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Outline

• Introduction
Problem definition
An application from telecommincations access 
network design

• Local search with perturbations:  A heuristic
Local search with perturbations
Path relinking
Variable neighborhood search

• A cutting planes algorithm:  Lower bounds
Integer programming formulation
Cutting planes algorithm
Preprocessing to reduce input graph size

• Computational results
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Prize-collecting Steiner tree 
(PCST) problem

• Given: graph G = (V, E )
Real-valued cost ce is associated with edge 
e
Real-valued penalty dv is associated with 
vertex v

• A tree is a connected acyclic subgraph 
of G and its weight is the sum of its 
edge costs plus the sum of the penalties 
of the vertices of G not spanned by the 
tree.

• PCST problem: Find tree of smallest 
weight.
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Cost of tree
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Design of local access 
telecommunications network 

• Build a fiber-optic network for 
providing broadband connections 
to business and residential 
customers.

• Design a local access network 
taking into account tradeoff 
between:

cost of network
revenue potential of network
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Design of local access 
telecommunications network

• Graph corresponds to local street 
map

Edges: street segments
Edge cost: cost of laying the fiber on 
the corresponding street segment

Vertices: street intersections and 
potential customer premises

Vertex penalty: estimate of potential 
loss of revenue if the customer were 
not to be serviced (intersection nodes 
have no penalty) 
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Local access network design
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Collect all prizes 
(Steiner problem in graphs)
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Collect some prizes
(Prize-collecting Steiner Problem in Graphs)
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Literature

• Introduced by Bienstock, Goemans, Simchi-
Levi, & Williamson (1993)

• Goemans & Williamson (1993, 1996) describe 
5/2 and 2 approximation algorithms

• Johnson, Minkoff, & Phillips (1999) describe 
an implementation of the 2-opt algorithm of 
Goemans & Williamson (GW)

• Canuto, R., & Ribeiro (1999) propose a multi-
start heuristic that uses a randomized version 
of GW

• Lucena & R. (2000) propose a polyhedral 
cutting plane algorithm for computing lower 
bounds 
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Local search with perturbations: 
a heuristic

• Summary
Generation of initial solution
Local search
Multi-start strategy
Path-relinking associated with multi-
start strategy
Variable neighborhood search
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Generation of initial solution

• Select X,  the set of collected nodes
• Connect node in X with minimum weight 

spanning tree T (X )
• Recursively remove from T (X ) all degree-1 

nodes with prize smaller than its incident edge 
cost = Tr (X )

• Basic strategy:
for (i = 1 to MAXITR){

select Xi

compute T (Xi ) and Tr (Xi )
}

Goemans & Williamson
2-opt algorithm

Kruskal’s algorithm
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Generation of initial solution
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Generation of initial solution
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Local search

• Representation of solution:  set X
of vertices in tree T (X )

• Neighborhood:  
N (X ) = {X’ : X and X’ differ by 
single node}
Moves: insertion & deletion of nodes

• Initial solution: nodes of tree 
obtained by GW

• Iterative improvement: make move 
as long as improvement is possible
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Local search

improve = T
while ( improve){

improve = F
circfor i  = 1, …, |V | while .not. improve

{ if (i ∈ X ){ X’ = X \ {i }}

else {X’ = X ∪ {i }}

compute treeT (X’ ) & cost(X’ ) 
if (cost(X’ ) < cost(X )){

X = X’
improve = T

}
}

}
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Multi-start strategy

• Force GW to construct different initial 
solutions for local search

Use original prizes in first iteration
Use modified prizes after that

• Modify prizes (two strategies)
Introduce noise into prizes

for i = 1, …, |V | {
generate β ∈ [1 – a, 1 + a ], for a > 0
d’ (i ) = d (i ) × β

}

Node elimination
Set to zero the prizes of α% of the nodes in 
nodes(GW) ∩ nodes(local search)
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Local search with perturbations

best = HUGE
d’  = d
for ( i = 1, ..., MAXITR ){

X = GW ( V, E, c, d’ )
X’ = LOCALSEARCH(V, E, c, d, X )
if ( cost(X’ ) < best ){

X* = X’
}
compute perturbations & update d’ 

}
return X*
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Path relinking

• Integrates intensification & diversification
• Explores the path connecting good solutions
• In local search with perturbations let

X’ be the local optimum found by LOCALSEARCH
Y be a solution chosen randomly from a POOL of 
elite solutions 
∆ = {i ∈ V : (i ∈ X’ and i ∉ Y ) or

(i ∉ X’ and i ∈ Y )}

• Construct path between X’ (start) and Y
(guide):

Apply best movement in ∆
Verify quality of solution after move
Update ∆
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Path relinking

• Criteria for inclusion of solution X
into POOL of elite solutions

If cost(X ) is less than smallest cost of 
POOL solutions
If cost(X ) is less than largest cost of 
POOL solutions and X is sufficiently 
different from all POOL solutions

X1 and X2 are sufficiently different if 
they differ by at least β nodes, where β
is a fraction of |V |
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Local search with perturbations &
path relinking

POOL = φ
d’  = d
for ( i = 1, ..., MAXITR ){

X = GW ( V, E, c, d’ )
if ( X is new){

X’ = LOCALSEARCH(V, E, c, d, X )
attempt insert X’ into POOL
X’’  ∈ RAND(POOL)
XPR = PATHRELINK(X’ , X’’ )
attemp to insert XPR into POOL
}

}
compute perturbations & update d’ 

}
return best solution in POOL
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Variable neighborhood search

• Can we gain something by going from a 
static neighborhood to one that is 
dynamic?

• Consider K neighborhoods: 
N 1, N 2, …, N K

N k (X ) = { X‘ : X and X‘  differ by k nodes}

• Basic scheme (repeated MAXTRY 
times): 

Start with initial solution X and k = 1
while ( k ≤ K ){

choose X‘  ∈ N k (X )
k = k + 1
if cost(X‘ ) < cost(X) { X = X‘ ; k = 1}

}
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Local search with perturbations &
path relinking & VNS

POOL = φ
d’  = d
for ( i = 1, ..., MAXITR ){

X = GW ( V, E, c, d’ )
if ( X is new){

X’ = LOCALSEARCH(V, E, c, d, X )
attempt insert X’ into POOL
X’’  ∈ RAND(POOL)
XPR = PATHRELINK(X’ , X’’ )
attemp to insert XPR into POOL
}

}
compute perturbations & update d’ 

}
X* = best solution in POOL
X* = VNS(V, E, c, d, X* )
return X* 
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A cutting planes algorithm:  
Lower bounds

• Integer programming formulation
• Cutting planes algorithm
• Preprocessing to reduce input 

graph size
• Implementation details
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Integer programming formulation

• xe = 1 iff edge e ∈ T (real-valued)
• yv = 1 iff vertex v ∈ T (real-valued)
• Polyhedral region P

x (E ) = y (V ) − 1
x (E (S )) ≤ y (S \ {s}), s ∈ S, S ⊆ V
0 ≤ xe ≤ 1, e ∈ E
0 ≤ yv ≤ 1, v ∈ V

• Integer programming formulation:
minimize Σe ∈E ce xe+ Σv ∈V dv (1 − yv )
subject to: ( xe , yv ) ∈ P ∩ ( R|E |, Z |V | )

z (S ) = Σs ∈S zs
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Integer programming formulation

• Region P : follows directly from SPG 
formulation of Goemans (1994), Lucena 
(1991), and Margot, Prodon, and Liebling 
(1994)

• x (E ) = y (V ) − 1: number of selected edges 
must equal required number of edges for 
spanning tree of implied subgraph

• x (E (S )) ≤ y (S \ {s}), s ∈ S, S ⊆ V :
generalized subtour elimination constraints 
(GSECs) ⇒ solution is cycle-free

• Set of feasible solutions: all trees of G
• Lower bound to integer program can be 

computed by solving linear programming 
relaxation of integer program
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Solving the linear programming  
relaxation

• LP relaxation:
minimize Σe ∈E ce xe+ Σv ∈V dv (1 − yv )
subject to: ( xe , yv ) ∈ P

• Exponentially many GSECs: 
initially exclude some or all of them 
from P :  P1 ⊇ P
optimize over P1

adequate choice of P1 :
x (E ) = y (V ) − 1
0 ≤ xe ≤ 1, e ∈ E
0 ≤ yv ≤ 1, v ∈ V
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Solving the linear programming  
relaxation

minimize Σe ∈E ce xe+ Σv ∈V dv (1 − yv )
subject to: ( xe , yv ) ∈ P1

• Optimal (x*, y*): its cost is a valid lower 
bound for the prize-collecting Steiner 
problem

• Separation problem: Find one or more 
GSECs that are violated by (x*, y*) or 
determine that no such inequality exists

Solved as |V | max-flow problems
Introduce violated GSECs as cutting planes
Re-optimize using dual simplex method
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Preprocessing to reduce input 
graph size

• A reduction operator transforms G into 
a smaller graph G’  such that the values 
of the optimal solutions of the integer 
programs defined on these two graphs 
are equal.

• Reduction tests:  adapted from SPG 
tests of Duin (1994)

Shortest path test
Cardinality-1 test
Cardinality-2 test
Cardinality larger than 2 test
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Preprocessing to reduce input 
graph size

• Shortest path test:  Let λ(u,v ) be 
the length of the shortest path 
between vertices u and v.

• If λ(u,v ) < cuv , then edge (u,v ) 
can be eliminated from G
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Preprocessing to reduce input 
graph size

• Cardinality-1 test:  Let vertex v ∈ V 
have edge cardinality 1 (edge e is 
the only edge incident to v ).

• If ce > dv , then vertex v can be 
eliminated from G
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Preprocessing to reduce input 
graph size

• Cardinality-2 test:  Let vertex v ∈ V have edge 
cardinality 2 (edges incident  to v  are e1 = (v, 
v1 ) and e2 = (v, v2 ))

• If dv = 0, either these two edges appear 
together in an optimal solution or neither does.  

• Pseudo-eliminate v : replace v, e1, and e2 with 
edge (v1, v2 ) with weight c (v, v1 ) + c (v, v2 ) 

0

6 4
3

4

2

Original graph

9
⇒

6 4
3

6

Reduced graph

9

3 3



slide 33 Prize collecting Steiner tree problem

Implementation details

• Most basic form of PCSPG solution 
is a single, isolated, positive penalty 
vertex

Easy to compute: max {dv : v ∈ V }
We can set aside single vertex 
solutions and deal only with solutions 
of one or more edges
Restrict P with constraints  

x (E (δ (v ))) ≥ yv if dv > 0
x (E (δ (v ))) ≥ 2yv if dv = 0
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Computational results

• 114 test problems
From 100 nodes & 284 edges 
To 1000 nodes & 25,000 edges
Three classes:

Johnson, Minkoff, & Phillips (1999) P & 
K problems
Steiner C problems (derived from SPG 
Steiner C test problems in OR-Library)
Steiner D problems (derived from SPG 
Steiner D test problems in OR-Library)
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Computational results

• Lower bounding
Runs were done on an SGI (with 28 196 
MHz MIPS R10000 processors and 7.6Gb 
of main memory) 
Each run done on a single processor
Fortran

Cutting planes algorithm 
Rather outdated XMP package of Marsten 
(1981) for solving the LPs 
Package of Goldfarb & Grigoriadis (1988) to 
solve the separation max flow problems
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Computational results

• Heuristic
Runs were done on a 400 MHz Pentium II 
with 32 Mb of main memory under Linux
C programming language (gcc)

Goemans & Williamson implementation of 
Johnson, Minkoff, and Phillips (1999)
Iterative improvement, path relinking, & VNS

Parameters
500 multi-start iterations
Perturbation: α = 20 and a = 1.0
VNS: MAXTRY = 10
Path relinking: β = 0.04 |V | and pool size = 10
Alternate between perturbation schemes
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Computational results
lower bounds

• Cutting planes algorithm
Found optimal LP solutions in 97 of the 114 test 
problems (85%)
Found tight lower bounds (equal to best known 
upper bounds) in 104 instances (91%)
Of the 97 optimal LP solutions, 94 were integral.  
Each  of the 3 fractional solutions was off of the 
best known upper bound by less than ½
On the 12 instances for which tight lower bounds 
were not produced, the bounds produced had at 
most a 1.3% deviation from the best known upper 
bounds
In 13 of the 114 instances, single vertex optima 
were found
In 7 instances the algorithm took over 100,000 
seconds to converge to a lower bound.  The longest 
run took over 10 CPU days.
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Computational results
heuristic upper bounds

• Heuristic found
89 of 104 known optimal values (86%)
solution within 1% of lower bound for 104 of 114 
problems

282126834JMP

254106532D

363252638C

tot+VNS+PR+LSGWnumtype

89104

Number of optima found with each additional heuristic
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Computational results
heuristic upper bounds

1.1404038+VNS

9.1403835+PR

11.1373417+LS

36.429227GW

max (%)<10%< 5%< 1%heuristic

Problem type Steiner C

Number of instances with given relative error
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Computational results
heuristic upper bounds

4.5404034+VNS

10.5393834+PR

30.8363322+LS

38.531217GW

max (%)<10%< 5%< 1%heuristic

Problem type Steiner D

Number of instances with given relative error
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Computational results
heuristic upper bounds

3.4343432+VNS

3.4343432+PR

3.7343424+LS

6.6343115GW

max (%)<10%< 5%< 1%heuristic

Problem type JMP

Number of instances with given relative error
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Concluding remarks

• Cutting planes algorithm produced tight 
lower bounds and feasible upper bounds 
for most instances.

Running times were high for most difficult 
instances
May be improved using a more up-to-date 
LP solver

• With substantially less computational 
effort, the heuristic produced optimal 
and nearly optimal solutions.

Running times for most difficult instances 
averaged about 10,000 seconds
Over 90% of solutions were within 1% of 
lower bound
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Concluding remarks

• Online at my web site:
These slides:

http://www.research.att.com/~mgcr/talks/pcstp.pdf

A. Lucena & M.G.C. Resende, “Strong 
lower bounds for the prize-collecting 
Steiner tree problem in graphs,” 2000

http://www.research.att.com/~mgcr/doc/pcspflp.pdf

S.A. Canuto, M.G.C. Resende, & C.C. 
Ribeiro, “Local search with perturbations 
for the prize-collecting Steiner tree problem 
in graphs,” 1999

http://www.research.att.com/~mgcr/doc/pcstpls.pdf


