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Combinatorial Optimization

Combinatorial optimization: process of finding the best, or 
optimal, solution for problems with a discrete set of 
feasible solutions. 

Network design: is an important application of 
combinatorial optimization. 
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Combinatorial Optimization

• Given:
– discrete set of solutions  X

– objective function f(x): x ∈ X → R

• Objective:
– find x ∈ X : f(x) ≤ f(y), ∀ y ∈ X
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Heuristics for Combinatorial Optimization

Aim of heuristic methods for combinatorial optimization is 
to quickly produce good-quality solutions, without 
necessarily providing any guarantee of solution quality. 
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Metaheuristics

• Metaheuristics are high level procedures that 
coordinate simple heuristics, such as local search, to 
find solutions that are of better quality than those 
found by the simple heuristics alone.

• Examples: simulated annealing, tabu search, scatter 
search, ant colony optimization, variable neighborhood 
search, pilot method, GRASP, and genetic algorithms.  
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Local Search

• To define local search, one needs to specify a 
local neighborhood structure.

• Given a solution x , the elements of the 
neighborhood N(x) of x are those solutions y  
that can be obtained by applying an elementary 
modification (often called a move) to x.
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Local Search Neighborhoods

Consider x = (0,1,0) and the 1-flip neighborhood of a 0/1 
array.

x = (0,1,0)

(1,1,0) (0,0,0) (0,1,1)

N (x )
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Local Search

Given an initial solution x0, a neighborhood N(x), and  
function f(x) to be minimized:

x = x0 ;

while ( ∃ y ∈ N(x) | f(y) < f(x) ) {
x = y ; 

}
At the end, x is a local minimum of f(x) .

check for better solution in 
neighborhood of x

move to better
solution y Time complexity of local search

 can be exponential.
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Local Search
(ideal situation)

f (0,0,0) = 3

f (1,1,1) = 3

f (0,1,0) = 4

f (0,0,1) =  0

f (1,0,0) = 5

f (0,1,1) = 1

f (1,1,0) = 6

f (1,0,1) =  2

With any starting solution Local Search finds the global optimum.

global
minimum
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Local Search
(more realistic situation)

f (1,1,1) = 2

f (0,1,0) = 2

f (0,0,1) =  0

f (1,0,0) = 1

f (0,1,1) = 3

f (1,1,0) = 6

f (1,0,1) =  3

f (0,0,0) = 3 global
minimum

local
minima

local
minimum

But some starting solutions lead Local Search to a local minimum.



 March 29, 2008 Metaheuristics and network design

Effectiveness of local search depends on several 
factors:
– neighborhood structure

Local Search

some freedom to choose
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Effectiveness of local search depends on several 
factors:
– neighborhood structure
– function to be minimized

Local Search

usually pre-
determined

some freedom to choose
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Effectiveness of local search depends on several 
factors:
– neighborhood structure
– function to be minimized
– starting solution

Local Search

usually pre-
determined

usually easier to
control

some freedom to choose
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The greedy algorithm

• Constructs a solution, one element at a time:
– Defines candidate elements.
– Applies a greedy function to each candidate element.
– Ranks elements according to greedy function value.
– Add best ranked element to solution
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The greedy algorithm

• Constructs a solution, one element at a time:
– Defines candidate elements.
– Applies a greedy function to each candidate element.
– Ranks elements according to greedy function value.
– Add best ranked element to solution.
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Greedy solutions are not necessarily locally optimal.

Applying local search to greedy solutions usually
leads to a local optimum that is not globally optimum.
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Multi-start greedy method

c* = ∞

repeat 

x = greedy()

if f(x) < c* then
     x* = x
     c* = f(x*)
endif
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Multi-start greedy method

c* = ∞

repeat 

x = greedy()

if f(x) < c* then
     x* = x
     c* = f(x*)
endif

multi-start with greedy does poorly because greedy lacks randomness
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Random multi-start

c* = ∞

repeat 

x = random_construction()

if f(x) < c* then
     x* = x
     c* = f(x*)
endif
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Example: Probability of finding opt with K samplings 
on a  0−1 vector of size N 

                         N:            10         15            20              25          30
K:                                  
10                                 .010      .000         .000           .000       .000
100                               .093      .003         .000           .000       .000
1000                             .624      .030         .000           .000       .000
10000                         1.000      .263         .009           .000       .000
100000                       1.000      .953         .091           .003       .000
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Semi-greedy heuristic
Hart and Shogan (1987)

• A semi-greedy heuristic adds randomization to 
the greedy algorithm.

• repeat until solution is constructed
– For each candidate element

• apply a greedy function to element

– Rank all elements according to their  greedy function values
– Place well-ranked elements in a restricted candidate list 

(RCL)
– Select an element from the RCL at random & add it to the 

solution
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Hart-Shogan Algorithm

c* = ∞

repeat 

x = semi_greedy_construction()

if f(x) < c* then
     x* = x
     c* = f(x*)
endif
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Hart-Shogan Algorithm

c* = ∞

repeat 

x = semi_greedy_construction()

if f(x) < c* then
     x* = x
     c* = f(x*)
endif

semi-greedy solutions are not necessarily locally optimum
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GRASP
Greedy Randomized Adaptive Search Procedure
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GRASP
Feo & Resende (1989, 1995); Resende & Ribeiro (2003)

c* = ∞

repeat 

x = semi_greedy_construction()

if f(x) < c* then
     x* = x
     c* = f(x*)
endif

    x = local_search(x)

Semi-greediness
is more general
in GRASP
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α=0.2

α=0.4

α=0.6

α=0.8

Illustrative results: RCL parameter

weighted MAX-SAT instance, 1000 iterations 

Semi-greedy algorithm
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α=0.2

α=0.6

α=0.8

α=1.0

Illustrative results: RCL parameter

weighted MAX-SAT instance, 1000 GRASP iterations

GRASP: Semi-greedy + local search
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best solution

average solution
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weighted MAX-SAT instance: 
100 variables and 850 clauses
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Construction with cost perturbation

• Introduces noise into original costs: similar to 
Noisy Method of Charon and Hudry (1993, 2002)

• Randomly perturb original costs and apply some 
heuristic.

• Adds flexibility to algorithm design: 
• May be more effective than greedy randomized construction 

in circumstances where the construction algorithm is not 
very sensitive to randomization (Ribeiro, Uchoa, & Werneck, 
2002).

• Also useful when no greedy algorithm is available (Canuto, R., 
& Ribeiro, 2001).
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W(    ) < W(   ) < W(  ) < W(  )

Construction with cost perturbation

Perturb with costs
increasing from
top to bottom.
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W(    ) < W(   ) < W(  ) < W(  )

Construction with cost perturbation

Perturb with costs
increasing from
bottom to top.
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W(    ) < W(   ) < W(  ) < W(  )

Construction with cost perturbation

Greedy heuristic
generates two 
different spanning
trees.
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Path-relinking (PR)
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Path-relinking

•  Intensification strategy exploring trajectories       
connecting high-quality (elite) solutions       
(Glover, 1996)

initial
solution

guiding
solution

path in the neighborhood of solutions
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Path-relinking
• Path is generated by selecting moves that 

introduce in the initial solution attributes of the 
guiding solution.

• At each step, all moves that incorporate 
attributes of the guiding solution are evaluated 
and the best move is selected: 

initial
solution

guiding 
solution
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starting solution guiding solutionPR example
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starting solution x guiding solution yPR example
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starting solution guiding solutionPR example
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starting solution guiding solutionPR example
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starting solution guiding solutionPR example

Cannot improve
endpoint solutions
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starting solution guiding solutionPR example

Cannot improve
endpoint solutions

Can improve
endpoint solutions
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GRASP with path-relinking 
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GRASP with path-relinking

• First proposed by Laguna and Martí (1999).
• Maintains a set of elite solutions found during 

GRASP iterations.
• After each GRASP iteration (construction and local 

search):
– Use GRASP solution as initial solution. 
– Select an elite solution uniformly at random: guiding 

solution.
– Perform path-relinking between these two solutions.
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GRASP with path-relinking

• Since 1999, there has been a lot of activity in 
hybridizing GRASP with path-relinking.

• Survey by R. & Ribeiro in book of Ibaraki, 
Nonobe, and Yagiura (2005).

• Main observation from experimental studies:  
GRASP with path-relinking outperforms pure 
GRASP.
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MAX-SAT (Festa, Pardalos, Pitsoulis, and Resende, 2006)
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3-index assignment (Aiex, Resende, Pardalos, & Toraldo, 2005)
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QAP (Oliveira, Pardalos, and Resende, 2004)
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Bandwidth packing (Resende and Ribeiro, 2003)
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Job shop scheduling (Aiex, Binato, & Resende, 2003)
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GRASP with path-relinking

Repeat
GRASP 
with
PR loop

1) Construct randomized greedy X
2) Y = local search to improve X
3) Path-relinking between Y and      
    pool solution Z
4) Update pool
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Network design to maximize 
difference between 

revenue and network cost: 

Prize collecting Steiner problem in 
graphs
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Prize-collecting Steiner tree (PCST) problem

• Given: graph G = (V, E )
– Real-valued cost ce  is associated with edge e

– Real-valued penalty dv  is associated with vertex v

• A tree is a connected acyclic subgraph of G  and its 
weight is the sum of its edge costs plus the sum of the 
penalties of the vertices of G not spanned by the tree.

• PCST problem: Find tree of smallest weight.
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Input:  edge costs, node revenues
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4

edge cost
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of node
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Cost of tree: tree edge cost plus revenue of 
unreached nodes

3

9
2

6
7

4
8

9

3

4

4

3

tree T

Cost (T ) = Cost (edges of T) +
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Cost of tree: tree edge cost plus revenue of 
unreached nodes

3
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3

tree T

Cost (T ) = ( 3 + 3 + 4 + 4 ) +
                 Revenue (nodes not reached by T) 
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Cost of tree: tree edge cost plus revenue of 
unreached nodes

3
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6
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4
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3
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4

3

tree T

Cost (T ) = ( 3 + 3 + 4 + 4 ) +
                 ( 3 + 4 + 2 ) = 23
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Design of local access 
telecommunications network 

• Build a fiber-optic network for providing 
broadband connections to business and 
residential customers.

• Design a local access network taking into 
account trade-off between:
– cost of network
– revenue potential of network
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Design of local access 
telecommunications network

• Graph corresponds to local street map
– Edges: street segments

• Edge cost: cost of laying the fiber on the corresponding 
street segment

– Vertices: street intersections and potential customer 
premises

• Vertex penalty: estimate of potential loss of revenue if the 
customer were not to be serviced (intersection nodes 
have no penalty) 
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Input network
node with
revenue

node without
revenue

backbone network
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Collect all prizes:
Steiner problem node with

revenue

node without
revenue

backbone network
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Collect some prizes:
PC Steiner problem node with

revenue

node without
revenue

backbone network
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Literature
• Introduced by Bienstock, Goemans, Simchi-Levi, & Williamson (1993)
• Goemans & Williamson (1993, 1996):   5/2 and 2-opt approximation 

algorithms
• Johnson, Minkoff, & Phillips (1999): an implementation of the 2-opt 

algorithm of Goemans & Williamson (GW)
• Canuto, R., & Ribeiro (2001): GRASP heuristic that uses a randomized 

version of GW
• Lucena & R. (2004): polyhedral cutting plane algorithm for computing 

lower bounds 
• Klau et al. (2004): memetic algorithm
• Uchoa (2006): reduction tests
• Ljubic et al. (2006): exact solution via branch and cut algorithm
• Andrade, Lucena, Maculan, and R. (2008): Relax and cut algorithm



 March 29, 2008 Metaheuristics and network design

Literature
• Introduced by Bienstock, Goemans, Simchi-Levi, & Williamson (1993)
• Goemans & Williamson (1993, 1996):   5/2 and 2-opt approximation 

algorithms
• Johnson, Minkoff, & Phillips (1999): an implementation of the 2-opt 

algorithm of Goemans & Williamson (GW)
• Canuto, R., & Ribeiro (2001): GRASP heuristic that uses a randomized 

version of GW
• Lucena & R. (2004): polyhedral cutting plane algorithm for computing 

lower bounds 
• Klau et al. (2004): memetic algorithm
• Uchoa (2006): reduction tests
• Ljubic et al. (2006): exact solution via branch and cut algorithm
• Andrade, Lucena, Maculan, and R. (2008): Relax and cut algorithm



 March 29, 2008 Metaheuristics and network design

Solution construction

• Select X,  the set of collected nodes
• Connect node in X  with minimum weight spanning tree T (X )
• Recursively remove from T (X ) all degree-1 nodes with prize 

smaller than its incident edge cost = Tr (X )
• Basic strategy:

for (i = 1 to MAXITR){
select Xi

compute T (Xi ) and Tr (Xi )
}

 

Goemans & Williamson
2-opt algorithm

Kruskal’s algorithm
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Solution construction
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Solution construction
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Solution construction

1
3 4

3 7

5 G’’ = subgraph induced on G  by 
nodes in X2 4

5

3 6
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Solution construction
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Solution construction
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Solution construction
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Solution construction
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Local search

• Representation of solution:  set X  of vertices in 
tree T (X )

• Neighborhood:  
– N (X ) = {X’ : X  and X’  differ by single node}
– Moves: insertion & deletion of nodes

• Initial solution: nodes of tree obtained by GW
• Iterative improvement: make move as long as 

improvement is possible
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Local search: input set X and cost(X)

improve = T
while ( improve){

improve = F
circfor i  = 1, …, |V | while .not. improve
{ if (i  ∈ X ){ X’ = X \ {i }}

else {X’ = X ∪ {i }}
compute tree T (X’ ) & cost(X’ ) 
if (cost(X’ ) < cost(X )){

X = X’
improve = T 

}
}

}
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Multi-start strategy
• Force GW to construct different initial solutions for 

local search
– Use original prizes in first iteration
– Use modified prizes after that

• Modify prizes (two strategies)
– Introduce noise into prizes

for i = 1, …, |V | {
generate β ∈ [1 – a, 1 + a ], for a > 0
d’ (i ) = d (i ) × β

}

– Node elimination
• Set to zero the prizes of α% of the nodes in nodes(GW) ∩ 

nodes(local search)
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GRASP with perturbed costs

best = HUGE
d’  = d
for ( i  = 1, ..., MAXITR ){

X = GW ( V, E, c, d’ )
X’ = LOCALSEARCH(V, E, c, d, X )
if ( cost(X’ ) < best ){

X* = X’ 
}
compute perturbations & update d’ 

}
return X* 

Local search is
done on original data.

Approximation algorithm is
done on perturbed data.
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Path relinking

• In local search with perturbations let
–  X’  be the local optimum found by LOCALSEARCH
– Y  be a solution chosen randomly from a POOL of elite solutions 

– ∆ = {i ∈ V : (i ∈ X’  and i ∉ Y ) or

                                                      (i ∉ X’  and i ∈ Y )}

• Construct path between X’  (start) and Y  (guide):
– Apply best movement in ∆
– Verify quality of solution after move

– Update ∆
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GRASP with perturbed costs & path relinking
POOL = φ
d’  = d
for ( i  = 1, ..., MAXITR ){

X = GW ( V, E, c, d’ )
if ( X  is new){

X’ = LOCALSEARCH(V, E, c, d, X )
         attempt insert X’   into POOL

X’’  ∈ RAND(POOL)
XPR  = PATHRELINK(X’ , X’’ )
attempt to insert XPR  into POOL
}

}
compute perturbations & update d’ 

}
return best solution in POOL 
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Variable neighborhood search
• Can we gain something by going from a static 

neighborhood to one that is dynamic?
• Consider K  neighborhoods: 

– N 1, N 2, …, N K

– N k (X ) = { X‘ : X  and X‘  differ by k  nodes}

• Basic scheme (repeated MAXTRY times): 
– Start with initial solution X  and k = 1
 while ( k ≤ K ){

choose X‘  ∈ N k (X )
      X'' = LOCALSEARCH( V, E, c, d, X' )

k = k + 1
if  cost(X‘' ) < cost(X) { X = X‘' ; k = 1}

}
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GRASP with perturbed costs &
path relinking & VNS

POOL = φ
d’  = d
for ( i  = 1, ..., MAXITR ){

X = GW ( V, E, c, d’ )
if ( X  is new){

X’ = LOCALSEARCH(V, E, c, d, X )
         attempt insert X’   into POOL

X’’  ∈ RAND(POOL)
XPR  = PATHRELINK(X’ , X’’ )
attemp to insert XPR  into POOL
}

}
compute perturbations & update d’ 

}
X* = best solution in POOL
X* = VNS(V, E, c, d, X* )
return X* 
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Computational results

• 114 test problems
– From 100 nodes & 284 edges 
– To 1000 nodes & 25,000 edges
– Three classes:

• Johnson, Minkoff, & Phillips (1999) P & K problems
• Steiner C problems (derived from SPG Steiner C test 

problems in OR-Library)
• Steiner D problems (derived from SPG Steiner D test 

problems in OR-Library)
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Computational results

• Heuristic found
– 89 of 104 known optimal values (86%)
– solution within 1% of lower bound for 104 of 114 problems

282126834JMP

254106532D

363252638C

tot+VNS+PR+LSGWnumtype

89104

Number of optima found with each additional heuristic
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Genetic algorithms
with random keys
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GAs and random keys

• Introduced by Bean (1994) 
for sequencing problems.



 March 29, 2008 Metaheuristics and network design

GAs and random keys

• Introduced by Bean (1994) 
for sequencing problems.

• Individuals are strings of 
real-valued numbers 
(random keys) in the 
interval [0,1].

S = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
          s(1)   s(2)   s(3)   s(4)    s(5)
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GAs and random keys

• Introduced by Bean (1994) 
for sequencing problems.

• Individuals are strings of 
real-valued numbers 
(random keys) in the 
interval [0,1].

• Sorting random keys results 
in a sequencing order.

S = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
          s(1)   s(2)   s(3)   s(4)    s(5)

S' = ( 0.05, 0.19, 0.25, 0.67, 0.89 )
          s(4)   s(2)   s(1)   s(3)    s(5)
Sequence: 4 – 2 – 1 – 3 – 5 
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GAs and random keys

• Introduced by Bean (1994) 
for sequencing problems.

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
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GAs and random keys

• Introduced by Bean (1994) 
for sequencing problems.

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passed the allele to 
the child.

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = (                                              )

• Introduced by Bean (1994) 
for sequencing problems.

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passed the allele to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25                                      )

• Introduced by Bean (1994) 
for sequencing problems.

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passed the allele to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90                             )

• Introduced by Bean (1994) 
for sequencing problems.

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passed the allele to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90, 0.76                    )

• Introduced by Bean (1994) 
for sequencing problems.

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passed the allele to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90, 0.76, 0.05          )

• Introduced by Bean (1994) 
for sequencing problems.

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passed the allele to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90, 0.76, 0.05, 0.89 )

Every random-key array corresponds
to a feasible solution: Mating always
produces feasible offspring.

• Introduced by Bean (1994) 
for sequencing problems.

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passed the allele to 
the child.
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GAs and random keys

• Introduced by Bean (1994) 
for sequencing problems.

• Initial population is made 
up of P chromosomes, each 
with N genes, each having 
a value (allele) generated 
uniformly at random in the 
interval [0,1].
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GAs and random keys
• Introduced by Bean (1994) 

for sequencing problems.
• At the K-th generation, 

compute the cost of each 
solution and partition the 
solutions into two sets: 
elite solutions, non-elite 
solutions. Elite set should 
be smaller of the two sets 
and contain best solutions.

 Elite solutions

Population K

Non-elite
solutions
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GAs and random keys
• Introduced by Bean (1994) 

for sequencing problems.
• Evolutionary dynamics

Population K Population K+1

 Elite solutions

Non-elite
solutions
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GAs and random keys
• Introduced by Bean (1994) 

for sequencing problems.
• Evolutionary dynamics

– Copy elite solutions from population 
K to population K+1

 Elite solutions

Population K+1Population K

 Elite solutions

Non-elite
solutions
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GAs and random keys
• Introduced by Bean (1994) 

for sequencing problems.
• Evolutionary dynamics

– Copy elite solutions from population 
K to population K+1

– Add R random solutions (mutants) 
to population K+1

 Elite solutions

Mutant
solutions

Population K+1Population K

 Elite solutions

Non-elite
solutions
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GAs and random keys
• Introduced by Bean (1994) 

for sequencing problems.
• Evolutionary dynamics

– Copy elite solutions from population 
K to population K+1

– Add R random solutions (mutants) 
to population K+1

– While K+1-th population < P
• Mate elite solution with non elite to 

produce child in population K+1. 
Mates are chosen at random.

 Elite solutions

Mutant
solutions

X

Population K+1

Probability
child inherits
allele of elite 
parent > 0.5Population K

 Elite solutions

Non-elite
solutions

Mutant
solutions



 March 29, 2008 Metaheuristics and network design

Decoders
• A decoder is a deterministic algorithm that takes as input a random-key 

vector and returns a feasible solution of the optimization problem and 
its cost.

• Bean (1994) proposed decoders based on sorting the random-key 
vector to produce a sequence.

• A random-key GA searches the solution space indirectly by searching 
the space of random keys and using the decoder to evaluate fitness of 
the random key.

[0,1]N Solution space
of optimization
problem

decoder
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Decoders

[0,1]N Solution space
of optimization
problem

decoder

Search solution
space indirectly

• A decoder is a deterministic algorithm that takes as input a random-key 
vector and returns a feasible solution of the optimization problem and 
its cost.

• Bean (1994) proposed decoders based on sorting the random-key 
vector to produce a sequence.

• A random-key GA searches the solution space indirectly by searching 
the space of random keys and using the decoder to evaluate fitness of 
the random key.
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Decoders
• A decoder is a deterministic algorithm that takes as input a random-key 

vector and returns a feasible solution of the optimization problem and 
its cost.

• Bean (1994) proposed decoders based on sorting the random-key 
vector to produce a sequence.

• A random-key GA searches the solution space indirectly by searching 
the space of random keys and using the decoder to evaluate fitness of 
the random key.

[0,1]N Solution space
of optimization
problem

decoder

Search solution
space indirectly
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Decoders
• A decoder is a deterministic algorithm that takes as input a random-key 

vector and returns a feasible solution of the optimization problem and 
its cost.

• Bean (1994) proposed decoders based on sorting the random-key 
vector to produce a sequence.

• A random-key GA searches the solution space indirectly by searching 
the space of random keys and using the decoder to evaluate fitness of 
the random key.

[0,1]N Solution space
of optimization
problem

decoder

Search solution
space indirectly
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Framework for random-key genetic algorithms

Generate P vectors 
of random keys 

Decode each vector 
of random keys 

Stopping rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions 
to next population

Generate mutants in 
next population

Combine elite and
non-elite solutions
and add children to

next population

no

stop

yes
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Framework for random-key genetic algorithms

Generate P vectors 
of random keys 

Decode each vector 
of random keys 

Stopping rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions 
to next population

Generate mutants in 
next population

Combine elite and
non-elite solutions
and add children to

next population

no

stop

yes

Problem independent
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Framework for random-key genetic algorithms

Generate P vectors 
of random keys 

Decode each vector 
of random keys 

Stopping rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions 
to next population

Generate mutants in 
next population

Combine elite and
non-elite solutions
and add children to

next population

no

stop

yes

Problem independent

Problem dependent
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OSPF routing in IP 
networks
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Routing in IP networks

• Protocol: In OSPF, traffic is routed on shortest 
weight paths from origination router to destination 
router.

• Splitting: If more than one link out of a router is on a 
shortest weight path, traffic is evenly distributed on 
those links.

• Weight setting problem:  Determine OSPF weights 
such that if traffic is routed according to OSPF 
protocol, network congestion is minimized.
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Minimization of congestion

• Consider the directed capacitated network G = 
(N,A,c), where N  are routers, A  are links, and ca is 
the capacity of link a ∈ A.

• We use the measure of Fortz & Thorup (2000) to 
compute congestion:

                   Φ = Φ1(l1) + Φ2(l2) + … + Φ|A|(l|A|) 
    where la  is the load on link a ∈ A, 

              Φa(la) is piecewise linear and convex,

              Φa(0) = 0, for all a ∈ A.
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Piecewise linear and convex Φa(la) 
link congestion measure
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Genetic algorithm for OSPF routing in IP 
networks        Ericsson, R., & Pardalos (J. Comb. Opt., 2002)

• Chromosome:
– A vector X of N random keys, where N is the number of 

links. The i-th random key corresponds to the i-th link 
weight.

• Decoder:
– For i = 1,N:  set w(i) = ceil ( X(i) × w

max
 )

– Compute shortest paths and route traffic according to 
OSPF.

– Compute load on each link, compute link congestion, add 
up all link congestions to compute network congestion.
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cost
GA solutions

AT&T Worldnet backbone network (90 routers, 274 links)

generation

LP lower bound

Weight setting with GA
permits a 50% increase in
traffic volume w.r.t.  weight
setting with the Inverse 
Capacity rule



 March 29, 2008 Metaheuristics and network design

Memetic algorithms for OSPF routing in 
IP networks      Buriol, R., Ribeiro, and Thorup (Networks, 2005)

 Elite solutions

• Chromosome:
– A vector X of N random keys, where N is the number of links. 

The i-th random key corresponds to the i-th link weight.

• Decoder:

– For i = 1,N:  set w(i) = ceil ( X(i) × w
max

 )

– Compute shortest paths and route traffic according to OSPF.
– Compute load on each link, compute link congestion, add up 

all link congestions to compute network congestion.
– Apply fast local search to improve weights.
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Memetic algorithm: Optimized 
crossover = crossover + local search

X

 Elite solutions

Non-elite
solutions

Local search

 Elite solutions

Mutant
solutions
Mutant
solutions
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Fast local search

• Let A* be the set of five arcs a ∈ A  having 
largest Φa values.

• Scan arcs a ∈ A* from largest to smallest Φa:

 Increase arc weight, one unit at a time, in the range  

      [wa , wa +  (wmax – wa )/4  ]
 If total cost Φ is reduced, restart local search.
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Effect of decoder with fast local search 

1 0

1 0 0

1 0 0 0

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0

c
o

s
t

t ime (sec o n ds )

MA finds solutions faster.
MA finds better solutions.

GA: Ericsson, R., 
and Pardalos 
(2002)

MA: Buriol, R., 
Ribeiro, and Thorup 
(2005)

LP lower bound
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Survivable IP 
network design
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Survivable IP network design
Buriol, R., & Thorup (Networks, 2007)

• Given 
– directed graph G = (N,A), where 

N is the set of routers, A is the 
set of potential arcs where 
capacity can be installed, 

– a demand matrix D that for 
each pair (s,t) ∈ N×N, specifies 
the demand D(s,t) between s 
and t,

– a cost K(a) to lay fiber on arc a 

– a capacity increment C for the 
fiber.

• Determine 
– OSPF weight w(a) to assign to each 

arc a ∈ A,

– which arcs should be used to deploy 
fiber and how many units 
(multiplicities) M(a) of capacity C 
should be installed on each arc          
a ∈ A,

• such that all the demand can be routed 
on the network even when any single 
arc fails.

• Min total design cost = ∑
a∈A 

M(a)×K(a). 
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Survivable IP network design

 Elite solutions

• Chromosome:
– A vector X of N random keys, where N is the number of links. The 

i-th random key corresponds to the i-th link weight.

• Decoder:
– For i = 1,N:  set w(i) = ceil ( X(i) × w

max
 )

– For each failure mode:  route demand according to OSPF and for 
each link i∈A determine load on link i.

– For each link i∈A, compute multiplicity M(i) needed to 
accommodate maximum load over all failure modes. 

– Network design cost = ∑
i∈A 

M(i)×K(i). 

iterate
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Survivable composite link IP network design
Andrade, Buriol, R., & Thorup (INFORMS Telecom. Conf., 2006)

• Given a load L(a) on arc a, we can 
compose several different link types 
that sum up to the needed capacity 
c(a) ≥ L(a):

– c(a) = ∑
t used in arc a 

M(t,a) × γ(t), 
where

– M(t,a) is the multiplicity of link  
type t ∈ { 1, 2, ..., T } on arc a

– γ(t) is the capacity of link type t:  
{ γ(1), γ(2), ..., γ(T) } :                  
                            γ(i) <  γ(i+1)

• Assumptions
– Prices / unit length = { p(1), 

p(2), ..., p(T) }: p(i) < p(i+1)

– [p(T)/γ(T)] < [p(T–1)/γ(T–1)] < ··· 
< [p(1)/γ(1)]: economies of scale

– γ(i) = α × γ(i–1), for α ∈ N,           
                                  α > 1, e.g. 

• γ(OC192) = 4 × γ(OC48)

• γ(OC48) = 4 × γ(OC12) 

• γ(OC12) = 4 × γ(OC3)
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Survivable composite link IP network design

 Elite solutions

• Chromosome:
– A vector X of N random keys, where N is the number of links. The 

i-th random key corresponds to the i-th link weight.

• Decoder:
– For i = 1,N:  set w(i) = ceil ( X(i) × w

max
 )

– For each failure mode:  route demand according to OSPF and for 
each arc i∈A determine the load on arc i. 

– For each arc i∈A, determine the multiplicity M(t,i) for each link 
type t using the maximum load for that arc over all failure modes. 

– Network design cost = ∑
i∈A 

 ∑
t used in arc i 

M(t,i) ×  p(t)
iterate
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Concluding remarks

• We have just seen a few metaheuristics applied to 
network design problems.

• Even though there has been much progress in 
exact method for network design, I feel that these 
and other metaheuristics, as well as hybrids of 
metaheuristics, will continue to play a big role in 
network design.
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The End
These slides and all papers cited in this tutorial
can be downloaded from my homepage:

                                  http://mauricioresende.com


