
 March 29, 2008 Metaheuristics and network design

Talk given at the Network Design Workshop of the
Ninth INFORMS Telecommunications Conference
University of Maryland, College Park, MD ∼ March 29, 2008

Metaheuristics &
network design

Mauricio G. C. Resende
AT&T Labs Research
Florham Park, New Jersey
mgcr@att.com

 March 29, 2008 Metaheuristics and network design

Summary

• GRASP & path-
relinking
– GRASP
– Path-relinking
– GRASP with path-

relinking
– GRASP with path-

relinking for the prize-
collecting Steiner
problem in graphs

• Genetic algorithms
– Genetic algorithm (GA)
– GA with random-keys
– Weight setting for OSPF

routing
– Survivable network

design with OSPF
routing

 March 29, 2008 Metaheuristics and network design

Combinatorial Optimization

Combinatorial optimization: process of finding the best, or
optimal, solution for problems with a discrete set of
feasible solutions.

Network design: is an important application of
combinatorial optimization.

 March 29, 2008 Metaheuristics and network design

Combinatorial Optimization

• Given:
– discrete set of solutions X

– objective function f(x): x ∈ X → R

• Objective:
– find x ∈ X : f(x) ≤ f(y), ∀ y ∈ X

 March 29, 2008 Metaheuristics and network design

Heuristics for Combinatorial Optimization

Aim of heuristic methods for combinatorial optimization is
to quickly produce good-quality solutions, without
necessarily providing any guarantee of solution quality.

 March 29, 2008 Metaheuristics and network design

Metaheuristics

• Metaheuristics are high level procedures that
coordinate simple heuristics, such as local search, to
find solutions that are of better quality than those
found by the simple heuristics alone.

• Examples: simulated annealing, tabu search, scatter
search, ant colony optimization, variable neighborhood
search, pilot method, GRASP, and genetic algorithms.

 March 29, 2008 Metaheuristics and network design

Local Search

• To define local search, one needs to specify a
local neighborhood structure.

• Given a solution x , the elements of the
neighborhood N(x) of x are those solutions y
that can be obtained by applying an elementary
modification (often called a move) to x.

 March 29, 2008 Metaheuristics and network design

Local Search Neighborhoods

Consider x = (0,1,0) and the 1-flip neighborhood of a 0/1
array.

x = (0,1,0)

(1,1,0) (0,0,0) (0,1,1)

N (x)

 March 29, 2008 Metaheuristics and network design

Local Search

Given an initial solution x0, a neighborhood N(x), and
function f(x) to be minimized:

x = x0 ;

while (∃ y ∈ N(x) | f(y) < f(x)) {
x = y ;

}
At the end, x is a local minimum of f(x) .

check for better solution in
neighborhood of x

move to better
solution y Time complexity of local search

 can be exponential.

 March 29, 2008 Metaheuristics and network design

Local Search
(ideal situation)

f (0,0,0) = 3

f (1,1,1) = 3

f (0,1,0) = 4

f (0,0,1) = 0

f (1,0,0) = 5

f (0,1,1) = 1

f (1,1,0) = 6

f (1,0,1) = 2

With any starting solution Local Search finds the global optimum.

global
minimum

 March 29, 2008 Metaheuristics and network design

Local Search
(more realistic situation)

f (1,1,1) = 2

f (0,1,0) = 2

f (0,0,1) = 0

f (1,0,0) = 1

f (0,1,1) = 3

f (1,1,0) = 6

f (1,0,1) = 3

f (0,0,0) = 3 global
minimum

local
minima

local
minimum

But some starting solutions lead Local Search to a local minimum.

 March 29, 2008 Metaheuristics and network design

Effectiveness of local search depends on several
factors:
– neighborhood structure

Local Search

some freedom to choose

 March 29, 2008 Metaheuristics and network design

Effectiveness of local search depends on several
factors:
– neighborhood structure
– function to be minimized

Local Search

usually pre-
determined

some freedom to choose

 March 29, 2008 Metaheuristics and network design

Effectiveness of local search depends on several
factors:
– neighborhood structure
– function to be minimized
– starting solution

Local Search

usually pre-
determined

usually easier to
control

some freedom to choose

 March 29, 2008 Metaheuristics and network design

The greedy algorithm

• Constructs a solution, one element at a time:
– Defines candidate elements.
– Applies a greedy function to each candidate element.
– Ranks elements according to greedy function value.
– Add best ranked element to solution

re
pe

at
 u

nt
il

 d
on

e

 March 29, 2008 Metaheuristics and network design

The greedy algorithm

• Constructs a solution, one element at a time:
– Defines candidate elements.
– Applies a greedy function to each candidate element.
– Ranks elements according to greedy function value.
– Add best ranked element to solution.

re
pe

at
 u

nt
il

 d
on

e

Greedy solutions are not necessarily locally optimal.

 March 29, 2008 Metaheuristics and network design

The greedy algorithm

• Constructs a solution, one element at a time:
– Defines candidate elements.
– Applies a greedy function to each candidate element.
– Ranks elements according to greedy function value.
– Add best ranked element to solution.

re
pe

at
 u

nt
il

 d
on

e

Greedy solutions are not necessarily locally optimal.

Applying local search to greedy solutions usually
leads to a local optimum that is not globally optimum.

 March 29, 2008 Metaheuristics and network design

Multi-start greedy method

c* = ∞

repeat

x = greedy()

if f(x) < c* then
 x* = x
 c* = f(x*)
endif

 March 29, 2008 Metaheuristics and network design

Multi-start greedy method

c* = ∞

repeat

x = greedy()

if f(x) < c* then
 x* = x
 c* = f(x*)
endif

multi-start with greedy does poorly because greedy lacks randomness

 March 29, 2008 Metaheuristics and network design

Random multi-start

c* = ∞

repeat

x = random_construction()

if f(x) < c* then
 x* = x
 c* = f(x*)
endif

 March 29, 2008 Metaheuristics and network design

Example: Probability of finding opt with K samplings
on a 0−1 vector of size N

 N: 10 15 20 25 30
K:
10 .010 .000 .000 .000 .000
100 .093 .003 .000 .000 .000
1000 .624 .030 .000 .000 .000
10000 1.000 .263 .009 .000 .000
100000 1.000 .953 .091 .003 .000

 March 29, 2008 Metaheuristics and network design

Semi-greedy heuristic
Hart and Shogan (1987)

• A semi-greedy heuristic adds randomization to
the greedy algorithm.

• repeat until solution is constructed
– For each candidate element

• apply a greedy function to element

– Rank all elements according to their greedy function values
– Place well-ranked elements in a restricted candidate list

(RCL)
– Select an element from the RCL at random & add it to the

solution

re
pe

at
 u

nt
il

 d
on

e

 March 29, 2008 Metaheuristics and network design

Hart-Shogan Algorithm

c* = ∞

repeat

x = semi_greedy_construction()

if f(x) < c* then
 x* = x
 c* = f(x*)
endif

 March 29, 2008 Metaheuristics and network design

Hart-Shogan Algorithm

c* = ∞

repeat

x = semi_greedy_construction()

if f(x) < c* then
 x* = x
 c* = f(x*)
endif

semi-greedy solutions are not necessarily locally optimum

 March 29, 2008 Metaheuristics and network design

GRASP
Greedy Randomized Adaptive Search Procedure

 March 29, 2008 Metaheuristics and network design

GRASP
Feo & Resende (1989, 1995); Resende & Ribeiro (2003)

c* = ∞

repeat

x = semi_greedy_construction()

if f(x) < c* then
 x* = x
 c* = f(x*)
endif

 x = local_search(x)

Semi-greediness
is more general
in GRASP

 March 29, 2008 Metaheuristics and network design

α=0.2

α=0.4

α=0.6

α=0.8

Illustrative results: RCL parameter

weighted MAX-SAT instance, 1000 iterations

Semi-greedy algorithm

 March 29, 2008 Metaheuristics and network design

α=0.2

α=0.6

α=0.8

α=1.0

Illustrative results: RCL parameter

weighted MAX-SAT instance, 1000 GRASP iterations

GRASP: Semi-greedy + local search

 March 29, 2008 Metaheuristics and network design

best solution

average solution

time

tim
e

(s
ec

on
ds

) f
or

 1
00

0
ite

ra
tio

ns

so
lu

tio
n

va
lu

e

RCL parameter α

Illustrative results: RCL parameter

random greedy

weighted MAX-SAT instance:
100 variables and 850 clauses

SGI Challenge 196 MHz

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 0.2 0.4 0.6 0.8 1
 400000

 405000

 410000

 415000

 420000

 425000

 430000

 435000

 440000

 445000

 450000

 March 29, 2008 Metaheuristics and network design

5

10

15

20

0 0.2 0.4 0.6 0.8 1

ti
m

e
 (

s
e

c
o

n
d

s
)

fo
r

1
0

0
0

 i
te

ra
ti
o

n
s

RCL parameter alpha

total CPU time

local search CPU time

Illustrative results: RCL parameter

Another weighted MAX-SAT instance

random greedyRCL parameter α
SGI Challenge 196 MHz

 March 29, 2008 Metaheuristics and network design

Construction with cost perturbation

• Introduces noise into original costs: similar to
Noisy Method of Charon and Hudry (1993, 2002)

• Randomly perturb original costs and apply some
heuristic.

• Adds flexibility to algorithm design:
• May be more effective than greedy randomized construction

in circumstances where the construction algorithm is not
very sensitive to randomization (Ribeiro, Uchoa, & Werneck,
2002).

• Also useful when no greedy algorithm is available (Canuto, R.,
& Ribeiro, 2001).

 March 29, 2008 Metaheuristics and network design

W() < W() < W() < W()

Construction with cost perturbation

Perturb with costs
increasing from
top to bottom.

 March 29, 2008 Metaheuristics and network design

W() < W() < W() < W()

Construction with cost perturbation

Perturb with costs
increasing from
top to bottom.

 March 29, 2008 Metaheuristics and network design

W() < W() < W() < W()

Construction with cost perturbation

Perturb with costs
increasing from
top to bottom.

 March 29, 2008 Metaheuristics and network design

W() < W() < W() < W()

Construction with cost perturbation

Perturb with costs
increasing from
top to bottom.

 March 29, 2008 Metaheuristics and network design

W() < W() < W() < W()

Construction with cost perturbation

Perturb with costs
increasing from
top to bottom.

 March 29, 2008 Metaheuristics and network design

W() < W() < W() < W()

Construction with cost perturbation

Perturb with costs
increasing from
top to bottom.

 March 29, 2008 Metaheuristics and network design

W() < W() < W() < W()

Construction with cost perturbation

Perturb with costs
increasing from
top to bottom.

 March 29, 2008 Metaheuristics and network design

W() < W() < W() < W()

Construction with cost perturbation

Perturb with costs
increasing from
top to bottom.

 March 29, 2008 Metaheuristics and network design

W() < W() < W() < W()

Construction with cost perturbation

Perturb with costs
increasing from
bottom to top.

 March 29, 2008 Metaheuristics and network design

W() < W() < W() < W()

Construction with cost perturbation

Perturb with costs
increasing from
bottom to top.

 March 29, 2008 Metaheuristics and network design

W() < W() < W() < W()

Construction with cost perturbation

Perturb with costs
increasing from
bottom to top.

 March 29, 2008 Metaheuristics and network design

W() < W() < W() < W()

Construction with cost perturbation

Perturb with costs
increasing from
bottom to top.

 March 29, 2008 Metaheuristics and network design

W() < W() < W() < W()

Construction with cost perturbation

Perturb with costs
increasing from
bottom to top.

 March 29, 2008 Metaheuristics and network design

W() < W() < W() < W()

Construction with cost perturbation

Perturb with costs
increasing from
bottom to top.

 March 29, 2008 Metaheuristics and network design

W() < W() < W() < W()

Construction with cost perturbation

Perturb with costs
increasing from
bottom to top.

 March 29, 2008 Metaheuristics and network design

W() < W() < W() < W()

Construction with cost perturbation

Perturb with costs
increasing from
bottom to top.

 March 29, 2008 Metaheuristics and network design

W() < W() < W() < W()

Construction with cost perturbation

Greedy heuristic
generates two
different spanning
trees.

 March 29, 2008 Metaheuristics and network design

Path-relinking (PR)

 March 29, 2008 Metaheuristics and network design

Path-relinking

• Intensification strategy exploring trajectories
connecting high-quality (elite) solutions
(Glover, 1996)

initial
solution

guiding
solution

path in the neighborhood of solutions

 March 29, 2008 Metaheuristics and network design

Path-relinking
• Path is generated by selecting moves that

introduce in the initial solution attributes of the
guiding solution.

• At each step, all moves that incorporate
attributes of the guiding solution are evaluated
and the best move is selected:

initial
solution

guiding
solution

 March 29, 2008 Metaheuristics and network design

starting solution guiding solutionPR example

 March 29, 2008 Metaheuristics and network design

starting solution x guiding solution yPR example

 March 29, 2008 Metaheuristics and network design

starting solution guiding solutionPR example

 March 29, 2008 Metaheuristics and network design

starting solution guiding solutionPR example

 March 29, 2008 Metaheuristics and network design

starting solution guiding solutionPR example

 March 29, 2008 Metaheuristics and network design

starting solution guiding solutionPR example

 March 29, 2008 Metaheuristics and network design

starting solution guiding solutionPR example

 March 29, 2008 Metaheuristics and network design

starting solution guiding solutionPR example

 March 29, 2008 Metaheuristics and network design

starting solution guiding solutionPR example

 March 29, 2008 Metaheuristics and network design

starting solution guiding solutionPR example

 March 29, 2008 Metaheuristics and network design

starting solution guiding solutionPR example

 March 29, 2008 Metaheuristics and network design

starting solution guiding solutionPR example

 March 29, 2008 Metaheuristics and network design

starting solution guiding solutionPR example

 March 29, 2008 Metaheuristics and network design

starting solution guiding solutionPR example

 March 29, 2008 Metaheuristics and network design

starting solution guiding solutionPR example

 March 29, 2008 Metaheuristics and network design

starting solution guiding solutionPR example

 March 29, 2008 Metaheuristics and network design

starting solution guiding solutionPR example

 March 29, 2008 Metaheuristics and network design

starting solution guiding solutionPR example

 March 29, 2008 Metaheuristics and network design

starting solution guiding solutionPR example

 March 29, 2008 Metaheuristics and network design

starting solution guiding solutionPR example

 March 29, 2008 Metaheuristics and network design

starting solution guiding solutionPR example

 March 29, 2008 Metaheuristics and network design

starting solution guiding solutionPR example

 March 29, 2008 Metaheuristics and network design

starting solution guiding solutionPR example

 March 29, 2008 Metaheuristics and network design

starting solution guiding solutionPR example

 March 29, 2008 Metaheuristics and network design

starting solution guiding solutionPR example

 March 29, 2008 Metaheuristics and network design

starting solution guiding solutionPR example

Cannot improve
endpoint solutions

 March 29, 2008 Metaheuristics and network design

starting solution guiding solutionPR example

Cannot improve
endpoint solutions

Can improve
endpoint solutions

 March 29, 2008 Metaheuristics and network design

GRASP with path-relinking

 March 29, 2008 Metaheuristics and network design

GRASP with path-relinking

• First proposed by Laguna and Martí (1999).
• Maintains a set of elite solutions found during

GRASP iterations.
• After each GRASP iteration (construction and local

search):
– Use GRASP solution as initial solution.
– Select an elite solution uniformly at random: guiding

solution.
– Perform path-relinking between these two solutions.

 March 29, 2008 Metaheuristics and network design

GRASP with path-relinking

• Since 1999, there has been a lot of activity in
hybridizing GRASP with path-relinking.

• Survey by R. & Ribeiro in book of Ibaraki,
Nonobe, and Yagiura (2005).

• Main observation from experimental studies:
GRASP with path-relinking outperforms pure
GRASP.

 March 29, 2008 Metaheuristics and network design

MAX-SAT (Festa, Pardalos, Pitsoulis, and Resende, 2006)

 March 29, 2008 Metaheuristics and network design

3-index assignment (Aiex, Resende, Pardalos, & Toraldo, 2005)

 March 29, 2008 Metaheuristics and network design

QAP (Oliveira, Pardalos, and Resende, 2004)

 March 29, 2008 Metaheuristics and network design

Bandwidth packing (Resende and Ribeiro, 2003)

 March 29, 2008 Metaheuristics and network design

Job shop scheduling (Aiex, Binato, & Resende, 2003)

 March 29, 2008 Metaheuristics and network design

GRASP with path-relinking

Repeat
GRASP
with
PR loop

1) Construct randomized greedy X
2) Y = local search to improve X
3) Path-relinking between Y and
 pool solution Z
4) Update pool

 March 29, 2008 Metaheuristics and network design

Network design to maximize
difference between

revenue and network cost:

Prize collecting Steiner problem in
graphs

 March 29, 2008 Metaheuristics and network design

Prize-collecting Steiner tree (PCST) problem

• Given: graph G = (V, E)
– Real-valued cost ce is associated with edge e

– Real-valued penalty dv is associated with vertex v

• A tree is a connected acyclic subgraph of G and its
weight is the sum of its edge costs plus the sum of the
penalties of the vertices of G not spanned by the tree.

• PCST problem: Find tree of smallest weight.

 March 29, 2008 Metaheuristics and network design

Input: edge costs, node revenues

3

9
2

6
7

4
8

9

6 2

7 3 7 8

86

6

4

3
graph G

4

edge cost

potential revenue
of node

 March 29, 2008 Metaheuristics and network design

Cost of tree: tree edge cost plus revenue of
unreached nodes

3

9
2

6
7

4
8

9

3

4

4

3

tree T

Cost (T) = Cost (edges of T) +

 March 29, 2008 Metaheuristics and network design

Cost of tree: tree edge cost plus revenue of
unreached nodes

3

9
2

6
7

4
8

9

3

4

4

3

tree T

Cost (T) = Cost (edges of T) +
 Revenue (nodes not reached by T)

 March 29, 2008 Metaheuristics and network design

Cost of tree: tree edge cost plus revenue of
unreached nodes

3

9
2

6
7

4
8

9

3

4

4

3

tree T

Cost (T) = (3 + 3 + 4 + 4) +
 Revenue (nodes not reached by T)

 March 29, 2008 Metaheuristics and network design

Cost of tree: tree edge cost plus revenue of
unreached nodes

3

9
2

6
7

4
8

9

3

4

4

3

tree T

Cost (T) = (3 + 3 + 4 + 4) +
 (3 + 4 + 2) = 23

 March 29, 2008 Metaheuristics and network design

Design of local access
telecommunications network

• Build a fiber-optic network for providing
broadband connections to business and
residential customers.

• Design a local access network taking into
account trade-off between:
– cost of network
– revenue potential of network

 March 29, 2008 Metaheuristics and network design

Design of local access
telecommunications network

• Graph corresponds to local street map
– Edges: street segments

• Edge cost: cost of laying the fiber on the corresponding
street segment

– Vertices: street intersections and potential customer
premises

• Vertex penalty: estimate of potential loss of revenue if the
customer were not to be serviced (intersection nodes
have no penalty)

 March 29, 2008 Metaheuristics and network design

Input network
node with
revenue

node without
revenue

backbone network

 March 29, 2008 Metaheuristics and network design

Collect all prizes:
Steiner problem node with

revenue

node without
revenue

backbone network

 March 29, 2008 Metaheuristics and network design

Collect some prizes:
PC Steiner problem node with

revenue

node without
revenue

backbone network

 March 29, 2008 Metaheuristics and network design

Literature
• Introduced by Bienstock, Goemans, Simchi-Levi, & Williamson (1993)
• Goemans & Williamson (1993, 1996): 5/2 and 2-opt approximation

algorithms
• Johnson, Minkoff, & Phillips (1999): an implementation of the 2-opt

algorithm of Goemans & Williamson (GW)
• Canuto, R., & Ribeiro (2001): GRASP heuristic that uses a randomized

version of GW
• Lucena & R. (2004): polyhedral cutting plane algorithm for computing

lower bounds
• Klau et al. (2004): memetic algorithm
• Uchoa (2006): reduction tests
• Ljubic et al. (2006): exact solution via branch and cut algorithm
• Andrade, Lucena, Maculan, and R. (2008): Relax and cut algorithm

 March 29, 2008 Metaheuristics and network design

Literature
• Introduced by Bienstock, Goemans, Simchi-Levi, & Williamson (1993)
• Goemans & Williamson (1993, 1996): 5/2 and 2-opt approximation

algorithms
• Johnson, Minkoff, & Phillips (1999): an implementation of the 2-opt

algorithm of Goemans & Williamson (GW)
• Canuto, R., & Ribeiro (2001): GRASP heuristic that uses a randomized

version of GW
• Lucena & R. (2004): polyhedral cutting plane algorithm for computing

lower bounds
• Klau et al. (2004): memetic algorithm
• Uchoa (2006): reduction tests
• Ljubic et al. (2006): exact solution via branch and cut algorithm
• Andrade, Lucena, Maculan, and R. (2008): Relax and cut algorithm

 March 29, 2008 Metaheuristics and network design

Solution construction

• Select X, the set of collected nodes
• Connect node in X with minimum weight spanning tree T (X)
• Recursively remove from T (X) all degree-1 nodes with prize

smaller than its incident edge cost = Tr (X)
• Basic strategy:

for (i = 1 to MAXITR){
select Xi

compute T (Xi) and Tr (Xi)
}

Goemans & Williamson
2-opt algorithm

Kruskal’s algorithm

 March 29, 2008 Metaheuristics and network design

Solution construction

1

3

5 3

2

4

3

3 7

5

4

0

G

1 0

2 4

5

3 6

 March 29, 2008 Metaheuristics and network design

Solution construction

1

3

5 3

2

4

3

3 7

5

4

0

Solution obtained by
GW: X = {2,3,4,5,6}G

Cost = 181 0

2 4

5

3 6

 March 29, 2008 Metaheuristics and network design

Solution construction

1
3 4

3 7

5 G’’ = subgraph induced on G by
nodes in X2 4

5

3 6

 March 29, 2008 Metaheuristics and network design

Solution construction

1
3 4

3 7

5 MST on G’
2 4

5

3 6

 March 29, 2008 Metaheuristics and network design

Solution construction

1

3

5 3

2

4

3

3 7

5

4

0

Solution derived from
MST on G'G

Cost = 131 0

2 4

5

3 6

 March 29, 2008 Metaheuristics and network design

Solution construction

1

3

5 3

2

4

3

3 7

5

4

0

Solution obtained by
pruning degree-1 nodeG

Cost = 121 0

2 4

5

3 6

 March 29, 2008 Metaheuristics and network design

Solution construction

1

3

5 3

2

4

3

3 7

5

4

0

Final solution obtained by
pruning another degree-1 nodeG

Cost = 111 0

2 4

5

3 6

 March 29, 2008 Metaheuristics and network design

Local search

• Representation of solution: set X of vertices in
tree T (X)

• Neighborhood:
– N (X) = {X’ : X and X’ differ by single node}
– Moves: insertion & deletion of nodes

• Initial solution: nodes of tree obtained by GW
• Iterative improvement: make move as long as

improvement is possible

 March 29, 2008 Metaheuristics and network design

Local search: input set X and cost(X)

improve = T
while (improve){

improve = F
circfor i = 1, …, |V | while .not. improve
{ if (i ∈ X){ X’ = X \ {i }}

else {X’ = X ∪ {i }}
compute tree T (X’) & cost(X’)
if (cost(X’) < cost(X)){

X = X’
improve = T

}
}

}

 March 29, 2008 Metaheuristics and network design

Multi-start strategy
• Force GW to construct different initial solutions for

local search
– Use original prizes in first iteration
– Use modified prizes after that

• Modify prizes (two strategies)
– Introduce noise into prizes

for i = 1, …, |V | {
generate β ∈ [1 – a, 1 + a], for a > 0
d’ (i) = d (i) × β

}

– Node elimination
• Set to zero the prizes of α% of the nodes in nodes(GW) ∩

nodes(local search)

 March 29, 2008 Metaheuristics and network design

GRASP with perturbed costs

best = HUGE
d’ = d
for (i = 1, ..., MAXITR){

X = GW (V, E, c, d’)
X’ = LOCALSEARCH(V, E, c, d, X)
if (cost(X’) < best){

X* = X’
}
compute perturbations & update d’

}
return X*

Local search is
done on original data.

Approximation algorithm is
done on perturbed data.

 March 29, 2008 Metaheuristics and network design

Path relinking

• In local search with perturbations let
– X’ be the local optimum found by LOCALSEARCH
– Y be a solution chosen randomly from a POOL of elite solutions

– ∆ = {i ∈ V : (i ∈ X’ and i ∉ Y) or

 (i ∉ X’ and i ∈ Y)}

• Construct path between X’ (start) and Y (guide):
– Apply best movement in ∆
– Verify quality of solution after move

– Update ∆

 March 29, 2008 Metaheuristics and network design

GRASP with perturbed costs & path relinking
POOL = φ
d’ = d
for (i = 1, ..., MAXITR){

X = GW (V, E, c, d’)
if (X is new){

X’ = LOCALSEARCH(V, E, c, d, X)
 attempt insert X’ into POOL

X’’ ∈ RAND(POOL)
XPR = PATHRELINK(X’ , X’’)
attempt to insert XPR into POOL
}

}
compute perturbations & update d’

}
return best solution in POOL

 March 29, 2008 Metaheuristics and network design

Variable neighborhood search
• Can we gain something by going from a static

neighborhood to one that is dynamic?
• Consider K neighborhoods:

– N 1, N 2, …, N K

– N k (X) = { X‘ : X and X‘ differ by k nodes}

• Basic scheme (repeated MAXTRY times):
– Start with initial solution X and k = 1
 while (k ≤ K){

choose X‘ ∈ N k (X)
 X'' = LOCALSEARCH(V, E, c, d, X')

k = k + 1
if cost(X‘') < cost(X) { X = X‘' ; k = 1}

}

 March 29, 2008 Metaheuristics and network design

GRASP with perturbed costs &
path relinking & VNS

POOL = φ
d’ = d
for (i = 1, ..., MAXITR){

X = GW (V, E, c, d’)
if (X is new){

X’ = LOCALSEARCH(V, E, c, d, X)
 attempt insert X’ into POOL

X’’ ∈ RAND(POOL)
XPR = PATHRELINK(X’ , X’’)
attemp to insert XPR into POOL
}

}
compute perturbations & update d’

}
X* = best solution in POOL
X* = VNS(V, E, c, d, X*)
return X*

 March 29, 2008 Metaheuristics and network design

Computational results

• 114 test problems
– From 100 nodes & 284 edges
– To 1000 nodes & 25,000 edges
– Three classes:

• Johnson, Minkoff, & Phillips (1999) P & K problems
• Steiner C problems (derived from SPG Steiner C test

problems in OR-Library)
• Steiner D problems (derived from SPG Steiner D test

problems in OR-Library)

 March 29, 2008 Metaheuristics and network design

Computational results

• Heuristic found
– 89 of 104 known optimal values (86%)
– solution within 1% of lower bound for 104 of 114 problems

282126834JMP

254106532D

363252638C

tot+VNS+PR+LSGWnumtype

89104

Number of optima found with each additional heuristic

 March 29, 2008 Metaheuristics and network design

Genetic algorithms
with random keys

 March 29, 2008 Metaheuristics and network design

GAs and random keys

• Introduced by Bean (1994)
for sequencing problems.

 March 29, 2008 Metaheuristics and network design

GAs and random keys

• Introduced by Bean (1994)
for sequencing problems.

• Individuals are strings of
real-valued numbers
(random keys) in the
interval [0,1].

S = (0.25, 0.19, 0.67, 0.05, 0.89)
 s(1) s(2) s(3) s(4) s(5)

 March 29, 2008 Metaheuristics and network design

GAs and random keys

• Introduced by Bean (1994)
for sequencing problems.

• Individuals are strings of
real-valued numbers
(random keys) in the
interval [0,1].

• Sorting random keys results
in a sequencing order.

S = (0.25, 0.19, 0.67, 0.05, 0.89)
 s(1) s(2) s(3) s(4) s(5)

S' = (0.05, 0.19, 0.25, 0.67, 0.89)
 s(4) s(2) s(1) s(3) s(5)
Sequence: 4 – 2 – 1 – 3 – 5

 March 29, 2008 Metaheuristics and network design

GAs and random keys

• Introduced by Bean (1994)
for sequencing problems.

• Mating is done using
parametrized uniform
crossover (Spears & DeJong , 1990)

a = (0.25, 0.19, 0.67, 0.05, 0.89)
b = (0.63, 0.90, 0.76, 0.93, 0.08)

 March 29, 2008 Metaheuristics and network design

GAs and random keys

• Introduced by Bean (1994)
for sequencing problems.

• Mating is done using
parametrized uniform
crossover (Spears & DeJong , 1990)

• For each gene, flip a biased
coin to choose which
parent passed the allele to
the child.

a = (0.25, 0.19, 0.67, 0.05, 0.89)
b = (0.63, 0.90, 0.76, 0.93, 0.08)

 March 29, 2008 Metaheuristics and network design

GAs and random keys

a = (0.25, 0.19, 0.67, 0.05, 0.89)
b = (0.63, 0.90, 0.76, 0.93, 0.08)
c = ()

• Introduced by Bean (1994)
for sequencing problems.

• Mating is done using
parametrized uniform
crossover (Spears & DeJong , 1990)

• For each gene, flip a biased
coin to choose which
parent passed the allele to
the child.

 March 29, 2008 Metaheuristics and network design

GAs and random keys

a = (0.25, 0.19, 0.67, 0.05, 0.89)
b = (0.63, 0.90, 0.76, 0.93, 0.08)
c = (0.25)

• Introduced by Bean (1994)
for sequencing problems.

• Mating is done using
parametrized uniform
crossover (Spears & DeJong , 1990)

• For each gene, flip a biased
coin to choose which
parent passed the allele to
the child.

 March 29, 2008 Metaheuristics and network design

GAs and random keys

a = (0.25, 0.19, 0.67, 0.05, 0.89)
b = (0.63, 0.90, 0.76, 0.93, 0.08)
c = (0.25, 0.90)

• Introduced by Bean (1994)
for sequencing problems.

• Mating is done using
parametrized uniform
crossover (Spears & DeJong , 1990)

• For each gene, flip a biased
coin to choose which
parent passed the allele to
the child.

 March 29, 2008 Metaheuristics and network design

GAs and random keys

a = (0.25, 0.19, 0.67, 0.05, 0.89)
b = (0.63, 0.90, 0.76, 0.93, 0.08)
c = (0.25, 0.90, 0.76)

• Introduced by Bean (1994)
for sequencing problems.

• Mating is done using
parametrized uniform
crossover (Spears & DeJong , 1990)

• For each gene, flip a biased
coin to choose which
parent passed the allele to
the child.

 March 29, 2008 Metaheuristics and network design

GAs and random keys

a = (0.25, 0.19, 0.67, 0.05, 0.89)
b = (0.63, 0.90, 0.76, 0.93, 0.08)
c = (0.25, 0.90, 0.76, 0.05)

• Introduced by Bean (1994)
for sequencing problems.

• Mating is done using
parametrized uniform
crossover (Spears & DeJong , 1990)

• For each gene, flip a biased
coin to choose which
parent passed the allele to
the child.

 March 29, 2008 Metaheuristics and network design

GAs and random keys

a = (0.25, 0.19, 0.67, 0.05, 0.89)
b = (0.63, 0.90, 0.76, 0.93, 0.08)
c = (0.25, 0.90, 0.76, 0.05, 0.89)

Every random-key array corresponds
to a feasible solution: Mating always
produces feasible offspring.

• Introduced by Bean (1994)
for sequencing problems.

• Mating is done using
parametrized uniform
crossover (Spears & DeJong , 1990)

• For each gene, flip a biased
coin to choose which
parent passed the allele to
the child.

 March 29, 2008 Metaheuristics and network design

GAs and random keys

• Introduced by Bean (1994)
for sequencing problems.

• Initial population is made
up of P chromosomes, each
with N genes, each having
a value (allele) generated
uniformly at random in the
interval [0,1].

 March 29, 2008 Metaheuristics and network design

GAs and random keys
• Introduced by Bean (1994)

for sequencing problems.
• At the K-th generation,

compute the cost of each
solution and partition the
solutions into two sets:
elite solutions, non-elite
solutions. Elite set should
be smaller of the two sets
and contain best solutions.

 Elite solutions

Population K

Non-elite
solutions

 March 29, 2008 Metaheuristics and network design

GAs and random keys
• Introduced by Bean (1994)

for sequencing problems.
• Evolutionary dynamics

Population K Population K+1

 Elite solutions

Non-elite
solutions

 March 29, 2008 Metaheuristics and network design

GAs and random keys
• Introduced by Bean (1994)

for sequencing problems.
• Evolutionary dynamics

– Copy elite solutions from population
K to population K+1

 Elite solutions

Population K+1Population K

 Elite solutions

Non-elite
solutions

 March 29, 2008 Metaheuristics and network design

GAs and random keys
• Introduced by Bean (1994)

for sequencing problems.
• Evolutionary dynamics

– Copy elite solutions from population
K to population K+1

– Add R random solutions (mutants)
to population K+1

 Elite solutions

Mutant
solutions

Population K+1Population K

 Elite solutions

Non-elite
solutions

 March 29, 2008 Metaheuristics and network design

GAs and random keys
• Introduced by Bean (1994)

for sequencing problems.
• Evolutionary dynamics

– Copy elite solutions from population
K to population K+1

– Add R random solutions (mutants)
to population K+1

– While K+1-th population < P
• Mate elite solution with non elite to

produce child in population K+1.
Mates are chosen at random.

 Elite solutions

Mutant
solutions

X

Population K+1

Probability
child inherits
allele of elite
parent > 0.5Population K

 Elite solutions

Non-elite
solutions

Mutant
solutions

 March 29, 2008 Metaheuristics and network design

Decoders
• A decoder is a deterministic algorithm that takes as input a random-key

vector and returns a feasible solution of the optimization problem and
its cost.

• Bean (1994) proposed decoders based on sorting the random-key
vector to produce a sequence.

• A random-key GA searches the solution space indirectly by searching
the space of random keys and using the decoder to evaluate fitness of
the random key.

[0,1]N Solution space
of optimization
problem

decoder

 March 29, 2008 Metaheuristics and network design

Decoders

[0,1]N Solution space
of optimization
problem

decoder

Search solution
space indirectly

• A decoder is a deterministic algorithm that takes as input a random-key
vector and returns a feasible solution of the optimization problem and
its cost.

• Bean (1994) proposed decoders based on sorting the random-key
vector to produce a sequence.

• A random-key GA searches the solution space indirectly by searching
the space of random keys and using the decoder to evaluate fitness of
the random key.

 March 29, 2008 Metaheuristics and network design

Decoders
• A decoder is a deterministic algorithm that takes as input a random-key

vector and returns a feasible solution of the optimization problem and
its cost.

• Bean (1994) proposed decoders based on sorting the random-key
vector to produce a sequence.

• A random-key GA searches the solution space indirectly by searching
the space of random keys and using the decoder to evaluate fitness of
the random key.

[0,1]N Solution space
of optimization
problem

decoder

Search solution
space indirectly

 March 29, 2008 Metaheuristics and network design

Decoders
• A decoder is a deterministic algorithm that takes as input a random-key

vector and returns a feasible solution of the optimization problem and
its cost.

• Bean (1994) proposed decoders based on sorting the random-key
vector to produce a sequence.

• A random-key GA searches the solution space indirectly by searching
the space of random keys and using the decoder to evaluate fitness of
the random key.

[0,1]N Solution space
of optimization
problem

decoder

Search solution
space indirectly

 March 29, 2008 Metaheuristics and network design

Framework for random-key genetic algorithms

Generate P vectors
of random keys

Decode each vector
of random keys

Stopping rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions
to next population

Generate mutants in
next population

Combine elite and
non-elite solutions
and add children to

next population

no

stop

yes

 March 29, 2008 Metaheuristics and network design

Framework for random-key genetic algorithms

Generate P vectors
of random keys

Decode each vector
of random keys

Stopping rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions
to next population

Generate mutants in
next population

Combine elite and
non-elite solutions
and add children to

next population

no

stop

yes

Problem independent

 March 29, 2008 Metaheuristics and network design

Framework for random-key genetic algorithms

Generate P vectors
of random keys

Decode each vector
of random keys

Stopping rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions
to next population

Generate mutants in
next population

Combine elite and
non-elite solutions
and add children to

next population

no

stop

yes

Problem independent

Problem dependent

 March 29, 2008 Metaheuristics and network design

OSPF routing in IP
networks

 March 29, 2008 Metaheuristics and network design

Routing in IP networks

• Protocol: In OSPF, traffic is routed on shortest
weight paths from origination router to destination
router.

• Splitting: If more than one link out of a router is on a
shortest weight path, traffic is evenly distributed on
those links.

• Weight setting problem: Determine OSPF weights
such that if traffic is routed according to OSPF
protocol, network congestion is minimized.

 March 29, 2008 Metaheuristics and network design

Minimization of congestion

• Consider the directed capacitated network G =
(N,A,c), where N are routers, A are links, and ca is
the capacity of link a ∈ A.

• We use the measure of Fortz & Thorup (2000) to
compute congestion:

 Φ = Φ1(l1) + Φ2(l2) + … + Φ|A|(l|A|)
 where la is the load on link a ∈ A,

 Φa(la) is piecewise linear and convex,

 Φa(0) = 0, for all a ∈ A.

 March 29, 2008 Metaheuristics and network design

Piecewise linear and convex Φa(la)
link congestion measure

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

0 0 .2 0 .4 0 .6 0 .8 1 1 .2

c
o

s
t

 p
e

r
 u

n
it

 o
f

 c
a

p
a

c
it

y

t r u n k u t il iza t io n r a t e

slope = 1
slope = 3 slope = 10

slope = 70

slope = 500

slope = 5000

(la  ca)

 March 29, 2008 Metaheuristics and network design

Genetic algorithm for OSPF routing in IP
networks Ericsson, R., & Pardalos (J. Comb. Opt., 2002)

• Chromosome:
– A vector X of N random keys, where N is the number of

links. The i-th random key corresponds to the i-th link
weight.

• Decoder:
– For i = 1,N: set w(i) = ceil (X(i) × w

max
)

– Compute shortest paths and route traffic according to
OSPF.

– Compute load on each link, compute link congestion, add
up all link congestions to compute network congestion.

 March 29, 2008 Metaheuristics and network design

cost
GA solutions

AT&T Worldnet backbone network (90 routers, 274 links)

generation

LP lower bound

Weight setting with GA
permits a 50% increase in
traffic volume w.r.t. weight
setting with the Inverse
Capacity rule

 March 29, 2008 Metaheuristics and network design

Memetic algorithms for OSPF routing in
IP networks Buriol, R., Ribeiro, and Thorup (Networks, 2005)

 Elite solutions

• Chromosome:
– A vector X of N random keys, where N is the number of links.

The i-th random key corresponds to the i-th link weight.

• Decoder:

– For i = 1,N: set w(i) = ceil (X(i) × w
max

)

– Compute shortest paths and route traffic according to OSPF.
– Compute load on each link, compute link congestion, add up

all link congestions to compute network congestion.
– Apply fast local search to improve weights.

 March 29, 2008 Metaheuristics and network design

Memetic algorithm: Optimized
crossover = crossover + local search

X

 Elite solutions

Non-elite
solutions

Local search

 Elite solutions

Mutant
solutions
Mutant
solutions

 March 29, 2008 Metaheuristics and network design

Fast local search

• Let A* be the set of five arcs a ∈ A having
largest Φa values.

• Scan arcs a ∈ A* from largest to smallest Φa:

 Increase arc weight, one unit at a time, in the range

 [wa , wa +  (wmax – wa)/4]
 If total cost Φ is reduced, restart local search.

 March 29, 2008 Metaheuristics and network design

Effect of decoder with fast local search

1 0

1 0 0

1 0 0 0

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0

c
o

s
t

t ime (sec o n ds)

MA finds solutions faster.
MA finds better solutions.

GA: Ericsson, R.,
and Pardalos
(2002)

MA: Buriol, R.,
Ribeiro, and Thorup
(2005)

LP lower bound

 March 29, 2008 Metaheuristics and network design

Survivable IP
network design

 March 29, 2008 Metaheuristics and network design

Survivable IP network design
Buriol, R., & Thorup (Networks, 2007)

• Given
– directed graph G = (N,A), where

N is the set of routers, A is the
set of potential arcs where
capacity can be installed,

– a demand matrix D that for
each pair (s,t) ∈ N×N, specifies
the demand D(s,t) between s
and t,

– a cost K(a) to lay fiber on arc a

– a capacity increment C for the
fiber.

• Determine
– OSPF weight w(a) to assign to each

arc a ∈ A,

– which arcs should be used to deploy
fiber and how many units
(multiplicities) M(a) of capacity C
should be installed on each arc
a ∈ A,

• such that all the demand can be routed
on the network even when any single
arc fails.

• Min total design cost = ∑
a∈A

M(a)×K(a).

 March 29, 2008 Metaheuristics and network design

Survivable IP network design

 Elite solutions

• Chromosome:
– A vector X of N random keys, where N is the number of links. The

i-th random key corresponds to the i-th link weight.

• Decoder:
– For i = 1,N: set w(i) = ceil (X(i) × w

max
)

– For each failure mode: route demand according to OSPF and for
each link i∈A determine load on link i.

– For each link i∈A, compute multiplicity M(i) needed to
accommodate maximum load over all failure modes.

– Network design cost = ∑
i∈A

M(i)×K(i).

iterate

 March 29, 2008 Metaheuristics and network design

Survivable composite link IP network design
Andrade, Buriol, R., & Thorup (INFORMS Telecom. Conf., 2006)

• Given a load L(a) on arc a, we can
compose several different link types
that sum up to the needed capacity
c(a) ≥ L(a):

– c(a) = ∑
t used in arc a

M(t,a) × γ(t),
where

– M(t,a) is the multiplicity of link
type t ∈ { 1, 2, ..., T } on arc a

– γ(t) is the capacity of link type t:
{ γ(1), γ(2), ..., γ(T) } :
 γ(i) < γ(i+1)

• Assumptions
– Prices / unit length = { p(1),

p(2), ..., p(T) }: p(i) < p(i+1)

– [p(T)/γ(T)] < [p(T–1)/γ(T–1)] < ···
< [p(1)/γ(1)]: economies of scale

– γ(i) = α × γ(i–1), for α ∈ N,
 α > 1, e.g.

• γ(OC192) = 4 × γ(OC48)

• γ(OC48) = 4 × γ(OC12)

• γ(OC12) = 4 × γ(OC3)

 March 29, 2008 Metaheuristics and network design

Survivable composite link IP network design

 Elite solutions

• Chromosome:
– A vector X of N random keys, where N is the number of links. The

i-th random key corresponds to the i-th link weight.

• Decoder:
– For i = 1,N: set w(i) = ceil (X(i) × w

max
)

– For each failure mode: route demand according to OSPF and for
each arc i∈A determine the load on arc i.

– For each arc i∈A, determine the multiplicity M(t,i) for each link
type t using the maximum load for that arc over all failure modes.

– Network design cost = ∑
i∈A

 ∑
t used in arc i

M(t,i) × p(t)
iterate

 March 29, 2008 Metaheuristics and network design

Concluding remarks

• We have just seen a few metaheuristics applied to
network design problems.

• Even though there has been much progress in
exact method for network design, I feel that these
and other metaheuristics, as well as hybrids of
metaheuristics, will continue to play a big role in
network design.

 March 29, 2008 Metaheuristics and network design

The End
These slides and all papers cited in this tutorial
can be downloaded from my homepage:

 http://mauricioresende.com

