
Uncapacitated facility location

Maurício G.C. RESENDE
 Alg. & Opt. Research Department

AT&T Labs Research

 Renato F. WERNECK
 Department of Computer Science

Princeton University

Talk given at:

9th INFORMS Computing
Society Conference

Annapolis, Maryland
January 5 to 7, 2005

A Hybrid Multistart Heuristic for the
Uncapacitated Facility Location Problem

Uncapacitated facility location

Uncapacitated facility location problem

n (=11) potential facility locations

m (=15) customers

Uncapacitated facility location

n (=11) potential facility locations

m (=15) customers

If 4 facilities are
 opened

Uncapacitated facility location problem

Uncapacitated facility location

Customers home into nearest open
facility.

Uncapacitated facility location problem

If 4 facilities are
 opened

Uncapacitated facility location

Objective of optimization:

Minimize sum of the distances
between customers and their
nearest open facility plus the
cost of opening the facilities.

Total cost = 61+ 75 = 136

4

4

4

3

3
2

1

6

3

6

5

7
6

1

Uncapacitated facility location problem

20

30

15

6
10

Uncapacitated facility location Total cost = 61+ 75 = 136

4

4

4

3

3
2

1

6

3

6

5

7
6

1

Swap facilities

Uncapacitated facility location problem

20
15

30

15

6
10

Uncapacitated facility location

Total cost = 58 + 75 =
133 < 136

4

4

4
3

2

1
1

1

3

Uncapacitated facility location problem

20
15 15

30
5

5
8

3 6

810

Uncapacitated facility location

Total cost = 58 + 75 =
133 < 136

4

4

4
3

2

1
1

1

3

Uncapacitated facility location problem

20
15 15

30
5

5
8

3 6

8 open
facility

3

10

Uncapacitated facility location

Total cost = 46 + 78 =
124 < 133

4

4

4
3

2

1
1

1

3

Uncapacitated facility location problem

20
15 15

30
5

3 6

6
31

2
10

Uncapacitated facility location

Total cost = 46 + 78 =
124 < 133

4

4

4
3

2

1
1

1

3

Uncapacitated facility location problem

20
15 15

30
5

3 6

31

2

close
facility

6
10

Uncapacitated facility location

Total cost = 48 + 48 =
96 < 124

4

4

4
3 4

1

1

1

3

Uncapacitated facility location problem

15 15
5

3 6

31

2
10

20

6

Uncapacitated facility location

Facility location problem

• Set F of potential facilities, each facility f with a
setup cost c(f)

• Set U of users that must be served by a facility.
The cost of serving user u by facility f is d(u,f)

● Facility location problem: Determine a set of
facilities S  F to open so as to minimize the total
cost:
● cost(S) = Σ(c(f) : fS) + Σ[min{d(u,f): fS}: uU]

Uncapacitated facility location

Facility location problem

• Set F of potential facilities, each facility f with a
setup cost c(f)

• Set U of users that must be served by a facility.
The cost of serving user u by facility f is d(u,f)

● Facility location problem: Determine a set of
facilities S  F to open so as to minimize the total
cost:
● cost(S) = Σ(c(f) : fS) + Σ[min{d(u,f): fS}: uU]

Uncapacitated facility location

Facility location problem

• Set F of potential facilities, each facility f with a
setup cost c(f)

• Set U of users that must be served by a facility.
The cost of serving user u by facility f is d(u,f)

• Facility location problem: Determine a set of
facilities S  F to open so as to minimize the total
cost:

 cost(S) = Σ(c(f) : fS) + Σ[min{d(u,f): fS}: uU]

Uncapacitated facility location

Uncapacitated facility location

• Customers home in to nearest open facility
• No limit on number of open facilities
• NP hard [Cournéjols, Nemhauser, & Wolsey,

1990]
• Perhaps the most common location problem,

studied widely in literature both in theory &
practice

Uncapacitated facility location

Uncapacitated facility location

• Customers home in to nearest open facility
• No limit on number of open facilities
• NP hard [Cournéjols, Nemhauser, & Wolsey,

1990]
• Perhaps the most common location problem,

studied widely in literature both in theory &
practice

Uncapacitated facility location

Uncapacitated facility location

• Customers home in to nearest open facility
• No limit on number of open facilities
• NP hard [Cournéjols, Nemhauser, & Wolsey,

1990]
• Perhaps the most common location problem,

studied widely in literature both in theory &
practice

Uncapacitated facility location

Uncapacitated facility location

• Customers home in to nearest open facility
• No limit on number of open facilities
• NP hard [Cournéjols, Nemhauser, & Wolsey,

1990]
• Perhaps the most common location problem,

studied widely in literature both in theory &
practice

Uncapacitated facility location

Uncapacitated facility location

• Exact methods exist, e.g. [Conn and Cournéjols, 1990;
Körkel, 1989]

• NP-hard nature makes heuristics a natural choice for
larger instances

• Shmoys, Tardos, & Aardal (1997) present a 3.16-opt
approximation algorithm

• Improvements, e.g. [Jain et al., 2002, 2003; Mahdian,
Ye, & Zhang, 2002] have led to polynomial-time
algorithms that find a solution within a factor of around
1.5 from the optimal.

Uncapacitated facility location

Uncapacitated facility location

• Exact methods exist, e.g. [Conn and Cournéjols, 1990;
Körkel, 1989]

• NP-hard nature makes heuristics a natural choice for
larger instances

• Shmoys, Tardos, & Aardal (1997) present a 3.16-opt
approximation algorithm

• Improvements, e.g. [Jain et al., 2002, 2003; Mahdian,
Ye, & Zhang, 2002] have led to polynomial-time
algorithms that find a solution within a factor of around
1.5 from the optimal.

Uncapacitated facility location

Uncapacitated facility location

• Exact methods exist, e.g. [Conn and Cournéjols, 1990;
Körkel, 1989]

• NP-hard nature makes heuristics a natural choice for
larger instances

• Shmoys, Tardos, & Aardal (1997) present a 3.16-opt
approximation algorithm

• Improvements, e.g. [Jain et al., 2002, 2003; Mahdian,
Ye, & Zhang, 2002] have led to polynomial-time
algorithms that find a solution within a factor of around
1.5 from the optimal.

Uncapacitated facility location

Uncapacitated facility location

• Exact methods exist, e.g. [Conn and Cournéjols, 1990;
Körkel, 1989]

• NP-hard nature makes heuristics a natural choice for
larger instances

• Shmoys, Tardos, & Aardal (1997) present a 3.16-opt
approximation algorithm

• Improvements, e.g. [Jain et al., 2002, 2003; Mahdian,
Ye, & Zhang, 2002] have led to polynomial-time
algorithms that find a solution within a factor of around
1.5 from the optimal.

Uncapacitated facility location

Uncapacitated facility location

• Unfortunately, there is not much more room for
improvement: Guha & Khuller (1999) established a
lower bound of 1.463 for the approximation factor.

• In practice, approximation algorithms tend to be much
closer for non-pathological instances: The 1.61-opt
algorithm of Jain et al. (2003) was always within 2% of
optimal in their experiments.

• Though interesting in theory, approximation algorithms
are often outperformed in practice by more
straightforward heuristics with no particular
performance guarantees.

Uncapacitated facility location

Uncapacitated facility location

• Unfortunately, there is not much more room for
improvement: Guha & Khuller (1999) established a
lower bound of 1.463 for the approximation factor.

• In practice, approximation algorithms tend to be much
closer for non-pathological instances: The 1.61-opt
algorithm of Jain et al. (2003) was always within 2% of
optimal in their experiments.

• Though interesting in theory, approximation algorithms
are often outperformed in practice by more
straightforward heuristics with no particular
performance guarantees.

Uncapacitated facility location

Uncapacitated facility location

• Unfortunately, there is not much more room for
improvement: Guha & Khuller (1999) established a
lower bound of 1.463 for the approximation factor.

• In practice, approximation algorithms tend to be much
closer for non-pathological instances: The 1.61-opt
algorithm of Jain et al. (2003) was always within 2% of
optimal in their experiments.

• Though interesting in theory, approximation algorithms
are often outperformed in practice by more
straightforward heuristics with no particular
performance guarantees.

Uncapacitated facility location

Uncapacitated facility location

• Pioneering work on heuristics: Kuehn & Hamburger (1963)
• Since then, more sophisticated heuristics have been applied:

– Simulated annealing [Alves & Almeida, 1992]
– Genetic algorithms [Kratica et al., 2001]
– Tabu search [Ghosh, 2003; Michel & Van Hentenryck, 2003]
– Complete local search with memory [Ghosh, 2003]

• Dual-based methods have also shown promising results:
– Dual ascent [Erlenkotter, 1978]
– Lagrangean dual ascent [Guignard, 1988]
– Volume algorithm [Barahona & Chudak, 1999]

Uncapacitated facility location

Uncapacitated facility location

• Pioneering work on heuristics: Kuehn & Hamburger (1963)
• Since then, more sophisticated heuristics have been applied:

– Simulated annealing [Alves & Almeida, 1992]
– Genetic algorithms [Kratica et al., 2001]
– Tabu search [Ghosh, 2003; Michel & Van Hentenryck, 2003]
– Complete local search with memory [Ghosh, 2003]

• Dual-based methods have also shown promising results:
– Dual ascent [Erlenkotter, 1978]
– Lagrangean dual ascent [Guignard, 1988]
– Volume algorithm [Barahona & Chudak, 1999]

Uncapacitated facility location

Uncapacitated facility location

• Pioneering work on heuristics: Kuehn & Hamburger (1963)
• Since then, more sophisticated heuristics have been applied:

– Simulated annealing [Alves & Almeida, 1992]
– Genetic algorithms [Kratica et al., 2001]
– Tabu search [Ghosh, 2003; Michel & Van Hentenryck, 2003]
– Complete local search with memory [Ghosh, 2003]

• Dual-based methods have also shown promising results:
– Dual ascent [Erlenkotter, 1978]
– Lagrangean dual ascent [Guignard, 1988]
– Volume algorithm [Barahona & Chudak, 1999]

Uncapacitated facility location

Uncapacitated facility location

• Hofer (2002) presented computational comparison of
five methods:
– JMS, an approximation algorithm of Jain et al. (2002)
– MYZ, an approximation algorithm of Mahdian et al. (2002)
– A swap-based local search
– Tabu search of Michel & Van Hentenryck (2003)
– Volume algorithm of Barahona & Chudack (1999)

• Hofer’s conclusion: tabu search finds best solutions in
reasonable time and is recommended to practitioners.

Uncapacitated facility location

Uncapacitated facility location

• Hofer (2002) presented computational comparison of
five methods:
– JMS, an approximation algorithm of Jain et al. (2002)
– MYZ, an approximation algorithm of Mahdian et al. (2002)
– A swap-based local search
– Tabu search of Michel & Van Hentenryck (2003)
– Volume algorithm of Barahona & Chudack (1999)

• Hofer’s conclusion: tabu search finds best solutions in
reasonable time and is recommended to practitioners.

Uncapacitated facility location

Our algorithm

• In this talk, we provide an alternative that can be even
better in practice.

• It is a hybrid multistart heuristic akin to the one we
developed in Resende & Werneck (2004) for the p-
median problem

• A series of minor adaptations is enough to build a very
robust algorithm, capable of obtaining near-optimal
solutions for a wide variety of instances of the facility
location problem.

Uncapacitated facility location

Our algorithm

• In this talk, we provide an alternative that can be even
better in practice.

• It is a hybrid multistart heuristic akin to the one we
developed in Resende & Werneck (2004) for the p-
median problem

• A series of minor adaptations is enough to build a very
robust algorithm, capable of obtaining near-optimal
solutions for a wide variety of instances of the facility
location problem.

Uncapacitated facility location

Our algorithm

• In this talk, we provide an alternative that can be even
better in practice.

• It is a hybrid multistart heuristic akin to the one we
developed in Resende & Werneck (2004) for the p-
median problem

• A series of minor adaptations is enough to build a very
robust algorithm, capable of obtaining near-optimal
solutions for a wide variety of instances of the facility
location problem.

Uncapacitated facility location

Our algorithm

• Works in two phases:
– Multistart routine with intensification: Each iteration builds a

randomized solution and applies local search to it. The
resulting solution S is combined, in a process called path-
relinking, with another solution from a set of elite solutions,
resulting in S’. The algorithm tries to insert S and S’ into the
elite set.

– Post-optimization: Solutions from the elite set are combined
with each other in a process that hopefully results in better
solutions.

• The method is called HYBRID because it combines
elements of several metaheuristics.

Uncapacitated facility location

Our algorithm

• Works in two phases:
– Multistart routine with intensification: Each iteration builds a

rondomized solution and applies local search to it. The
resulting solution S is combined with a process called path-
relinking with another solution from a set of elite solutions,
resulting in S’. The algorithm tries to insert S and S’ into the
elite set.

– Post-optimization: Solutions from the elite set are combined
with each other in a process that hopefully results in better
solutions.

• The method is called HYBRID because it combines
elements of several metaheuristics.

Uncapacitated facility location

Our algorithm

• Works in two phases:
– Multistart routine with intensification: Each iteration builds a

rondomized solution and applies local search to it. The
resulting solution S is combined with a process called path-
relinking with another solution from a set of elite solutions,
resulting in S’. The algorithm tries to insert S and S’ into the
elite set.

– Post-optimization: Solutions from the elite set are combined
with each other in a process that hopefully results in better
solutions.

• The method is called HYBRID because it combines
elements of several metaheuristics.

Uncapacitated facility location

HYBRID heuristic for location problems

Uncapacitated facility location

Reuse of p-median heuristic

• Although the HYBRID heuristic was originally proposed
for the p-median problem, its framework can be applied
to other problems: in this case, facility location.

• Recall that the p-median problem is very similar to
facility location: the only difference is that instead of
assigning costs to facilities, the p-median problem must
specify p, the exact number of facilities to be opened.

• With minor adaptations, we can reuse several of the
components used in Resende & Werneck (2004), such
as the construction algorithms, local search, and path-
relinking.

Uncapacitated facility location

Reuse of p-median heuristic

• Although the HYBRID heuristic was originally proposed
for the p-median problem, its framework can be applied
to other problems: in this case, facility location.

• Recall that the p-median problem is very similar to
facility location: the only difference is that instead of
assigning costs to facilities, the p-median problem must
specify p, the exact number of facilities to be opened.

• With minor adaptations, we can reuse several of the
components used in Resende & Werneck (2004), such
as the construction algorithms, local search, and path-
relinking.

Uncapacitated facility location

Reuse of p-median heuristic

• Although the HYBRID heuristic was originally proposed
for the p-median problem, its framework can be applied
to other problems: in this case, facility location.

• Recall that the p-median problem is very similar to
facility location: the only difference is that instead of
assigning costs to facilities, the p-median problem must
specify p, the exact number of facilities to be opened.

• With minor adaptations, we can reuse several of the
components used in Resende & Werneck (2004), such
as the construction algorithms, local search, and path-
relinking.

Uncapacitated facility location

Paper on HYBRID for p-median

M.G.C. Resende and R.F. Werneck, A hybrid heuristic for
the p-median problem, Journal of Heuristics, vol. 10, pp.
59-88, 2004.

http://www.research.att.com/~mgcr/doc/hhpmedian.pdf

Uncapacitated facility location

Construction heuristic

• At iteration i, we determine the number pi of facilities to
open.
– For i = 1, pi = m/2;

– For i > 1, we pick the average number of facilities opened in
the first i  1 iterations;

• We then execute procedure sample of the p-median
variant of HYBRID:
– At each step, choose log2 (m/pi) facilities uniformly at

random and select the one that reduces the total cost the
most.

Uncapacitated facility location

Construction heuristic

• At iteration i, we determine the number pi of facilities to
open.
– For i = 1, pi = m/2;

– For i > 1, we pick the average number of facilities opened in
the first i  1 iterations;

• We then execute procedure sample of the p-median
variant of HYBRID:
– At each step, choose log2 (m/pi) facilities uniformly at

random and select the one that reduces the total cost the
most.

Uncapacitated facility location

Local search

• Local search in p-median variant: given solution S, find
two facilities fr  S, fi  S which, if swapped, leads to a
better solution.
– This keeps number of facilities constant.
– We also allow pure insertions and pure deletions, as well as

swaps.

• All possible insertions, deletions, and swaps are
considered, and the best among those is performed.

• Local search stops (at local minimum) when no
improving move exists.

Uncapacitated facility location

Local search

• Local search in p-median variant: given solution S, find
two facilities fr  S, fi  S which, if swapped, leads to a
better solution.
– This keeps number of facilities constant.
– We also allow pure insertions and pure deletions, as well as

swaps.

• All possible insertions, deletions, and swaps are
considered, and the best among those is performed.

• Local search stops (at local minimum) when no
improving move exists.

Uncapacitated facility location

Local search

• Local search in p-median variant: given solution S, find
two facilities fr  S, fi  S which, if swapped, leads to a
better solution.
– This keeps number of facilities constant.
– We also allow pure insertions and pure deletions, as well as

swaps.

• All possible insertions, deletions, and swaps are
considered, and the best among those is performed.

• Local search stops (at local minimum) when no
improving move exists.

Uncapacitated facility location

Local search

1

10

100

1000

10000

0 300 600 900 1200 1500

p (number of facilities)

tim
e

(s
ec

on
ds

) F I

F M

S M

S M P

Largest p-median instance tested: 5934 users, Euclidean.
(preprocessing times not considered)

Whitaker’s
fast interchange

Our fastest
implementation

Uncapacitated facility location

Local search paper

M.G.C. Resende and R.F. Werneck, A fast swap-based local
search procedure for location problems, AT&T Labs
Research Technical Report TD-5R3KBH, Florham Park,
NJ, Sept. 2003, revised Dec. 2004. To appear in Annals
of Operations Research.

http://www.research.att.com/~mgcr/doc/locationls.pdf

Uncapacitated facility location

Path-relinking
[Glover (1996)]

• Intensification: takes two solutions S1 and S2

• Starts from S1 and gradually transforms it into S2

• Operations that change solution at each step are same as in
local search: insertions, deletions, swaps

• However,
– Only facilities in S2\ S1 can be inserted
– Only facilities in S1\ S2 can be removed

• At each step, most profitable move is made
• Procedure returns best local optimal in path
• If no local optimal exists, one of the extremes is returned

with equal probability

Uncapacitated facility location

Path-relinking
[Glover (1996)]

• Intensification: takes two solutions S1 and S2

• Starts from S1 and gradually transforms it into S2

• Operations that change solution at each step are same as in
local search: insertions, deletions, swaps

• However,
– Only facilities in S2\ S1 can be inserted
– Only facilities in S1\ S2 can be removed

• At each step, most profitable move is made
• Procedure returns best local optimal in path
• If no local optimal exists, one of the extremes is returned

with equal probability

Uncapacitated facility location

Path-relinking
[Glover (1996)]

• Intensification: takes two solutions S1 and S2

• Starts from S1 and gradually transforms it into S2

• Operations that change solution at each step are same as in
local search: insertions, deletions, swaps

• However,
– Only facilities in S2\ S1 can be inserted
– Only facilities in S1\ S2 can be removed

• At each step, most profitable move is made
• Procedure returns best local optimal in path
• If no local optimal exists, one of the extremes is returned

with equal probability

Uncapacitated facility location

Path-relinking
[Glover (1996)]

• Intensification: takes two solutions S1 and S2

• Starts from S1 and gradually transforms it into S2

• Operations that change solution at each step are same as in
local search: insertions, deletions, swaps

• However,
– Only facilities in S2\ S1 can be inserted
– Only facilities in S1\ S2 can be removed

• At each step, most profitable move is made
• Procedure returns best local optimal in path
• If no local optimal exists, one of the extremes is returned

with equal probability

Uncapacitated facility location

Path-relinking
[Glover (1996)]

• Intensification: takes two solutions S1 and S2

• Starts from S1 and gradually transforms it into S2

• Operations that change solution at each step are same as in
local search: insertions, deletions, swaps

• However,
– Only facilities in S2\ S1 can be inserted
– Only facilities in S1\ S2 can be removed

• At each step, most profitable move is made
• Procedure returns best local optimal in path
• If no local optimal exists, one of the extremes is returned

with equal probability

Uncapacitated facility location

Path-relinking
[Glover (1996)]

• Intensification: takes two solutions S1 and S2

• Starts from S1 and gradually transforms it into S2

• Operations that change solution at each step are same as in
local search: insertions, deletions, swaps

• However,
– Only facilities in S2\ S1 can be inserted
– Only facilities in S1\ S2 can be removed

• At each step, most profitable move is made
• Procedure returns best local optimal in path
• If no local optimal exists, one of the extremes is returned

with equal probability

Uncapacitated facility location

Path-relinking
[Glover (1996)]

• Intensification: takes two solutions S1 and S2

• Starts from S1 and gradually transforms it into S2

• Operations that change solution at each step are same as in
local search: insertions, deletions, swaps

• However,
– Only facilities in S2\ S1 can be inserted
– Only facilities in S1\ S2 can be removed

• At each step, most profitable move is made
• Procedure returns best local optimal in path
• If no local optimal exists, one of the extremes is returned

with equal probability

Uncapacitated facility location

Path-relinking

• Path is generated by selecting moves that introduce in
the initial solution attributes of the guiding solution.

• At each step, all moves that incorporate attributes of the
guiding solution are analyzed and best move is taken.

Initial
solution

Guiding
solution

Uncapacitated facility location

Path-relinking

• Path is generated by selecting moves that introduce in
the initial solution attributes of the guiding solution.

• At each step, all moves that incorporate attributes of the
guiding solution are analyzed and best move is taken.

Initial
solution

Guiding
solution

Uncapacitated facility location

Path-relinking

• Path is generated by selecting moves that introduce in
the initial solution attributes of the guiding solution.

• At each step, all moves that incorporate attributes of the
guiding solution are analyzed and best move is taken.

Initial
solution

Guiding
solution

Uncapacitated facility location

Path-relinking

• Path is generated by selecting moves that introduce in
the initial solution attributes of the guiding solution.

• At each step, all moves that incorporate attributes of the
guiding solution are analyzed and best move is taken.

Initial
solution

Guiding
solution

Uncapacitated facility location

Path-relinking

• Path is generated by selecting moves that introduce in
the initial solution attributes of the guiding solution.

• At each step, all moves that incorporate attributes of the
guiding solution are analyzed and best move is taken.

Initial
solution

Guiding
solution

Uncapacitated facility location

Path-relinking

• Path is generated by selecting moves that introduce in
the initial solution attributes of the guiding solution.

• At each step, all moves that incorporate attributes of the
guiding solution are analyzed and best move is taken.

Output of PR usually is best solution in path.

Initial
solution

Guiding
solution

Uncapacitated facility location

Elite solutions
• To test whether a new solution should be inserted into the

pool, we use a criterion based on symmetric difference
between two solutions Sa and Sb:  Sa \ Sb  +  Sb \ Sa 

• A new solution is inserted only if its symmetric difference
to each cheaper solution already there is at least four.

• Moreover, if pool is full, the new solution must also cost
less than the most expensive element in the pool. In this
case, the new solution replaces the one (among those with
equal or greater cost) it is most similar to.

Uncapacitated facility location

Elite solutions
• To test whether a new solution should be inserted into the

pool, we use a criterion based on symmetric difference
between two solutions Sa and Sb:  Sa \ Sb  +  Sb \ Sa 

• A new solution is inserted only if its symmetric difference
to each cheaper solution already there is at least four.

• Moreover, if pool is full, the new solution must also cost
less than the most expensive element in the pool. In this
case, the new solution replaces the one (among those
with equal or greater cost) it is most similar to.

Uncapacitated facility location

Elite solutions
• To test whether a new solution should be inserted into the

pool, we use a criterion based on symmetric difference
between two solutions Sa and Sb:  Sa \ Sb  +  Sb \ Sa 

• A new solution is inserted only if its symmetric difference
to each cheaper solution already there is at least four.

• Moreover, if pool is full, the new solution must also cost
less than the most expensive element in the pool. In this
case, the new solution replaces the one (among those with
equal or greater cost) it is most similar to.

Uncapacitated facility location

Intensification

• After each iteration, the solution S obtained by
the local search is combined with a solution S’
obtained from the pool.

• Solution S’ is chosen at random, with probability
proportional to its symmetric difference to S:
– This tends to lead to longer paths on which to search

Uncapacitated facility location

Intensification

• After each iteration, the solution S obtained by
the local search is combined with a solution S’
obtained from the pool.

• Solution S’ is chosen at random, with probability
proportional to its symmetric difference to S:
– This tends to lead to longer paths on which to search

Uncapacitated facility location

Post-optimization
Evolutionary path-relinking

a) Start with pool found at end of multistart
phase: P0 ; Set k = 0;

b) Combine with path-relinking all pairs of
solutions in pool Pk ;

c) Solutions obtained by combining solutions in Pk
are added to a new pool Pk+1 following same
constraints for updates as before;

d) If best solution of Pk+1 is better than best
solution of Pk , then set k = k + 1, and go to
step (b);

Uncapacitated facility location

Post-optimization
Evolutionary path-relinking

a) Start with pool found at end of multistart
phase: P0 ; Set k = 0;

b) Combine with path-relinking all pairs of
solutions in pool Pk ;

c) Solutions obtained by combining solutions in Pk
are added to a new pool Pk+1 following same
constraints for updates as before;

d) If best solution of Pk+1 is better than best
solution of Pk , then set k = k + 1, and go to
step (b);

Uncapacitated facility location

Post-optimization
Evolutionary path-relinking

a) Start with pool found at end of multistart
phase: P0 ; Set k = 0;

b) Combine with path-relinking all pairs of
solutions in pool Pk ;

c) Solutions obtained by combining solutions in Pk

are added to a new pool Pk+1 following same
constraints for updates as before;

d) If best solution of Pk+1 is better than best
solution of Pk , then set k = k + 1, and go to
step (b);

Uncapacitated facility location

Post-optimization
Evolutionary path-relinking

a) Start with pool found at end of multistart
phase: P0 ; Set k = 0;

b) Combine with path-relinking all pairs of
solutions in pool Pk ;

c) Solutions obtained by combining solutions in Pk
are added to a new pool Pk+1 following same
constraints for updates as before;

d) If best solution of Pk+1 is better than best
solution of Pk , then set k = k + 1, and go to
step (b);

Uncapacitated facility location

Parameters

• Besides random number seed, HYBRID takes
only two input parameters:
– N: number of iterations
– E: size of pool of elite solutions

• In standard version, we use N = 32 and E = 10.

Uncapacitated facility location

Parameters

• Besides random number seed, HYBRID takes
only two input parameters:
– N: number of iterations
– E: size of pool of elite solutions

• In standard version, we use N = 32 and E = 10.

Uncapacitated facility location

Parameters

• Recall that running time of multistart phase depends
linearly on number of iterations N, whereas post-
optimization depends (roughly) quadratically on the
pool size E.

• Therefore, if we want to multiply the average running
time of the algorithm by some factor X, we just multiply
N by X and E by sqrt(X), rounding off appropriately.

Uncapacitated facility location

Parameters

• Recall that running time of multistart phase depends
linearly on number of iterations N, whereas post-
optimization depends (roughly) quadratically on the
pool size E.

• Therefore, if we want to multiply the average running
time of the algorithm by some factor X, we just multiply
N by X and E by sqrt(X), rounding off appropriately.

Uncapacitated facility location

Empirical results
Experimental setup

• Algorithm implemented in C++ and compiled with the
SGI MIPSPro C++ compiler (v. 7.30) with flags –O3 –
OPT:Olimit=6586

• Runs were done on an SGI Challenge with 28 196-MHz
MIPS 10000 processors, but each execution was limited
to a single processor

• All CPU times reported are measured by the getrusage
function with a precision of 1/60 second

• Random number generator: Mersenne Twister
(Matsumoto and Nishimura, 1998)

Uncapacitated facility location

Empirical results
Experimental setup

• Algorithm implemented in C++ and compiled with the
SGI MIPSPro C++ compiler (v. 7.30) with flags –O3 –
OPT:Olimit=6586

• Runs were done on an SGI Challenge with 28 196-MHz
MIPS 10000 processors, but each execution was limited
to a single processor

• All CPU times reported are measured by the getrusage
function with a precision of 1/60 second

• Random number generator: Mersenne Twister
(Matsumoto and Nishimura, 1998)

Uncapacitated facility location

Empirical results
Experimental setup

• Algorithm implemented in C++ and compiled with the
SGI MIPSPro C++ compiler (v. 7.30) with flags –O3 –
OPT:Olimit=6586

• Runs were done on an SGI Challenge with 28 196-MHz
MIPS 10000 processors, but each execution was limited
to a single processor

• All CPU times reported are measured by the getrusage
function with a precision of 1/60 second

• Random number generator: Mersenne Twister
(Matsumoto and Nishimura, 1998)

Uncapacitated facility location

Empirical results
Experimental setup

• Algorithm implemented in C++ and compiled with the
SGI MIPSPro C++ compiler (v. 7.30) with flags –O3 –
OPT:Olimit=6586

• Runs were done on an SGI Challenge with 28 196-MHz
MIPS R10000 processors, but each execution was
limited to a single processor

• All CPU times reported are measured by the getrusage
function with a precision of 1/60 second

• Random number generator: Mersenne Twister
(Matsumoto and Nishimura, 1998)

Uncapacitated facility location

• Algorithm was tested on all classes from UflLib
(Hoefer, 2003) and on class GHOSH, described
in Ghosh (2003).

• In every case, the number of users and potential
facilities is the same (locations are the same).

Empirical results
Test problems

http://www.mpi-sb.mpg.de/units/ag1/projects/benchmarks/UflLib

Uncapacitated facility location

• Algorithm was tested on all classes from UflLib
(Hoefer, 2003) and on class GHOSH, described
in Ghosh (2003).

• In every case, the number of users and potential
facilities is the same (locations are the same).

Empirical results
Test problems

http://www.mpi-sb.mpg.de/units/ag1/projects/benchmarks/UflLib

Uncapacitated facility location

d  [1000,2000]

A: c  [100,200]

B: c  [1000,2000]

C: c  [10K,20K]

90 instances, 250,
500, & 750 users

Ghosh (2003)GHOSH

Large duality gaps.
Hard for dual-based
methods.

120 instances,
100 users

Kochetov
(2003)GAP

Meant to be
challenging for
algorithms based on
local search.

80 instances, 133
& 307 users

Kochetov
(2003)FPP

d  [0,1000]

c  1000
200 instances, 30
to 100 users

Bilde & Krarup
(1977)BK

NotesInstances/SizeReferenceInstance
class

Test problems
BK used in Hoefer’s comparative analysis.

Uncapacitated facility location

Instances originally
proposed for
capacitated facility
location problems.

15 instances, 50 to
1000 users

Beasley (1993)ORLIB

Random points in
unit square,
Euclidean distances
with 4 signif. digits.

18 instances, 500
to 3000 users

Ahn et al.
(1998);
Barahona &
Chudak (1999)

MED

Meant to be close to
real-life applications:
many near-optimal
solutions.

22 instances, 100
to 2000 users

Kratica et al.
(2001)M*

d  shortest paths
given as matrices

50 instances, 50 to
200 users

Galvão & Raggi
(1989)GR

NotesInstances/SizeReference
Instance

class

Test problems GR, M*, MED, and ORLIB used in Hoefer’s
comparative analysis.

Uncapacitated facility location

• Standard version of
algorithm

• Run ten times on
each instance with
ten random number
seeds (1,…,10)

• Compare to optima
for FPP, GAP, BK,
GR, and ORLIB and
best upper bounds
for MED and M*

• Geometric means
given for times.

Empirical results
Quality assessment

0.180.000ORLIB

284.88(0.392)MED

7.450.000M*

0.310.000GR

30.66(0.039)GHOSH

1.635.935GAP

7.3627.999FPP

0.280.001BK

Time (secs)Avg % devClass

Uncapacitated facility location

• On all five classes in
Hoefer’s analysis, our
algorithms does very
well.

• Matches best known
bounds (usually optima)
on GR, M*, and ORLIB.

• Few unlucky runs on
class BK.

• On MED, solutions were
on average 0.4% better
than best known bounds

• Did well on GHOSH,
compared to two
algorithms.

Empirical results
Quality assessment

0.180.000ORLIB

284.88(0.392)MED

7.450.000M*

0.310.000GR

30.66(0.039)GHOSH

1.635.935GAP

7.3627.999FPP

0.280.001BK

Time (secs)Avg % devClass

Uncapacitated facility location

• On all five classes in
Hoefer’s analysis, our
algorithms does very
well.

• Matches best known
bounds (usually
optima) on GR, M*,
and ORLIB.

• Few unlucky runs on
class BK.

• On MED, solutions were
on average 0.4% better
than best known bounds

• Did well on GHOSH,
compared to two
algorithms.

Empirical results
Quality assessment

0.180.000ORLIB

284.88(0.392)MED

7.450.000M*

0.310.000GR

30.66(0.039)GHOSH

1.635.935GAP

7.3627.999FPP

0.280.001BK

Time (secs)Avg % devClass

Uncapacitated facility location

• On all five classes in
Hoefer’s analysis, our
algorithms does very
well.

• Matches best known
bounds (usually optima)
on GR, M*, and ORLIB.

• Few unlucky runs on
class BK.

• On MED, solutions were
on average 0.4% better
than best known bounds

• Did well on GHOSH,
compared to two
algorithms.

Empirical results
Quality assessment

0.180.000ORLIB

284.88(0.392)MED

7.450.000M*

0.310.000GR

30.66(0.039)GHOSH

1.635.935GAP

7.3627.999FPP

0.280.001BK

Time (secs)Avg % devClass

Uncapacitated facility location

• On all five classes in
Hoefer’s analysis, our
algorithms does very
well.

• Matches best known
bounds (usually optima)
on GR, M*, and ORLIB.

• Few unlucky runs on
class BK.

• On MED, solutions
were on average
0.4% better than
best known bounds

• Did well on GHOSH,
compared to two
algorithms.

Empirical results
Quality assessment

0.180.000ORLIB

284.88(0.392)MED

7.450.000M*

0.310.000GR

30.66(0.039)GHOSH

1.635.935GAP

7.3627.999FPP

0.280.001BK

Time (secs)Avg % devClass

Uncapacitated facility location

• On all five classes in
Hoefer’s analysis, our
algorithms does very
well.

• Matches best known
bounds (usually optima)
on GR, M*, and ORLIB.

• Few unlucky runs on
class BK.

• On MED, solutions were
on average 0.4% better
than best known bounds

• Did well on GHOSH,
compared to two
algorithms.

Empirical results
Quality assessment

0.180.000ORLIB

284.88(0.392)MED

7.450.000M*

0.310.000GR

30.66(0.039)GHOSH

1.635.935GAP

7.3627.999FPP

0.280.001BK

Time (secs)Avg % devClass

Uncapacitated facility location

• The remaining two
classes: FPP & GAP
were created with
the intent of being
hard.

• Solutions are much
worse than for other
classes.

• However, we show later
that, if given more time,
our algorithm can do
well on these classes,
too.

Empirical results
Quality assessment

0.180.000ORLIB

284.88(0.392)MED

7.450.000M*

0.310.000GR

30.66(0.039)GHOSH

1.635.935GAP

7.3627.999FPP

0.280.001BK

Time (secs)Avg % devClass

Uncapacitated facility location

• The remaining two
classes: FPP & GAP were
created with the intent of
being hard.

• Solutions are much
worse than for other
classes.

• However, we show later
that, if given more time,
our algorithm can do
well on these classes,
too.

Empirical results
Quality assessment

0.180.000ORLIB

284.88(0.392)MED

7.450.000M*

0.310.000GR

30.66(0.039)GHOSH

1.635.935GAP

7.3627.999FPP

0.280.001BK

Time (secs)Avg % devClass

Uncapacitated facility location

• The remaining two
classes: FPP & GAP were
created with the intent of
being hard.

• Solutions are much
worse than for other
classes.

• However, we show
later that, if given
more time, our
algorithm can do well
on these classes,
too.

Empirical results
Quality assessment

0.180.000ORLIB

284.88(0.392)MED

7.450.000M*

0.310.000GR

30.66(0.039)GHOSH

1.635.935GAP

7.3627.999FPP

0.280.001BK

Time (secs)Avg % devClass

Uncapacitated facility location

Empirical results
Comparative analysis

• We have seen that our algorithm produces very good
quality solutions on most of the classes of instances
tested.

• On there own, however, these results don’t mean much.
• Any reasonably scalable algorithm, given enough time,

should be able to find good solutions.
• With this in mind: we compare our algorithm with the

best algorithm from Hoefer’s analysis: the tabu search of
Michel and Van Hentenryck (2003)

Uncapacitated facility location

Empirical results
Comparative analysis

• We have seen that our algorithm produces very good
quality solutions on most of the classes of instances
tested.

• On their own, however, these results don’t mean much.
• Any reasonably scalable algorithm, given enough time,

should be able to find good solutions.
• With this in mind: we compare our algorithm with the

best algorithm from Hoefer’s analysis: the tabu search of
Michel and Van Hentenryck (2003)

Uncapacitated facility location

Empirical results
Comparative analysis

• We have seen that our algorithm produces very good
quality solutions on most of the classes of instances
tested.

• On there own, however, these results don’t mean much.
• Any reasonably scalable algorithm, given enough time,

should be able to find good solutions.
• With this in mind: we compare our algorithm with the

best algorithm from Hoefer’s analysis: the tabu search of
Michel and Van Hentenryck (2003)

Uncapacitated facility location

Empirical results
Comparative analysis

• We have seen that our algorithm produces very good
quality solutions on most of the classes of instances
tested.

• On there own, however, these results don’t mean much.
• Any reasonably scalable algorithm, given enough time,

should be able to find good solutions.
• With this in mind: we compare our algorithm with the

best algorithm from Hoefer’s analysis: the tabu search of
Michel and Van Hentenryck (2003)

Uncapacitated facility location

• We downloaded TABU
from UflLib and ran it on
our computer with 500
iterations (as in Hoefer’s
experiments).

• Since TABU was faster
than our standard
version, we compare
with a faster HYBRID
with N = 8 and E = 5.

• Both algorithms were
run 10 times on each
instance

0.1550.0240.0460.000ORLIB

69.5520.07375.231(0.369)MED

1.6150.0112.0870.004M*

0.1580.1030.0870.000GR

4.6210.0027.887(0.032)GHOSH

0.24416.500.3699.502GAP

0.60497.061.73066.49FPP

0.1520.0760.082.028BK

time%devtime%dev

TABUHYBRID

Class

time in seconds (196 MHz R10000)

Uncapacitated facility location

• We downloaded TABU
from UflLib and ran it on
our computer with 500
iterations (as in Hoefer’s
experiments).

• Since TABU was faster
than our standard
version, we compare
with a faster HYBRID
with N = 8 and E = 5.

• Both algorithms were
run 10 times on each
instance

0.1550.0240.0460.000ORLIB

69.5520.07375.231(0.369)MED

1.6150.0112.0870.004M*

0.1580.1030.0870.000GR

4.6210.0027.887(0.032)GHOSH

0.24416.500.3699.502GAP

0.60497.061.73066.49FPP

0.1520.0760.082.028BK

time%devtime%dev

TABUHYBRID

Class

time in seconds (196 MHz R10000)

Uncapacitated facility location

• We downloaded TABU
from UflLib and ran it on
our computer with 500
iterations (as in Hoefer’s
experiments).

• Since TABU was faster
than our standard
version, we compare
with a faster HYBRID
with N = 8 and E = 5.

• Both algorithms were
run 10 times on each
instance

0.1550.0240.0460.000ORLIB

69.5520.07375.231(0.369)MED

1.6150.0112.0870.004M*

0.1580.1030.0870.000GR

4.6210.0027.887(0.032)GHOSH

0.24416.500.3699.502GAP

0.60497.061.73066.49FPP

0.1520.0760.082.028BK

time%devtime%dev

TABUHYBRID

Class

time in seconds (196 MHz R10000)

Uncapacitated facility location

• Both algorithms had
similar running times.

• Even though running
times are much lower
than for standard
version of HYBRID, both
algorithms find very
good quality solutions
on five classes in
Hoefer’s analysis.

• On classes FPP, GAP, &
MED, however, HYBRID
does better than TABU.

• Time spent on classes
FPP and GAP is only
about one second.

0.1550.0240.0460.000ORLIB

69.5520.07375.231(0.369)MED

1.6150.0112.0870.004M*

0.1580.1030.0870.000GR

4.6210.0027.887(0.032)GHOSH

0.24416.500.3699.502GAP

0.60497.061.73066.49FPP

0.1520.0760.082.028BK

time%devtime%dev

TABUHYBRID

Class

time in seconds (196 MHz R10000)

Uncapacitated facility location

• Both algorithms had
similar running times.

• Even though running
times are much lower
than for standard
version of HYBRID, both
algorithms find very
good quality solutions
on five classes in
Hoefer’s analysis.

• On classes FPP, GAP, &
MED, however, HYBRID
does better than TABU.

• Time spent on classes
FPP and GAP is only
about one second.

0.1550.0240.0460.000ORLIB

69.5520.07375.231(0.369)MED

1.6150.0112.0870.004M*

0.1580.1030.0870.000GR

4.6210.0027.887(0.032)GHOSH

0.24416.500.3699.502GAP

0.60497.061.73066.49FPP

0.1520.0760.082.028BK

time%devtime%dev

TABUHYBRID

Class

time in seconds (196 MHz R10000)

Uncapacitated facility location

• Both algorithms had
similar running times.

• Even though running
times are much lower
than for standard
version of HYBRID, both
algorithms find very
good quality solutions
on five classes in
Hoefer’s anaylsis.

• On classes FPP, GAP, &
MED, however, HYBRID
does better than TABU.

• Time spent on classes
FPP and GAP is only
about one second.

0.1550.0240.0460.000ORLIB

69.5520.07375.231(0.369)MED

1.6150.0112.0870.004M*

0.1580.1030.0870.000GR

4.6210.0027.887(0.032)GHOSH

0.24416.500.3699.502GAP

0.60497.061.73066.49FPP

0.1520.0760.082.028BK

time%devtime%dev

TABUHYBRID

Class

time in seconds (196 MHz R10000)

Uncapacitated facility location

• Both algorithms had
similar running times.

• Even though running
times are much lower
than for standard
version of HYBRID, both
algorithms find very
good quality solutions
on five classes in
Hoefer’s analysis.

• On classes FPP, GAP, &
MED, however, HYBRID
does better than TABU.

• Time spent on classes
FPP and GAP is only
about one second.

0.1550.0240.0460.000ORLIB

69.5520.07375.231(0.369)MED

1.6150.0112.0870.004M*

0.1580.1030.0870.000GR

4.6210.0027.887(0.032)GHOSH

0.24416.500.3699.502GAP

0.60497.061.73066.49FPP

0.1520.0760.082.028BK

time%devtime%dev

TABUHYBRID

Class

time in seconds (196 MHz R10000)

Uncapacitated facility location

Longer runs

• Both HYBRID and TABU should benefit if given
more time to solve instances in GAP and FPP.

• We ran TABU with 1000, 2000, 4000, …, 64000
iterations and HYBRID with N:E pairs 4:3, 8:5,
16:7, 32:10 (standard HYBRID), 64:14, 128:20,
256:28, and 512:40.

Uncapacitated facility location

Longer runs

• Both HYBRID and TABU should benefit if given
more time to solve instances in GAP and FPP.

• We ran TABU with 1000, 2000, 4000, …, 64000
iterations and HYBRID with N:E pairs 4:3, 8:5,
16:7, 32:10 (standard HYBRID), 64:14, 128:20,
256:28, and 512:40.

Uncapacitated facility location

22.626.356400024.691.68540512

11.857.023200012.542.70028256

6.247.72160006.493.54120128

3.278.9480003.234.5611464

0.8810.6240001.635.9321032

0.8812.4020000.787.407716

0.4614.3810000.379.54358

0.2516.505000.1412.96134

time% erroriterationstime% erroreliteiterations

TABUHYBRID

GAP class Time in seconds (196MHz R10000)

Means over ten runs.

Uncapacitated facility location

 2

 4

 6

 8

 10

 12

 14

 16

.25 .5 1 2 4 8 16

tabu-ms

GAP class
Av

er
ag

e
er

ro
r (

pe
rc

en
ta

ge
)

Mean time (seconds)

tabu

multistart

multistart+pr

hybrid

Uncapacitated facility location

52.6071.156400093.590.00940512

27.7175.163200048.170.01828256

14.3479.321600025.332.30720128

7.3483.67800013.7913.2791464

3.8686.8140007.1527.6101032

1.9791.1420003.4948.413716

1.0494.2210001.5965.26558

0.6097.065000.5882.83234

time% erroriterationstime% erroreliteiterations

TABUHYBRID

FPP class Time in seconds (196MHz R10000)

Means over ten runs.

Uncapacitated facility location

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0.6 1 2 4 8 16 32 52

FPP class

Mean time (seconds)

Av
er

ag
e

e r
r o

r (
p e

rc
e n

ta
ge

) tabu

tabu-ms

multistart

multistart+pr

hybrid

Uncapacitated facility location

Paper

M.G.C. Resende and R.F. Werneck, A hybrid multi-start
heuristic for the uncapacitated facility location problem,
AT&T Labs Research Technical Report TD-5RELRR,
Florham Park, NJ, Sept. 2003, revised Nov. 2004. To
appear in European J. of Operational Research.

http://www.research.att.com/~mgcr/doc/guflp.pdf

Uncapacitated facility location

Software availability

Our software (local search, and hybrid heuristics for p-
median and facility location) as well as all test
instances used in our studies are available for
download at:

 http://www.research.att.com/~mgcr/popstar

