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Combinatorial Optimization
Handbook of Applied Optimization

P.M. Pardalos and M.G.C. Resende, eds. Oxford U. Press, 2002

Combinatorial optimization: process of finding the best, or 
optimal, solution for problems with a discrete set of 
feasible solutions. 

Applications: e.g. routing, scheduling, packing, inventory 
and production management, location, logic, and 
assignment of resources. 

Economic impact: e.g. transportation (airlines, trucking, 
rail, and shipping), forestry, manufacturing, logistics, 
aerospace, energy (electrical power, petroleum, and 
natural gas), agriculture, biotechnology, financial 
services, and telecommunications.
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Combinatorial Optimization

• Given:
– discrete set of solutions  X
– objective function f(x): x ∈ X → R

• Objective:
– find x ∈ X : f(x) ≤ f(y), ∀ y ∈ X
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Combinatorial Optimization

• Much progress in recent years on finding exact 
(provably optimal) solution: dynamic programming, 
cutting planes, branch and cut, …

• Many hard combinatorial optimization problems are still 
not solved exactly and require good heuristic methods.

• Aim of heuristic methods for combinatorial 
optimization is to quickly produce good-quality 
solutions, without necessarily providing any guarantee 
of solution quality. 
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Metaheuristics
Metaheuristics: Computer Decision-Making

M.G.C. Resende and J.P. de Sousa, eds., Kluwer, 2003

• Metaheuristics are high level procedures that 
coordinate simple heuristics, such as local search, to 
find solutions that are of better quality than those 
found by the simple heuristics alone.

• Examples: simulated annealing, genetic algorithms, 
tabu search, scatter search, ant colony optimization, 
variable neighborhood search, and GRASP.  
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Local Search

• To define local search, one needs to specify a 
local neighborhood structure.

• Given a solution x , the elements of the 
neighborhood N(x) of x are those solutions y
that can be obtained by applying an elementary 
modification (often called a move) to x.
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Local Search Neighborhoods

Consider x = (0,1,0) and the 1-flip neighborhood of a 0/1 
array.

x = (0,1,0)

(1,1,0) (0,0,0) (0,1,1)

N (x )
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Local Search Neighborhoods

Consider x = (2,1,3) and the 2-swap neighborhood of a 
permutation array.

x = (2,1,3)

(3,1,2) (2,3,1) (1,2,3)
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Local Search

Given an initial solution x0, a neighborhood N(x), and  
function f(x) to be minimized:

x = x0 ;
while ( ∃ y ∈ N(x) | f(y) < f(x) ) {

x = y ; 
}
At the end, x is a local minimum of f(x) .

check for better solution in 
neighborhood of x

move to better
solution y

Time complexity of local search
can be exponential.
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Local Search
(ideal situation)
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f (0,0,0) = 3

f (1,1,1) = 3

f (0,1,0) = 4

f (0,0,1) =  0

f (1,0,0) = 5

f (0,1,1) = 1

f (1,1,0) = 6

f (1,0,1) =  2

With any starting solution Local Search finds the global optimum.

global
minimum



Local Search
(more realistic situation)
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f (1,1,1) = 2

f (0,1,0) = 2

f (0,0,1) =  0

f (1,0,0) = 1

f (0,1,1) = 3

f (1,1,0) = 6

f (1,0,1) =  3

f (0,0,0) = 3 global
minimum

local
minima

local
minimum

But some starting solutions lead Local Search to a local minimum.



Local Search

Effectiveness of local search depends on several 
factors:
– neighborhood structure
– function to be minimized
– starting solution

usually pre-
determined

usually easier to
control
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Local search with random
starting solutions

Generate solution 
at random

In basin of attraction
of global optimum?

LOOP

No
By repeating LOOP
over and over, w.p. 1
outcome is Yes

Yes
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Local search leads to global optimum.



The greedy algorithm

• To define a semi-greedy heuristic, we must first 
consider the greedy algorithm.

• Greedy algorithm:  constructs a solution, one element 
at a time:
– Defines candidate elements.
– Applies a greedy function to each candidate element.
– Ranks elements according to greedy function value.
– Add best ranked element to solution.
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The greedy algorithm
An example

2 2
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The greedy algorithm
Another example

• Maximum clique:   Given graph G = (V, E), find 
largest subgraph of G such that all vertices are 
mutually adjacent.
– greedy algorithm builds solution, one element 

(vertex) at a time
– candidate set: unselected vertices adjacent to all 

selected vertices
– greedy function: vertex degree with respect to other 

candidate set vertices.
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The greedy algorithm
Another example
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The greedy algorithm
Another example
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Semi-greedy heuristic

• A semi-greedy heuristic tries to get around 
convergence to non-global local minima.

• repeat until solution is constructed
– For each candidate element

• apply a greedy function to element

– Rank all elements according to their  greedy function values
– Place well-ranked elements in a restricted candidate list 

(RCL)
– Select an element from the RCL at random & add it to the 

solution
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Semi-greedy heuristic

min max

RCL
greedy function
value

Candidate elements are ranked according to
greedy function value.

RCL is a set of well-ranked candidate elements.
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Semi-greedy heuristic

• Hart & Shogan (1987) propose two mechanisms for 
building the RCL:
– Cardinality based:  place k best candidates in RCL
– Value based:  place all candidates having greedy values better 

than α⋅best_value in RCL, where α ∈ [0,1].

• Feo & Resende (1989) proposed semi-greedy 
construction, independently, as a basic component of 
GRASP.
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Hart-Shogan Algorithm
(maximization)

best_obj = 0; 
repeat many times{

x = semi-greedy_construction( );
if ( obj_function(x) > best_obj ){

x* = x;
best_obj = obj_function(x);

}
}
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GRASP: Basic algorithm
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• GRASP:
– Multistart metaheuristic: 

• Feo & Resende (1989): set covering
• Feo & Resende (1995): first survey
• Festa & Resende (2002): annotated bibliography
• Resende & Ribeiro (2003): most recent survey

• Repeat for Max_Iterations:
– Construct a greedy randomized solution.
– Use local search to improve the constructed solution.
– Update the best solution found.



• Construction phase: greediness + randomization
– Builds a feasible solution:

• Use greediness to build restricted candidate list and apply 
randomness to select an element from the list.

• Use randomness to build restricted candidate list and apply 
greediness to select an element from the list.

• Local search: search in the current neighborhood 
until a local optimum is found
– Solutions generated by the construction procedure are 

not necessarily optimal:
• Effectiveness of local search depends on: neighborhood 

structure, search strategy, and fast evaluation of neighbors, 
but also on the construction procedure itself.

GRASP: Basic algorithm
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GRASP: Basic algorithm
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Construction phase
• Greedy Randomized Construction:

– Solution ← ∅
– Evaluate incremental costs of candidate elements
– While Solution is not complete do:

• Build restricted candidate list (RCL).
• Select an element s from RCL at random.
• Solution ← Solution ∪ {s}
• Reevaluate the incremental costs.

– endwhile
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Construction phase

• Minimization problem
• Basic construction procedure: 

– Greedy function c(e): incremental cost associated with 
the incorporation of element e into the current partial 
solution under construction

– cmin (resp. cmax): smallest (resp. largest) incremental cost
– RCL made up by the elements with the smallest 

incremental costs.
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Construction phase
• Cardinality-based construction:

– p elements with the smallest incremental costs
• Quality-based construction: 

– Parameter α defines the quality of the elements in RCL.
– RCL contains elements with incremental cost                     

cmin ≤ c(e) ≤ cmin + α (cmax –cmin)
– α = 0 : pure greedy construction 
– α = 1 : pure randomized construction

• Select at random from RCL using uniform 
probability distribution
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α=0.2

α=0.4

α=0.6

α=0.8

Illustrative results: RCL parameter

weighted MAX-SAT instance, 1000 GRASP iterations 

Construction phase only
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α=0.2

α=0.6

α=0.8

α=1.0

Illustrative results: RCL parameter

weighted MAX-SAT instance, 1000 GRASP iterations

Construction + local search
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Enhanced construction strategies
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• Reactive GRASP: Prais & Ribeiro (2000) (traffic 
assignment in TDMA satellites)
– At each GRASP iteration, a value of the RCL parameter   

α is chosen from a discrete set of values [α1, α2, ..., 
αm]. 

– The probability that αk is selected is pk.
– Reactive GRASP: adaptively changes the probabilities 

[p1, p2, ..., pm] to favor values of α that produce good 
solutions.

– Other applications, e.g. to graph planarization, set 
covering, and weighted max-sat: 

– Better solutions, at the cost of slightly larger times.



Enhanced construction strategies

• Cost perturbations: Canuto, Resende, & Ribeiro 
(2001) (prize-collecting Steiner tree)
– Randomly perturb original costs and apply some 

heuristic.
– Adds flexibility to algorithm design:

• May be more effective than greedy randomized construction 
in circumstances where the construction algorithm is not 
very sensitive to randomization.

• Also useful when no greedy algorithm is available. 
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Enhanced construction strategies

• Sampled greedy: Resende & Werneck (2002)       
(p-median)
– Randomly samples a small subset of candidate elements  

and selects element with smallest incremental cost.

• Random+greedy: 
– Randomly builds first part of the solution and completes 

the rest using pure greedy construction. 
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Local search
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• First improving vs. best improving: 
– First improving is usually faster.
– Premature convergence to low quality local optimum is more likely 

to occur with best improving.

• Variable Neighborhood Descent (VND) to speedup search 
and to overcome optimality w.r.t. to simple (first) 
neighborhood: Ribeiro, Uchoa, & Werneck (2002) (Steiner 
problem in graphs)

• Hashing to avoid cycling or repeated application of local 
search to same solution built in the construction phase: 
Woodruff & Zemel (1993), Ribeiro et. al (1997) (query 
optimization), Martins et al. (2000) (Steiner problem in 
graphs)  



Local search

• Filtering to avoid application of local search to low quality 
solutions, only promising unvisited solutions are 
investigated: Feo, Resende, & Smith (1994), Prais & Ribeiro 
(2000) (traffic assignment), Martins et. al (2000) (Steiner 
problem in graphs)

• Extended quick-tabu local search to overcome premature 
convergence: Souza, Duhamel, & Ribeiro (2003) 
(capacitated minimum spanning tree, better solutions for 
largest benchmark problems)
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Path-relinking
• Path-relinking:

– Intensification strategy exploring trajectories       
connecting elite solutions: Glover (1996)

– Originally proposed in the context of tabu search and 
scatter search.

– Paths in the solution space leading to other elite 
solutions are explored in the search for better 
solutions:

• selection of moves that introduce attributes of the guiding 
solution into the current solution 
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Path-relinking

• Exploration of trajectories that connect high 
quality (elite) solutions:

initial
solution

guiding
solution

path in the neighborhood of solutions

Sept. 2003 Combinatorial Optimization in Telecom39/227



Path-relinking
• Path is generated by selecting moves that 

introduce in the initial solution attributes of the 
guiding solution.

• At each step, all moves that incorporate 
attributes of the guiding solution are evaluated 
and the best move is selected: 
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guiding 
solutioninitial

solution



Path-relinking
Solutions x and y to be combined.
∆(x,y):  symmetric difference between x and y 
while  ( |∆(x,y)| > 0 ) {

evaluate moves corresponding in ∆(x,y)
make best move
update ∆(x,y)

}
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GRASP with path-relinking
• Originally used by Laguna and Martí (1999).
• Maintains a set of elite solutions found during 

GRASP iterations.
• After each GRASP iteration (construction and local 

search):
– Use GRASP solution as initial solution. 
– Select an elite solution uniformly at random: guiding 

solution (may also be selected with probabilities 
proportional to the symmetric difference w.r.t. the initial 
solution).

– Perform path-relinking between these two solutions.
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GRASP with path-relinking
• Repeat for Max_Iterations:

– Construct a greedy randomized solution.
– Use local search to improve the constructed solution.
– Apply path-relinking to further improve the solution.
– Update the pool of elite solutions.
– Update the best solution found.
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GRASP with path-relinking
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• Variants: trade-offs between computation time and 
solution quality
– Explore different trajectories (e.g. backward, forward): 

better start from the best, neighborhood of the initial 
solution is fully explored!

– Explore both trajectories: twice as much the time, often 
with marginal improvements only! 

– Do not apply PR at every iteration, but instead only 
periodically: similar to filtering during local search.

– Truncate the search, do not follow the full trajectory.
– May also be applied as a post-optimization step to all 

pairs of elite solutions.



GRASP with path-relinking
Successful applications:

– Prize-collecting minimum Steiner tree problem:             
Canuto, Resende, & Ribeiro (2001) (e.g. improved 
all solutions found by approximation algorithm of 
Goemans & Williamson)

– Minimum Steiner tree problem: Ribeiro, Uchoa, & 
Werneck (2002) (e.g., best known results for open 
problems in series dv640 of the SteinLib) 

– p-median: Resende & Werneck (2002) (e.g., best 
known solutions for problems in literature)
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GRASP with path-relinking
Successful applications (cont’d):

– Capacitated minimum spanning tree: Souza, Duhamel,
& Ribeiro (2002) (e.g., best known results for largest 
problems with 160 nodes)

– 2-path network design: Ribeiro & Rosseti (2002) (better 
solutions than greedy heuristic)

– Max-Cut: Festa, Pardalos, Resende, & Ribeiro (2002) 
(e.g., best known results for several instances)

– Quadratic assignment: Oliveira, Pardalos, & Resende 
(2003)
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GRASP with path-relinking
Successful applications (cont’d):

– Job-shop scheduling: Aiex, Binato, & Resende 
(2003)

– Three-index assignment problem: Aiex, Resende, 
Pardalos, & Toraldo (2003)

– PVC routing: Resende & Ribeiro (2003)
– Phylogenetic trees: Ribeiro & Vianna (2003)
– Facility location: Resende & Werneck (2003) (e.g., 

best known solutions for problems in literature)
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GRASP with path-relinking

• P is a set (pool) of elite solutions.
• Each iteration of first |P| GRASP iterations 

adds one solution to P (if different from others).
• After that: solution x is promoted to P if:

– x is better than best solution in P.
– x is not better than best solution in P, but is better 

than worst and is sufficiently different from all 
solutions in P.
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Time-to-target-value plots

• Proposition: Let P(t,p) be the probability of not 
having found a given target solution value in t time 
units with p independent processors.                     
If P(t,1) = exp[-(t-µ)/λ] with non-negative λ and µ
(two-parameter exponential distribution), then 
P(t,p) = exp[-p.(t-µ)/λ].
⇒ if pµ<<λ, then the probability of finding a solution 
within a given target value in time p.t with a sequential 
algorithm is approximately equal to that of finding a 
solution with the same quality in time t with p processors.
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Time-to-target-value plots
• Probability distribution of time-to-target-solution-

value: Aiex, Resende, & Ribeiro (2002) and Aiex, 
Binato, & Resende (2003) have shown 
experimentally that both pure GRASP and GRASP 
with path-relinking present this behavior.
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Time-to-target-value plots
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• Probability distribution of time-to-target-solution-
value: experimental plots

• Select an instance and a target value.
• For each variant of GRASP with path-relinking:

– Perform 200 runs using different seeds.
– Stop when a solution value at least as good as the 

target is found.
– For each run, measure the time-to-target-value.
– Plot the probabilities of finding a solution at least as 

good as the target value within some computation time.
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Random variable time-to-target-solution value fits a two-parameter 
exponential distribution.

Time-to-target-value plots

Therefore, one should expect approximate linear speedup in a 
straightforward (independent) parallel implementation.
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Variants of GRASP + PR
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• Variants of GRASP with path-relinking:
– GRASP: pure GRASP
– G+PR(B): GRASP with backward PR
– G+PR(F): GRASP with forward PR
– G+PR(BF): GRASP with two-way PR

T: elite solution S: local search
• Other strategies:

– Truncated path-relinking
– Do not apply PR at every iteration (frequency)

S T

TS

S T

S T



2-path network design problem
• 2-path network design problem:

– Graph G=(V,E) with edge weights we and set D of 
origin-destination pairs (demands): find a minimum 
weighted subset of edges E’ ⊆ E containing a 2-path 
(path with at most two edges) in G between the 
extremities of every origin-destination pair in D.

• Applications: design of communication networks, 
in which paths with few edges are sought to 
enforce high reliability and small delays 
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2-path network design problem
Each variant: 200 runs for one instance of 2PNDP
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2-path network design problem
• Same computation time: probability of finding a 

solution at least as good as the target value increases 
from GRASP → G+PR(F) → G+PR(B) → G+PR(BF)

• P(h,t) = probability that variant h finds a solution as 
good as the target value in time no greater than t
– P(GRASP,10s) = 2%        P(G+PR(F),10s) = 56%

P(G+PR(B),10s) = 75%    P(G+PR(BF),10s) = 84%
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Variants of GRASP + PR

• More recently:
– G+PR(M): mixed back and forward strategy

T: elite solution S: local search

– Path-relinking with local search

TS
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2-path network design problem
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Instance GRASP G+PR(F) G+PR(B) G+PR(FB) G+PR(M)

100-3 773 762 756 757 754

100-5 756 742 739 737 728

200-3 1564 1523 1516 1508 1509

300-3 2448 2381 2339 2356 2338

200-5 1577 1567 1543 1529 1531

300-5 2450 2364 2328 2347 2322

400-3 3388 3311 3268 3227 3257

400-5 3416 3335 3267 3270 3259

500-3 4347 4239 4187 4170 4187

500-5 4362 4263 4203 4211 4200

10 runs, 
same 
computation 
time for each 
variant, 
best solution 
found



PVC routing
• Frame relay service offers virtual private networks to 

customers by providing long-term private virtual circuits 
(PVCs) between customer endpoints on a backbone 
network.

• Routing is done either automatically by switch or by the 
network designer without any knowledge of future 
requests.

• Over time, these decisions cause inefficiencies in the 
network and occasionally offline rerouting  (grooming) 
of the PVCs is needed: 
– integer multicommodity network flow problem: Resende & 

Ribeiro (2003) 
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PVC  routing
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PVC  routing
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PVC  routing
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PVC  routing
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PVC  routing
max capacity = 3

Sept. 2003 Combinatorial Optimization in Telecom65/227



PVC  routing
max capacity = 3very long path!
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PVC  routing
max capacity = 3very long path!

reroute
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PVC  routing
max capacity = 3
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PVC  routing
max capacity = 3feasible and 

optimal!
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PVC routing

Sept. 2003 Combinatorial Optimization in Telecom70/227

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000 100000 1e+06

G
GPRf

GPRb
GPRfb

time (seconds)

Pr
ob

ab
ili

ty
Each variant: 200 runs for one instance of PVC routing problem

(60 nodes, 498 edges, 750 origin-destination pairs)

SGI Challenge 196 MHz



PVC routing
10 runs 10 seconds 100 seconds

Variant best average best average

GRASP 126603 126695 126228 126558

G+PR(F) 126301 126578 126083 126229

G+PR(B) 125960 126281 125666 125883

G+PR(BF) 125961 126307 125646 125850
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PVC routing
10 runs 10 seconds 100 seconds

Variant best average best average

GRASP 126603 126695 126228 126558

G+PR(F) 126301 126578 126083 126229

G+PR(B) 125960 126281 125666 125883

G+PR(BF) 125961 126307 125646 125850
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PVC routing
GRASP + PR backwards: four increasingly difficult target values

Same behavior, plots 
drift to the right for 
more difficult targets

SGI Challenge 196 MHz
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GRASP with path-relinking

Post-optimization “evolutionary” strategy:
a) Start with pool P0 found at end of GRASP and set k = 0.
b) Combine with path-relinking all pairs of solutions in Pk.
c) Solutions obtained by combining solutions in Pk are 

added to a new pool Pk+1 following same constraints for 
updates as before.

d) If best solution of Pk+1 is better than best solution of Pk, 
then set k = k + 1, and go back to step (b).

Succesfully used by Ribeiro, Uchoa, & Werneck (2002) 
(Steiner Problem in Graphs) and Resende & Werneck 
(2002-3) (p-median & facility location)
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Parallel independent implementation

• Parallelism in metaheuristics: robustness
Duni-Eksioglu, Pardalos, and Resende (2002)

• Multiple-walk independent-thread strategy: 
– p processors available
– Iterations evenly distributed over p processors
– Each processor keeps a copy of data and algorithms. 
– One processor acts as the master handling seeds,

data, and iteration counter, besides performing 
GRASP iterations.

– Each processor performs Max_Iterations/p iterations.
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Parallel independent implementation

seed(1) seed(2) seed(3) seed(4) seed(p-1)

Best solution is sent 
to the master.

1 2 3 4 p-1
Elite Elite Elite Elite Elite

Elite
pseed(p)
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Parallel cooperative implementation
• Multiple-walk cooperative-thread strategy: 

– p processors available
– Iterations evenly distributed over p-1 processors
– Each processor has a copy of data and algorithms.
– One processor acts as the master handling seeds, data,

and iteration counter and handles the pool of elite 
solutions, but does not perform GRASP iterations.

– Each processor performs Max_Iterations/(p–1)
iterations.
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Parallel cooperative implementation

Master

2

Elite

1

p3

Elite solutions are stored in a centralized pool.

SlaveSlaveSlave
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Parallel environment at PUC-Rio
• Linux cluster with 

32 Pentium IV 1.7 
GHz processors with 
256 Mbytes of RAM 
each

• Extreme Networks 
switch with 48 
10/100 Mbits/s 
ports and two         
1 Gbits/s ports



Parallel environment
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Parallel environment
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Parallel environment
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Parallel environment
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Parallel environment
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Concluding remarks of Part 1
Path-relinking adds memory and intensification 

mechanisms to GRASP, systematically 
contributing to improve solution quality: 
– better solutions in smaller times
– some implementation strategies appear to be more 

effective than others. 
– mixed path-relinking strategy is very promising
– backward relinking is usually more effective than 

forward
– bidirectional relinking does not necessarily pay off the 

additional computation time
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Concluding remarks of Part 1
Cooperative parallel strategies based on path-relinking:

– Path-relinking offers a nice strategy to introduce memory 
and cooperation in parallel implementations.

– Cooperative strategy performs better due to smaller 
number of iterations and to inter-processor cooperation.

– Linear speedups with the parallel implementation.
– Robustness: cooperative strategy is faster and better.
– Parallel systems are not easily scalable, parallel strategies 

require careful implementations.
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Application 1:
Modem pool location for 
dial-up ISP access
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Modem pool location for 
dial-up ISP access

• user dials up to a modem to access an internet 
service provider

• modem pools are located at PoPs (points of 
presence)

• users prefer making free local calls to access 
internet service
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ISP access

Potential 
PoP location

many customers

few customers

Potential 
PoP location

Potential 
PoP location

calling area

calling area

calling area

calling area

calling area

calling areaA calling area is an
NPANXX (e.g. 973360)
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Location problem

• maximize number of customers that can make 
free local calls to a PoP

• where to locate PoPs
– fixed number of PoPs
– choose from set of potential PoP locations
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Typical size

• ~ 60,000 potential PoP locations
• ~ 50,000 calling areas (NPANXX)
• ~ 120 million residential lines
• Initially, + 255 PoPs had to be located

– GRASP was used for initial setup in 1996
– GRASP has been used since then for expansion
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AT&T Worldnet

• Worldnet: AT&T’s Internet Service Provider
• Dial-up: hundreds of points of presence (PoPs)

– Telephone numbers customers must call when 
making an Internet connection.

• Current footprint:
– 1305 PoPs;
– 77.66% of the telephone numbers in the U.S. can 

make local calls to Worldnet.
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Worldnet

• When is a call local?
– Not simply “within same area code”.
– Telephone system divided into exchanges:

• Area code + first three digits (973360, for example).

• Each PoP has a coordinate.
• We know which exchanges can make local calls to each 

coordinate (the coverage).
– Just a big table;
– 69,534 exchanges covered by current footprint.
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Footprint Optimization
• In general: more PoPs, better coverage.
• For a fixed coverage, we don’t want more PoPs than 

necessary.
• Not all PoPs are the same:

– Each has an associated network cost:
• Hourly rate paid by Worldnet to network company.
• Between $0.04 and $0.14 in the continental US.
• Up to $0.42 in Hawaii and Alaska.

– No setup cost.

• Goal: keep only cheaper PoPs, preserve coverage.
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Footprint Optimization

• Simple improvement:
– Some coordinates have more than one PoP;
– 1035 unique coordinates (out of 1305);
– Keep only the cheapest PoP in each coordinate.
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Footprint Optimization

• Further improvement:
– 335 additional coordinates could be eliminated:

• Only 700 PoPs left;
• New footprint covers all exchanges currently covered;
• No exchange has to make a more expensive call.

• How did we do it?
– We solved this as the p-median problem.
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The p-median Problem
• Input:

– a set C of n customers (or users)
– a set F of m potential facilities
– a distance function (d: C × F → ℜ)
– the number of facilities p to open (0 < p < m)

• Output:
– a set S ⊆ F with p open facilities

• Goal:
– minimize the sum of the distances from each user to the 

closest open facility
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Example (p-median)

50 customers
Sept. 2003 Combinatorial Optimization in Telecom98/227



Example (p-median)

16 potential facilities
Sept. 2003 Combinatorial Optimization in Telecom99/227



Example (p-median)
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assume p=5 
(5 facilities will be opened)



Example (p-median)

This is a valid solution.
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Example (p-median)

This is a valid solution with the proper assignments.
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Our method
• The p-median problem is NP-hard.
• We use a hybrid GRASP metaheuristic:

– “Greedy randomized adaptive search procedure”.
– Multistart approach.

• Each iteration:
– Constructive algorithm;
– Local search.

• Intensification strategy:
– Path-relinking: combines good solutions.

– Finds near-optimal solutions for benchmark instances from 
the literature.

• Bounds within 0.1% of best known for all instances tested.

Sept. 2003 Combinatorial Optimization in Telecom103/227



Footprint Optimization
• In our case:

– each exchange is a p-median user:
• 69,534 in total (all currently covered).

– each coordinate is a p-median facility:
• 1035 in total (all currently open).

– Distances: network cost.
• (PoP rate) . (hours used by exchange)

• With p=1035, we get the current network cost.
• We want the smallest p that preserves that cost.

– Solve the p-median problem for various values of p to find best.
– 700 was the value we found.
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Footprint Optimization
• With 700 PoPs (instead of 1035), potential savings on 

network cost:
– Best-case scenario: 

• Everybody calls the cheapest (for AT&T) PoP available.
• Monthly cost: $3.357 million (unchanged)

– Worst-case scenario:
• Everybody calls the most expensive PoP available.
• Monthly cost: reduced from $3.604M to $3.500 million.
• Savings: up to $104K a month, more than $1.2M a year.

– Average-case scenario:
• Each customer equally likely to call all available PoPs.
• Monthly cost: reduced from 3.424M to 3.414M.
• Savings: up to 120K a year.
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Expanding the Footprint

• Second problem:
– Increase coverage beyond 77.66%.

• AT&T can use UUNet PoPs:
– 1,498 candidate PoPs.
– 568 of those cover at least one new exchange.

• Main question:
– If we want to open p new PoPs, which p?

• Goal: maximize coverage.

• This is the maximum cover problem:
– It can be solved with the p-median tool.
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From Maximum Cover to p-median
• Idea: minimize number of customers not covered.

– Users: 
• exchanges not currently covered.

– Facilities:
• all candidate UUNet PoPs;
• dummy facility f0.

– Distances:
• d(u,fi) = 0, if PoP i covers exchange u.

– if u is covered, does not contribute to solution.

• d(u,f0) = (#customers in exchange u);
• d(u,fi) = infinity, if PoP i does not cover u.

– u not covered: assigned to f0, contributes to solution.

– A dummy user can be used to ensure that f0 will always belong to the 
solution.
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Expansion
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Application 2:
Local access network 
design
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Local access network design

• Design a local access network taking into 
account tradeoff between:
– cost of network
– revenue potential of network
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residence / business:
potential revenue

street: (fiber / potential cost)

Local access network design

backbone node
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Solve prize collecting Steiner tree problem

max  prize collected minus edge cost

Here all prizes are collected.
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Solve prize collecting Steiner tree problem

max  prize collected minus edge cost

Here not all prizes are collected.
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Solve prize collecting Steiner tree 
problem

• Typical dimension:  20,000 to 100,000 nodes.
• Compute lower bounds with cutting planes 

algorithm of Lucena & Resende (Discrete 
Applied Math., 2003)

• Compute solutions (upper bounds) with GRASP 
with path-relinking of Canuto, Resende, & 
Ribeiro (Networks, 2001)
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Application 3:
Routing Frame Relay 
Permanent Virtual 
Circuits (PVC)
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Routing Frame Relay Permanent 
Virtual Circuits (PVC)
Resende & Ribeiro (Networks, 2003)

• Frame relay (FR) service
– provides virtual private networks to customers
– by provisioning a set of permanent (long-term) virtual circuits 

(PVC) between customer endpoints on the backbone 
network

• Provisioning of PVCs
– routing is done either automatically by switch or by network 

designer without any knowledge of future requests
– over time these decisions cause inefficiencies in network and 

occasional rerouting of PVCs is needed
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PVC  routing: example
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PVC  routing: example
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PVC  routing: example
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PVC  routing: example

Sept. 2003 Combinatorial Optimization in Telecom120/227



PVC  routing: example
max capacity = 3
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PVC  routing: example
max capacity = 3very long path!
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PVC  routing: example
max capacity = 3very long path!

reroute
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PVC  routing: example
max capacity = 3

Sept. 2003 Combinatorial Optimization in Telecom124/227



PVC  routing: example
max capacity = 3feasible and 

optimal!
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Routing Frame Relay Permanent Virtual 
Circuits (PVC)

• one approach is to order PVCs and apply 
algorithm on FR switch to reroute 
– however, taking advantage of factors not considered 

by FR switch routing algorithm may lead to greater 
efficiency of network resource utilization

– FR switch algorithm is typically fast since it is also 
used to reroute in case of switch or trunk failures

– this can be traded off for improved network 
resource utilization when routing off-line
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FR PVC Routing Problem

• given undirected FR network G = (V, E), where
– V denotes n backbone nodes (FR switches)
– E  denotes m trunks connecting backbone nodes

• for each trunk e = (i,j ) let
– b (e )  be the bandwidth (max kbits/sec rate) of trunk e 
– c (e ) be the max number of PVCs that can be routed on 

trunk e
– d (e ) be the propagation and hopping delay associated with 

trunk e
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FR PVC Routing Problem

• list of demands (or commodities K = {1,…,p } ) is defined by
– origin - destination pairs
– r (p) - effective bandwidth requirement (forward, backward, overbooking) 

for PVC p

• objective is to minimize
– delays
– network load unbalance  

• subject to
– technological constraints
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FR PVC Routing (bandwidth packing) Problem

• route for PVC (o, d ) is
– sequence of adjacent trunks
– first trunk originates in node o
– last trunk terminates in node d

• set of routing assignments is feasible if for all trunks e
– total PVC bandwidth requirements routed on e does exceed 

b (e)
– number of PVCs routed on e is not greater than c (e)
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Mathematical programming formulation
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Cost function

• Linear combination of 
– delay component 
– load balancing component

• Delay component: , , ,( )k k
i j k i j j i

k K
d x xρ

∈

+∑
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Cost function: Load balancing 
component

• We use the measure of Fortz & Thorup (2000) 
to compute congestion:

Φ = Φ1(l1) + Φ2(l2) + … + Φ|E|(l|E|)
where la  is the load on link e ∈ E, 

Φe(le) is piecewise linear and convex,
Φe(0) = 0, for all e ∈ E.
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Piecewise linear and convex Φe(le) 
link congestion measure 
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Solution method

• GRASP
– Construct by choosing unrouted pair, biasing in favor of high 

bandwidth requirement.  Use shortest path routing using as 
edge distance the incremental cost associated with routing rk
additional units of demand on edge (i , j ).

– Local search: for each PVC k ∈K , remove rk units of flow 
from each edge in its current route, compute incremental 
edge weights, and reroute.

• Path-relinking
– moves are route changes (target solution route replaces 

current solution route)
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Application 4:
Mining for cliques in 
telephone call detail 
database
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Mining for cliques in telephone 
call detail database

Abello, Pardalos, & Resende (1999); Abello, Resende, & Sudarsky (2002)

• Data explosion
• Massive graphs arising from telephone call detail 

database
• Structure of call detail graph
• Searching for large cliques and bicliques
• Some experimental results
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Data explosion
(Abello, Pardalos, & Resende, Eds., “Handbook of Massive Data Sets,” Kluwer, 2002)

• Proliferation of massive data sets brings with it 
computational challenges 

• Data avalanche arises in a wide range of scientific and 
commercial applications

• Today’s data sets are of high dimension and are made 
up of huge numbers of observations: 
– More often they overwhelm rather than enlighten

• Outstripped the capabilities of traditional data 
measurement, data analysis, and data visualization tools
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Data explosion

• A variety of massive data sets can be modeled 
as a very large multi-digraph
– Special set of edge attributes represent special 

characteristics of application

• WWW: nodes are pages, edges are links 
pointing from one page to another

• Telephone call graph is another example …
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Call detail

• Every phone call placed on AT&T network 
generates a record (∼ 200 bytes) with:
– Originating & terminating numbers
– Start time & duration of call
– Other billing information

• The collection of these records is known as the 
Call Detail Database
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Call detail

• AT&T system (in 2000) generated:
– 250 million records per day (on average)
– 320 million records on busy day
– 18 terabytes of data per year

• Data is accessed for:
– Billing & customer inquiries
– Marketing & traffic engineering
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Call detail graph

• G = (V,E) is a directed graph:
– V  is the set of phone numbers
– E  is the set of phone calls

• (u,v ) ∈ E implies that phone u called phone v

• G  quickly grows into a huge graph
– Hundreds of millions of nodes and billions of edges
– Our goal is to work with one year of data (∼ 1 Tb)
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Structure of call detail graph

• Consider a 12-hour call detail graph
– 123 million records: edges
– 53 million phone numbers: nodes

• 21 million source nodes
• 22 million sink nodes
• 10 million transmittal nodes

Source

Sink

T
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Connected components

3.6 million connected components
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largest CC has
45 million vertices
and 80 million
edges

27,906 CC’s with
6 vertices

2.8 million CC’s
with 2 vertices

979 CC’s with
11 vertices

598,519 CC’s
with 3 vertices



Depth first search (DFS) tree

Pick a high out-degree node
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DFS trees in largest CC
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TL

Largest DFS tree Smaller DFS trees

G ( TL) has 
10 million nodes &
19 million edges, i,e.
22% of the nodes &
24% of the edges of
the CC

18 million DFS trees

Most edges are within
trees.



Subgraph induced by DFS tree nodes

• Most subgraphs induced by DFS tree nodes are 
very sparse:  |E | < log(|V |)

• Few are dense: |E | > sqrt(|V |) with at most 
32 nodes
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Dense subgraphs

• Dense subgraphs could be
– within G (DFS tree) 
– among different G (DFS tree)

• Counting edges:
– most are within G (DFS tree)
– leaves few edges between different G (DFS tree)
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Macro structure of call detail graph
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dense sub-graph dense sub-graph

dense sub-graph

dense sub-graph

sparse sub-graph

community of 
interest?



Searching for dense subgraphs

• We look for two types of subgraphs
– cliques or quasi-cliques
– bicliques or quasi-bicliques

clique quasi-clique biclique quasi-biclique
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Clique case

• We illustrate the approach with the clique case.
– We work on connected component of transmittal 

nodes (no cliques in sources or sinks)
– Breadth first search decomposition
– Peeling off vertices to focus in on large cliques
– Finding cliques in a subgraph
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Breadth first search decomposition
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• Given a graph G one can decompose its 
vertices into levels

level 0

level 1

level 3

level 4

level 5

There are no cliques spanning three or more levels.



BFS: distribution of nodes per level
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Edge ordering

• Use levels to order edges (k = 0,1,2,…)
– Edges in level k
– Edges from level k to level k+1

level 0

level 1

level 3

level 4

level 5
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Chunking & peeling

Sept. 2003 Combinatorial Optimization in Telecom155/227

• Start with all edges in E  (set is massive)
• Repeat

– Create a subgraph G’  with one or more chunks
– Find large clique (of size c’ ) in G’ 
– Peel from G all vertices v with deg(v ) < c’ 
– E = E (G)

chunk

chunk chunk



Peeling

• Peeling is applied recursively

peel
peel

Clique of size 5
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Clique of size 4



Peeling with degree = 2
reduction from 3.4 M edges to 3.0 M edges
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Peeling with degree = 14
reduction from 3.0 M edges to 18.3 K edges
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Finding cliques

• GRASP for max clique
– multi-start 

• construct clique using randomized greedy algorithm
• attempt to improve clique using 2-exchange local search
• store all cliques found in construction & local search
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Greedy vertex choice

Choose v ∈N (S ) with max degN (S ) {v ∈N (S )}.

S

N (S ) = nodes
adjacent to all
nodes in S
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(2,1) exchange local search
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• for each vertex v in clique S
– while ∃ an edge (x, y ) ∈ E  with x and y adjacent 

to all vertices in S \ {v }
• remove v from S and add x and y to S:

S = S \ {v } ∪ {x } ∪ {y }

x

v
y y

x

clique of size 3

clique of size 4



Software platform
external & semi-external memory algorithms

Read data
Remove 

multiplicities & 
self loops

Decompose graph
into sources, 
transmitters &

sinks

Compute 
connected

components
For each CC:Find cliques
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Software platform
computing cliques
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For each CC BFS decomposition
into K  levels

for k = 1,K −1

Work on graph
induced by nodes in

levels k and k + 1

GRASP & save
maximal cliques

peel



Mining for cliques
examples

• 12 hours of calls
– 53M nodes, 170M edges
– 3.6M connected components (only 302K had more 

than three nodes)
• 255 self loops, 2.7M pairs, and 598K triplets

– Giant CC has 45M nodes
– Found cliques of size up to 30 nodes in giant CC.
– Found quasi-cliques of size 44 (90% density), 57 

(80%), 65 (70%), and 98 (50%) in giant CC.
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Application 5:
Internet traffic 
engineering

Sept. 2003 Combinatorial Optimization in Telecom165/227



Internet traffic engineering

• Internet traffic has been doubling each year 
[Coffman & Odlyzko, 2001]

• In the1995-96 period, there was a doubling of 
traffic each three months!
– Web browsers were introduced.

• Increasingly heavy traffic (due to video, voice, 
etc.) will raise the requirements of the Internet 
of tomorrow.
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Internet traffic engineering

• Objective: make more efficient use of existing 
network resources.

• Routing of traffic can have a major impact on 
efficiency of network resource utilization.
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Packet routing

router

router

router

router

router

When packet arrives at router,
router must decide where to
send it next.

Packet’s final 
destination.

Routing consists in finding a
link-path from source to 
destination.

D1

D2

D3

D4

R1

R2

R3

R4 Routing table
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OSPF (Open Shortest Path First)

• OSPF is a commonly used 
intra-domain routing 
protocol (IGP).

• Routers exchange routing 
information with all other 
routers in the autonomous 
system (AS).
– Complete network topology 

knowledge is available to all 
routers, i.e. state of all routers 
and links in the AS.

AT&T

U. of Calif.

UUNET

Ecuador

Autonomous Systems
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OSPF routing

• Assign an integer weight ∈ [1, wmax ] to each 
link in AS.   In general, wmax = 65535=216−1. 

• Each router computes tree of shortest weight 
paths to all other routers in the AS, with itself as 
the root, using Dijkstra’s algorithm.
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OSPF routing
Routing table is filled
with first hop routers
for each possible destination.

Routing table
D1

D2

D3

D4

R1

R1

R2

R3 321

351

2

4

root

First hop routers.

D5

D6

R1

R3
6

Destination routers
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OSPF routing
Routing table is filled
with first hop routers
for each possible destination.
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OSPF routing
Routing table is filled
with first hop routers
for each possible destination.

Routing table
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OSPF routing
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4
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root

First hop routers.

Routing table

Destination routers

Routing table is filled
with first hop routers
for each possible destination.
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OSPF routing

321

351

2

4

D1

D2

D3

D4

R1

R1, R2

R2

R3

root

First hop routers.

Routing table

Destination routers

Routing table is filled
with first hop routers
for each possible destination.
In case of multiple shortest 
paths, flow is evenly split.

D5

D6

R1

R3
6
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OSPF weight setting

• OSPF weights are assigned by network operator.
– CISCO assigns, by default, a weight proportional to the 

inverse of the link bandwidth (Inv Cap).
– If all weights are unit, the weight of a path is the number of 

hops in the path.

• We propose a hybrid genetic algorithm to find good 
OSPF weights.
– Memetic algorithm
– Genetic algorithm with optimized crossover
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Minimization of congestion

• Consider the directed capacitated network G = (N,A,c), 
where N are routers, A are links, and ca is the capacity 
of link a ∈ A.

• We use the measure of Fortz & Thorup (2000) to 
compute congestion:

Φ = Φ1(l1) + Φ2(l2) + … + Φ|A|(l|A|)
where la  is the load on link a ∈ A, 

Φa(la) is piecewise linear and convex,
Φa(0) = 0, for all a ∈ A.
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Piecewise linear and convex Φa(la) 
link congestion measure 
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OSPF weight setting problem

• Given a directed network G = (N, A ) with link 
capacities ca ∈ A  and demand matrix D = (ds,t ) 
specifying a demand to be sent from node s to 
node t :
– Assign weights wa ∈[1, wmax ] to each link a ∈ A, 

such that the objective function Φ is minimized 
when demand is routed according to the OSPF 
protocol.
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Cost normalization

Consider the demand matrix D = (ds,t ) and let hs,t
be the min hop count between s and t . 

Normalize         by  Φ , ,
( , )

s t s t
s

un
t

a
N

c
N

p d h
∈ ×

Φ = ∑
Total load if all traffic goes 
along unit weight shortest paths.

Normalized cost: * / uncapΦ = Φ Φ
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Normalized cost  * / uncapΦ = Φ Φ

• Fortz & Thorup (2000) show that:
•
• If             , then all loads are below 1/3 of 

capacity.
• If a packet follows a shortest path and if all arcs 

are exactly full, then  
• Routing congests the network if

* 1Φ =

* * *1 5000opt optOSPF unitOSPF≤ Φ ≤ Φ ≤ Φ <

2*
310Φ =

2*
310Φ ≥
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AT&T Worldnet backbone network (90 routers, 274 links)

Sept. 2003 Combinatorial Optimization in Telecom182/227

0

2

4

6

8

10

12

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

UNIT
Inv Cap

RAND
LPLB

cost

demand



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

UNIT
Inv Cap

RAND
LPLB

max
utilization

demand

AT&T Worldnet backbone network (90 routers, 274 links)

Sept. 2003 Combinatorial Optimization in Telecom183/227



Genetic and memetic algorithms for 
OSPF weight setting problem

• Genetic
– Ericsson, Resende, & Pardalos (2002)

• Memetic
– Buriol, Resende, Ribeiro, & Thorup (2003)
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Genetic algorithms
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Initialize and 
evaluate P (0);

Set t = 1
Test termination

Select P (t ) from
P (t−1)

Alter P (t ) 

Evaluate P (t )t = t + 1

done

crossover

mutationP (t ) is population of
solutions at generation t.



Solution encoding

• A population consists of nPop = 50 integer 
weight arrays: w = (w1, w2 ,…, w|A| ), 

where wa ∈[1, wmax = 20]
• All possible weight arrays correspond to feasible 

solutions.
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Initial population

• nPop solutions, with each weight randomly 
generated, uniformly in the interval [1, wmax /3].
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Solution evaluation

• For each demand pair (s,t ), route using OSPF, 
computing demand pair loads las,t on each link a ∈ A.

• Add up demand pair loads on each link a ∈ A, yielding 
total load la on link.

• Compute link congestion cost Φa(la) for each link         
a ∈ A.

• Add up costs: Φ = Φ1(l1) + Φ2(l2) + … + Φ|A|(l|A|)
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Population partitioning

Class A 25% most fit

Population is sorted according to
solution value Φ and  solutions are
classified into three categories.

Class B

Class C 5% least fit
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Population dynamics
generation t

Class A

Class B

Class C
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Population dynamics
generation t + 1generation t

Class A

Class C

Class B

Class A
Class A is promoted unchanged
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Population dynamics
generation t + 1generation t

Class A

Class C

Class B

Class A

Class C

Class A is promoted unchanged

Class C is replaced by randomly
generated solutions.
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Population dynamics
generation t + 1generation t

Class A

Class C

Class B

Class A

Class C

Class A is promoted unchanged

Class C is replaced by randomly
generated solutions.

Class B is replaced by
crossover of:
one Class A parent

and
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Population dynamics
generation t + 1generation t

Class A

Class C

Class B

Class A

Class C

Class A is promoted unchanged

Class C is replaced by randomly
generated solutions.

Class B is replaced by
crossover of:
one Class A parent

and

one Class B or C
parent.

X
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Population dynamics
generation t + 1

Class A

Class C

Class A is promoted unchanged

Class C is replaced by randomly
generated solutions.

Class B is replaced by
crossover of:
one Class A parent

and

one Class B or C
parent.

Class A

Class C

Class B

generation t

X Class B
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Parent selection

• Parents are chosen at random:
– one parent from Class A (elite).
– one parent from Class B or C (non-elite).

• Reselection is allowed, i.e. parents can breed 
more than once per generation.

• Better individuals are more likely to reproduce.
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Crossover with random keys 
Bean (1994)

Crossover combines elite parent p1 with non-elite parent 
p2 to produce child c :

for all genes i = 1,2,…,|A | do
if rrandom[0,1] < 0.01 then

c [i ] = irandom[1, wmax ]
else if rrandom[0,1] < 0.7 then

c [i ] = p1[i ]
else c [i ] = p2[i ]

end

With small probability child
has single gene mutation.

Child is more likely to inherit
gene of elite parent.
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cost

generation

GA solutions

LP lower bound

AT&T Worldnet backbone network (90 routers, 274 links)
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Weight setting with GA
permits a 50% increase in
traffic volume w.r.t.  weight
setting with the Inverse 
Capacity rule.
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Optimized crossover = crossover + 
local search

Class A

Class C

Class B X Local search Class B
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Fast local search

• Let A * be the set of five arcs a ∈ A having 
largest Φa values.

• Scan arcs a ∈ A * from largest to smallest Φa:
Increase arc weight, one unit at a time, in the range 

[wa , wa + ⎡(wmax − wa )/4⎤ ]
If total cost Φ is reduced, restart local search.
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Dynamic shortest path

• In local search, when arc weight increases, 
shortest path trees:
– may change completely (rarely do) 
– may remain unchanged (e.g. arc not in a tree)
– may change partially

• Few trees change
• Small portion of tree changes

Does not make sense to 

recompute trees from

scratch.
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Dynamic shortest path

Consider one tree
at a time.
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Dynamic shortest path

increase
weight

Arc weight is increase
by 1.
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Dynamic shortest path

increase
weight

Do not consider nodes
whose shortest path to
destination does not
go through blue
arc.
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Dynamic shortest path

increase
weight

X

X

X

Arc (u,v ) is removed
from tree since
alternative paths from 
node u to the destination
node exist.
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Dynamic shortest path

distance labels
increase by 1

Shortest paths
from red nodes
must traverse 
blue arc.
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Dynamic shortest path

Test all arcs of type

If d − d  = w , then
enters 

tree.d

d
w
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Dynamic shortest path
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Dynamic shortest path
Buriol, Resende, & Thorup (2003)

• Ramalingam & Reps (1996) allow arbitrary arc 
weight change.

• We specialized the Ramalingam & Reps 
algorithm for unit arc weight change.
– Avoid use of heaps
– Achieve a factor of 2∼5 speedup w.r.t. Ramalingam

& Reps on these test problems
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Remark

• Memetic algorithm (MA) improves over pure 
genetic algorithm (GA) in two ways:
– Finds solutions faster
– Finds better solutions
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Collaborative parallel implementation

P1

P4P3

P2 MPI: Message Passing
Interface
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Collaborative parallel implementation

P1

P4P3

P2

If P4 finds a new 
incumbent solution.

Sept. 2003 Combinatorial Optimization in Telecom219/227



Collaborative parallel implementation

P1

P4P3

P2

If P4 finds a new 
incumbent solution.
Incumbent solution is
broadcast to P1, P2, P3.
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AT&T Worldnet backbone network (90 routers, 274 links)
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Extensions

• Network design: Minimize total capacity × 
distance of links to guarantee traffic flow subject 
to failures.

• Routing: Minimize maximum utilization subject 
to single link and router failures.

• Server placement: Locate minimum number of 
cache servers on network for multicast of 
streaming video.
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Other applications of optimization in 
telecommunications

• location of traffic concentrators
– It is sometimes beneficial to concentrate traffic into a high 

capacity circuit and backhaul the traffic
– Traffic is concentrated at specific nodes
– Problem is to decided how many nodes and which

• global routing of Frame Relay service
– To maximize the utilization of transport infrastructure one 

can take advantage of varying point-to-point demands due to 
time zone differences
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Other applications of optimization in 
telecommunications

• disjoint paths
– for survivability, route several circuits between pairs of nodes

on resource (node, edge) disjoint paths
– if impossible, minimize sharing of resources

• frequency assignment
– assign different frequencies to cellular telephone antennas to 

avoid interference

• SONET ring network design
– design restorable ring networks, i.e. quickly (in less than a 

millisecond) react to reestablish communications
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Concluding Remarks

• we have seen a small sample of applications of 
optimization in telecommunications

• opportunities for optimization arise in practice 
all the time

• our profession call have a major impact in 
telecommunications
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Concluding remarks

• These slides, and papers about GRASP, path-relinking, and 
their telecom applications available at:
http://www.research.att.com/~mgcr
http://graspheuristic.org
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Handbook of Optimization in Telecommunications, 
P.M. Pardalos and M.G.C. Resende, Kluwer, 2004.

• Optimization issues in distribution network design
• Optimization issues in network survivability
• Virtual path design
• Network grooming
• Network reliability in telecommunications
• Optimization issues in quality of service
• Frequency assignment problem
• Optimization in cellular phone networks
• Optimization issues in web search engines
• Optimization issues in IP routing
• Network planning in telecommunications
• Pricing and equilibrium in telecommunications
• Discrete multi-commodity network flow problems 

and applications in telecommunications

• Interior point methods for large-scale LP
• Decomposition methods in telecommunications
• Integer programming
• Lagrangean relaxation
• Minimum cost network flow algorithms
• Shortest path algorithms
• Multi-commodity flow in telecommunications
• Steiner tree problems in telecommunications
• Minimum spanning tree problems
• Metaheuristics
• Nonlinear programming
• Telecommunications network design
• Ring network design
• Computational large-scale linear programming
• Telecommunications access network design
• Network location in telecommunications
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