
slide 1 GRASP for the Steiner Problem

A parallel GRASP for the
Steiner problem in graphs
using a hybrid local search

Maurício G. C. Resende
Algorithms & Optimization Research Dept.

AT&T Labs Research

Florham Park, New Jersey

mgcr@research.att.com
http://www.research.att.com/~mgcr

INFORMS Philadelphia Meeting
November 1999

Joint work with S. Martins, C. C. Ribeiro, and P. M. Pardalos

slide 2 GRASP for the Steiner Problem

Steiner Problem in Graphs
(SPG)

• Given
l a graph G (V,E) with n vertices and

m edges
l a subset S of the verticesV
l edge weights w1, w1 , …, wm

• SPG: Find a subgraph of G that
l is connected
l contains all vertices of S
l is of minimum weight

slide 3 GRASP for the Steiner Problem

Steiner Problem in Graphs

• Classic combinatorial optimization
problem (Hwang, Richards, &
Winter, 1992)

• An example:

Terminal
node from
set S

1
2

2

4

2

1
2

3

32

slide 4 GRASP for the Steiner Problem

Steiner Problem in Graphs

1
2

2

4

2

1
2

3

32

4
1

2

2
2

1
2

3

32

total weight = 9

total weight = 8
(optimum)

slide 5 GRASP for the Steiner Problem

Steiner Problem in Graphs:
Complexity

• NP-complete (Karp, 1972)
• Remains NP-complete for:

l grid graphs
l bipartite graphs
l chordal & split graphs

• Polynomial time algorithms exist
for special graphs, e.g.
l permutation graphs
l distance hereditary graphs
l homogeneous graphs

slide 6 GRASP for the Steiner Problem

Steiner Problem in Graphs:
Applications

• Telecommunications network
design

• VLSI design
• Computational biology

(phylogenetic trees & DNA codes)
• Reliability
• Examples of applications are found in

the books by Voss (1990), Hwang,
Richards, & Winter (1992), and Du &
Pardalos (1993).

slide 7 GRASP for the Steiner Problem

GRASP
Feo & Resende (1989, 1995)

best_obj = 0;
repeat many times{

x = grasp_construction();
x = local_search(x);
if (obj_function(x) < best_obj){

x* = x;
best_obj = obj_function(x);

}
}

bias towards greediness
good diverse solutions

slide 8 GRASP for the Steiner Problem

GRASP construction

• repeat until solution is constructed
l For each candidate element

l apply a greedy function to element

l Rank all elements according to their
greedy function values

l Place well-ranked elements in a
restricted candidate list (RCL)

l Select an element from the RCL at
random & add it to the solution

slide 9 GRASP for the Steiner Problem

GRASP local search

• There is no guarantee that
constructed solutions are locally
optimal w.r.t. simple neighborhood
definitions.

• It is usually beneficial to apply a
local search algorithm to find a
locally optimal solution.

slide 10 GRASP for the Steiner Problem

GRASP local search

• Let
l N(x) be set of solutions in the

neighborhood of solution x.
l f(x) be the objective function value of

solution x.
l x0 be an initial feasible solution built

by the construction procedure

• Local search to find local minimum
while (there exists y ε N(x) | f(y) < f(x)){

x = y;
}

slide 11 GRASP for the Steiner Problem

Spanning tree based construction
procedure

• First, we describe the spanning
tree based construction procedure
l Based on distance network heuristic

(Choukhmane, 1978; Kou et al.,
1981; Plesník, 1981; Iwainsky et al.,
1986)

l Uses distance modification of
Mehlhorn (1988)

l Uses randomized variant of Kruskal’s
minimum spanning tree (MST)
algorithm (1956)

slide 12 GRASP for the Steiner Problem

Spanning tree based construction
procedure

• Distance network heuristic
1) Construct distance network DG (S)
2) Compute a MST of DG (S)
3) Construct graph TD , from the MST by

replacing each edge of the MST by a
shortest path in G (obs: TD can always be a
tree)

4) Consider GT , the subgraph of G induced
by the vertices of TD . Compute a MST of
GT : TS .

5) Delete from TS the non-terminals of degree
1, one at a time.

slide 13 GRASP for the Steiner Problem

Distance network heuristic
(DNH)

5

2

7

4

3

2

3

6
4

2 1

1 5G 4

5 7

DG (S)

5

2

7

4

3

2

3

6
4

2 1

1 5

5

2

2

3

6
4

2 1

1 5

TD
TS

optimal Steiner tree

slide 14 GRASP for the Steiner Problem

Mehlhorn’s modification

• Mehlhorn adapted the DNH by replacing
the metric used to build the distance
matrix, improving its complexity.

• For all s ε S , N (s) contains the non-
terminal vertices of V that are closer to
s than to any other vertex in S .

• The graph G’ (S,E’) is defined, where
l E’ = { (s,t) | s,t ε S and (u,v) ε V
 such that u ε N (s), v ε N (t) }
l w’ (s,t) = min {d (s,u) + w (u,v) +
 d (v,t)}

• MTS (G’) is also a MST (DG (S))

∃

slide 15 GRASP for the Steiner Problem

Making DNH into a GRASP
construction method

• In Kruskal’s algorithm, instead of
selecting the least weight feasible
edge:
l Build a restricted candidate list (RCL)

consisting of low weight edges.
l Select, at random, an edge from the

RCL.

RCL = { }()e w e w w w∋ < + −() α

smallest weight largest weight

0 1≤ ≤α

slide 16 GRASP for the Steiner Problem

Local Search Procedures

• We consider two local search
methods:
l vertex based approach
l path based approach

slide 17 GRASP for the Steiner Problem

Vertex based local search

• The neighbors of TS are all MST
obtained
l by adding to TS a non-terminal vertex

not in TS

l by deleting from TS a non-terminal
vertex that is in TS

• Weights used in MST computations
are of the original graph.

slide 18 GRASP for the Steiner Problem

Vertex based local search

• Given a MST T of graph G , the
computation of a new MST of the
graph G + {v } can be done in
O(|V|) time (Minoux, 1990)

• To compute a MST of G − {v }, we
use Kruskal’s algorithm.

slide 19 GRASP for the Steiner Problem

Vertex based local search

LocalSearch (T)
{

for all v not in T {
compute cost of MST T’ with v inserted;

}
if cost(best T’) < cost(T) {

T = best T’ ;
 LocalSearch(T);
}

slide 20 GRASP for the Steiner Problem

Vertex based local search

else{ /* if no improvement in insertion is possible */

 for all v in T {
compute cost of MST T’ with v deleted;

}
 if cost(best T’) < cost(T) {

T = best T’ ;
 LocalSearch(T);
}

}

slide 21 GRASP for the Steiner Problem

Path based local search

• We use the key path exchange
local search of Verhoeven et al.
(1996)

slide 22 GRASP for the Steiner Problem

Path based local search

• We need two definitions
l A key vertex is a Steiner vertex with

degree at least 3
l A key path is a path in a Steiner tree

TS of which all intermediate vertices
are Steiner vertices with degree 2 in
TS , and whose end vertices are
either terminal or key vertices.

• A Steiner tree has at most
l |S | − 2 key vertices
l 2 |S | − 3 key paths

slide 23 GRASP for the Steiner Problem

Path based construction
procedure

• A minimal Steiner tree consists of
key paths that are shortest paths
between key vertices or terminals.

key vertex

terminal vertex

non-terminal
 vertex

T = { l1, l2, l3 }

key path l1
l2 l3

slide 24 GRASP for the Steiner Problem

Path based local search

• Let
l T = {l1, l2, …, lK } be a Steiner tree.
l Ci and C’i be the 2 components that

result from the removal of li from T .

• The neighborhood N (T) =
 {Ci U C’i U sp (Ci ,C’i) | i = 1,2,…,K }

l Observe that Ci U C’i U li = T

• N (T) contains at most 2|S|−3
neighbors.

slide 25 GRASP for the Steiner Problem

key vertex

terminal vertex

non-terminal
 vertex

T = { l1, l2, l3 }

key path l1
l2 l3

l2

sp

l1

sp

l1
l2

sp

Neighbor 1: remove l1 Neighbor 2: remove l2

Neighbor 3: remove l3

Neighborhood

T

N(T)

slide 26 GRASP for the Steiner Problem

Path based local search

LocalSearch (T = {l1, l2, …, lK })

{ for (i =1,…,K) {
if (sp (Ci ,C’i) < length (li)){

 T = T - { li } U sp (Ci ,C’i)
 if necessary{
 update T to be a set of key paths

 }

 LocalSearch (T)
 }
 }
}

slide 27 GRASP for the Steiner Problem

Path based local search

• Solutions only have neighbors with
lower or equal cost.

• A replacement of a key path in T
can lead to the same Steiner tree if
no shorter path exists.
l This implies that local minima have

no neighbors.

slide 28 GRASP for the Steiner Problem

Comparing the two local
search strategies

• Use John Beasley’s OR-Library
l OR-Library: series C & D
l reduced graphs using reduction tests of

Duin & Vogenant (1989)

• IBM RISC/6000 390
• C implementation

l IBM xlC compiler v. 3.1.3 with flags
−O3 −qstrict

• 512 GRASP iterations
• fixed RCL parameter α = 0.1

slide 29 GRASP for the Steiner Problem

Comparing the two local
search strategies

Series # opt avg err. max err. cpu time

C 18/20 0.17% 2.65% 52.23s

D 14/20 0.26% 2.24% 225.51s

Series # opt avg err. max err. cpu time

C 15/20 0.39% 3.13% 27.02s
D 10/20 0.54% 4.47% 114.60s

ve
rte

x-
ba

se
d

lo
ca

l s
ea

rc
h

pa
th

-b
as

ed
 lo

ca
l s

ea
rc

h

slide 30 GRASP for the Steiner Problem

Comparing the two local
search strategies

• Both variants find good solutions
• Optimal solutions found on large

portion of instances
• Average error < 1% off optimal
• Worst error < 5% off optimal
• Node-based neighborhood

produces best-quality solutions
• Computation time of node-based

neighborhood search is twice that
of path-based neighborhood search

slide 31 GRASP for the Steiner Problem

Hybrid local search

• repeat
l T = GRASP construction
l If T is a new Steiner tree (hashing)

l T = path-based search (T)
l if w(T) < λ best weight (λ > 1)

l T = node-based search (T)
l if w(T) < best weight

l save tree: T* = T
l best weight = w(T)

slide 32 GRASP for the Steiner Problem

Simple parallelization

• Most straightforward scheme for
parallel GRASP is distribution of
iterations to different processors.

• Care is required so that two
iterations never start off with same
random number generator seed.
l run generator and record all Ng seeds

in seed() array
l start iteration i with seed seed(i)

slide 33 GRASP for the Steiner Problem

MPI implementation

master

slave slave slave

master passes
block of
seeds to
slave

master waits for slave
to finish block

slave passes back
best solution of
block to master

IBM SP 2 with 32 RS6000 390 processors
with 256 Mbytes of memory each

We used p = 1,2,4,8,16 slave processors, each running a
total of 512/p GRASP iterations with λ = 1.01

OR-library test problems: Series C, D, & E

slide 34 GRASP for the Steiner Problem

Computational results:
hybrid local search

Series # opt avg. err. max err.

C 17/20 0.23% 3.03%
D 16/20 0.18% 2.19%

E 13/20 0.26% 3.09%

Series C: 500 nodes, 625 to 12500 edges,
and 5 to 250 terminal nodes

Series D: 1000 nodes, 1250 to 25000 edges,
and 5 to 500 terminal nodes

Series E: 2500 nodes, 3125 to 62500 edges,
and 5 to 1200 terminal nodes.

slide 35 GRASP for the Steiner Problem

Computational results:
hybrid local search

• Series C:
l all three sub-optimal solutions found

were off only by one from optimal

• Series D:
l two of the four sub-optimal solutions

found were off only by one from
optimal

• Series E:
l Of the seven sub-optimal solutions

found, six were less than 1% from
optimal

slide 36 GRASP for the Steiner Problem

State of art

• Parallel GRASP found 46 of 60
otimal solutions

• Two state of the art Tabu Search
implementations found:
l 42 (Ribeiro & Souza, to appear in

Networks)
l 44 (Bastos & Ribeiro, MIC99)

slide 37 GRASP for the Steiner Problem

Elapsed time

1

1 0

100

1000

1 0000

0 2 4 6 8 1 0 12 1 4 16

¦
¦

¦
¦

¦

+

+
+

+
+

²
²

²
² ²

Series E

Series D

Series C

Number of processors

Ti
m

e
(s

ec
on

ds
)

slide 38 GRASP for the Steiner Problem

Speedup

1

2

3

4

5

6

7

8

9

0 2 4 6 8 1 0 1 2 1 4 1 6
¦

¦

¦

¦

¦

+

+

+

+

+

²
²

²

²

²

Series E

Series D

Series C

Number of processors

Speedu
p

slide 39 GRASP for the Steiner Problem

Computational results:
hybrid local search

• For some instances, speed up was
almost linear

• For some others, parallelization did
not contribute much (because of
memory structures used that made
sequential algorithm very fast)

• Main contribution of parallel
implementation was on notably
difficult instances

• With more than 16 processors, it
appears more speedup is possible

