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Prize-collecting Steiner tree
(PCST) problem

e Given: graph G=(V, E)

o Real-valued cost c, is associated with edge
e

o Real-valued penalty d, is associated with
vertex v
e Atree is a connected acyclic subgraph
of G and its weight is the sum of its
edge costs plus the sum of the penalties
of the vertices of G not spanned by the
tree.

e PCST problem: Find tree of smallest
weight.
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Cost of tree

tree T
Cost (T) = (3+3+4+4) +
(2+3+4) =23
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Design of local access
telecommunications network

e Build a fiber-optic network for
providing broadband connections

to business and residential
customers.

e Design a local access network

taking into account tradeoff
between:

e cost of network

e revenue potential of network
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Design of local access
telecommunications network

e Graph corresponds to local street
map

e Edges: street segments

e Edge cost: cost of laying the fiber on
the corresponding street segment

o \ertices: street intersections and
potential customer premises

o Vertex penalty: estimate of potential
loss of revenue if the customer were

not to be serviced (intersection nodes
have no penalty)
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Local access network design
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Collect all prizes
(Steiner problem in graphs)
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Collect some prizes

(Prize'collecting Steiner Problem in Graphs)
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street \, premise
\ / ( revenue)
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Literature

Introduced by Bienstock, Goemans, Simchi-
Levi, & Williamson (1993)

Goemans & Williamson (1993, 1996) describe
5/2 and 2 approximation algorithms

Johnson, Minkoff, & Phillips (1999) describe
an implementation of the 2-opt algorithm of
Goemans & Williamson (GW)

Canuto, R., & Ribeiro (1999) propose a multi-

start heuristic that uses a randomized version
of GW

Lucena & R. (2000) propose a polyhedral
cutting plane algorithm for computing lower
bounds
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Local search with perturbations:

a heuristic

e Summary
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e Generation of initial solution

| ocal search

Multi-start strategy

Path-relinking associated with multi-

start strategy

Variable neighborhood search
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Generation of initial solution

o Select X, the set of collected nodes

e Connect node in X with minimum weight
spanning tree T (X))

e Recursively remove from T (X) all degree-1

nodes with prize smaller than its incident edge
cost=T (X)

e Basic strategy:
for (i=1 to MAXJD

select X
compute T(X;) and T, (X;)

s

Kruskal's algorithm

Goemans & Williamson
2-opt algorithm
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Generation of initial solution

Solution obtained by
GW: X={2,3,4,5,6}

Cost=18
5
3 7 G’ = subgraph induced on G by
nodes in X
3 4

MST solution on G”
Cost=13
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Generation of initial solution

Solution obtained by
pruning degree-1 node

Cost=12

Final solution obtained by
pruning another degree-1 node

Cost=11
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| ocal search

e Representation of solution: set X
of vertices in tree T (X))

e Neighborhood:

e N(X)={X": X and X’ differ by
single node}

e Moves: insertion & deletion of nodes

e |nitial solution: nodes of tree
obtained by GW

e [terative improvement: make move
as long as improvement is possible

ATsarl
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| ocal search

improve =T
while ( improve){
improve = F
circfori =1, ..., | V| while .not. improve
{  if(ie X{X=X\{i}
else {X'= XU {i }}
compute treeT (X’) & cost(X’)

if (cost(X") < cost(X){
X=X
improve =T
}
}
}
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Multi-start strategy

e Force GW to construct different initial
solutions for local search

e Use original prizes in first iteration
o Use modified prizes after that

e Modify prizes (two strategies)

e Introduce noise into prizes
fori=1,... |V]|{
generate Be [1 — 3,1 +a],fora>0
d'(i)=d(i)x
}

e Node elimination

o Set to zero the prizes of 0% of the nodes in
nodes(GW) M nodes(local search)
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Local search with perturbations

best = HUGE
d =d

for(i=1,.. MAXITR {
X=GW(V,E ¢ d)
X'=LOCALSEARCH(V, E, ¢, d, X )
if ( cost(X’) <best ){
X=X
}

compute perturbations & update d’

}

return X
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Path relinking

Integrates intensification & diversification
Explores the path connecting good solutions

In local search with perturbations let
X' be the local optimum found by LOCALSEARCH

Y be a solution chosen randomly from a POOL of

elite solutions

e A={ie V:(ie Xandig Y)or
(ig X' andie Y)}

Construct path between X’ (start) and Y

(guide):
e Apply best movement in A
o \erify quality of solution after move

e Update A

ATsarl
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Path relinking

e (Criteria for inclusion of solution X
into POOL of elite solutions

o If cost(X) is less than smallest cost of
POOL solutions

e If cost(X) is less than largest cost of
POOL solutions and X is sufficiently
different from all POOL solutions

e X, and X, are sufficiently different if

they differ by at least 3 nodes, where 3
is a fraction of |V |
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Local search with perturbations &
path relinking

POOL = ¢
d =d
for(i =1, .. MAXITR ){
X=GW (V,E c d)
if ( X is new){
X'=LOCALSEARCH(V, E, ¢, d, X)
attempt insert X’ into POOL
X" € RAND(POOL)
Xoe = PATHRELINK(X', X”)
attemp to insert X, into POOL

J
}

compute perturbations & update d’
}

return best solution in POOL
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Variable neighborhood search

e (Can we gain something by going from a
static neighborhood to one that is
dynamic?

e Consider K neighborhoods:

e N/, N2 ..., NK
e NK(X)={X":X and X' differ by k nodes}

e Basic scheme (repeated MAXTRY
times):

o Start with initial solution X and k=1
e While ( k< K){

choose X € NX(X)

k=k+ 1

if cost(X') <cost(X){ X=X"; k=1}
}
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Local search with perturbations &
path relinking & VNS

POOL = ¢
d =d
for(i =1, .. MAXITR ){
X=GW (V,E c d)
if ( X is new){
X'=LOCALSEARCH(V, E, ¢, d, X)
attempt insert X’ into POOL
X" € RAND(POOL)
Xoe = PATHRELINK(X', X”)
attemp to insert X, into POOL

}
}
compute perturbations & update d’
}
X*= best solution in POOL
X*=VNS(V, E, ¢, d, X*)
return X*
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A cutting planes algorithm:
Lower bounds

e [nteger programming formulation
e Cutting planes algorithm

e Preprocessing to reduce input
graph size

e [mplementation details
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Integer programming formulation

e x,=1iffedge ee T (real-valued)

e y =1iffvertexve T (real-valued)
e Polyhedral region P

Z(S>=Zseszs
e Xx(E)=yWV)—1

e X(E(S)<y(S\{s}),se S, ScV
e 0<x,<1,ee E

e Oy <1,veV

e |nteger programming formulation:

minimize X, _c,x+ X, _,d,(1 —y,)

subject to: (x,,y,) € PN (RIEI, ZIVI)
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Integer programming formulation

e Region P: follows directly from SPG
formulation of Goemans (1994), Lucena
(1991), and Margot, Prodon, and Liebling
(1994)

e x(E)=y((V)—1: number of selected edges
must equal required number of edges for
spanning tree of implied subgraph

e Xx(E(S§)<y(S\{s}),se S, ScV:
generalized subtour elimination constraints
(GSECs) = solution is cycle-free

e Set of feasible solutions: all trees of G

e | ower bound to integer program can be
computed by solving linear programming
relaxation of integer program
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Solving the linear programming
relaxation

e | P relaxation:

minimize X,_c,x+ X, _,d,(1 —y,)

subjectto: (x,, y,) e P

e Exponentially many GSECs:

e initially exclude some or all of them
fromP: P,DP

o optimize over P,

o adequate choice of P;:

e x(E)=yWV)-1
e O0<x,<1, ecE

e O<y<1lveV
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Solving the linear programming
relaxation

minimize X, _c,x+ X, _,d,(1 —y,)

ecE ~“ee

subject to: (x,, y,) € P,

e Optimal (x', y'): its cost is a valid lower
bound for the prize-collecting Steiner
problem

e Separation problem: Find one or more
GSECs that are violated by (x, y') or
determine that no such inequality exists

e Solved as |V | max-flow problems
e Introduce violated GSECs as cutting planes

e Re-optimize using dual simplex method

(it
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Preprocessing to reduce input
graph size

e A reduction operator transforms G into
a smaller graph G’ such that the values
of the optimal solutions of the integer
programs defined on these two graphs
are equal.

e Reduction tests: adapted from SPG
tests of Duin (1994)

e Shortest path test
e Cardinality-1 test
e Cardinality-2 test
e Cardinality larger than 2 test

(it
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Preprocessing to reduce input
graph size

e Shortest path test: Let A(u,v) be
the length of the shortest path
between vertices u and v.

o If Muv)<c,, then edge (u,v)

can be eliminated from G

2 2
410 = 4 |
3 3
Original graph Reduced graph
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Preprocessing to reduce input
graph size

e Cardinality-1 test: Let vertex ve V
have edge cardinality 1 (edge e Is
the only edge incident to v).

e If c,>d,, then vertex v can be
eliminated from G

2
4 = 4
3
Original graph Reduced graph
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Preprocessing to reduce input
graph size

e (Cardinality-2 test: Let vertex ve V have edge
cardinality 2 (edges incident to v are e; =(v,
v,)and e, = (v, v,))

e Ifd =0, either these two edges appear
together in an optimal solution or neither does.

e Pseudo-eliminate v: replace v, e,, and e, with
edge (v,, v,) with weight c (v, v,) + c (v, v,)

2 6
4 3 = 3
3 3
Original graph Reduced graph
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Implementation details

e Most basic form of PCSPG solution
IS a single, isolated, positive penalty
vertex
o Easy to compute: max{d, :ve V }

e We can set aside single vertex

solutions and deal only with solutions
of one or more edges

Restrict P with constraints
x(E(owv) =y, ifd>0
x(E(o(v) =2y, ifd,=0
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Computational results

e 114 test problems

e From 100 nodes & 284 edges

e T0 1000 nodes & 25,000 edges
e Three classes:

e Johnson, Minkoff, & Phillips (1999) P &
K problems

e Steiner C problems (derived from SPG
Steiner C test problems in OR-Library)

e Steiner D problems (derived from SPG
Steiner D test problems in OR-Library)
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Computational results

e | ower bounding

e Runs were done on an SGI (with 28 196
MHz MIPS R10000 processors and 7.6Gb
of main memory)

e Each run done on a single processor

e Fortran
o Cutting planes algorithm

e Rather outdated XMP package of Marsten
(1981) for solving the LPs

o Package of Goldfarb & Grigoriadis (1988) to
solve the separation max flow problems
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Computational results

e Heuristic

e Runs were done on a 400 MHz Pentium Il
with 32 Mb of main memory under Linux

e C programming language (gcc)

e Goemans & Williamson implementation of
Johnson, Minkoff, and Phillips (1999)

e Iterative improvement, path relinking, & VNS
o Parameters
e 500 multi-start iterations
Perturbation: oo =20 and a= 1.0
VNS: MAXTRY =10
Path relinking: 3 =0.04 |V | and pool size =10
Alternate between perturbation schemes

ATsarl
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Computational results

lower bounds

e (Cutting planes algorithm

slide 37

Found optimal LP solutions in 97 of the 114 test
problems (85%)

Found tight lower bounds (equal to best known
upper bounds) in 104 instances (91%)

Of the 97 optimal LP solutions, 94 were integral.
Each of the 3 fractional solutions was off of the
best known upper bound by less than Y,

On the 12 instances for which tight lower bounds
were not produced, the bounds produced had at
most a 1.3% deviation from the best known upper
bounds

In 13 of the 114 instances, single vertex optima
were found

In 7 instances the algorithm took over 100,000
seconds to converge to a lower bound. The longest
run took over 10 CPU days.
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Computational results

heuristic upper bounds

e Heuristic found

e 89 of 104 known optimal values (86%)

e solution within 1% of lower bound for 104 of 114
problems

Number of optima found with each additional heuristic

type num GW +LS +PR +vNS tot
C 38 6 2

25 3 36
D 32 5 6 10 4 25
JMP 34 8 6 12 2 28

104 89
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Computational results

heuristic upper bounds

Number of instances with given relative error

heuristic < 1% <5% <10% max (%)

GW 7 22 29 36.4
+LS 17 34 37 11.1
+PR 35 38 40 9.1
+VNS 38 40 40 1.1

Problem type Steiner C
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Computational results

heuristic upper bounds

Number of instances with given relative error

heuristic < 1% <5% <10% max (%)

GW 7 21 31 38.5

+LS 22 33 36 30.8
+PR 34 38 39 10.5
+VNS 34 40 40 4.5

Problem type Steiner D
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Computational results

heuristic upper bounds

Number of instances with given relative error

heuristic < 1% <5% <10% max (%)

GW 15 31 34 6.6

+LS 24 34 34 3.7
+PR 32 34 34 3.4
+UNS 32 34 34 3.4

Problem type JMP
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Concluding remarks

e (Cutting planes algorithm produced tight

lower bounds and feasible upper bounds
for most instances.

e Running times were high for most difficult
instances

e May be improved using a more up-to-date
LP solver

e \With substantially less computational
effort, the heuristic produced optimal
and nearly optimal solutions.

e Running times for most difficult instances
averaged about 10,000 seconds

e Over 90% of solutions were within 1% of
lower bound
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Concluding remarks

Online at my web site:

e These slides:

http://www.research.att.com/~mgcr/talks/pcstp.pdf

e A. Lucena & M.G.C. Resende, "“Strong
lower bounds for the prize-collecting
Steiner tree problem in graphs,” 2000

http://www.research.att.com/~mgcr/doc/pcspflp.pdf

e S.A. Canuto, M.G.C. Resende, & C.C.
Ribeiro, “Local search with perturbations

for the prize-collecting Steiner tree problem
in graphs,” 1999

http://www.research.att.com/~mgcr/doc/pcstpls.pdf
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