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Customers home into nearest open
facility.
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Objective of optimization:

Minimize sum of the distances
between customers and their
nearest open facility plus the
cost of opening the facilities.  

Total cost = 61+ 75 = 136
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Total cost = 58 + 75 = 
133 < 136
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Total cost = 46 + 78 = 
124 < 133
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Total cost = 48 + 48 = 
96 < 124
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Uncapacitated facility location

Facility location problem

• Set F of potential facilities, each facility f with a 
setup cost c(f)

• Set U of users that must be served by a facility.  
The cost of serving user u by facility f is d(u,f)

● Facility location problem: Determine a set of 
facilities S  F to open so as to minimize the total 
cost:
●  cost(S) = Σ(c(f) : fS) + Σ[min{d(u,f): fS}: uU]
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Uncapacitated facility location

• Customers home in to nearest open facility
• No limit on number of open facilities
• NP hard [Cournéjols, Nemhauser, & Wolsey, 

1990]
• Perhaps the most common location problem, 

studied widely in literature both in theory & 
practice
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Uncapacitated facility location

• Exact methods exist, e.g. [Conn and Cournéjols, 1990; 
Körkel, 1989]

• NP-hard nature makes heuristics a natural choice for 
larger instances

• Shmoys, Tardos, & Aardal (1997) present a 3.16-opt 
approximation algorithm

• Improvements, e.g. [Jain et al., 2002, 2003; Mahdian, 
Ye, & Zhang, 2002] have led to polynomial-time 
algorithms that find a solution within a factor of around 
1.5 from the optimal.
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Uncapacitated facility location

• Unfortunately, there is not much more room for 
improvement: Guha & Khuller (1999) established a 
lower bound of 1.463 for the approximation factor.

• In practice, approximation algorithms tend to be much 
closer for non-pathological instances: The 1.61-opt 
algorithm of Jain et al. (2003) was always within 2% of 
optimal in their experiments.

• Though interesting in theory, approximation algorithms 
are often outperformed in practice by more 
straightforward heuristics with no particular 
performance guarantees.
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Uncapacitated facility location

• Pioneering work on heuristics: Kuehn & Hamburger (1963)
• Since then, more sophisticated heuristics have been applied:

– Simulated annealing [Alves & Almeida, 1992]
– Genetic algorithms [Kratica et al., 2001]
– Tabu search [Ghosh, 2003; Michel & Van Hentenryck, 2003]
– Complete local search with memory [Ghosh, 2003]

• Dual-based methods have also shown promising results:
– Dual ascent [Erlenkotter, 1978]
– Lagrangean dual ascent [Guignard, 1988]
– Volume algorithm [Barahona & Chudak, 1999]
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Uncapacitated facility location

• Hofer (2002) presented computational comparison of 
five methods:
– JMS, an approximation algorithm of Jain et al. (2002)
– MYZ, an approximation algorithm of Mahdian et al. (2002)
– A swap-based local search
– Tabu search of Michel & Van Hentenryck (2003)
– Volume algorithm of Barahona & Chudack (1999)

• Hofer’s conclusion: tabu search finds best solutions in 
reasonable time and is recommended to practitioners.
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Our algorithm

• In this talk, we provide an alternative that can be even 
better in practice.

• It is a hybrid multistart heuristic akin to the one we 
developed in Resende & Werneck (2004) for the p-
median problem

• A series of minor adaptations is enough to build a very 
robust algorithm, capable of obtaining near-optimal 
solutions for a wide variety of instances of the facility 
location problem.
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Our algorithm

• Works in two phases:
– Multistart routine with intensification: Each iteration builds a 

randomized solution and applies local search to it.  The 
resulting solution S is combined, in a process called path-
relinking, with another solution from a set of elite solutions, 
resulting in S’. The algorithm tries to insert S and S’ into the 
elite set.

– Post-optimization: Solutions from the elite set are combined 
with each other in a process that hopefully results in better 
solutions.

• The method is called HYBRID because it combines 
elements of several metaheuristics.
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HYBRID heuristic for location problems
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Reuse of p-median heuristic

• Although the HYBRID heuristic was originally proposed 
for the p-median problem, its framework can be applied 
to other problems: in this case, facility location.

• Recall that the p-median problem is very similar to 
facility location: the only difference is that instead of 
assigning costs to facilities, the p-median problem must 
specify p, the exact number of facilities to be opened.

• With minor adaptations, we can reuse several of the 
components used in Resende & Werneck (2004), such 
as the construction algorithms, local search, and path-
relinking.
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Paper on HYBRID for p-median

M.G.C. Resende and R.F. Werneck, A hybrid heuristic  for 
the p-median problem,  Journal of Heuristics, vol. 10, pp. 
59-88, 2004. 

http://www.research.att.com/~mgcr/doc/hhpmedian.pdf
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Construction heuristic

• At iteration i, we determine the number pi of facilities to 
open.
– For i = 1, pi = m/2;

– For i > 1, we pick the average number of facilities opened in 
the first i  1 iterations;

• We then execute procedure sample of the p-median 
variant of HYBRID:
– At each step, choose log2 (m/pi) facilities uniformly at 

random and select the one that reduces the total cost the 
most.
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Local search

• Local search in p-median variant: given solution S, find 
two facilities fr  S, fi  S which, if swapped, leads to a 
better solution.
– This keeps number of facilities constant.
– We also allow pure insertions and pure deletions, as well as 

swaps.

• All possible insertions, deletions, and swaps are 
considered, and the best among those is performed.

• Local search stops (at local minimum) when no 
improving move exists.
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Local search
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Local search paper

M.G.C. Resende and R.F. Werneck, A fast swap-based local 
search procedure for location problems, AT&T Labs 
Research Technical Report TD-5R3KBH, Florham Park, 
NJ,  Sept. 2003, revised Dec. 2004. To appear in Annals 
of Operations Research.

http://www.research.att.com/~mgcr/doc/locationls.pdf
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Path-relinking
[Glover (1996)]

• Intensification: takes two solutions S1 and S2

• Starts from S1 and gradually transforms it into S2

• Operations that change solution at each step are same as in 
local search: insertions, deletions, swaps

• However, 
– Only facilities in S2\ S1 can be inserted
– Only facilities in S1\ S2 can be removed

• At each step, most profitable move is made
• Procedure returns best local optimal in path
• If no local optimal exists, one of the extremes is returned 

with equal probability
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Path-relinking

• Path is generated by selecting moves that introduce in 
the initial solution attributes of the guiding solution.

• At each step, all moves that incorporate attributes of the 
guiding solution are analyzed and best move is taken.

Initial 
solution

Guiding
solution
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Path-relinking

• Path is generated by selecting moves that introduce in 
the initial solution attributes of the guiding solution.

• At each step, all moves that incorporate attributes of the 
guiding solution are analyzed and best move is taken.

Output of PR usually is best solution in path.

Initial 
solution

Guiding
solution
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Elite solutions
• To test whether a new solution should be inserted into the 

pool, we use a criterion based on symmetric difference 
between two solutions Sa and Sb:  Sa \ Sb  +  Sb \ Sa 

• A new solution is inserted only if its symmetric difference 
to each cheaper solution already there is at least four.

• Moreover, if pool is full, the new solution must also cost 
less than the most expensive element in the pool.  In this 
case, the new solution replaces the one (among those with 
equal or greater cost) it is most similar to.
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Intensification

• After each iteration, the solution S obtained by 
the local search is combined with a solution S’ 
obtained from the pool.

• Solution S’ is chosen at random, with probability 
proportional to its symmetric difference to S:
– This tends to lead to longer paths on which to search
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Post-optimization
Evolutionary path-relinking

a) Start with pool found at end of multistart 
phase: P0 ;       Set k = 0;

b) Combine with path-relinking all pairs of 
solutions in pool Pk ;

c) Solutions obtained by combining solutions in Pk 
are added to a new pool Pk+1 following same 
constraints for updates as before;

d) If best solution of Pk+1 is better than best 
solution of Pk , then set k = k + 1, and go to 
step (b);
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Parameters

• Besides random number seed, HYBRID takes 
only two input parameters:
– N: number of iterations
– E: size of pool of elite solutions

• In standard version, we use N = 32 and E = 10.
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Parameters

• Recall that running time of multistart phase depends 
linearly on number of iterations N, whereas post-
optimization depends (roughly) quadratically on the 
pool size E.

• Therefore, if we want to multiply the average running 
time of the algorithm by some factor X, we just multiply 
N by X and E by sqrt(X), rounding off appropriately.
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Empirical results
Experimental setup

• Algorithm implemented in C++ and compiled with the 
SGI MIPSPro C++ compiler (v. 7.30) with flags –O3 –
OPT:Olimit=6586

• Runs were done on an SGI Challenge with 28 196-MHz 
MIPS 10000 processors, but each execution was limited 
to a single processor

• All CPU times reported are measured by the getrusage 
function with a precision of 1/60 second

• Random number generator: Mersenne Twister 
(Matsumoto and Nishimura, 1998)
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• Algorithm was tested on all classes from UflLib 
(Hoefer, 2003) and on class GHOSH, described 
in Ghosh (2003).

• In every case, the number of users and potential 
facilities is the same (locations are the same).

Empirical results
Test problems

http://www.mpi-sb.mpg.de/units/ag1/projects/benchmarks/UflLib
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d  [1000,2000]

A: c  [100,200]

B: c  [1000,2000]

C: c  [10K,20K]

90 instances, 250, 
500, & 750 users

Ghosh (2003)GHOSH

Large duality gaps. 
Hard for dual-based 
methods.

120 instances, 
100 users

Kochetov 
(2003)GAP

Meant to be 
challenging for 
algorithms based on 
local search.

80 instances, 133 
& 307 users

Kochetov 
(2003)FPP

d  [0,1000]

c  1000
200 instances, 30 
to 100 users

Bilde & Krarup 
(1977)BK

NotesInstances/SizeReferenceInstance 
class

Test problems
BK used in Hoefer’s comparative analysis.
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Instances originally 
proposed for 
capacitated facility 
location problems.

15 instances, 50 to 
1000 users

Beasley (1993)ORLIB

Random points in 
unit square, 
Euclidean distances 
with 4 signif. digits.

18 instances, 500 
to 3000 users

Ahn et al. 
(1998); 
Barahona & 
Chudak (1999)

MED

Meant to be close to 
real-life applications: 
many near-optimal 
solutions.

22 instances, 100 
to 2000 users

Kratica et al. 
(2001)M*

d  shortest paths
given as matrices

50 instances, 50 to 
200 users

Galvão & Raggi 
(1989)GR

NotesInstances/SizeReference
Instance 

class

Test problems GR, M*, MED, and ORLIB used in Hoefer’s 
comparative analysis.
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• Standard version of 
algorithm

• Run ten times on 
each instance with 
ten random number 
seeds (1,…,10)

• Compare to optima 
for FPP, GAP, BK, 
GR, and ORLIB and 
best upper bounds 
for MED and M*

• Geometric means 
given for times. 

Empirical results
Quality assessment

0.180.000ORLIB

284.88(0.392)MED

7.450.000M*

0.310.000GR

30.66(0.039)GHOSH

1.635.935GAP

7.3627.999FPP

0.280.001BK

Time (secs)Avg % devClass



Uncapacitated facility location

• On all five classes in 
Hoefer’s analysis, our 
algorithms does very 
well.

• Matches best known 
bounds (usually optima) 
on GR, M*, and ORLIB.

• Few unlucky runs on 
class BK.

• On MED, solutions were 
on average 0.4% better 
than best known bounds

• Did well on GHOSH, 
compared to two 
algorithms.
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• The remaining two 
classes: FPP & GAP 
were created with 
the intent of being 
hard.

• Solutions are much 
worse than for other 
classes.

• However, we show later 
that, if given more time, 
our algorithm can do 
well on these classes, 
too.
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Empirical results
Comparative analysis

• We have seen that our algorithm produces very good 
quality solutions on most of the classes of instances 
tested.

• On there own, however, these results don’t mean much.
• Any reasonably scalable algorithm, given enough time, 

should be able to find good solutions.
• With this in mind: we compare our algorithm with the 

best algorithm from Hoefer’s analysis: the tabu search of 
Michel and Van Hentenryck (2003)
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• We downloaded TABU 
from UflLib and ran it on 
our computer with 500 
iterations (as in Hoefer’s 
experiments).

• Since TABU was faster 
than our standard 
version, we compare 
with a faster HYBRID 
with N = 8 and E = 5.

• Both algorithms were 
run 10 times on each 
instance

0.1550.0240.0460.000ORLIB

69.5520.07375.231(0.369)MED

1.6150.0112.0870.004M*

0.1580.1030.0870.000GR

4.6210.0027.887(0.032)GHOSH

0.24416.500.3699.502GAP

0.60497.061.73066.49FPP

0.1520.0760.082.028BK

time%devtime%dev

TABUHYBRID

Class

time in seconds (196 MHz R10000)
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• Both algorithms had 
similar running times.

• Even though running 
times are much lower 
than for standard 
version of HYBRID, both 
algorithms find very 
good quality solutions 
on five classes in 
Hoefer’s analysis.

• On classes FPP, GAP, & 
MED, however, HYBRID 
does better than TABU.

• Time spent on classes 
FPP and GAP is only 
about one second.
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Longer runs

• Both HYBRID and TABU should benefit if given 
more time to solve instances in GAP and FPP.

• We ran TABU with 1000, 2000, 4000, …, 64000 
iterations and HYBRID with N:E pairs 4:3, 8:5, 
16:7, 32:10 (standard HYBRID), 64:14, 128:20, 
256:28, and 512:40.
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22.626.356400024.691.68540512

11.857.023200012.542.70028256

6.247.72160006.493.54120128

3.278.9480003.234.5611464

0.8810.6240001.635.9321032

0.8812.4020000.787.407716

0.4614.3810000.379.54358

0.2516.505000.1412.96134

time% erroriterationstime% erroreliteiterations

TABUHYBRID

GAP class Time in seconds (196MHz R10000)

Means over ten runs.



Uncapacitated facility location

 2

 4

 6

 8

 10

 12

 14

 16

.25 .5 1 2 4 8 16

tabu-ms

GAP class
Av

er
ag

e 
er

ro
r (

pe
rc

en
ta

ge
)

Mean time (seconds)

tabu

multistart

multistart+pr

hybrid



Uncapacitated facility location

52.6071.156400093.590.00940512
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14.3479.321600025.332.30720128

7.3483.67800013.7913.2791464

3.8686.8140007.1527.6101032

1.9791.1420003.4948.413716

1.0494.2210001.5965.26558

0.6097.065000.5882.83234

time% erroriterationstime% erroreliteiterations
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Means over ten runs.
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Paper

M.G.C. Resende and R.F. Werneck, A hybrid multi-start 
heuristic  for the uncapacitated facility location problem, 
AT&T Labs Research Technical Report TD-5RELRR, 
Florham Park, NJ,  Sept. 2003, revised Nov. 2004. To 
appear in European J. of Operational Research.

http://www.research.att.com/~mgcr/doc/guflp.pdf
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Software availability

Our software (local search, and hybrid heuristics for p-
median and facility location) as well as all test 
instances used in our studies are available for 
download at:

 http://www.research.att.com/~mgcr/popstar


