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Combinatorial Optimization

Combinatorial optimization: process of finding the best, or 
optimal, solution for problems with a discrete set of 
feasible solutions. 

Network design: is an important application of 
combinatorial optimization. 
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Combinatorial Optimization

• Given:
– discrete set of solutions  X

– objective function f(x): x ∈ X → R

• Objective:
– find x ∈ X : f(x) ≤ f(y), ∀ y ∈ X
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Heuristics for Combinatorial Optimization

Aim of heuristic methods for combinatorial optimization is 
to quickly produce good-quality solutions, without 
necessarily providing any guarantee of solution quality. 
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Metaheuristics

• Metaheuristics are high level procedures that 
coordinate simple heuristics, such as local search, to 
find solutions that are of better quality than those 
found by the simple heuristics alone.

• Examples: simulated annealing, tabu search, scatter 
search, ant colony optimization, variable neighborhood 
search, pilot method, GRASP, and genetic algorithms.  
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Local Search

• To define local search, one needs to specify a 
local neighborhood structure.

• Given a solution x , the elements of the 
neighborhood N(x) of x are those solutions y  
that can be obtained by applying an elementary 
modification (often called a move) to x.
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Local Search Neighborhoods

Consider x = (0,1,0) and the 1-flip neighborhood of a 0/1 
array.

x = (0,1,0)

(1,1,0) (0,0,0) (0,1,1)

N (x )
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Local Search

Given an initial solution x0, a neighborhood N(x), and  
function f(x) to be minimized:

x = x0 ;

while ( ∃ y ∈ N(x) | f(y) < f(x) ) {
x = y ; 

}
At the end, x is a local minimum of f(x) .

check for better solution in 
neighborhood of x

move to better
solution y Time complexity of local search

 can be exponential.



 May 9, 2008 Metaheuristics in network design

Local Search
(ideal situation)

f (0,0,0) = 3

f (1,1,1) = 3

f (0,1,0) = 4

f (0,0,1) =  0

f (1,0,0) = 5

f (0,1,1) = 1

f (1,1,0) = 6

f (1,0,1) =  2

With any starting solution Local Search finds the global optimum.

global
minimum
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Local Search
(more realistic situation)

f (1,1,1) = 2

f (0,1,0) = 2

f (0,0,1) =  0

f (1,0,0) = 1

f (0,1,1) = 3

f (1,1,0) = 6

f (1,0,1) =  3

f (0,0,0) = 3 global
minimum

local
minima

local
minimum

But some starting solutions lead Local Search to a local minimum.
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Effectiveness of local search depends on several 
factors:
– neighborhood structure

Local Search

some freedom to choose



 May 9, 2008 Metaheuristics in network design

Effectiveness of local search depends on several 
factors:
– neighborhood structure
– function to be minimized

Local Search

usually pre-
determined
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Effectiveness of local search depends on several 
factors:
– neighborhood structure
– function to be minimized
– starting solution

Local Search

usually pre-
determined

usually easier to
control

some freedom to choose
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The greedy algorithm

• Constructs a solution, one element at a time:
– Defines candidate elements.
– Applies a greedy function to each candidate element.
– Ranks elements according to greedy function value.
– Add best ranked element to solution
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The greedy algorithm

• Constructs a solution, one element at a time:
– Defines candidate elements.
– Applies a greedy function to each candidate element.
– Ranks elements according to greedy function value.
– Add best ranked element to solution.
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Greedy solutions are not necessarily locally optimal.

Applying local search to greedy solutions usually
leads to a local optimum that is not globally optimum.
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Multi-start greedy method

c* = ∞

repeat 

x = greedy()

if f(x) < c* then
     x* = x
     c* = f(x*)
endif
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Multi-start greedy method

c* = ∞

repeat 

x = greedy()

if f(x) < c* then
     x* = x
     c* = f(x*)
endif

multi-start with greedy does poorly because greedy lacks randomness
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Random multi-start

c* = ∞

repeat 

x = random_construction()

if f(x) < c* then
     x* = x
     c* = f(x*)
endif
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Example: Probability of finding opt with K samplings 
on a  0−1 vector of size N 

                         N:            10         15            20              25          30
K:                                  
10                                 .010      .000         .000           .000       .000
100                               .093      .003         .000           .000       .000
1000                             .624      .030         .000           .000       .000
10000                         1.000      .263         .009           .000       .000
100000                       1.000      .953         .091           .003       .000
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Semi-greedy heuristic
Hart and Shogan (1987)

• A semi-greedy heuristic adds randomization to 
the greedy algorithm.

• repeat until solution is constructed
– For each candidate element

• apply a greedy function to element

– Rank all elements according to their  greedy function values
– Place well-ranked elements in a restricted candidate list 

(RCL)
– Select an element from the RCL at random & add it to the 

solution
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Hart-Shogan Algorithm

c* = ∞

repeat 

x = semi_greedy_construction()

if f(x) < c* then
     x* = x
     c* = f(x*)
endif
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Hart-Shogan Algorithm

c* = ∞

repeat 

x = semi_greedy_construction()

if f(x) < c* then
     x* = x
     c* = f(x*)
endif

semi-greedy solutions are not necessarily locally optimum
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GRASP
Greedy Randomized Adaptive Search Procedure
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GRASP
Feo & Resende (1989, 1995); Resende & Ribeiro (2003)

c* = ∞

repeat 

x = semi_greedy_construction()

if f(x) < c* then
     x* = x
     c* = f(x*)
endif

    x = local_search(x)

Semi-greediness
is more general
in GRASP
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α=0.2

α=0.4

α=0.6

α=0.8

Illustrative results: RCL parameter

weighted MAX-SAT instance, 1000 iterations 

Semi-greedy algorithm



 May 9, 2008 Metaheuristics in network design

α=0.2

α=0.6

α=0.8

α=1.0

Illustrative results: RCL parameter

weighted MAX-SAT instance, 1000 GRASP iterations

GRASP: Semi-greedy + local search
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best solution

average solution

time
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100 variables and 850 clauses
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Construction with cost perturbation

• Introduces noise into original costs: similar to 
Noisy Method of Charon and Hudry (1993, 2002)

• Randomly perturb original costs and apply some 
heuristic.

• Adds flexibility to algorithm design: 
• May be more effective than greedy randomized construction 

in circumstances where the construction algorithm is not 
very sensitive to randomization (Ribeiro, Uchoa, & Werneck, 
2002).

• Also useful when no greedy algorithm is available (Canuto, R., 
& Ribeiro, 2001).
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W(    ) < W(   ) < W(  ) < W(  )

Construction with cost perturbation

Perturb with costs
increasing from
top to bottom.
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W(    ) < W(   ) < W(  ) < W(  )

Construction with cost perturbation

Greedy heuristic
generates two 
different spanning
trees.



 May 9, 2008 Metaheuristics in network design

Path-relinking (PR)



 May 9, 2008 Metaheuristics in network design

Path-relinking

•  Intensification strategy exploring trajectories       
connecting high-quality (elite) solutions       
(Glover, 1996)

initial
solution

guiding
solution

path in the neighborhood of solutions
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Path-relinking
• Path is generated by selecting moves that 

introduce in the initial solution attributes of the 
guiding solution.

• At each step, all moves that incorporate 
attributes of the guiding solution are evaluated 
and the best move is selected: 

initial
solution

guiding 
solution
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starting solution guiding solutionPR example
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starting solution x guiding solution yPR example
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starting solution guiding solutionPR example

Cannot improve
endpoint solutions
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starting solution guiding solutionPR example

Cannot improve
endpoint solutions

Can improve
endpoint solutions



 May 9, 2008 Metaheuristics in network design

GRASP with path-relinking 
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GRASP with path-relinking

• First proposed by Laguna and Martí (1999).
• Maintains a set of elite solutions found during 

GRASP iterations.
• After each GRASP iteration (construction and local 

search):
– Use GRASP solution as initial solution. 
– Select an elite solution uniformly at random: guiding 

solution.
– Perform path-relinking between these two solutions.



 May 9, 2008 Metaheuristics in network design

GRASP with path-relinking

• Since 1999, there has been a lot of activity in 
hybridizing GRASP with path-relinking.

• Survey by R. & Ribeiro in book of Ibaraki, 
Nonobe, and Yagiura (2005).

• Main observation from experimental studies:  
GRASP with path-relinking outperforms pure 
GRASP.
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MAX-SAT (Festa, Pardalos, Pitsoulis, and Resende, 2006)
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3-index assignment (Aiex, Resende, Pardalos, & Toraldo, 2005)
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QAP (Oliveira, Pardalos, and Resende, 2004)
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Bandwidth packing (Resende and Ribeiro, 2003)
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Job shop scheduling (Aiex, Binato, & Resende, 2003)
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GRASP with path-relinking

Repeat
GRASP 
with
PR loop

1) Construct randomized greedy X
2) Y = local search to improve X
3) Path-relinking between Y and      
    pool solution Z
4) Update pool
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Network design to maximize 
difference between 

revenue and network cost: 

Prize collecting Steiner problem in 
graphs
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Prize-collecting Steiner tree (PCST) problem

• Given: graph G = (V, E )
– Real-valued cost ce  is associated with edge e

– Real-valued penalty dv  is associated with vertex v

• A tree is a connected acyclic subgraph of G  and its 
weight is the sum of its edge costs plus the sum of the 
penalties of the vertices of G not spanned by the tree.

• PCST problem: Find tree of smallest weight.
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Input:  edge costs, node revenues
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4
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of node
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Cost of tree: tree edge cost plus revenue of 
unreached nodes

3

9
2

6
7

4
8

9

3

4

4

3

tree T

Cost (T ) = Cost (edges of T) +
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Cost of tree: tree edge cost plus revenue of 
unreached nodes

3
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tree T

Cost (T ) = ( 3 + 3 + 4 + 4 ) +
                 ( 3 + 4 + 2 ) = 23
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Design of local access 
telecommunications network 

• Build a fiber-optic network for providing 
broadband connections to business and 
residential customers.

• Design a local access network taking into 
account trade-off between:
– cost of network
– revenue potential of network
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Design of local access 
telecommunications network

• Graph corresponds to local street map
– Edges: street segments

• Edge cost: cost of laying the fiber on the corresponding 
street segment

– Vertices: street intersections and potential customer 
premises

• Vertex penalty: estimate of potential loss of revenue if the 
customer were not to be serviced (intersection nodes 
have no penalty) 
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Input network
node with
revenue

node without
revenue

backbone network
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Collect all prizes:
Steiner problem node with

revenue

node without
revenue

backbone network
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Collect some prizes:
PC Steiner problem node with

revenue

node without
revenue

backbone network
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Literature
• Introduced by Bienstock, Goemans, Simchi-Levi, & Williamson (1993)
• Goemans & Williamson (1993, 1996):   5/2 and 2-opt approximation 

algorithms
• Johnson, Minkoff, & Phillips (1999): an implementation of the 2-opt 

algorithm of Goemans & Williamson (GW)
• Canuto, R., & Ribeiro (2001): GRASP heuristic that uses a randomized 

version of GW
• Lucena & R. (2004): polyhedral cutting plane algorithm for computing 

lower bounds 
• Klau et al. (2004): memetic algorithm
• Uchoa (2006): reduction tests
• Ljubic et al. (2006): exact solution via branch and cut algorithm
• Andrade, Lucena, Maculan, and R. (2008): Relax and cut algorithm
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Solution construction

• Select X,  the set of collected nodes
• Connect node in X  with minimum weight spanning tree T (X )
• Recursively remove from T (X ) all degree-1 nodes with prize 

smaller than its incident edge cost = Tr (X )
• Basic strategy:

for (i = 1 to MAXITR){
select Xi

compute T (Xi ) and Tr (Xi )
}

 

Goemans & Williamson
2-opt algorithm

Kruskal’s algorithm
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Solution construction
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Solution construction
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Solution construction

1
3 4
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5 G’’ = subgraph induced on G  by 
nodes in X2 4

5

3 6
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Solution construction
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Solution construction
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Solution construction
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Local search

• Representation of solution:  set X  of vertices in 
tree T (X )

• Neighborhood:  
– N (X ) = {X’ : X  and X’  differ by single node}
– Moves: insertion & deletion of nodes

• Initial solution: nodes of tree obtained by GW
• Iterative improvement: make move as long as 

improvement is possible
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Local search: input set X and cost(X)

improve = T
while ( improve){

improve = F
circfor i  = 1, …, |V | while .not. improve
{ if (i  ∈ X ){ X’ = X \ {i }}

else {X’ = X ∪ {i }}
compute tree T (X’ ) & cost(X’ ) 
if (cost(X’ ) < cost(X )){

X = X’
improve = T 

}
}

}
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Multi-start strategy
• Force GW to construct different initial solutions for 

local search
– Use original prizes in first iteration
– Use modified prizes after that

• Modify prizes (two strategies)
– Introduce noise into prizes

for i = 1, …, |V | {
generate β ∈ [1 – a, 1 + a ], for a > 0
d’ (i ) = d (i ) × β

}

– Node elimination
• Set to zero the prizes of α% of the nodes in nodes(GW) ∩ 

nodes(local search)
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GRASP with perturbed costs

best = HUGE
d’  = d
for ( i  = 1, ..., MAXITR ){

X = GW ( V, E, c, d’ )
X’ = LOCALSEARCH(V, E, c, d, X )
if ( cost(X’ ) < best ){

X* = X’ 
}
compute perturbations & update d’ 

}
return X* 

Local search is
done on original data.

Approximation algorithm is
done on perturbed data.
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Path relinking

• In local search with perturbations let
–  X’  be the local optimum found by LOCALSEARCH
– Y  be a solution chosen randomly from a POOL of elite solutions 

– ∆ = {i ∈ V : (i ∈ X’  and i ∉ Y ) or

                                                      (i ∉ X’  and i ∈ Y )}

• Construct path between X’  (start) and Y  (guide):
– Apply best movement in ∆
– Verify quality of solution after move

– Update ∆
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GRASP with perturbed costs & path relinking
POOL = φ
d’  = d
for ( i  = 1, ..., MAXITR ){

X = GW ( V, E, c, d’ )
if ( X  is new){

X’ = LOCALSEARCH(V, E, c, d, X )
         attempt insert X’   into POOL

X’’  ∈ RAND(POOL)
XPR  = PATHRELINK(X’ , X’’ )
attempt to insert XPR  into POOL
}

}
compute perturbations & update d’ 

}
return best solution in POOL 



 May 9, 2008 Metaheuristics in network design

Variable neighborhood search
• Can we gain something by going from a static 

neighborhood to one that is dynamic?
• Consider K  neighborhoods: 

– N 1, N 2, …, N K

– N k (X ) = { X‘ : X  and X‘  differ by k  nodes}

• Basic scheme (repeated MAXTRY times): 
– Start with initial solution X  and k = 1
 while ( k ≤ K ){

choose X‘  ∈ N k (X )
      X'' = LOCALSEARCH( V, E, c, d, X' )

k = k + 1
if  cost(X‘' ) < cost(X) { X = X‘' ; k = 1}

}
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GRASP with perturbed costs &
path relinking & VNS

POOL = φ
d’  = d
for ( i  = 1, ..., MAXITR ){

X = GW ( V, E, c, d’ )
if ( X  is new){

X’ = LOCALSEARCH(V, E, c, d, X )
         attempt insert X’   into POOL

X’’  ∈ RAND(POOL)
XPR  = PATHRELINK(X’ , X’’ )
attemp to insert XPR  into POOL
}

}
compute perturbations & update d’ 

}
X* = best solution in POOL
X* = VNS(V, E, c, d, X* )
return X* 
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Computational results

• 114 test problems
– From 100 nodes & 284 edges 
– To 1000 nodes & 25,000 edges
– Three classes:

• Johnson, Minkoff, & Phillips (1999) P & K problems
• Steiner C problems (derived from SPG Steiner C test 

problems in OR-Library)
• Steiner D problems (derived from SPG Steiner D test 

problems in OR-Library)
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Computational results

• Heuristic found
– 89 of 104 known optimal values (86%)
– solution within 1% of lower bound for 104 of 114 problems

282126834JMP

254106532D

363252638C

tot+VNS+PR+LSGWnumtype

89104

Number of optima found with each additional heuristic
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Genetic algorithms
with random keys



 May 9, 2008 Metaheuristics in network design

GAs and random keys

• Introduced by Bean (1994) 
for sequencing problems.
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GAs and random keys

• Introduced by Bean (1994) 
for sequencing problems.

• Individuals are strings of 
real-valued numbers 
(random keys) in the 
interval [0,1].

• Sorting random keys results 
in a sequencing order.

S = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
          s(1)   s(2)   s(3)   s(4)    s(5)

S' = ( 0.05, 0.19, 0.25, 0.67, 0.89 )
          s(4)   s(2)   s(1)   s(3)    s(5)
Sequence: 4 – 2 – 1 – 3 – 5 
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GAs and random keys

• Introduced by Bean (1994) 
for sequencing problems.

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
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for sequencing problems.

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passed the allele to 
the child.
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b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = (                                              )

• Introduced by Bean (1994) 
for sequencing problems.

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passed the allele to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25                                      )

• Introduced by Bean (1994) 
for sequencing problems.

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passed the allele to 
the child.



 May 9, 2008 Metaheuristics in network design

GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90                             )

• Introduced by Bean (1994) 
for sequencing problems.

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passed the allele to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90, 0.76                    )

• Introduced by Bean (1994) 
for sequencing problems.

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passed the allele to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90, 0.76, 0.05          )

• Introduced by Bean (1994) 
for sequencing problems.

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passed the allele to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90, 0.76, 0.05, 0.89 )

Every random-key array corresponds
to a feasible solution: Mating always
produces feasible offspring.

• Introduced by Bean (1994) 
for sequencing problems.

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passed the allele to 
the child.
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GAs and random keys

• Introduced by Bean (1994) 
for sequencing problems.

• Initial population is made 
up of P chromosomes, each 
with N genes, each having 
a value (allele) generated 
uniformly at random in the 
interval [0,1].
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GAs and random keys
• Introduced by Bean (1994) 

for sequencing problems.
• At the K-th generation, 

compute the cost of each 
solution and partition the 
solutions into two sets: 
elite solutions, non-elite 
solutions. Elite set should 
be smaller of the two sets 
and contain best solutions.

 Elite solutions

Population K

Non-elite
solutions
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GAs and random keys
• Introduced by Bean (1994) 

for sequencing problems.
• Evolutionary dynamics

Population K Population K+1

 Elite solutions

Non-elite
solutions
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GAs and random keys
• Introduced by Bean (1994) 

for sequencing problems.
• Evolutionary dynamics

– Copy elite solutions from population 
K to population K+1

 Elite solutions

Population K+1Population K

 Elite solutions

Non-elite
solutions
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GAs and random keys
• Introduced by Bean (1994) 

for sequencing problems.
• Evolutionary dynamics

– Copy elite solutions from population 
K to population K+1

– Add R random solutions (mutants) 
to population K+1

 Elite solutions

Mutant
solutions

Population K+1Population K

 Elite solutions

Non-elite
solutions
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GAs and random keys
• Introduced by Bean (1994) 

for sequencing problems.
• Evolutionary dynamics

– Copy elite solutions from population 
K to population K+1

– Add R random solutions (mutants) 
to population K+1

– While K+1-th population < P
• Mate elite solution with non elite to 

produce child in population K+1. 
Mates are chosen at random.

 Elite solutions

Mutant
solutions

X

Population K+1

Probability
child inherits
allele of elite 
parent > 0.5Population K

 Elite solutions

Non-elite
solutions

Mutant
solutions
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Decoders
• A decoder is a deterministic algorithm that takes as input a random-key 

vector and returns a feasible solution of the optimization problem and 
its cost.

• Bean (1994) proposed decoders based on sorting the random-key 
vector to produce a sequence.

• A random-key GA searches the solution space indirectly by searching 
the space of random keys and using the decoder to evaluate fitness of 
the random key.

[0,1]N Solution space
of optimization
problem

decoder
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Decoders

[0,1]N Solution space
of optimization
problem

decoder

Search solution
space indirectly

• A decoder is a deterministic algorithm that takes as input a random-key 
vector and returns a feasible solution of the optimization problem and 
its cost.

• Bean (1994) proposed decoders based on sorting the random-key 
vector to produce a sequence.

• A random-key GA searches the solution space indirectly by searching 
the space of random keys and using the decoder to evaluate fitness of 
the random key.
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its cost.
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Decoders
• A decoder is a deterministic algorithm that takes as input a random-key 

vector and returns a feasible solution of the optimization problem and 
its cost.

• Bean (1994) proposed decoders based on sorting the random-key 
vector to produce a sequence.

• A random-key GA searches the solution space indirectly by searching 
the space of random keys and using the decoder to evaluate fitness of 
the random key.

[0,1]N Solution space
of optimization
problem

decoder

Search solution
space indirectly
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Framework for random-key genetic algorithms

Generate P vectors 
of random keys 

Decode each vector 
of random keys 

Stopping rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions 
to next population

Generate mutants in 
next population

Combine elite and
non-elite solutions
and add children to

next population

no

stop

yes
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Framework for random-key genetic algorithms

Generate P vectors 
of random keys 

Decode each vector 
of random keys 

Stopping rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions 
to next population

Generate mutants in 
next population

Combine elite and
non-elite solutions
and add children to

next population

no

stop

yes

Problem independent
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Framework for random-key genetic algorithms

Generate P vectors 
of random keys 

Decode each vector 
of random keys 

Stopping rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions 
to next population

Generate mutants in 
next population

Combine elite and
non-elite solutions
and add children to

next population

no

stop

yes

Problem independent

Problem dependent
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OSPF routing in IP 
networks
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Routing in IP networks

• Protocol: In OSPF, traffic is routed on shortest 
weight paths from origination router to destination 
router.

• Splitting: If more than one link out of a router is on a 
shortest weight path, traffic is evenly distributed on 
those links.

• Weight setting problem:  Determine OSPF weights 
such that if traffic is routed according to OSPF 
protocol, network congestion is minimized.
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Minimization of congestion

• Consider the directed capacitated network G = 
(N,A,c), where N  are routers, A  are links, and ca is 
the capacity of link a ∈ A.

• We use the measure of Fortz & Thorup (2000) to 
compute congestion:

                   Φ = Φ1(l1) + Φ2(l2) + … + Φ|A|(l|A|) 
    where la  is the load on link a ∈ A, 

              Φa(la) is piecewise linear and convex,

              Φa(0) = 0, for all a ∈ A.
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Piecewise linear and convex Φa(la) 
link congestion measure
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Genetic algorithm for OSPF routing in IP 
networks        Ericsson, R., & Pardalos (J. Comb. Opt., 2002)

• Chromosome:
– A vector X of N random keys, where N is the number of 

links. The i-th random key corresponds to the i-th link 
weight.

• Decoder:
– For i = 1,N:  set w(i) = ceil ( X(i) × w

max
 )

– Compute shortest paths and route traffic according to 
OSPF.

– Compute load on each link, compute link congestion, add 
up all link congestions to compute network congestion.
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cost
GA solutions

AT&T Worldnet backbone network (90 routers, 274 links)

generation

LP lower bound

Weight setting with GA
permits a 50% increase in
traffic volume w.r.t.  weight
setting with the Inverse 
Capacity rule
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Memetic algorithms for OSPF routing in 
IP networks      Buriol, R., Ribeiro, and Thorup (Networks, 2005)

 Elite solutions

• Chromosome:
– A vector X of N random keys, where N is the number of links. 

The i-th random key corresponds to the i-th link weight.

• Decoder:

– For i = 1,N:  set w(i) = ceil ( X(i) × w
max

 )

– Compute shortest paths and route traffic according to OSPF.
– Compute load on each link, compute link congestion, add up 

all link congestions to compute network congestion.
– Apply fast local search to improve weights.
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Memetic algorithm: Optimized 
crossover = crossover + local search

X

 Elite solutions

Non-elite
solutions

Local search

 Elite solutions

Mutant
solutions
Mutant
solutions
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Fast local search

• Let A* be the set of five arcs a ∈ A  having 
largest Φa values.

• Scan arcs a ∈ A* from largest to smallest Φa:

 Increase arc weight, one unit at a time, in the range  

      [wa , wa +  (wmax – wa )/4  ]
 If total cost Φ is reduced, restart local search.
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Effect of decoder with fast local search 

1 0

1 0 0

1 0 0 0

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0
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s
t

t ime (sec o n ds )

MA finds solutions faster.
MA finds better solutions.

GA: Ericsson, R., 
and Pardalos 
(2002)

MA: Buriol, R., 
Ribeiro, and Thorup 
(2005)

LP lower bound
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Survivable IP 
network design
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Survivable IP network design
Buriol, R., & Thorup (Networks, 2007)

• Given 
– directed graph G = (N,A), where 

N is the set of routers, A is the 
set of potential arcs where 
capacity can be installed, 

– a demand matrix D that for 
each pair (s,t) ∈ N×N, specifies 
the demand D(s,t) between s 
and t,

– a cost K(a) to lay fiber on arc a 

– a capacity increment C for the 
fiber.

• Determine 
– OSPF weight w(a) to assign to each 

arc a ∈ A,

– which arcs should be used to deploy 
fiber and how many units 
(multiplicities) M(a) of capacity C 
should be installed on each arc          
a ∈ A,

• such that all the demand can be routed 
on the network even when any single 
arc fails.

• Min total design cost = ∑
a∈A 

M(a)×K(a). 
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Survivable IP network design

 Elite solutions

• Chromosome:
– A vector X of N random keys, where N is the number of links. The 

i-th random key corresponds to the i-th link weight.

• Decoder:
– For i = 1,N:  set w(i) = ceil ( X(i) × w

max
 )

– For each failure mode:  route demand according to OSPF and for 
each link i∈A determine load on link i.

– For each link i∈A, compute multiplicity M(i) needed to 
accommodate maximum load over all failure modes. 

– Network design cost = ∑
i∈A 

M(i)×K(i). 

iterate
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Survivable composite link IP network design
Andrade, Buriol, R., & Thorup (INFORMS Telecom. Conf., 2006)

• Given a load L(a) on arc a, we can 
compose several different link types 
that sum up to the needed capacity 
c(a) ≥ L(a):

– c(a) = ∑
t used in arc a 

M(t,a) × γ(t), 
where

– M(t,a) is the multiplicity of link  
type t ∈ { 1, 2, ..., T } on arc a

– γ(t) is the capacity of link type t:  
{ γ(1), γ(2), ..., γ(T) } :                  
                            γ(i) <  γ(i+1)

• Assumptions
– Prices / unit length = { p(1), 

p(2), ..., p(T) }: p(i) < p(i+1)

– [p(T)/γ(T)] < [p(T–1)/γ(T–1)] < ··· 
< [p(1)/γ(1)]: economies of scale

– γ(i) = α × γ(i–1), for α ∈ N,           
                                  α > 1, e.g. 

• γ(OC192) = 4 × γ(OC48)

• γ(OC48) = 4 × γ(OC12) 

• γ(OC12) = 4 × γ(OC3)
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Survivable composite link IP network design

 Elite solutions

• Chromosome:
– A vector X of N random keys, where N is the number of links. The 

i-th random key corresponds to the i-th link weight.

• Decoder:
– For i = 1,N:  set w(i) = ceil ( X(i) × w

max
 )

– For each failure mode:  route demand according to OSPF and for 
each arc i∈A determine the load on arc i. 

– For each arc i∈A, determine the multiplicity M(t,i) for each link 
type t using the maximum load for that arc over all failure modes. 

– Network design cost = ∑
i∈A 

 ∑
t used in arc i 

M(t,i) ×  p(t)
iterate
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Concluding remarks

• We have just seen a few metaheuristics applied to 
network design problems.

• Even though there has been much progress in 
exact method for network design, I feel that these 
and other metaheuristics, as well as hybrids of 
metaheuristics, will continue to play a big role in 
network design.
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The End
These slides and all papers cited in this talk
can be downloaded from my homepage:

                                  http://mauricioresende.com


