
slide 1 Prize collecting Steiner tree problem

Prize collecting Steiner tree
problem

Heuristic & lower bounds

Maurício G. C. Resende
Algorithms & Optimization Research Dept.

AT&T Labs Research
Florham Park, New Jersey

mgcr@research.att.com
http://www.research.att.com/~mgcr

Joint work with S. Canuto, A. Lucena, & C.C. Ribeiro

May 2000

slide 2 Prize collecting Steiner tree problem

Outline

• Introduction
Problem definition
An application from telecommincations access
network design

• Local search with perturbations: A heuristic
Local search with perturbations
Path relinking
Variable neighborhood search

• A cutting planes algorithm: Lower bounds
Integer programming formulation
Cutting planes algorithm
Preprocessing to reduce input graph size

• Computational results

slide 3 Prize collecting Steiner tree problem

Prize-collecting Steiner tree
(PCST) problem

• Given: graph G = (V, E)
Real-valued cost ce is associated with edge
e
Real-valued penalty dv is associated with
vertex v

• A tree is a connected acyclic subgraph
of G and its weight is the sum of its
edge costs plus the sum of the penalties
of the vertices of G not spanned by the
tree.

• PCST problem: Find tree of smallest
weight.

slide 4 Prize collecting Steiner tree problem

Cost of tree

3

9
2

6
7

4
8

9

6
2

7
3 7 8

4

8
6

6

4

3

9

6
7

8

9

3

4

4

3

graph G

tree T

Cost (T) = (3+3+4+4) +
(2+3+4) = 23

slide 5 Optimization in telecommunications

Design of local access
telecommunications network

• Build a fiber-optic network for
providing broadband connections
to business and residential
customers.

• Design a local access network
taking into account tradeoff
between:

cost of network
revenue potential of network

slide 6 Prize collecting Steiner tree problem

Design of local access
telecommunications network

• Graph corresponds to local street
map

Edges: street segments
Edge cost: cost of laying the fiber on
the corresponding street segment

Vertices: street intersections and
potential customer premises

Vertex penalty: estimate of potential
loss of revenue if the customer were
not to be serviced (intersection nodes
have no penalty)

slide 7 Optimization in telecommunications

Local access network design

premise
(revenue)

street
zero prize

root
node

slide 8 Prize collecting Steiner tree problem

Collect all prizes
(Steiner problem in graphs)

premise
(revenue)

street
zero prize

root
node

slide 9 Prize collecting Steiner tree problem

Collect some prizes
(Prize-collecting Steiner Problem in Graphs)

premise
(revenue)

street
zero prize

root
node

slide 10 Prize collecting Steiner tree problem

Literature

• Introduced by Bienstock, Goemans, Simchi-
Levi, & Williamson (1993)

• Goemans & Williamson (1993, 1996) describe
5/2 and 2 approximation algorithms

• Johnson, Minkoff, & Phillips (1999) describe
an implementation of the 2-opt algorithm of
Goemans & Williamson (GW)

• Canuto, R., & Ribeiro (1999) propose a multi-
start heuristic that uses a randomized version
of GW

• Lucena & R. (2000) propose a polyhedral
cutting plane algorithm for computing lower
bounds

slide 11 Prize collecting Steiner tree problem

Local search with perturbations:
a heuristic

• Summary
Generation of initial solution
Local search
Multi-start strategy
Path-relinking associated with multi-
start strategy
Variable neighborhood search

slide 12 Prize collecting Steiner tree problem

Generation of initial solution

• Select X, the set of collected nodes
• Connect node in X with minimum weight

spanning tree T (X)
• Recursively remove from T (X) all degree-1

nodes with prize smaller than its incident edge
cost = Tr (X)

• Basic strategy:
for (i = 1 to MAXITR){

select Xi

compute T (Xi) and Tr (Xi)
}

Goemans & Williamson
2-opt algorithm

Kruskal’s algorithm

slide 13 Prize collecting Steiner tree problem

Generation of initial solution

1

1

2 4

5 0

3 6

3

5 3

2

4

3
3 7

5
4

0

1

2 4

5

3 6
3 4

3 7

5

1

1

2 4

5 0

3 6

3

5 3

2

4

3
3 7

5
4

0

Solution obtained by
GW: X = {2,3,4,5,6}

G

G’’ = subgraph induced on G by
nodes in X

MST solution on G’’

Cost = 18

Cost = 13

slide 14 Prize collecting Steiner tree problem

Generation of initial solution

1

1

2 4

5 0

3 6

3

5 3

2

4

3
3 7

5
4

0

1

1

2 4

5 0

3 6

3

5 3

2

4

3
3 7

5
4

0

Solution obtained by
pruning degree-1 node

Cost = 12

Final solution obtained by
pruning another degree-1 node

Cost = 11

slide 15 Prize collecting Steiner tree problem

Local search

• Representation of solution: set X
of vertices in tree T (X)

• Neighborhood:
N (X) = {X’ : X and X’ differ by
single node}
Moves: insertion & deletion of nodes

• Initial solution: nodes of tree
obtained by GW

• Iterative improvement: make move
as long as improvement is possible

slide 16 Prize collecting Steiner tree problem

Local search

improve = T
while (improve){

improve = F
circfor i = 1, …, |V | while .not. improve

{ if (i ∈ X){ X’ = X \ {i }}

else {X’ = X ∪ {i }}

compute treeT (X’) & cost(X’)
if (cost(X’) < cost(X)){

X = X’
improve = T

}
}

}

slide 17 Prize collecting Steiner tree problem

Multi-start strategy

• Force GW to construct different initial
solutions for local search

Use original prizes in first iteration
Use modified prizes after that

• Modify prizes (two strategies)
Introduce noise into prizes

for i = 1, …, |V | {
generate β ∈ [1 – a, 1 + a], for a > 0
d’ (i) = d (i) × β

}

Node elimination
Set to zero the prizes of α% of the nodes in
nodes(GW) ∩ nodes(local search)

slide 18 Prize collecting Steiner tree problem

Local search with perturbations

best = HUGE
d’ = d
for (i = 1, ..., MAXITR){

X = GW (V, E, c, d’)
X’ = LOCALSEARCH(V, E, c, d, X)
if (cost(X’) < best){

X* = X’
}
compute perturbations & update d’

}
return X*

slide 19 Prize collecting Steiner tree problem

Path relinking

• Integrates intensification & diversification
• Explores the path connecting good solutions
• In local search with perturbations let

X’ be the local optimum found by LOCALSEARCH
Y be a solution chosen randomly from a POOL of
elite solutions
∆ = {i ∈ V : (i ∈ X’ and i ∉ Y) or

(i ∉ X’ and i ∈ Y)}

• Construct path between X’ (start) and Y
(guide):

Apply best movement in ∆
Verify quality of solution after move
Update ∆

slide 20 Prize collecting Steiner tree problem

Path relinking

• Criteria for inclusion of solution X
into POOL of elite solutions

If cost(X) is less than smallest cost of
POOL solutions
If cost(X) is less than largest cost of
POOL solutions and X is sufficiently
different from all POOL solutions

X1 and X2 are sufficiently different if
they differ by at least β nodes, where β
is a fraction of |V |

slide 21 Prize collecting Steiner tree problem

Local search with perturbations &
path relinking

POOL = φ
d’ = d
for (i = 1, ..., MAXITR){

X = GW (V, E, c, d’)
if (X is new){

X’ = LOCALSEARCH(V, E, c, d, X)
attempt insert X’ into POOL
X’’ ∈ RAND(POOL)
XPR = PATHRELINK(X’ , X’’)
attemp to insert XPR into POOL
}

}
compute perturbations & update d’

}
return best solution in POOL

slide 22 Prize collecting Steiner tree problem

Variable neighborhood search

• Can we gain something by going from a
static neighborhood to one that is
dynamic?

• Consider K neighborhoods:
N 1, N 2, …, N K

N k (X) = { X‘ : X and X‘ differ by k nodes}

• Basic scheme (repeated MAXTRY
times):

Start with initial solution X and k = 1
while (k ≤ K){

choose X‘ ∈ N k (X)
k = k + 1
if cost(X‘) < cost(X) { X = X‘ ; k = 1}

}

slide 23 Prize collecting Steiner tree problem

Local search with perturbations &
path relinking & VNS

POOL = φ
d’ = d
for (i = 1, ..., MAXITR){

X = GW (V, E, c, d’)
if (X is new){

X’ = LOCALSEARCH(V, E, c, d, X)
attempt insert X’ into POOL
X’’ ∈ RAND(POOL)
XPR = PATHRELINK(X’ , X’’)
attemp to insert XPR into POOL
}

}
compute perturbations & update d’

}
X* = best solution in POOL
X* = VNS(V, E, c, d, X*)
return X*

slide 24 Prize collecting Steiner tree problem

A cutting planes algorithm:
Lower bounds

• Integer programming formulation
• Cutting planes algorithm
• Preprocessing to reduce input

graph size
• Implementation details

slide 25 Prize collecting Steiner tree problem

Integer programming formulation

• xe = 1 iff edge e ∈ T (real-valued)
• yv = 1 iff vertex v ∈ T (real-valued)
• Polyhedral region P

x (E) = y (V) − 1
x (E (S)) ≤ y (S \ {s}), s ∈ S, S ⊆ V
0 ≤ xe ≤ 1, e ∈ E
0 ≤ yv ≤ 1, v ∈ V

• Integer programming formulation:
minimize Σe ∈E ce xe+ Σv ∈V dv (1 − yv)
subject to: (xe , yv) ∈ P ∩ (R|E |, Z |V |)

z (S) = Σs ∈S zs

slide 26 Prize collecting Steiner tree problem

Integer programming formulation

• Region P : follows directly from SPG
formulation of Goemans (1994), Lucena
(1991), and Margot, Prodon, and Liebling
(1994)

• x (E) = y (V) − 1: number of selected edges
must equal required number of edges for
spanning tree of implied subgraph

• x (E (S)) ≤ y (S \ {s}), s ∈ S, S ⊆ V :
generalized subtour elimination constraints
(GSECs) ⇒ solution is cycle-free

• Set of feasible solutions: all trees of G
• Lower bound to integer program can be

computed by solving linear programming
relaxation of integer program

slide 27 Prize collecting Steiner tree problem

Solving the linear programming
relaxation

• LP relaxation:
minimize Σe ∈E ce xe+ Σv ∈V dv (1 − yv)
subject to: (xe , yv) ∈ P

• Exponentially many GSECs:
initially exclude some or all of them
from P : P1 ⊇ P
optimize over P1

adequate choice of P1 :
x (E) = y (V) − 1
0 ≤ xe ≤ 1, e ∈ E
0 ≤ yv ≤ 1, v ∈ V

slide 28 Prize collecting Steiner tree problem

Solving the linear programming
relaxation

minimize Σe ∈E ce xe+ Σv ∈V dv (1 − yv)
subject to: (xe , yv) ∈ P1

• Optimal (x*, y*): its cost is a valid lower
bound for the prize-collecting Steiner
problem

• Separation problem: Find one or more
GSECs that are violated by (x*, y*) or
determine that no such inequality exists

Solved as |V | max-flow problems
Introduce violated GSECs as cutting planes
Re-optimize using dual simplex method

slide 29 Prize collecting Steiner tree problem

Preprocessing to reduce input
graph size

• A reduction operator transforms G into
a smaller graph G’ such that the values
of the optimal solutions of the integer
programs defined on these two graphs
are equal.

• Reduction tests: adapted from SPG
tests of Duin (1994)

Shortest path test
Cardinality-1 test
Cardinality-2 test
Cardinality larger than 2 test

slide 30 Prize collecting Steiner tree problem

Preprocessing to reduce input
graph size

• Shortest path test: Let λ(u,v) be
the length of the shortest path
between vertices u and v.

• If λ(u,v) < cuv , then edge (u,v)
can be eliminated from G

2
d

c b

10

3

4

a

λ(a,b) = 9 ⇒
d

c b

3

4

a
2

Original graph Reduced graph

slide 31 Prize collecting Steiner tree problem

Preprocessing to reduce input
graph size

• Cardinality-1 test: Let vertex v ∈ V
have edge cardinality 1 (edge e is
the only edge incident to v).

• If ce > dv , then vertex v can be
eliminated from G

5

6

4⇒
5

6 2
3

4

2
1

Original graph Reduced graph

slide 32 Prize collecting Steiner tree problem

Preprocessing to reduce input
graph size

• Cardinality-2 test: Let vertex v ∈ V have edge
cardinality 2 (edges incident to v are e1 = (v,
v1) and e2 = (v, v2))

• If dv = 0, either these two edges appear
together in an optimal solution or neither does.

• Pseudo-eliminate v : replace v, e1, and e2 with
edge (v1, v2) with weight c (v, v1) + c (v, v2)

0

6 4
3

4

2

Original graph

9
⇒

6 4
3

6

Reduced graph

9

3 3

slide 33 Prize collecting Steiner tree problem

Implementation details

• Most basic form of PCSPG solution
is a single, isolated, positive penalty
vertex

Easy to compute: max {dv : v ∈ V }
We can set aside single vertex
solutions and deal only with solutions
of one or more edges
Restrict P with constraints

x (E (δ (v))) ≥ yv if dv > 0
x (E (δ (v))) ≥ 2yv if dv = 0

slide 34 Prize collecting Steiner tree problem

Computational results

• 114 test problems
From 100 nodes & 284 edges
To 1000 nodes & 25,000 edges
Three classes:

Johnson, Minkoff, & Phillips (1999) P &
K problems
Steiner C problems (derived from SPG
Steiner C test problems in OR-Library)
Steiner D problems (derived from SPG
Steiner D test problems in OR-Library)

slide 35 Prize collecting Steiner tree problem

Computational results

• Lower bounding
Runs were done on an SGI (with 28 196
MHz MIPS R10000 processors and 7.6Gb
of main memory)
Each run done on a single processor
Fortran

Cutting planes algorithm
Rather outdated XMP package of Marsten
(1981) for solving the LPs
Package of Goldfarb & Grigoriadis (1988) to
solve the separation max flow problems

slide 36 Prize collecting Steiner tree problem

Computational results

• Heuristic
Runs were done on a 400 MHz Pentium II
with 32 Mb of main memory under Linux
C programming language (gcc)

Goemans & Williamson implementation of
Johnson, Minkoff, and Phillips (1999)
Iterative improvement, path relinking, & VNS

Parameters
500 multi-start iterations
Perturbation: α = 20 and a = 1.0
VNS: MAXTRY = 10
Path relinking: β = 0.04 |V | and pool size = 10
Alternate between perturbation schemes

slide 37 Prize collecting Steiner tree problem

Computational results
lower bounds

• Cutting planes algorithm
Found optimal LP solutions in 97 of the 114 test
problems (85%)
Found tight lower bounds (equal to best known
upper bounds) in 104 instances (91%)
Of the 97 optimal LP solutions, 94 were integral.
Each of the 3 fractional solutions was off of the
best known upper bound by less than ½
On the 12 instances for which tight lower bounds
were not produced, the bounds produced had at
most a 1.3% deviation from the best known upper
bounds
In 13 of the 114 instances, single vertex optima
were found
In 7 instances the algorithm took over 100,000
seconds to converge to a lower bound. The longest
run took over 10 CPU days.

slide 38 Prize collecting Steiner tree problem

Computational results
heuristic upper bounds

• Heuristic found
89 of 104 known optimal values (86%)
solution within 1% of lower bound for 104 of 114
problems

282126834JMP

254106532D

363252638C

tot+VNS+PR+LSGWnumtype

89104

Number of optima found with each additional heuristic

slide 39 Prize collecting Steiner tree problem

Computational results
heuristic upper bounds

1.1404038+VNS

9.1403835+PR

11.1373417+LS

36.429227GW

max (%)<10%< 5%< 1%heuristic

Problem type Steiner C

Number of instances with given relative error

slide 40 Prize collecting Steiner tree problem

Computational results
heuristic upper bounds

4.5404034+VNS

10.5393834+PR

30.8363322+LS

38.531217GW

max (%)<10%< 5%< 1%heuristic

Problem type Steiner D

Number of instances with given relative error

slide 41 Prize collecting Steiner tree problem

Computational results
heuristic upper bounds

3.4343432+VNS

3.4343432+PR

3.7343424+LS

6.6343115GW

max (%)<10%< 5%< 1%heuristic

Problem type JMP

Number of instances with given relative error

slide 42 Prize collecting Steiner tree problem

Concluding remarks

• Cutting planes algorithm produced tight
lower bounds and feasible upper bounds
for most instances.

Running times were high for most difficult
instances
May be improved using a more up-to-date
LP solver

• With substantially less computational
effort, the heuristic produced optimal
and nearly optimal solutions.

Running times for most difficult instances
averaged about 10,000 seconds
Over 90% of solutions were within 1% of
lower bound

slide 43 Prize collecting Steiner tree problem

Concluding remarks

• Online at my web site:
These slides:

http://www.research.att.com/~mgcr/talks/pcstp.pdf

A. Lucena & M.G.C. Resende, “Strong
lower bounds for the prize-collecting
Steiner tree problem in graphs,” 2000

http://www.research.att.com/~mgcr/doc/pcspflp.pdf

S.A. Canuto, M.G.C. Resende, & C.C.
Ribeiro, “Local search with perturbations
for the prize-collecting Steiner tree problem
in graphs,” 1999

http://www.research.att.com/~mgcr/doc/pcstpls.pdf

