GRASP with path-relinking for the Quadratic Assignment Problem

Mauricio G. C. Resende
Algorithms & Optimization
Research Department
AT&T Labs Research
Florham Park, New Jersey
USA
mgcr@att.com
http://www.research.att.com/~mgcr

Talk given at MIC 2003 in Kyoto
on August 26, 2003
Summary

• The quadratic assignment problem (QAP)
• GRASP for QAP
• Path-relinking for QAP
• Computational results
• Concluding remarks

Joint work with Carlos Oliveira and Panos Pardalos (U. of Florida)
Quadratic assignment problem (QAP)

- Given N facilities f_1, f_2, \ldots, f_N and N locations l_1, l_2, \ldots, l_N
- Let $A_{N \times N} = (a_{i,j})$ be a positive real matrix where $a_{i,j}$ is the flow between facilities f_i and f_j
- Let $B_{N \times N} = (b_{i,j})$ be a positive real matrix where $b_{i,j}$ is the distance between locations l_i and l_j
Quadratic assignment problem (QAP)

- Let \(p: \{1,2,\ldots,N\} \rightarrow \{1,2,\ldots,N\} \) be an assignment of the \(N \) facilities to the \(N \) locations.
- Define the cost of assignment \(p \) to be

\[
c(p) = \sum_{i=1}^{N} \sum_{j=1}^{N} a_{i,j} b_{p(i),p(j)}
\]

- QAP: Find a permutation vector \(p \in \prod_{N} \) that minimizes the assignment cost:

\[
\min c(p): \text{subject to } p \in \prod_{N}
\]
Quadratic assignment problem (QAP)

locations and distances

facilities and flows

cost of assignment: \(10 \times 1 + 30 \times 10 + 40 \times 5 = 510\)
Quadratic assignment problem (QAP)

cost of assignment: $10 \times 5 + 30 \times 10 + 40 \times 1 = 390$
Quadratic assignment problem (QAP)

cost of assignment: $10 \times 10 + 30 \times 5 + 40 \times 1 = 290$

Optimal!
GRASP for QAP

- **GRASP** is a multi-start metaheuristic: greedy randomized construction, followed by local search (Feo & Resende, 1989, 1995; Festa & Resende, 2002; Resende & Ribeiro, 2003)

- **GRASP for QAP**
 - Li, Pardalos, & Resende (1994): GRASP for QAP
 - Resende, Pardalos, & Li (1996): Fortran subroutines for dense QAPs
 - Pardalos, Pitsoulis, & Resende (1997): Fortran subroutines for sparse QAPs
 - Fleurent & Glover (1999): memory mechanism in construction
GRASP for QAP

repeat {
 x = GreedyRandomizedConstruction(x);
 x = LocalSearch(x);
 save x if best so far;
}

return x;
Construction

• Stage 1: make two assignments \{f_i \rightarrow l_k ; f_j \rightarrow l_l\}

• Stage 2: make remaining \(N-2\) assignments of facilities to locations, one facility/location pair at a time
Stage 1 construction

- sort distances $b_{i,j}$ in increasing order:
 \[b_{i(1),j(1)} \leq b_{i(2),j(2)} \leq \cdots \leq b_{i(N),j(N)} \cdot \]

- sort flows $a_{k,l}$ in decreasing order:
 \[a_{k(1),l(1)} \geq a_{k(2),l(2)} \geq \cdots \geq a_{k(N),l(N)} \cdot \]

- sort products:
 \[a_{k(1),l(1)} \cdot b_{i(1),j(1)}, a_{k(2),l(2)} \cdot b_{i(2),j(2)}, \ldots, a_{k(N),l(N)} \cdot b_{i(N),j(N)} \]

- among smallest products, select $a_{k(q),l(q)} \cdot b_{i(q),j(q)}$ at random:
 corresponding to assignments \(\{ f_{k(q)} \rightarrow l_{i(q)} ; f_{l(q)} \rightarrow l_{j(q)} \} \)
Stage 2 construction

- If $\Omega = \{(i_1,k_1),(i_2,k_2), \ldots, (i_q,k_q)\}$ are the q assignments made so far, then
- Cost of assigning $f_j \rightarrow l_1$ is

\[
c_{j,l_1} = \sum_{i,k \in \Gamma} a_{i,j} b_{k,l_1}
\]

- Of all possible assignments, one is selected at random from the assignments of smallest costs and added to Ω

Sped up in Pardalos, Pitsoulis, & Resende (1997) for QAPs with sparse A or B matrices.
Swap based local search

a) For all pairs of assignments \(\{f_i \rightarrow l_k ; f_j \rightarrow l_j\} \), test if swapped assignment \(\{f_i \rightarrow l_j ; f_j \rightarrow l_k\} \) improves solution.

b) If so, make swap and return to step (a)

repeat (a)-(b) until no swap improves current solution
Path-relinking

- Intensification strategy exploring trajectories connecting elite solutions: Glover (1996)
- Originally proposed in the context of tabu search and scatter search.
- Paths in the solution space leading to other elite solutions are explored in the search for better solutions:
 - selection of moves that introduce attributes of the guiding solution into the current solution
Path-relinking

- Exploration of trajectories that connect high quality (elite) solutions:
Path-relinking

- Path is generated by selecting moves that introduce in the initial solution attributes of the guiding solution.
- At each step, all moves that incorporate attributes of the guiding solution are evaluated and the best move is selected:
Path-relinking

Combine solutions x and y

\[\Delta(x,y) \]: symmetric difference between x and y

while \((|\Delta(x,y)| > 0) \) {
 evaluate moves corresponding in \(\Delta(x,y) \)
 make best move
 update \(\Delta(x,y) \)
}

Path-relinking
GRASP with path-relinking

- Originally used by Laguna and Martí (1999).
- Maintains a set of elite solutions found during GRASP iterations.
- After each GRASP iteration (construction and local search):
 - Use GRASP solution as initial solution.
 - Select an elite solution uniformly at random: guiding solution.
 - Perform path-relinking between these two solutions.
GRASP with path-relinking

Repeat for Max_Iterations:

Construct a greedy randomized solution.
Use local search to improve the constructed solution.
Apply path-relinking to further improve the solution.
Update the pool of elite solutions.
Update the best solution found.
PR for QAP (permutation vectors)

Initial solution

1 4 3 5 2 6

target solution

1 2 4 5 3 6
PR for QAP (permutation vectors)

Initial solution

1 4 3 5 2 6

symmetric difference

target solution

1 2 4 5 3 6
PR for QAP (permutation vectors)

Initial solution

```
1 4 3 5 2 6
```

moves: swap 4 & 2 then 3 & 4*
swap 4 & 3 then 2 & 3

* best improvement

target solution

```
1 2 4 5 3 6
```
PR for QAP (permutation vectors)

Initial solution

swap 4 & 2
PR for QAP (permutation vectors)

Initial solution

swap 3 & 4

target solution
Path-relinking for QAP

If swap improves solution: local search is applied.

If local min improves incumbent, it is saved.
Path-relinking for QAP

Results of path relinking: S^*

If $c(S^*) < \min \{c(S), c(T)\}$, and $c(S^*) \leq c(S^i)$, for $i=1,\ldots,N$, i.e. S^* is best solution in path, then S^* is returned.
Path-relinking for QAP

S^i is a local minimum w.r.t. PR:
$c(S^i) < c(S^{i-1})$ and $c(S^i) < c(S^{i+1})$, for all $i=1,\ldots,N$.

If path-relinking does not improve (S,T), then if S^i is a best local min w.r.t. PR: return $S^* = S^i$

If no local min exists, return $S^* = \text{argmin}\{S,T\}$
PR pool management

- S^* is candidate for inclusion in pool of elite solutions (\mathcal{P})
- If $c(S^*) < c(S^e)$, for all $S^e \in \mathcal{P}$, then S^* is put in \mathcal{P}
- Else, if $c(S^*) < \max\{c(S^e), S^e \in \mathcal{P}\}$ and $|\Delta(S^*, S^e)| \geq 3$, for all $S^e \in \mathcal{P}$, then S^* is put in \mathcal{P}
- If pool is full, remove $\arg\min \{|\Delta(S^*, S^e)|, \forall S^e \in \mathcal{P} \text{ s.t. } c(S^e) \geq c(S^*)\}$
PR pool management

S is initial solution for path-relinking: favor choice of target solution T with large symmetric difference with S.

This leads to longer paths in path-relinking.

Probability of choosing $S^e \in P$:

$$p(S^e) = \frac{|\Delta(S, S^e)|}{\sum_{R \in P} |\Delta(S, R)|}$$
Experimental results

- Compare GRASP with and without path-relinking.
- New GRASP code in C outperforms old Fortran codes: we use same code to compare algorithms.
- All QAPLIB (Burkhard, Karisch, & Rendl, 1991) instances of size $N \leq 40$
- 100 independent runs of each algorithm, recording CPU time to find the best known solution for instance.
Experimental results

- SGI Challenge computer (196 MHz R10000 processors (28) and 7 Gb memory)
- Single processor used for each run
- GRASP RCL parameter α chosen at random in interval $[0,1]$ at each GRASP iteration.
- Size of elite set: 30
- Path-relinking done in both directions (S to T to S)
- Care taken to ensure that GRASP and GRASP with path-relinking iterations are in sync
Random variable time-to-target-solution value fits a two-parameter exponential distribution (Aiex, Resende, & Ribeiro, 2002).
nug14 (N=14; look4=1014)
nug17 (N=17; look4=1732)
nug22 (N=22; look4=3596)
nug25 (N=25; look4=3744)
nug30 (N=30; look4=6124)
lipa30a (N=30; look4=13178)
kra30b (N=30; look4=91420)
tho30 (N=30; look4=149936)
lipa40a (N=50; look4=31538)
Concluding remarks

• New heuristic for the QAP is described.
• Path-relinking shown to improve performance of GRASP on all instances.
• Final paper will compare GRASP+PR with other heuristics for QAP on larger instances from QAPLIB.
• We intend to make the code available on the website http://www.research.att.com/~mgcr