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Steiner Problem in Graphs
(SPG)

• Given
l  a graph G (V,E  ) with n vertices and

m edges
l  a subset S of the verticesV
l  edge weights w1, w1 , …, wm

• SPG: Find a subgraph of G  that
l is connected
l contains all vertices of S
l is of minimum weight
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Steiner Problem in Graphs

• Classic combinatorial optimization
problem ( Hwang, Richards, &
Winter, 1992)

• An example:
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Steiner Problem in Graphs
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Steiner Problem in Graphs:
Complexity

• NP-complete (Karp, 1972)
• Remains NP-complete for:

l grid graphs
l bipartite graphs
l chordal & split graphs

• Polynomial time algorithms exist
for special graphs, e.g.
l permutation graphs
l distance hereditary graphs
l homogeneous graphs
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Steiner Problem in Graphs:
Applications

• Telecommunications network
design

• VLSI design
• Computational biology

(phylogenetic trees & DNA codes)
• Reliability
• Examples of applications are found in

the books by Voss (1990), Hwang,
Richards, & Winter (1992), and Du &
Pardalos (1993).
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GRASP
Feo & Resende (1989, 1995)

best_obj = 0;
repeat many times{

x = grasp_construction( );
x = local_search(x);
if ( obj_function(x) < best_obj ){

x* = x;
best_obj = obj_function(x);

}
}

bias towards greediness
good diverse solutions
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GRASP construction

• repeat until solution is constructed
l For each candidate element

l apply a greedy function to element

l Rank all elements according to their
greedy function values

l Place well-ranked elements in a
restricted candidate list (RCL)

l Select an element from the RCL at
random & add it to the solution
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GRASP local search

• There is no guarantee that
constructed solutions are locally
optimal w.r.t. simple neighborhood
definitions.

• It is usually beneficial to apply a
local search algorithm to find a
locally optimal solution.
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GRASP local search

• Let
l N(x) be set of solutions in the

neighborhood of solution x.
l f(x) be the objective function value of

solution x.
l x0 be an initial feasible solution built

by the construction procedure

• Local search to find local minimum
while ( there exists y ε N(x) | f(y) < f(x) ){

x = y;
}
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Spanning tree based construction
procedure

• First, we describe the spanning
tree based construction procedure
l Based on distance network heuristic

(Choukhmane, 1978; Kou et al.,
1981; Plesník, 1981; Iwainsky et al.,
1986)

l Uses distance modification of
Mehlhorn (1988)

l Uses randomized variant of Kruskal’s
minimum spanning tree (MST)
algorithm (1956)
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Spanning tree based construction
procedure

• Distance network heuristic
1) Construct distance network DG (S )
2) Compute a MST of DG (S )
3) Construct graph TD , from the MST by

replacing each edge of the MST by a
shortest path in G  (obs: TD  can always be a
tree)

4) Consider GT , the subgraph of G  induced
by the vertices of TD .  Compute a MST of
GT  : TS .

5) Delete from TS  the non-terminals of degree
1, one at a time.
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Distance network heuristic
(DNH)
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Mehlhorn’s modification

• Mehlhorn adapted the DNH by replacing
the metric used to build the distance
matrix, improving its complexity.

• For all s ε S , N (s) contains the non-
terminal vertices of V  that are closer to
s  than to any other vertex in S .

• The graph G’ (S,E’ ) is defined, where
l  E’ = { (s,t ) | s,t ε S and      (u,v ) ε V
              such that u ε N (s), v ε N (t ) }
l w’ (s,t ) = min {d (s,u ) + w (u,v ) +
                          d (v,t )}

• MTS (G’ ) is also a MST (DG (S ))

∃
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Making DNH into a GRASP
construction method

• In Kruskal’s algorithm, instead of
selecting the least weight feasible
edge:
l Build a restricted candidate list (RCL)

consisting of low weight edges.
l Select, at random, an edge from the

RCL.

RCL = {                                          }( )e w e w w w∋ < + −( ) α

smallest weight largest weight

0 1≤ ≤α
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Local Search Procedures

• We consider two local search
methods:
l vertex based approach
l path based approach
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Vertex based local search

• The neighbors of TS  are all MST
obtained
l by adding to TS  a non-terminal vertex

not in TS

l by deleting from TS  a non-terminal
vertex that is in TS

• Weights used in MST computations
are of the original graph.



slide 18 GRASP for the Steiner Problem

Vertex based local search

• Given a MST T  of graph G , the
computation of a new MST of the
graph G + {v } can be done in
O(|V|) time (Minoux, 1990)

• To compute a MST of G − {v }, we
use Kruskal’s algorithm.
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Vertex based local search

LocalSearch (T )
{

for all v  not in T {
compute cost of MST T’  with v  inserted;

}
if cost(best T’ ) < cost(T ) {

T = best T’ ;
 LocalSearch(T );
}
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Vertex based local search

else{ /* if no improvement in insertion is possible */

 for all v  in T {
compute cost of MST T’  with v  deleted;

}
     if cost(best T’ ) < cost(T ) {

T = best T’ ;
 LocalSearch(T );
}

}



slide 21 GRASP for the Steiner Problem

Path based local search

• We use the key path exchange
local search of Verhoeven et al.
(1996)
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Path based local search

• We need two definitions
l A key vertex is a Steiner vertex with

degree at least 3
l A key path is a path in a Steiner tree

TS  of which all intermediate vertices
are Steiner vertices with degree 2 in
TS , and whose end vertices are
either terminal or key vertices.

• A Steiner tree has at most
l |S | − 2 key vertices
l  2 |S | − 3 key paths
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Path based construction
procedure

• A minimal Steiner tree consists of
key paths that are shortest paths
between key vertices or terminals.

key vertex

terminal vertex

non-terminal
       vertex

T = { l1, l2, l3 }

key path l1
l2 l3
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Path based local search

• Let
l T = {l1, l2, …, lK } be a Steiner tree.
l Ci  and C’i  be the 2 components that

result from the removal of li  from T .

• The neighborhood N (T ) =
      {Ci  U C’i  U sp (Ci ,C’i  ) | i = 1,2,…,K  }

l Observe that Ci  U C’i  U li  = T

• N (T ) contains at most 2|S|−3
neighbors.
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key vertex

terminal vertex

non-terminal
       vertex

T = { l1, l2, l3 }

key path l1
l2 l3

l2

sp

l1

sp 

l1
l2

sp

Neighbor 1:  remove l1 Neighbor 2:  remove l2

Neighbor 3:  remove l3

Neighborhood

T

N(T)
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Path based local search

LocalSearch (T = {l1, l2, …, lK } )

{ for (i =1,…,K ) {
if ( sp (Ci ,C’i  ) < length ( li ) ){

                T = T - { li } U sp (Ci ,C’i  )
                 if necessary{
                     update T  to be a set of key paths

                    }

                 LocalSearch (T )
           }
     }
}



slide 27 GRASP for the Steiner Problem

Path based local search

• Solutions only have neighbors with
lower or equal cost.

• A replacement of a key path in T
can lead to the same Steiner tree if
no shorter path exists.
l This implies that local minima have

no neighbors.
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Comparing the two local
search strategies

• Use John Beasley’s OR-Library
l OR-Library: series C & D
l reduced graphs using reduction tests of

Duin & Vogenant (1989)

• IBM RISC/6000 390
• C implementation

l IBM xlC compiler v. 3.1.3 with flags
−O3 −qstrict

• 512 GRASP iterations
• fixed RCL parameter α = 0.1
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Comparing the two local
search strategies

Series # opt avg err. max err. cpu time

C 18/20 0.17% 2.65% 52.23s

D 14/20 0.26% 2.24% 225.51s

Series # opt avg err. max err. cpu time

C 15/20 0.39% 3.13% 27.02s
D 10/20 0.54% 4.47% 114.60s
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Comparing the two local
search strategies

• Both variants find good solutions
• Optimal solutions found on large

portion of instances
• Average error < 1% off optimal
• Worst error < 5% off optimal
• Node-based neighborhood

produces best-quality solutions
• Computation time of node-based

neighborhood search is twice that
of path-based neighborhood search
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Hybrid local search

• repeat
l T = GRASP construction
l If T is a new Steiner tree      (hashing)

l T = path-based search (T)
l if w(T) < λ  best weight     (λ > 1)

l T = node-based search (T)
l if w(T) < best weight

l save tree:  T* = T
l best weight = w(T)
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Simple parallelization

• Most straightforward scheme for
parallel GRASP is distribution of
iterations to different processors.

• Care is required so that two
iterations never start off with same
random number generator seed.
l run generator and record all Ng seeds

in seed( ) array
l start iteration i  with seed seed(i )
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MPI implementation

master

slave slave slave

master passes
block of 
seeds to
slave

master waits for slave
to finish block

slave passes back
best solution of 
block to master

IBM SP 2 with 32 RS6000 390 processors 
with 256 Mbytes of memory each

We used p = 1,2,4,8,16 slave processors, each running a 
total of 512/p  GRASP iterations with λ = 1.01

OR-library test problems: Series C, D, & E
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Computational results:
hybrid local search

Series # opt avg. err. max err.

C 17/20 0.23% 3.03%
D 16/20 0.18% 2.19%

E 13/20 0.26% 3.09%

Series C:  500 nodes, 625 to 12500 edges,
and 5 to 250 terminal nodes

Series D:  1000 nodes, 1250 to 25000 edges,
and 5 to 500 terminal nodes

Series E:  2500 nodes, 3125 to 62500 edges,
and 5 to 1200 terminal nodes.
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Computational results:
hybrid local search

• Series C:
l all three sub-optimal solutions found

were off only by one from optimal

• Series D:
l two of the four sub-optimal solutions

found were off only by one from
optimal

• Series E:
l Of the seven sub-optimal solutions

found, six were less than 1% from
optimal
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State of art

• Parallel GRASP found 46 of 60
otimal solutions

• Two state of the art Tabu Search
implementations found:
l 42 (Ribeiro & Souza, to appear in

Networks)
l 44 (Bastos & Ribeiro, MIC99)
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Elapsed time
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Speedup
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Computational results:
hybrid local search

• For some instances,  speed up was
almost linear

• For some others, parallelization did
not contribute much (because of
memory structures used that made
sequential algorithm very fast)

• Main contribution of parallel
implementation was on notably
difficult instances

• With more than 16 processors, it
appears more speedup is possible


