GRASP with evolutionary path-relinking for the antibandwidth problem

VIII Metaheuristics International Conference (MIC 2009) Hamburg, Germany ~ July 13-16, 2009

Mauricio G. C. Resende AT&T Labs Research Florham Park, New Jersey mgcr@att.com

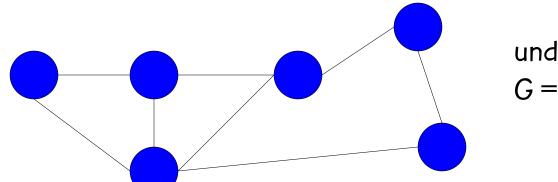
Joint work with A. Duarte, R. Martí, & R. Silva

Summary

- Antibandwidth
- Integer programming formulation
- GRASP construction
- Local search
- GRASP with evolutionary path-relinking
- Experimental results
- Concluding remarks

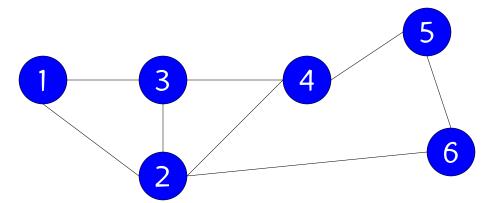
- Given an undirected graph G = (V,E), where
 - -V is the set of nodes (n = |V|)
 - E is the set of edges (m = |E|)
- A labeling f of V is a one-to-one mapping of {1,2,...,n} onto V.
 - Each vertex v ∈ V has a unique label $f(v) ∈ \{1,2,...,n\}$

- Given an undirected graph G = (V,E), where
 - -V is the set of nodes (n = |V|)
 - E is the set of edges (m = |E|)
- A labeling f of V is a one-to-one mapping of {1,2,...,n} onto V.
 - Each vertex v ∈ V has a unique label $f(v) ∈ \{1,2,...,n\}$



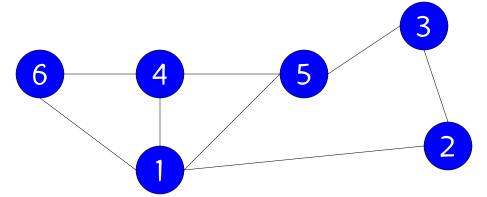
undirected graph G = (V.E)

- Given an undirected graph G = (V,E), where
 - -V is the set of nodes (n = |V|)
 - E is the set of edges (m = |E|)
- A labeling f of V is a one-to-one mapping of {1,2,...,n} onto V.
 - Each vertex v ∈ V has a unique label $f(v) ∈ \{1,2,...,n\}$



undirected graph G = (V,E) with alabeling f

- Given an undirected graph G = (V,E), where
 - -V is the set of nodes (n = |V|)
 - E is the set of edges (m = |E|)
- A labeling f of V is a one-to-one mapping of {1,2,...,n} onto V.
 - Each vertex v ∈ V has a unique label $f(v) ∈ \{1,2,...,n\}$

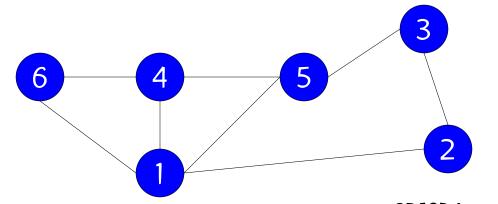


undirected graph G = (V,E) with another labeling f

Given G and f, the antibandwidth AB_f(v) of node v is smallest difference between f(v) and the labels of all of the nodes adjacent to v, i.e.

$$-AB_{f}(v) = \min \{ |f(v) - f(u)| : u \in N(v) \}$$

– where N(v) is the set of nodes adjacent to v

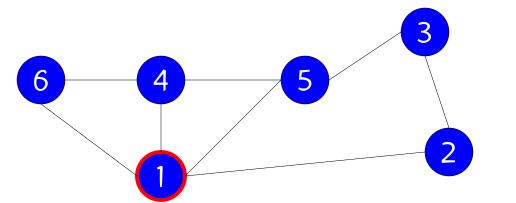


undirected graph G = (V,E) with a labeling f

Given G and f, the antibandwidth AB_f(v) of node v is smallest difference between f(v) and the labels of all of the nodes adjacent to v, i.e.

$$= AB_f(v) = min \{ |f(v) - f(u)| : u \in N(v) \}$$

– where N(v) is the set of nodes adjacent to v

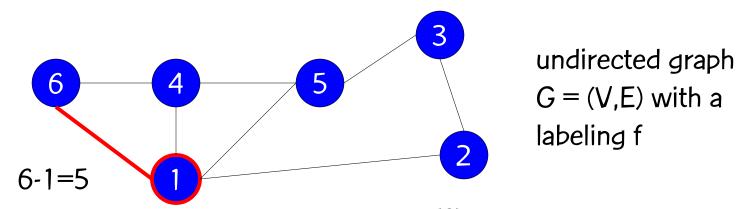


undirected graph G = (V,E) with a labeling f

• Given G and f, the antibandwidth AB_f(v) of node v is smallest difference between f(v) and the labels of all of the nodes adjacent to v, i.e.

$$= AB_f(v) = min \{ |f(v) - f(u)| : u \in N(v) \}$$

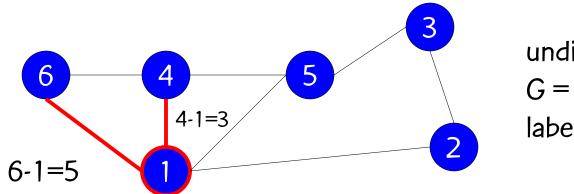
– where N(v) is the set of nodes adjacent to v



Given G and f, the antibandwidth AB_f(v) of node v is smallest difference between f(v) and the labels of all of the nodes adjacent to v, i.e.

$$-AB_{f}(v) = \min \{ |f(v) - f(u)| : u \in N(v) \}$$

– where N(v) is the set of nodes adjacent to v

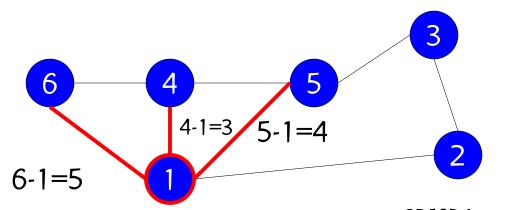


undirected graph G = (V,E) with a labeling f

Given G and f, the antibandwidth AB_f(v) of node v is smallest difference between f(v) and the labels of all of the nodes adjacent to v, i.e.

$$-AB_{f}(v) = min \{ |f(v) - f(u)| : u \in N(v) \}$$

– where N(v) is the set of nodes adjacent to v

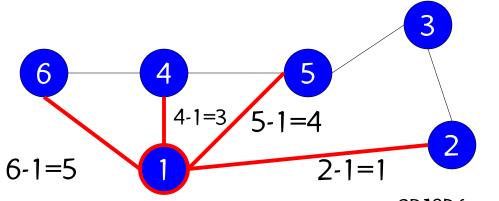


undirected graph G = (V,E) with a
labeling f

Given G and f, the antibandwidth AB_f(v) of node v is smallest difference between f(v) and the labels of all of the nodes adjacent to v, i.e.

$$= AB_f(v) = min \{ |f(v) - f(u)| : u \in N(v) \}$$

– where N(v) is the set of nodes adjacent to v

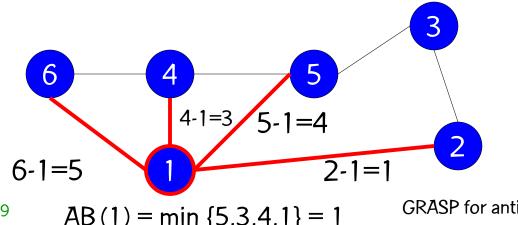


undirected graph G = (V,E) with a labeling f

 Given G and f, the antibandwidth AB_e(v) of node v is smallest difference between f(v) and the labels of all of the nodes adjacent to v, i.e.

$$= AB_f(v) = \min \{ |f(v) - f(u)| : u \in N(v) \}$$

where N(v) is the set of nodes adjacent to v



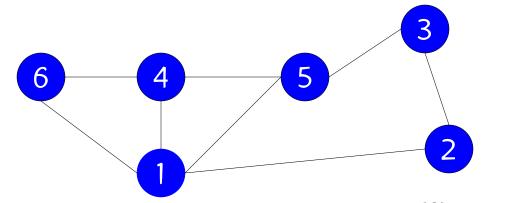
undirected graph G = (V,E) with a labeling f

GRASP for antibandwidth

• Given G and f, the antibandwidth AB_f(G) of f is smallest antibandwidth over all nodes in V, i.e.

$$-AB_{f}(G) = \min \{AB_{f}(v) : v \in V\}$$

– where N(v) is the set of nodes adjacent to v

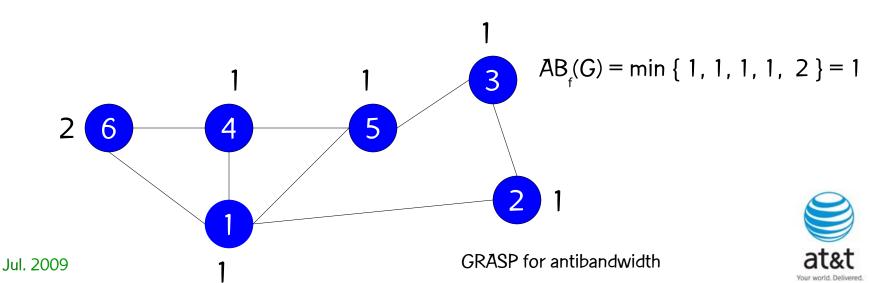


undirected graph G = (V,E) with a labeling f

• Given G and f, the antibandwidth AB_f(G) of f is smallest antibandwidth over all nodes in V, i.e.

$$-AB_{f}(G) = \min \{AB_{f}(v) : v \in V\}$$

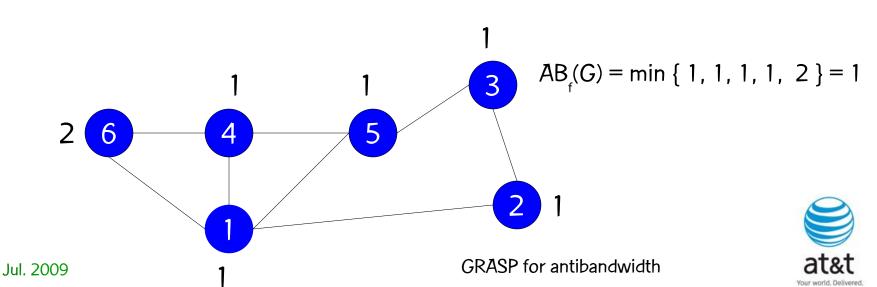
– where N(v) is the set of nodes adjacent to v



• Given G, the antibandwidth AB(G) of G is largest antibandwidth over all possible labelings, i.e.

$$-AB(G) = \max \{AB_f(G) : f \in \Pi_n\}$$

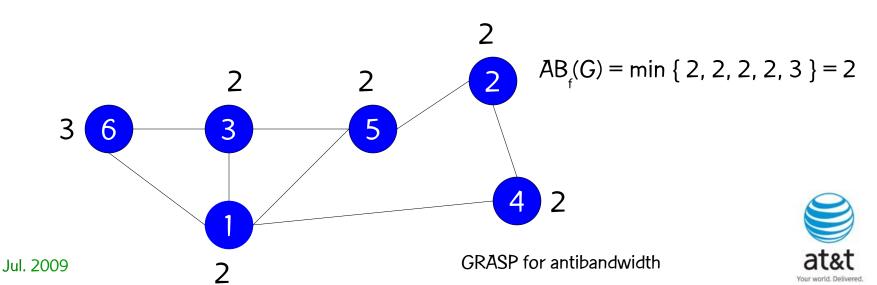
– where Π_n is the set of all permutations of $\{1, 2, ..., n\}$



• Given G, the antibandwidth AB(G) of G is largest antibandwidth over all possible labelings, i.e.

$$-AB(G) = \max \{AB_f(G) : f \in \Pi_n\}$$

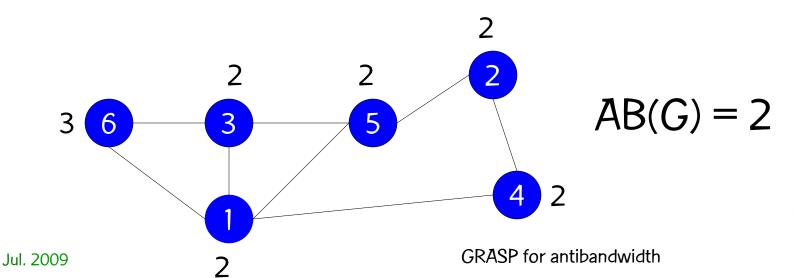
– where Π_n is the set of all permutations of $\{1, 2, ..., n\}$



• Given G, the antibandwidth AB(G) of G is largest antibandwidth over all possible labelings, i.e.

$$-AB(G) = \max \{AB_f(G) : f \in \Pi_n\}$$

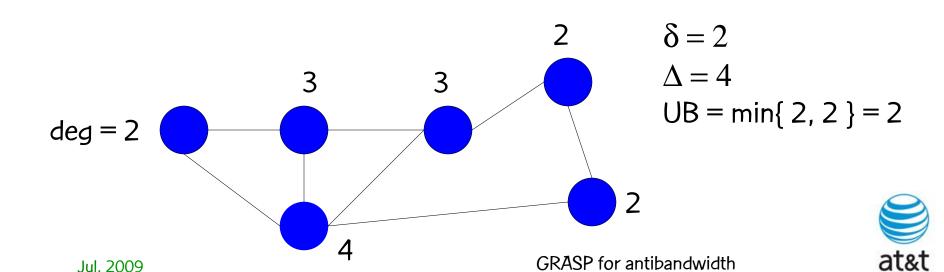
– where Π_n is the set of all permutations of $\{1, 2, ..., n\}$



- NP-hard (Leung et al., 1984)
- Special cases can be solved in polynomial time,
 e.g. complements of intervals, arborescent
 comparability, and on threshold graphs (Raspaud et al., 2008)

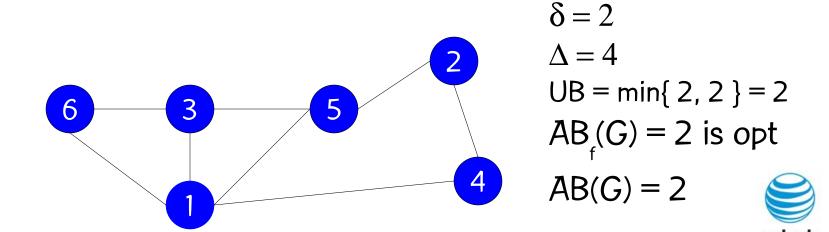
- Yixum and Jinjiang (2003) proposed the upper bound: min { floor($(n \delta + 1)/2$), $n \Delta$ }, where
 - $-\delta$ is the smallest degree over all $v \in V$
 - $-\Delta$ is the largest degree over all $v \in V$

- Yixum and Jinjiang (2003) proposed the upper bound: min { floor($(n \delta + 1)/2$), $n \Delta$ }, where
 - $-\delta$ is the smallest degree over all $v \in V$
 - $-\Delta$ is the largest degree over all $v \in V$



Jul. 2009

- Yixum and Jinjiang (2003) proposed the upper bound: min { floor($(n \delta + 1)/2$), $n \Delta$ }, where
 - $-\delta$ is the smallest degree over all $v \in V$
 - $-\Delta$ is the largest degree over all $v \in V$



GRASP for antibandwidth

- Let X_{ik} be a binary variable that takes on the value 1 if and only if f(i) = k, i.e. node i takes label k.
- Define $l_i = f(i) \in \{1, 2, ..., n\}$ to be the label of node i.
- Finally, let $b = AB_f(G) = \min\{|f(u) f(v)| : (u, v) \in E\}$ be the antibandwidth of labeling f.
- In the antibandwidth problem we want to determine the labeling f^* that maximizes b.

- Objective: maximize b
- Constraints:
 - One label is assigned to each node:

$$\sum_{i=1}^{n} x_{ik} = 1, \quad \forall k = 1, \dots, n$$

- Objective: maximize b
- Constraints:
 - One node is assigned to each label:

$$\sum_{k=1}^{n} x_{ik} = 1, \quad \forall i = 1, \dots, n$$

- Objective: maximize b
- Constraints:
 - $_$ Each label l_i is a function of the binary variables x_{ik} :

$$\sum_{k=1}^{n} k \cdot x_{ik} = l_i, \quad \forall i = 1, \dots, n$$

- Objective: maximize b
- Constraints:
 - Require that $b = \min\{|l_i l_j|: (i, j) \in E\}$:

$$b \leq |l_i - l_j|, (i, j) \in E$$

- Objective: maximize b
- Constraints:
 - Binary variables x_{ik} can only take values 0 or 1:

$$x_{ik} \in \{0,1\}, \forall i,k = 1,...,n$$

- Objective: maximize b
- Constraints:
 - Labels l_i can only take on values $\{1, ..., n\}$:

$$l_i \in \{1, 2, ..., n\}, \forall i = 1, ..., n$$

- Objective: maximize b
- Constraints $b \le |l_i l_j|, (i, j) \in E$ are nonlinear:
 - If $l_i \ge l_j$ then $b \le l_i l_j$
 - Otherwise, $b \le -(l_i l_j)$
 - Introduce two binary variables to indicate case:
 - If $l_i \ge l_j$ then $y_{ij} = 0$ and $z_{ij} = 1$
 - Otherwise, $y_{ij} = 1$ and $z_{ij} = 0$

- Objective: maximize b
- Constraints $b \le |l_i l_j|, (i, j) \in E$ become:

$$b - (l_i - l_j) \le 2y_{ij}(n-1), \forall (i,j) \in E$$

$$b + (l_i - l_j) \le 2z_{ij}(n-1), \forall (i,j) \in E$$

$$b + (l_i - l_j) \le 2z_{ij}(n-1), \forall (i,j) \in E$$

$$y_{ij} + z_{ij} = 1, \forall (i, j) \in E$$

$$b \ge 1$$

 $l_i \ge l_j$ then $y_{ij} = 0$ $z_{ij} = 1$

 $l_i < l_j$ then $y_{ii} = 1$ $Z_{ij} = 0$

$$\max b$$

$$\forall k$$

$$\sum_{ik} x_{ik} = 1, \quad \forall k = 1, \dots, n$$

$$\sum_{i=1}^{n} x_{ik} = 1, \quad \forall i = 1, \dots, n$$

$$\lambda_{ik}$$
 – 1,

$$k \cdot x_{-} = 1$$

$$\sum k \cdot x_{ik} = l_i, \quad \forall i = 1, \dots, n$$

$$b - (l_i - l_j) \le 2y_{ij}(n-1), \forall (i,j) \in E$$

$$b + (l_i - l_j) \le 2z_{ii}(n-1), \forall (i,j) \in E$$

$$y_{ij} + z_{ij} = 1, \forall (i, j) \in E$$

$$b \ge 1$$

$$x_{ik} \in \{0,1\}, \forall (i,k) \in E$$

$$l_i \in \{1, 2, ... n\}, \forall i = 1, 2, ... n$$

$$y_{ik} \in \{0,1\}, \forall (i,k) \in E$$

$$z_{ik} \in \{0,1\}, \forall (i,k) \in E$$

max l

$$b \ge 1$$

$$\sum_{ik}^{n} x_{ik} = 1, \quad \forall k = 1, \dots, n$$

$$x_{ik} \in \{0,1\}, \forall (i,k) \in E$$

$$\sum_{i=1}^{n} x_{ik} = 1, \quad \forall i = 1, \dots, n$$

$$\sum_{i=1}^{n} k \cdot x_{ik} = l_i, \quad \forall i = 1, \dots, n$$

$$l_i \in \{1, 2, ... n\}, \forall i = 1, 2, ... n$$

$$b - (l_i - l_j) \le 2y_{ij}(n-1), \forall (i,j) \in E$$

$$y_{ik} \in \{0,1\}, \forall (i,k) \in E$$

$$b + (l_i - l_j) \le 2z_{ij}(n-1), \forall (i,j) \in E$$

$$z_{ik} \in \{0,1\}, \forall (i,k) \in E$$

$$y_{ij} + z_{ij} = 1, \forall (i, j) \in E$$

IP has O(n²) variables and O(n²) constraints

GRASP with evolutionary path-relinking

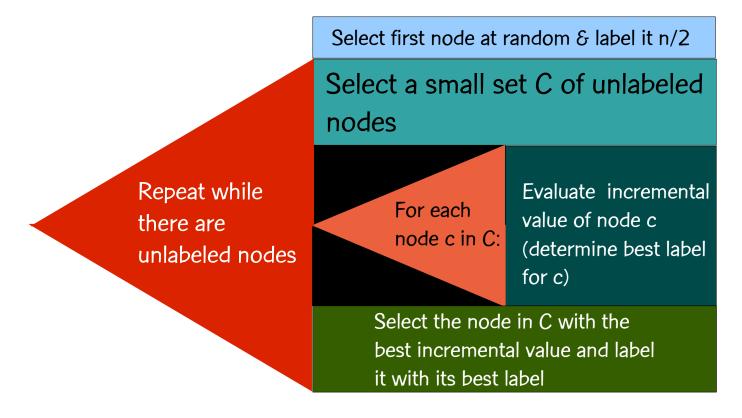
Repeat outer loop

Repeat inner loop

Open Separation of the separ

GRASP construction procedure

 We use the sampled greedy construction scheme of R. & Werneck (2004)



GRASP construction procedure:

Selecting a small set C of unlabeled nodes

- The set CL of candidate nodes is made up of nodes adjacent to labeled nodes
- The small set C of candidate nodes is a set of $\alpha \times |CL|$ randomly sampled nodes from CL, where α is a random real number $\in [0,1]$
- The value of α does not change during construction
- Values of $\alpha \approx 1$ makes sampled greedy resemble a greedy construction, while values of $\alpha \approx 0$ makes it behave like a random construction

Determine the best label for a candidate node c

- Let \tilde{l}_c and \hat{l}_c be, respectively, the smallest and largest assigned labels to the the nodes adjacent to c
- The "best" label for c is

$$l^* = \operatorname{argmax} \{ \min(|l - \hat{l}_c|, |l - \check{l}_c|) : l = 1, ..., n \}$$

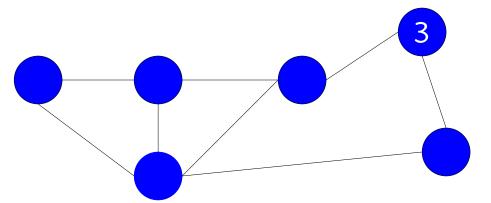
• The closest available label to l^* is assigned to c

Determine the best label for a candidate node

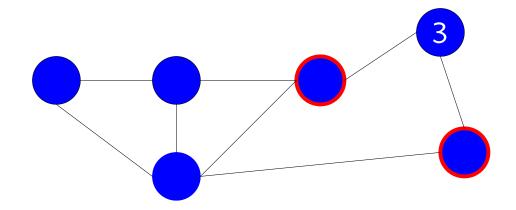
- Let \tilde{l}_c and \hat{l}_c be, respectively, the smallest and largest assigned labels to the the nodes adjacent to c
- The "best" label for c is

$$l^* = \operatorname{argmax} \{ \min(|l - \hat{l}_u|, |l - \check{l}_u|) : l = 1, ..., n \}$$

• The closest available label to l^* is assigned to c

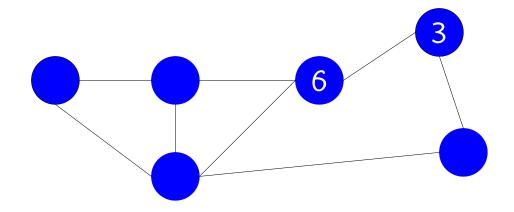


Choose first node at random and label it n/2 = 6/2 = 3



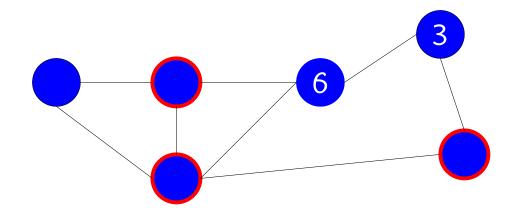
Best label for both candidates is 6.

Label one of the nodes with a 6



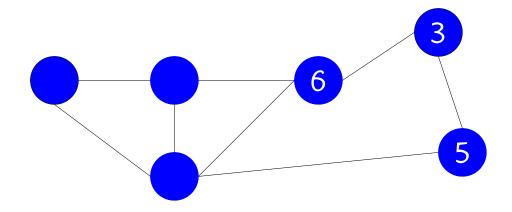
Best label for both candidates on left is 1 and on right is 6.

Label node on right with a 5 (closest available label to 6)



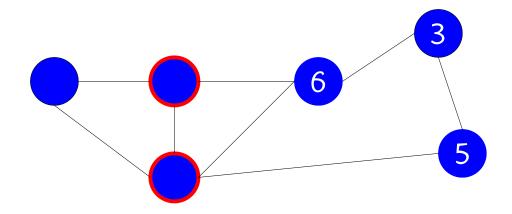
Best label for both candidates on left is 1 and on right is 6.

Label node on right with a 5 (closest available label to 6)



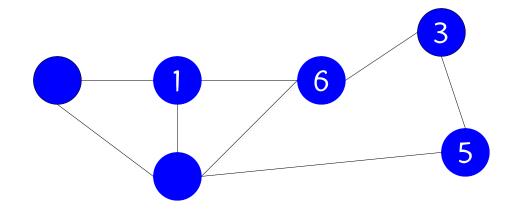
Best label for both candidates on left is 1 and on right is 6.

Label node on right with a 5 (closest available label to 6)



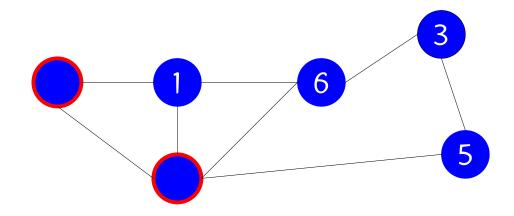
Best label for both candidates is 1.

Label node on top with a 1.



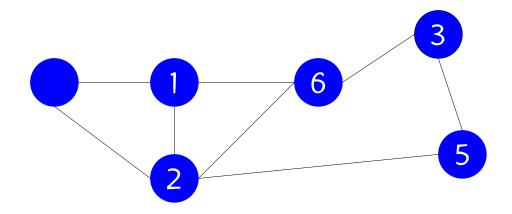
Best label for both candidates is 1.

Label node on top with a 1.



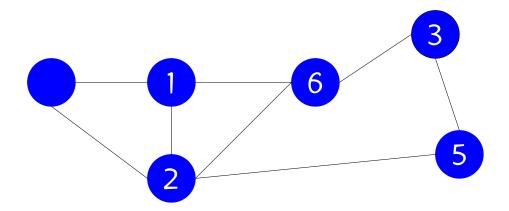
Best label for node on left is 6 and for node on bottom is 3.

Label node on bottom with a 2.

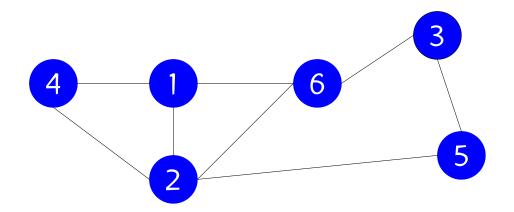


Best label for node on left is 6 and for node on bottom is 2 or 3.

Label node on bottom with a 2.



Remaining node must be labeled with a 4.



Remaining node must be labeled with a 4.

$$AB_{f}(G) = 1$$

Local Search

- Antibandwidth problem has a flat landscape: many solutions have same cost
- For a given labeling f, there may be multiple nodes u such that AB_f(u) = AB_f(G)
- Therefore, in local search, a move (swap of labels of a pair of nodes) that improves AB_f(u) does not necessarily change the value of the solution AB_f(G)

- Nodes u with unequal AB_f(u) values but that are close to AB_f(G) can be crucial in future iterations (swaps) of the local search, even though they cannot affect the value of the current labeling
- Define the set of crucial vertices of a labeling f to be

$$C(f) = \{ u \in V : AB_f(u) \le \beta \cdot AB_f(G) \}$$

$$(1 \le \beta \le 2)$$

- Given a labeling f, operator move(u,v) assigns the label f(u) to node v and the label f(v) to node u, resulting in a new labeling f'
- Local search scans nodes u in C(f), changing their labels to increase their antibandwidths
- Let l_u and l_u be, respectively, the smallest and largest assigned labels to the the nodes adjacent to u
- The best label for u is

$$l_u^* = \operatorname{argmax} \{ \min(|l - \hat{l}_u|, |l - \check{l}_u|) : l = 1, ..., n \}$$

- Once we determine the best label l^* for u, we determine the node v with this label to evaluate move(u, v)
- We know that label l^* is good for u, but we need to determine whether label f(u) is good for node v
- We extend the search for a good label for u not only to node v with label l^* , but also to nodes with labels close to l^*
- The set N'(u) of suitable swapping nodes for u depends on the relationship between l^* , \widetilde{l}_u , and \widehat{l}_u

• If
$$l_u^* < \widetilde{l}_u$$
 then $N'(u) = \{v \in V : l_u^* \le f(v) \le \widetilde{l}_u - AB_f(G)\}$

• If
$$l_u^* > \widehat{l}_u$$
 then $N'(u) = \{v \in V : \widehat{l}_u + AB_f(G) \le f(v) \le l_u^*\}$

• If $l_u \le l_u^* \le \hat{l}_u$ then

$$N'(u) = \{ v \in V : \hat{l}_u + AB_f(G) \le f(v) \le \hat{l}_u - AB_f(G) \}$$

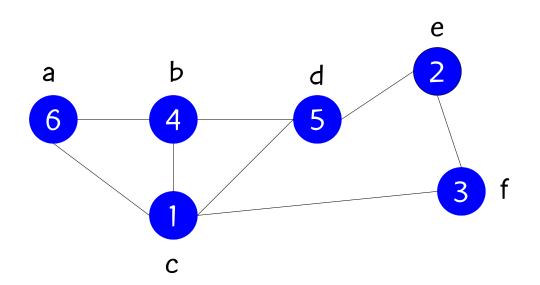
• If
$$l_u^* < \widetilde{l}_u$$
 then $N'(u) = \{v \in V : l_u^* \le f(v) \le \widetilde{l}_u - AB_f(G)\}$

• If
$$l_u^* > \widehat{l}_u$$
 then $N'(u) = \{v \in V : \widehat{l}_u + AB_f(G) \le f(v) \le l_u^*\}$

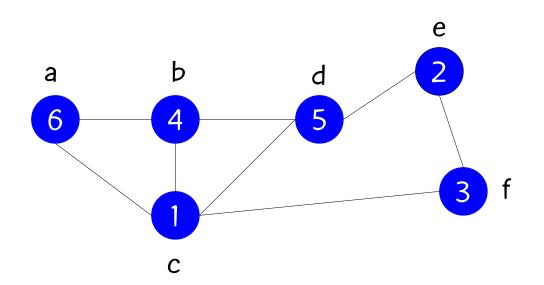
• If $l_u \leq l_u^* \leq \hat{l}_u$ then

$$N'(u) = \{ v \in V : \widetilde{l}_u + AB_f(G) \le f(v) \le \widehat{l}_u - AB_f(G) \}$$

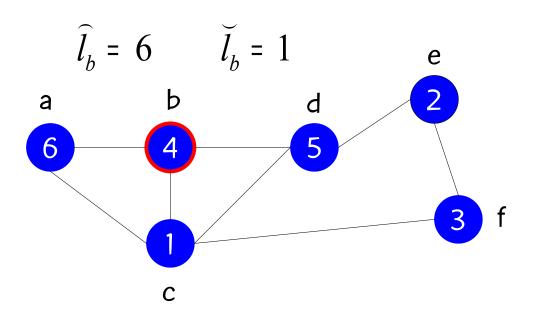
If N'(u) = \emptyset , then AB_f(u) cannot be increased in a single step by changing the current label of u.

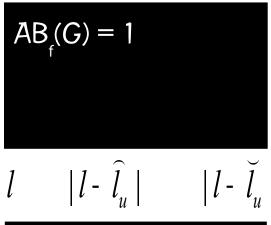


$AB_f(G) = 1$		
٧	$AB_f(v)$	
а	2	
Ь	1	
С	2	
d	1	
e	1	
f	1	

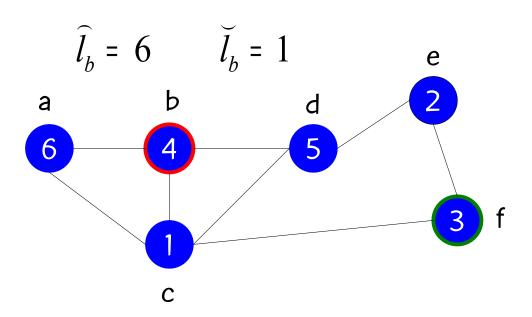


$AB_f(G) = 1$		
V	AB _f (v)	
а	2	
Ь	1 crucial	
С	2	
d	1 crucial	
e	1 crucial	
f	1 crucial	

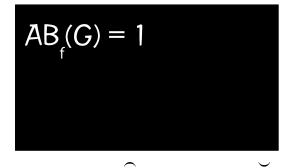




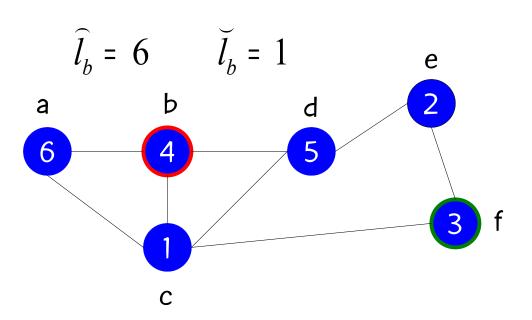
		- 01
1	5	0
2 3 4 5 6	4	1
3	3	2
4	2	3
5	1	4
6	0	5



$$l_u^* = \operatorname{argmax} \{ \min(|l - \hat{l}_u|, |l - \tilde{l}_u|) : l = 1, ..., n \} = 3$$



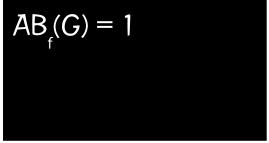
l	$ \iota - \iota_u $	$ \iota - \iota_u $
1	5	0
1 2 3 4 5 6	4	1
3	3	2
4	2	
5	1	4
6	0	5



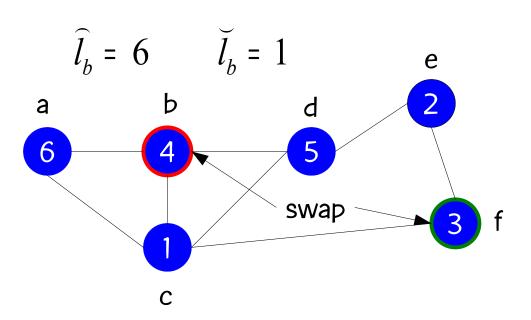
$$l_u^* = \operatorname{argmax} \{ \min(|l - \hat{l}_u|, |l - \tilde{l}_u|) : l = 1, ..., n \} = 3$$

Since
$$1 = \widetilde{l}_{u} \le l_{u}^{*} \le \widehat{l}_{u} = 6$$
 then

$$N'(u) = \{v \in V : \widetilde{l}_u + AB_f(G) \le f(v) \le \widehat{l}_u - AB_f(G)\} = \{d, e, f\}$$



l	$ l - \widehat{l}_u $	$ l-\widetilde{l_{i}} $
1	5	0
2	4	1
1 2 3 4 5 6	3	2
4	2	3
5	1	4
6	0	5



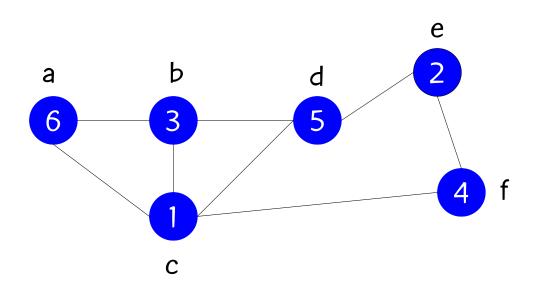
$$l_u^* = \operatorname{argmax} \{ \min(|l - \hat{l}_u|, |l - \tilde{l}_u|) : l = 1, ..., n \} = 3$$

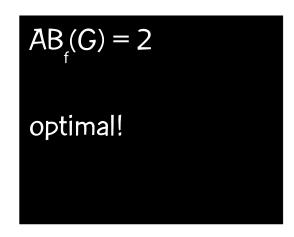
Since
$$1 = \widetilde{l}_{u} \le l_{u}^{*} \le \widehat{l}_{u} = 6$$
 then

$$N'(u) = \{v \in V : \widetilde{l}_u + AB_f(G) \le f(v) \le \widehat{l}_u - AB_f(G)\} = \{d, e, f\}$$

$$AB_f(G) = 1$$

l	$ l - \widehat{l}_u $	$ l-\widetilde{l_u} $
1	5	0
2	4	1
3	3	2
1 2 3 4 5 6	2	3
5	1	4
6	0	5



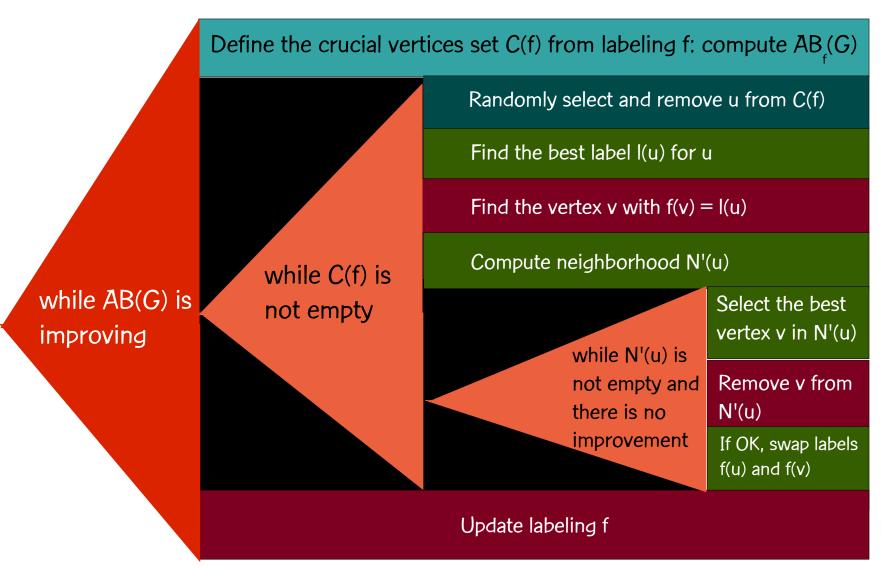


- Value of a move:
 - Common practice is to define it as change in objective function value
 - In antibandwidth, change in objective function provides little information
- Given node u and node $v \in C(u)$, we define value of move(u,v) to be the difference in the antibandwidth of u.

• If f is the original labeling and f' is the resulting labeling after move(u,v), then

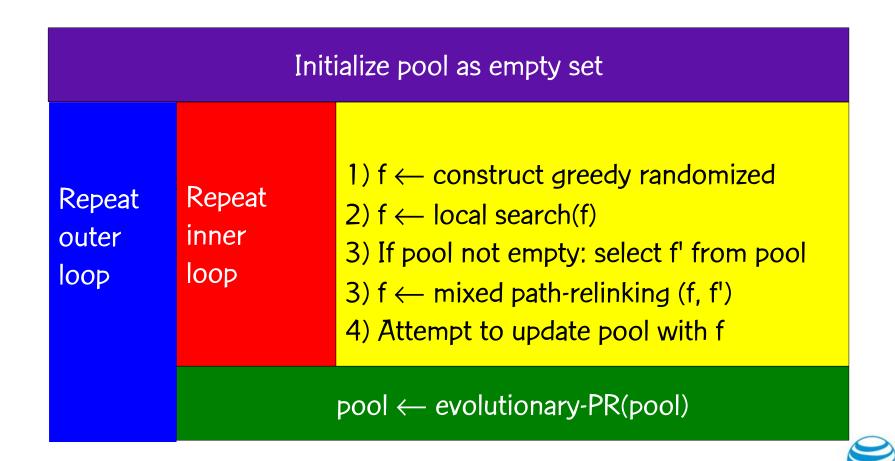
moveValue(u,v) =
$$AB_f(u) - AB_f(u)$$

- Perform move(u,v) only if moveValue(u,v) > 0
 and AB_f(v) ≥ AB_f(G)
- Computation of AB_f(G) is expensive: requires
 examination of all vertices in graph
 - AB_f(G) is not updated after each move, only when C(f) is computed (a la Glover & Laguna (1997))



GRASP with evolutionary path-relinking

GRASP with evolutionary path-relinking

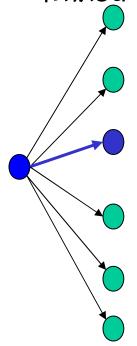


Variants: trade-offs between computation time and solution quality

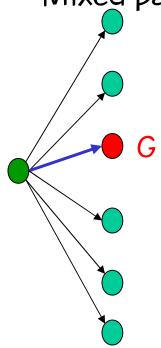
Mixed path-relinking (Glover, 1997; Rosseti, 2003)

G

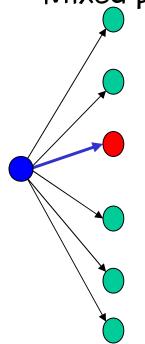
Variants: trade-offs between computation time and solution quality

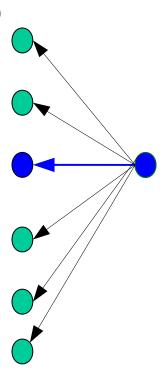


Variants: trade-offs between computation time and solution quality

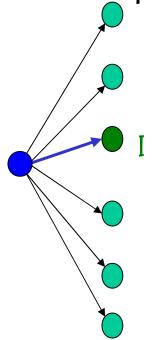


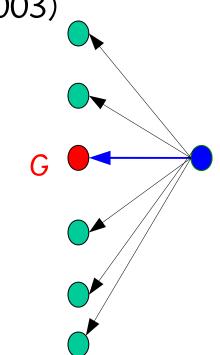
Variants: trade-offs between computation time and solution quality



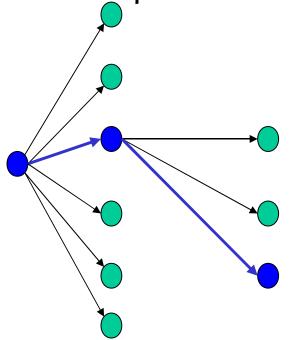


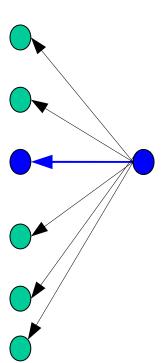
Variants: trade-offs between computation time and solution quality



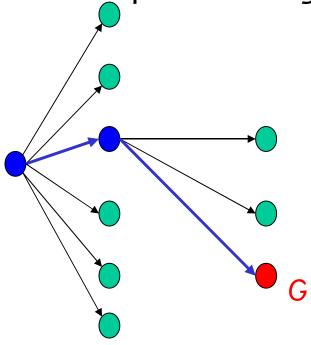


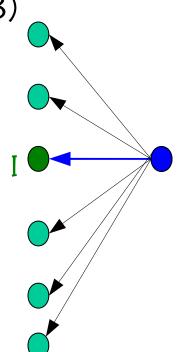
Variants: trade-offs between computation time and solution quality



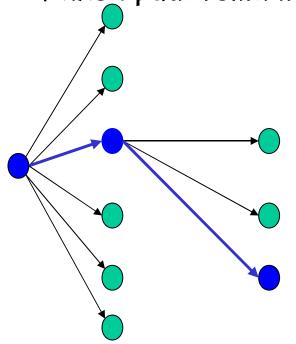


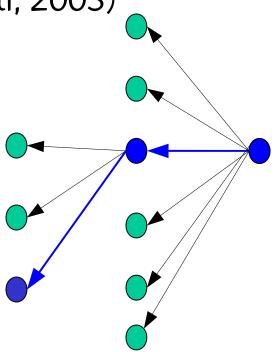
Variants: trade-offs between computation time and solution quality



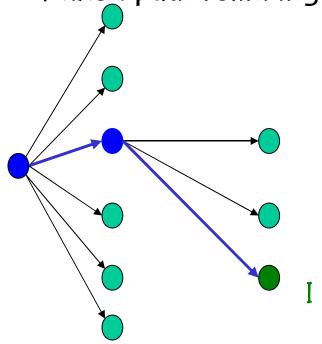


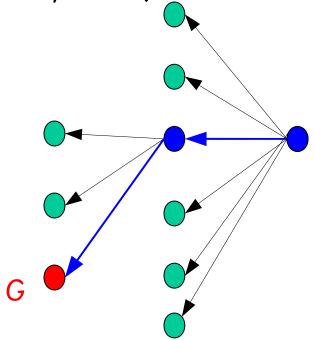
Variants: trade-offs between computation time and solution quality



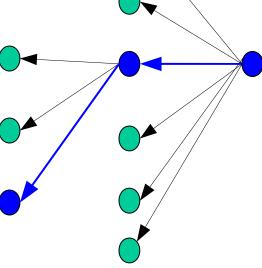


Variants: trade-offs between computation time and solution quality



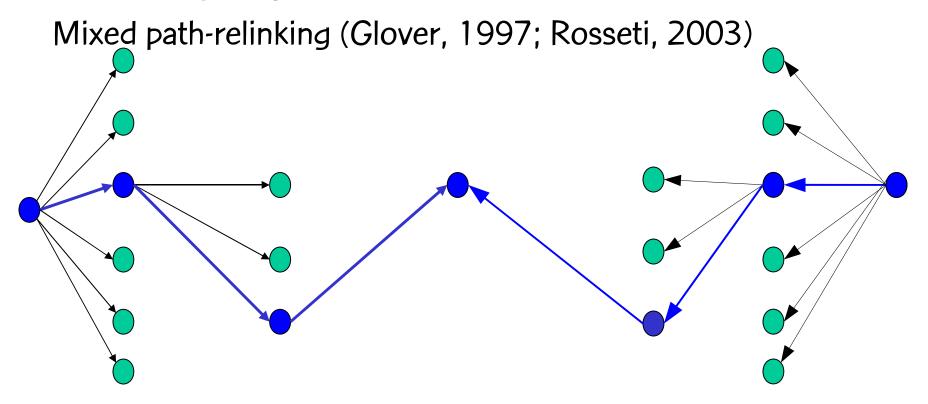


Variants: trade-offs between computation time and solution quality

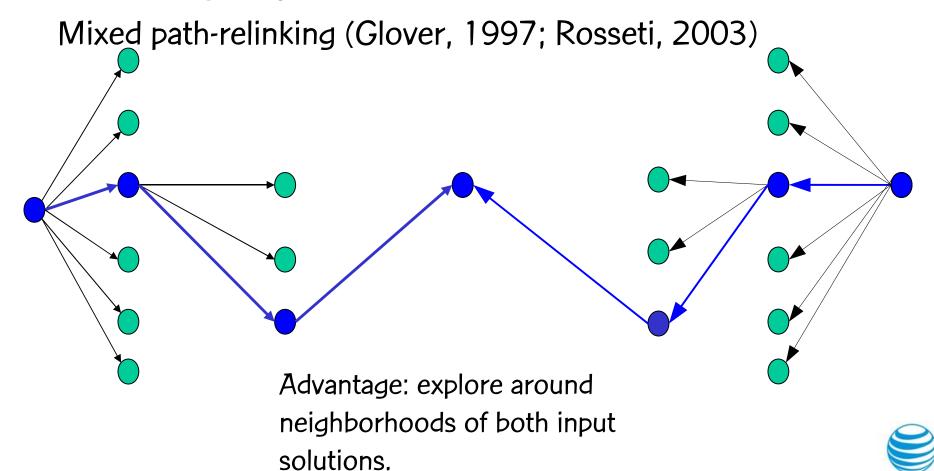


Variants: trade-offs between computation time and solution quality

Variants: trade-offs between computation time and solution quality



Variants: trade-offs between computation time and solution quality



Pool management

- Pool has at most p (e.g. p = 10 elements) ordered from best $\{f(1)\}$ to worst $\{f(p)\}$.
- Let AB_{f(1)}(G) be the antibandwidth of the best labeling {f(1)}
 in the pool
- Labeling f is accepted to the pool if $AB_f(G) > AB_{f(1)}(G)$ or if $AB_f(G) > AB_{f(p)}(G)$ and $\Delta(f, pool) > \delta$, where

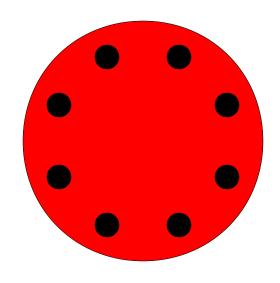
$$\Delta (f, \text{pool}) = \min \{ \sum_{k=1}^{n} |f(k) - f^{i}(k)| : i \in \text{pool} \}$$

• If the pool is full and f is accepted into the pool: among all labelings f' such that $AB_{f}(G) < AB_{f}(G)$ we remove from the pool the labeling closest to f.

Evolutionary path-relinking

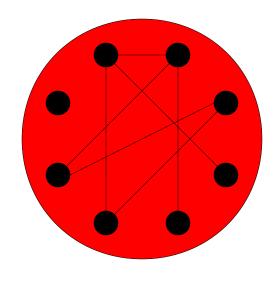
(Resende & Werneck, 2004, 2006)

- Evolutionary path-relinking "evolves" the pool, i.e. transforms it into a pool of diverse elements whose solution values are better than those of the original pool.
- Evolutionary path-relinking can be used
 - as an intensification procedure at certain points of the solution process;
 - as a post-optimization procedure at the end of the solution process.

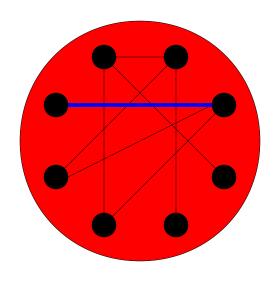


We use a variant of EvPR introduced in Resende, Martí, Gallego, & Duarte (2008)

Start with the pool of elite solutions

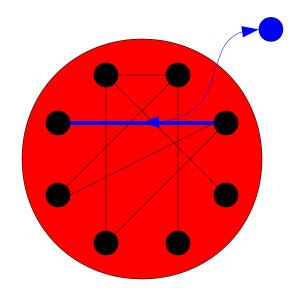


While there exists a pair of pool solutions that have not yet been relinked:



While there exists a pair of pool solutions that have not yet been relinked:

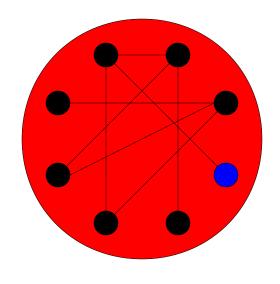
Apply mixed path-relinking between pair



While there exists a pair of pool solutions that have not yet been relinked:

Apply mixed path-relinking between pair

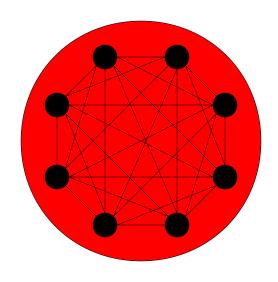
Solution of path-relinking is candidate to enter the pool: if accepted, it replaces closest solution with smaller antibandwidth



While there exists a pair of pool solutions that have not yet been relinked:

Apply mixed path-relinking between pair

Solution of path-relinking is candidate to enter the pool: if accepted, it replaces closest solution with smaller antibandwidth



EvPR ends when all pairs of pool solutions have been relinked and resulting labelings are not accepted to enter the pool.

Preliminary experimental results

Experiments

- Heuristics were coded in C and testing was done on a 3.0 GHz Pentium 4 PC with 3 Gb of memory
- CPLEX 11.1 was used to solve the integer program on a 1.6 GHz Itanium 2 computer with 256 Gb of memory
- Four sets of test problems serve as our benchmark

Experiments

- Test problems derived from the Harwell-Boeing Sparse Matrix Collection
 - 12 small instances (having between 30 and 100 vertices)
 - 12 large instances (having between 400 and 900 vertices)
- 2-dim meshes with optimal solutions known by construction (Raspaud et al., 2008)
 - 12 small instances (having between 90 and 120 vertices)
 - 12 large instances (having between 900 and 1200 vertices)

Experiments

All instances are available at http://www.uv.es/rmarti

- Test problems from the Harwell-Boeing Sparse Matrix Collection
 - 12 small instances (having between 30 and 100 vertices)
 - 12 large instances (having between 400 and 900 vertices)
- 2-dim meshes with optimal solutions known by construction (Raspaud et al., 2008)
 - 12 small instances (having between 90 and 120 vertices)
 - 12 large instances (having between 900 and 1200 vertices)

Integer programming: small Harwell-Boeing instances

name	n	m	nz	Iters million	B&B million	Time (secs)	Soln	UB
bcspwr01	209	1607	4931	74.8	3.7	14641	17	17
bcspwr02	265	2510	7675	426.6	8.9	>24h	21	22
ibm32	276	1147	3792	27.5	0.5	5709	9	9
pores1	296	1034	3524	352.6	16.9	>24h	6	8
curtis54	410	3095	9740	219.2	7.0	>24h	10	13
will57	425	3434	10763	216.0	3.8	>24h	12	14
bcsstk01	496	2529	8320	219.9	4.9	>24h	6	11
dwt234	675	13969	42363	91.9	1.7	>24h	23	58
ash85	693	7530	23427	116.2	3.8	>24h	12	27
bcspwr03	712	14222	43204	75.3	1.7	>24h	22	57
impcol.b	739	3822	12691	148.8	2.5	>24h	5	11
nos4	794	10348	31976	99.6	2.8	>24h	10	48

Integer programming: large Harwell-Boeing instances

name	n	m	nz thous	Iters million	B&B nodes	Time (secs)	Soln	UB
494bus	2654	245117	736	4.52	949	>24h	12	247
662bus	3798	439813	1321	1.35	408	>24h	16	331
685bus	4619	471193	1417	1.53	10	>24h	3	342
bcsstk06	8700	180541	559	5.97	406	>24h	1	210
bcsstk07	8700	180541	559	5.85	401	>24h	1	210
can445	4699	200153	608	3.35	321	>24h	1	221
can715	8095	514916	1557	1.89	16	>24h	1	357
dwt503	7033	256275	781	2.40	103	>24h	1	250
dwt592	6288	353313	1069	3.38	84	>24h	2	295
impcold	3809	182318	552	4.59	466	>24h	2	212
nos6	4605	457591	1377	2.37	48	>24h	4	337
sherman	4320	300004	905	3.16	107	>24h	5	272

Experiments with GRASP

- For each of the 48 instances, we apply G+evPR and G+PR 30 times
- G+evPR: 25 iterations of inner loop and 4 iterations of the outer loop (total of 100 GRASP iterations)
- G+PR: 250 iterations
- Size of elite set is 10

Deviation w.r.t. best or optimum

		minimum	maximum	average
Croall avida	G+PR	2.9 %	5.9 %	3.8 %
Small grids	G+evPR	2.2 %	4.8 %	3.4 %
Large grids	G+PR	2.4 %	3.8 %	3.3 %
	G+evPR	2.2 %	3.6 %	3.0 %
Consult III D	G+PR	0.6 %	5.9 %	3.8 %
Small H-B	G+evPR	0.0 %	5.9 %	3.1 %
Large H-B	G+PR	1.0 %	3.9 %	2.7 %
	G+evPR	0.0 %	3.4 %	2.1 %

CPU time (seconds)

		minimum	maximum	average
Small grids	G+PR	2.4	2.7	2.6
	G+evPR	4.0	5.4	4.7
Large grids	G+PR	1009.0	1081.6	1046.8
	G+evPR	2479.3	3281.1	2822.1
Small H-B	G+PR	1.0	1.1	1.1
	G+evPR	3.9	4.9	4.3
Large H-B	G+PR	194.3	200.9	197.6
	G+evPR	588.7	790.2	668.5

		minimum	maximum	% best
Small grids	G+PR	0	30	23%
	G+evPR	0	30	25%
Large grids	G+PR	0	0	0%
	G+evPR	0	0	0%
Small H-B	G+PR	0	30	51%
	G+evPR	1	30	57%
Large H-B	G+PR	0	30	12%
	G+evPR	1	30	17%

		minimum	maximum	% best
Small grids	G+PR	0	30	23%
	G+evPR	0	30	25%
Large grids	G+PR	0	0	0%
	G+evPR	0	0	0%
Small H-B	G+PR	0	30	51%
	G+evPR	1	30	57%
Large H-B	G+PR	0	30	12%
	G+evPR	1	30	17%

A minimum of 0 implies at least one instance (of the 12) for which all 30 runs failed to find the best/opt

		minimum	maximum	% best
Small grids	G+PR	0	30	23%
	G+evPR	0	30	25%
Large grids	G+PR	0	0	0%
	G+evPR	0	0	0%
Small H-B	G+PR	0	30	51%
	G+evPR	1	30	57%
Large H-B	G+PR	0	30	12%
	G+evPR	1	30	17%

A maximum of 30 implies at least one instance (of the 12) for which all 30 runs found the best/opt

		minimum	maximum	% best
Small grids	G+PR	0	30	23%
	G+evPR	0	30	25%
Large grids	G+PR	0	0	0%
	G+evPR	0	0	0%
Small H-B	G+PR	0	30	51%
	G+evPR	1	30	57%
Large H-B	G+PR	0	30	12%
	G+evPR	1	30	17%

%best = total number of runs that found best/opt / (12×30)

Small Harwell-Boeing instances (solution values)

			G+PR			G+evPR	
name	IP CPLEX	max	min	avg	max	min	avg
bcspwr01	17	17	16	16.13	17	16	16.40
bcspwr02	21	21	20	20.97	21	20	20.93
ibm32	9	9	8	8.30	9	8	8.27
pores1	6	6	6	6	6	6	6
curtis54	10	12	12	12	12	12	12
will57	12	13	12	12.3	13	12	12.43
bcsstk01	6	8	8	8	8	8	8
dwt234	23	51	49	49.5	51	49	49.67
ash85	12	21	19	19.87	22	19	20.30
bcspwr03	22	39	39	39	39	39	39
impcol.b	5	8	7	7.4	8	7	7.63
nos4	10	34	31	32.6	35	31	33.03

Large Harwell-Boeing instances (solution values)

			G+PR			G+evPR	
name	IP CPLEX	max	min	avg	max	min	avg
494bus	12	227	224	225.43	228	224	225.73
662bus	16	220	219	219.33	220	219	219.57
685bus	3	136	136	136.00	136	136	136.00
bcsstk06	1	32	31	31.2	33	31	31.57
bcsstk07	1	32	31	31.03	33	31	31.57
can445	1	82	75	78.2	85	78	80.67
can715	1	115	112	113.73	127	115	115.97
dwr503	1	53	51	51.97	58	51	53.73
dwr592	2	108	99	103.03	112	102	106.10
impcol.d	2	104	100	102.03	105	101	102.90
nos6	4	326	324	325.4	328	325	326.47
sherman	5	261	260	260.1	261	260	261.1

Concluding remarks

- We described a GRASP with evolutionary path-relinking for the antibandwidth problem.
- The antibandwidth problem has an important application in frequency assignment in cellular telephony.
- To complete the experiments, we will derive run time distributions for the heuristics. Preliminary results indicate that G+PR and G+evPR have similar run time distributions.
- We will also conclude the CPLEX runs on the mesh instances.
 Preliminary results indicate that CPLEX cannot solve optimally even the smallest of the mesh instances.
- Our current G+evPR implementation can be made more efficient, resulting in a reduction in the number of path-relinking operations in the evolutionary path-relinking procedure.

Coauthors

Rafael Martí & Abraham Duarte

Ricardo M. A. Silva

The End

These slides and a technical report can be downloaded from my homepage: http://www.research.att.com/~mgcr

