅;
forall (u∈U) do

if ((φ1(u)=fr) or (φ2(u)=fr) or (d(u,fi)<d(u,φ2(u)))) then
A := A∪{u};

endif;
endforall
forall (u∈A) do undoUpdateStructures(S,u,gain,loss,extra,φ1,φ2);
insert(S,fi);
remove(S,fr);
updateClosest(S,fi,fr,φ1,φ2);

endwhile
end localSearch

Resende and Werneck Local search for the p-median problem

Bottleneck 2 Bottleneck 2 –– Best NeighborBest Neighbor
• Number of potential swaps: p(m-p).
• Straightforward way to compute the best one:

– Compute profit(fi, fr) for all pairs and pick minimum:

– This requires O(mp) time.

• Alternative:
– As the initial candidate, pick the fi with the largest gain

and the fr with the smallest loss.
• The best swap is at least as good as this.

– Reason: extra is always nonnegative.

– Compute the exact profit only for pairs that have extra
greater than zero.

),()()(),(ririri ffextraflossfgainffprofit +−=

Resende and Werneck Local search for the p-median problem

Bottleneck 2 Bottleneck 2 –– Best NeighborBest Neighbor
• Worst case:

– O(pm) (exactly the same)

• In practice:
– extra(fi, fr) represents the “interference” between these

two facilities.
– Local phenomenon: each facility interacts with some

facilities nearby.
– extra is likely to have very few nonzero elements,

especially when p is large.

• Use sparse matrix representation for extra:
– each row represented as a linked list of nonzero

elements.
– “side effect”: less memory (usually).

Resende and Werneck Local search for the p-median problem

Bottleneck 3 Bottleneck 3 –– Updating Structures Updating Structures
function localSearch (S,φ1,φ2)

A := U;

resetStructures(gain,loss,extra);

while (TRUE) do {

forall (u∈A) do updateStructures (S,u,gain,loss,extra,φ1,φ2);
(fr,fi,profit) := findBestNeighbor (gain,loss,extra);

if (profit ≤ 0) then break;

A := ∅;
forall (u∈U) do

if ((φ1(u)=fr) or (φ2(u)=fr) or (d(u,fi)<d(u,φ2(u)))) then
A := A∪{u};

endif;
endforall
forall (u∈A) do undoUpdateStructures(S,u,gain,loss,extra,φ1,φ2);
insert(S,fi);
remove(S,fr);
updateClosest(S,fi,fr,φ1,φ2);

endwhile
end localSearch

Resende and Werneck Local search for the p-median problem

Bottleneck 3 Bottleneck 3 –– Updating StructuresUpdating Structures
function updateStructures (S,u,loss,gain,extra,φ1,φ2)

fr = φ1(u);
loss[fr] += d(u,φ2(u)) - d(u,φ1(u));
forall (fi∉S) do

if (d(u,fi)<d(u,φ2(u))) then
gain[fi] += max{0, d(u,φ1(u)) - d(u,fi)};

extra[fi,fr] += d(u,φ2(u)) – max{d(u,fi), d(u,fr)};

endif

endforall

end updateStructures

This loop always takes
m-p iterations.

Resende and Werneck Local search for the p-median problem

Bottleneck 3 Bottleneck 3 –– Updating StructuresUpdating Structures
function updateStructures (S,u,loss,gain,extra,φ1,φ2)

fr = φ1(u);
loss[fr] += d(u,φ2(u)) - d(u,φ1(u));
forall (fi∉S such that d(u,fi)<d(u,φ2(u))) do

gain[fi] += max{0, d(u,φ1(u)) - d(u,fi)};

extra[fi,fr] += d(u,φ2(u)) – max{d(u,fi), d(u,fr)};

endforall

end updateStructures

–Preprocessing step:
• for each user, sort all facilities in increasing order by

distance (and keep the resulting list);
• in the function above, we just need to check the

appropriate prefix of the list.

We actually need only
facilities that are very

close to u.

Resende and Werneck Local search for the p-median problem

Bottleneck 3: Updating StructuresBottleneck 3: Updating Structures
• Preprocessing step:

– Time:
• O(nm log m);
• preprocessing step executed only once, even if local

search is run several times.

– Space:
• O(mn) memory positions, which can be too much.
• Alternative:

– Keep only a prefix of the list (the closest facilities).
– Use list as a cache:

» If enough elements present, use it;
» Otherwise, do as before: check all facilities.

– Same worst case.

Resende and Werneck Local search for the p-median problem

ResultsResults
• Three classes of instances:

– ORLIB (sparse graphs):
• 100 to 900 users, p between 5 and 200;
• Distances given by shortest paths in the graph.

– RW (random instances):
• 100 to 1000 users, p between 10 and n/2;
• Distances picked at random from [1,n].

– TSP (points on the plane):
• 1400, 3038, or 5934 users, p between 10 and n/3;
• Distances are Euclidean.

• In all cases, number of users is equal to the number
of potential facilities.

Resende and Werneck Local search for the p-median problem

ResultsResults
• Three variations analyzed:

– FM: Full Matrix, no preprocessing;
– SM: Sparse Matrix, no preprocessing;
– SMP: Sparse Matrix, with Preprocessing.

• These were run on all instances and compared to
Whitaker’s fast interchange method (FI).
– As implemented in [Hansen and Mladenović, 1997].

• All methods (including FI) use the “smart” update of
closeness information.

• Measure of relative performance: speedup.
– Ratio between the running time of FI and the running

time of our method.
– All methods start from the same (greedy) solution.

Resende and Werneck Local search for the p-median problem

ResultsResults
• Mean speedups when compared to Whitaker’s FI:

– Even our simplest variation is faster in practice;
– Updating only affected users does pay off;
– Speedups greater for larger instances.

FM

Method

11.74.13.0full matrix, no preprocessing

TSPRWORLIBDescription

Resende and Werneck Local search for the p-median problem

ResultsResults
• Mean speedups when compared to Whitaker’s FI:

– Checking only the nonzero elements of the extra
matrix gives an additional speedup.

– Again, better for larger instances.

SM

FM

Method

26.25.33.1sparse matrix, no preprocessing

11.74.13.0full matrix, no preprocessing

TSPRWORLIBDescription

Resende and Werneck Local search for the p-median problem

ResultsResults
• Mean speedups when compared to Whitaker’s FI:

– Preprocessing appears to be a little too expensive.
• Still much faster than the original implementation.

– But remember that preprocessing must be run just
once, even if the local search is run more than once.

20.32.11.2sparse matrix, full preprocessing SMP

SM

FM

Method

26.25.33.1sparse matrix, no preprocessing

11.74.13.0full matrix, no preprocessing

TSPRWORLIBDescription

Resende and Werneck Local search for the p-median problem

ResultsResults
• Mean speedups when compared to Whitaker’s FI:

– If we are able to amortize away the preprocessing
time, significantly greater speedups are observed on
average.

– Typical case in metaheuristics.

20.32.11.2sparse matrix, full preprocessing SMP

SMP*

SM

FM

Method

177.615.18.7sparse matrix, full preprocessing

26.25.33.1sparse matrix, no preprocessing

11.74.13.0full matrix, no preprocessing

TSPRWORLIBDescription

(in SMP*, preprocessing times are not included)

Resende and Werneck Local search for the p-median problem

ResultsResults
• Speedups w.r.t. Whitaker’s FI (best cases):

– Speedups of up to three orders of magnitude were
observed.

– Greater for large instances with large values of p.

79.29.67.5sparse matrix, full preprocessing SMP

SMP*

SM

FM

Method

862.1113.967.0sparse matrix, full preprocessing

147.732.417.2sparse matrix, no preprocessing

31.112.412.7full matrix, no preprocessing

TSPRWORLIBDescription

(in SMP*, preprocessing times are not included)

Resende and Werneck Local search for the p-median problem

ResultsResults
• Speedups w.r.t. Whitaker’s FI (worst cases):

– For small instances, our method can be slower than
Whitaker’s; our constants are higher.

– Once preprocessing times are amortized, even that
does not happen.

1.330.180.22sparse matrix, full preprocessing SMP

SMP*

SM

FM

Method

3.271.401.30sparse matrix, full preprocessing

1.720.750.74sparse matrix, no preprocessing

1.850.880.84full matrix, no preprocessing

TSPRWORLIBDescription

(in SMP*, preprocessing times are not included)

Resende and Werneck Local search for the p-median problem

ResultsResults

1

10

100

1000

10000

0 300 600 900 1200 1500

p p p p (num ber of facilities)

ti
m
e
 (
s
ec

o
n
d
s
)

F I

F M

S M

S M P

Largest instance tested: 5934 users, Euclidean.
(preprocessing times not considered)

Resende and Werneck Local search for the p-median problem

ResultsResults

1

10

100

1000

10000

0 300 600 900 1200 1500

p p p p (num ber of facilities)

ti
m
e
 (
s
ec

o
n
d
s
)

S M

S M P

Note that preprocessing significantly
accelerates the algorithm.

Resende and Werneck Local search for the p-median problem

ResultsResults
• Preprocessing greatly accelerates the algorithm.
• However, it requires a great amount of memory:

– n lists of size m.

• We can make only partial lists.
– We would like each list to the second closest open

facility as often as possible:
– the larger m is, the larger the list needs to be;
– the larger p is, the smallest the list needs to be.

• Method SMq:
– Each user has a list of size q m/p.
– Example: m = 6000, p = 300, q = 5.

• Each user keeps a list of size 100;
• in the “full” version, the list would have size 6000.

Resende and Werneck Local search for the p-median problem

ResultsResults

1

10

100

1000

10000

0 300 600 900 1200 1500

p p p p (num ber of facilities)

ti
m
e
 (
s
ec

o
n
d
s
) S M

S M 1

S M 2

S M 3

S M 5

S M P

For this instance, q=5 is already
as fast as the full version.

Resende and Werneck Local search for the p-median problem

Final RemarksFinal Remarks
• New implementation of well-known local search.
• Uses extra memory, but much faster in practice.
• Accelerations are metric-independent.
• Especially useful for metaheuristics:

– We have implemented a GRASP based on this local
search with very promising results.

– Other existing methods may benefit from it.

• There is still room for improvement:
– metric-specific techniques (graphs, Euclidean);
– perform preprocessing “on demand”.

Resende and Werneck Local search for the p-median problem

The EndThe End

Resende and Werneck Local search for the p-median problem

The EndThe End

Resende and Werneck Local search for the p-median problem

Straightforward ImplementationStraightforward Implementation
• Straightforward Implementation:

– For each candidate pair (fi, fr) of facilities, compute
the profit that would be obtained:

– Notation:
• φ1(u): facility in the solution that is closest to u;
• φ2(u): second closest facility to u in the solution.

))](,()},()),(,([min{

)]},())(,([,0max{),(

12
)(:

1
)(:

1

1

uudfuduud

fuduudffprofit

i
fuu

i
fuu

ri

r

r

φφ

φ

φ

φ

−−

−=

∑

∑

=

≠

Resende and Werneck Local search for the p-median problem

Straightforward ImplementationStraightforward Implementation
• Straightforward Implementation:

– For each candidate pair (fi, fr) of facilities, compute
the profit that would be obtained:

Gain from reassigning
users to fi, the new facility

))](,()},()),(,([min{

)]},())(,([,0max{),(

12
)(:

1
)(:

1

1

uudfuduud

fuduudffprofit

i
fuu

i
fuu

ri

r

r

φφ

φ

φ

φ

−−

−=

∑

∑

=

≠

Resende and Werneck Local search for the p-median problem

Straightforward ImplementationStraightforward Implementation
• Straightforward Implementation:

– For each candidate pair (fi, fr) of facilities, compute
the profit that would be obtained:

Loss from reassigning users
previously assigned to fr

))](,()},()),(,([min{

)]},())(,([,0max{),(

12
)(:

1
)(:

1

1

uudfuduud

fuduudffprofit

i
fuu

i
fuu

ri

r

r

φφ

φ

φ

φ

−−

−=

∑

∑

=

≠

Resende and Werneck Local search for the p-median problem

Straightforward ImplementationStraightforward Implementation
• Straightforward Implementation:

– For each candidate pair of facilities, compute the
corresponding profit

– Running time:
• O(pn) time to compute φ1(u) and φ2(u) for all u;
• p(m-p) = O(pm) candidate pairs;
• O(n) time to process each of them;
• O(pmn) total time.

))](,()},()),(,([min{

)]},())(,([,0max{),(

12
)(:

1
)(:

1

1

uudfuduud

fuduudffprofit

i
fuu

i
fuu

ri

r

r

φφ

φ

φ

φ

−−

−=

∑

∑

=

≠

Resende and Werneck Local search for the p-median problem

Whitaker’s ImplementationWhitaker’s Implementation
function findOut (S,fi,φ1,φ2)

w := 0;

forall (fr∈S) do v(fr) := 0;

forall (u∈U) do {

if (d(u,fi)<d(u,φ1(u))) then
w += d(u,φ1(u)) - d(u,fi);

else

v(φ1(u)) += min{d(u,fi),d(u,φ2(u))} - d(u,φ1(u));
endif

endforall

fr := argminf∈S{v(f)};

profit := w – v(fr);

return (fr,profit);

end findOut;

Resende and Werneck Local search for the p-median problem

Whitaker’s ImplementationWhitaker’s Implementation
function findOut (S,fi,φ1,φ2)

w := 0;

forall (fr∈S) do v(fr) := 0;

forall (u∈U) do {

if (d(u,fi)<d(u,φ1(u))) then
w += d(u,φ1(u)) - d(u,fi);

else

v(φ1(u)) += min{d(u,fi),d(u,φ2(u))} - d(u,φ1(u));
endif

endforall

fr := argminf∈S{v(f)};

profit := w – v(fr);

return (fr,profit);

end findOut;

• Notation:
– φ1(u): facility in the solution that is closest

to u;
– φ2(u): second closest facility to u in the

solution.

Input: current solution, facility
to insert, closeness information

Resende and Werneck Local search for the p-median problem

Whitaker’s ImplementationWhitaker’s Implementation
function findOut (S,fi,φ1,φ2)

w := 0;

forall (fr∈S) do v(fr) := 0;

forall (u∈U) do {

if (d(u,fi)<d(u,φ1(u))) then
w += d(u,φ1(u)) - d(u,fi);

else

v(φ1(u)) += min{d(u,fi),d(u,φ2(u))} - d(u,φ1(u));
endif

endforall

fr := argminf∈S{v(f)};

profit := w – v(fr);

return (fr,profit);

end findOut;

Output: facility to remove and
associated profit (may be negative)

Resende and Werneck Local search for the p-median problem

Whitaker’s ImplementationWhitaker’s Implementation
function findOut (S,fi,φ1,φ2)

w := 0;

forall (fr∈S) do v(fr) := 0;

forall (u∈U) do {

if (d(u,fi)<d(u,φ1(u))) then
w += d(u,φ1(u)) - d(u,fi);

else

v(φ1(u)) += min{d(u,fi),d(u,φ2(u))} - d(u,φ1(u));
endif

endforall

fr := argminf∈S{v(f)};

profit := w – v(fr);

return (fr,profit);

end findOut;

This variable will account for the
total gain due to reassigning
users to the new facility.

Resende and Werneck Local search for the p-median problem

Whitaker’s ImplementationWhitaker’s Implementation
function findOut (S,fi,φ1,φ2)

w := 0;

forall (fr∈S) do v(fr) := 0;

forall (u∈U) do {

if (d(u,fi)<d(u,φ1(u))) then
w += d(u,φ1(u)) - d(u,fi);

else

v(φ1(u)) += min{d(u,fi),d(u,φ2(u))} - d(u,φ1(u));
endif

endforall

fr := argminf∈S{v(f)};

profit := w – v(fr);

return (fr,profit);

end findOut;

Variable v(fr) represents how
much would be lost if fr were
removed from the solution.

Resende and Werneck Local search for the p-median problem

Whitaker’s ImplementationWhitaker’s Implementation
function findOut (S,fi,φ1,φ2)

w := 0;

forall (fr∈S) do v(fr) := 0;

forall (u∈U) do {

if (d(u,fi)<d(u,φ1(u))) then
w += d(u,φ1(u)) - d(u,fi);

else

v(φ1(u)) += min{d(u,fi),d(u,φ2(u))} - d(u,φ1(u));
endif

endforall

fr := argminf∈S{v(f)};

profit := w – v(fr);

return (fr,profit);

end findOut;

Case 1: User wants to
be reassigned to the
new facility. Compute
the profit.

Resende and Werneck Local search for the p-median problem

Whitaker’s ImplementationWhitaker’s Implementation
function findOut (S,fi,φ1,φ2)

w := 0;

forall (fr∈S) do v(fr) := 0;

forall (u∈U) do {

if (d(u,fi)<d(u,φ1(u))) then
w += d(u,φ1(u)) - d(u,fi);

else

v(φ1(u)) += min{d(u,fi),d(u,φ2(u))} - d(u,φ1(u));
endif

endforall

fr := argminf∈S{v(f)};

profit := w – v(fr);

return (fr,profit);

end findOut;
Case 2: User does not want to
be reassigned. We compute the
cost of reassigning if we have
to remove its closest facility.

Resende and Werneck Local search for the p-median problem

Whitaker’s ImplementationWhitaker’s Implementation
function findOut (S,fi,φ1,φ2)

w := 0;

forall (fr∈S) do v(fr) := 0;

forall (u∈U) do {

if (d(u,fi)<d(u,φ1(u))) then
w += d(u,φ1(u)) - d(u,fi);

else

v(φ1(u)) += min{d(u,fi),d(u,φ2(u))} - d(u,φ1(u));
endif

endforall

fr := argminf∈S{v(f)};

profit := w – v(fr);

return (fr,profit);

end findOut;

Pick the facility with the smallest
reassignment cost and compute the
“real” profit associated with it.

Resende and Werneck Local search for the p-median problem

Whitaker’s ImplementationWhitaker’s Implementation
function findOut (S,fi,φ1,φ2)

w := 0;

forall (fr∈S) do v(fr) := 0;

forall (u∈U) do {

if (d(u,fi)<d(u,φ1(u))) then
w += d(u,φ1(u)) - d(u,fi);

else

v(φ1(u)) += min{d(u,fi),d(u,φ2(u))} - d(u,φ1(u));
endif

endforall

fr := argminf∈S{v(f)};

profit := w – v(fr);

return (fr,profit);

end findOut;

This procedure takes O(n+m) time.

Resende and Werneck Local search for the p-median problem

Our ImplementationOur Implementation
• For each facility, compute the following values:

– loss(fr): amount lost if fr were removed from the
solution (no facility inserted):

(users reassigned to second closest facilities)

– gain(fi): how much is gained if fi were inserted into
the solution (no facility removed):

(close enough users would reassigned to fi)

∑
=

−=
rfuu

rr fuduudfloss
)(:

2
1

)],())(,([)(
φ

φ

∑
∈

−=
Uu

ii fuduudfgain)},())(,(,0max{)(1φ

Resende and Werneck Local search for the p-median problem

ResultsResults
• Variant FM:

– full matrix;
– no preprocessing.

• Speedups when compared to Whitaker’s FI:

1.8511.6831.14TSP

0.884.1412.42RW

0.843.0112.72ORLIB

WorstMeanBestClass

Resende and Werneck Local search for the p-median problem

ResultsResults
• Variant SM:

– sparse matrix;
– no preprocessing.

• Speedups when compared to Whitaker’s FI:

1.7226.18147.71TSP

0.755.2632.39RW

0.743.1017.21ORLIB

WorstMeanBestClass

Resende and Werneck Local search for the p-median problem

ResultsResults
• Variant SMP:

– sparse matrix;
– full preprocessing (complete list for each user)

• Speedups when compared to Whitaker’s FI:

TSP

RW

ORLIB

Class Incl. PreprocessingLocal Search Only

3.27

1.40

1.30

Worst

177.6

15.1

8.7

Mean

862.1

113.9

67.0

Best

1.3320.379.2

0.182.19.6

0.221.27.5

WorstMeanBest

Resende and Werneck Local search for the p-median problem

Local SearchLocal Search

Euclidean instance, 5934 users/facilities

0

2000

4000

6000

8000

10000

12000

14000

0 300 600 900 1200 1500

facilities

ti
m

e
 (

s)

Previous

Resende and Werneck Local search for the p-median problem

Local SearchLocal Search

Euclidean instance, 5934 users/facilities

0

2000

4000

6000

8000

10000

12000

14000

0 300 600 900 1200 1500

facilities

ti
m

e
 (

s)
Previous Ours

Resende and Werneck Local search for the p-median problem

Local SearchLocal Search

(replay in log scale...)

1

10

100

1000

10000

100000

0 300 600 900 1200 1500

facilities

ti
m

e
 (

s)

Previous Ours

Resende and Werneck Local search for the p-median problem

ResultsResults
• Tested on Euclidean and graph instances.
• Compares favorably with the 3 best heuristics

available (within similar running times).
• Solution quality:

– Worst: 0.12% above best solution known.
– Best: improved best known by 1.397%.

• We are still working on improvements.

