
 Jul. 2009 GRASP for antibandwidth

VIII Metaheuristics International Conference (MIC 2009)
Hamburg, Germany ∼ July 13-16, 2009

GRASP with evolutionary
path-relinking for the
antibandwidth problem

Mauricio G. C. Resende
AT&T Labs Research
Florham Park, New Jersey
mgcr@att.com

Joint work with A. Duarte, R. Martí, & R. Silva

mailto:mgcr@att.com

 Jul. 2009 GRASP for antibandwidth

Summary

• Antibandwidth
• Integer programming formulation
• GRASP construction
• Local search
• GRASP with evolutionary path-relinking
• Experimental results
• Concluding remarks

 Jul. 2009 GRASP for antibandwidth

Antibandwidth problem

• Given an undirected graph G = (V,E), where
– V is the set of nodes (n = |V|)
– E is the set of edges (m = |E|)

• A labeling f of V is a one-to-one mapping of
{1,2,...,n} onto V.
– Each vertex v ∈ V has a unique label f(v) ∈ {1,2,...,n}

 Jul. 2009 GRASP for antibandwidth

Antibandwidth problem

• Given an undirected graph G = (V,E), where
– V is the set of nodes (n = |V|)
– E is the set of edges (m = |E|)

• A labeling f of V is a one-to-one mapping of
{1,2,...,n} onto V.
– Each vertex v ∈ V has a unique label f(v) ∈ {1,2,...,n}

undirected graph
G = (V,E)

 Jul. 2009 GRASP for antibandwidth

Antibandwidth problem

• Given an undirected graph G = (V,E), where
– V is the set of nodes (n = |V|)
– E is the set of edges (m = |E|)

• A labeling f of V is a one-to-one mapping of
{1,2,...,n} onto V.
– Each vertex v ∈ V has a unique label f(v) ∈ {1,2,...,n}

1 3 4

2

5

6

undirected graph
G = (V,E) with a
labeling f

 Jul. 2009 GRASP for antibandwidth

Antibandwidth problem

• Given an undirected graph G = (V,E), where
– V is the set of nodes (n = |V|)
– E is the set of edges (m = |E|)

• A labeling f of V is a one-to-one mapping of
{1,2,...,n} onto V.
– Each vertex v ∈ V has a unique label f(v) ∈ {1,2,...,n}

6 4 5

1

3

2

undirected graph
G = (V,E) with another
labeling f

 Jul. 2009 GRASP for antibandwidth

Antibandwidth problem

• Given G and f, the antibandwidth AB
f
(v) of node v

is smallest difference between f(v) and the labels
of all of the nodes adjacent to v, i.e.
– AB

f
(v) = min { |f(v) − f(u)|: u ∈ N(v) }

– where N(v) is the set of nodes adjacent to v

6 4 5

1

3

2

undirected graph
G = (V,E) with a
labeling f

 Jul. 2009 GRASP for antibandwidth

Antibandwidth problem

• Given G and f, the antibandwidth AB
f
(v) of node v

is smallest difference between f(v) and the labels
of all of the nodes adjacent to v, i.e.
– AB

f
(v) = min { |f(v) − f(u)|: u ∈ N(v) }

– where N(v) is the set of nodes adjacent to v

6 4 5

1

3

2

undirected graph
G = (V,E) with a
labeling f

 Jul. 2009 GRASP for antibandwidth

Antibandwidth problem

• Given G and f, the antibandwidth AB
f
(v) of node v

is smallest difference between f(v) and the labels
of all of the nodes adjacent to v, i.e.
– AB

f
(v) = min { |f(v) − f(u)|: u ∈ N(v) }

– where N(v) is the set of nodes adjacent to v

6 4 5

1

3

2

undirected graph
G = (V,E) with a
labeling f

6-1=5

 Jul. 2009 GRASP for antibandwidth

Antibandwidth problem

• Given G and f, the antibandwidth AB
f
(v) of node v

is smallest difference between f(v) and the labels
of all of the nodes adjacent to v, i.e.
– AB

f
(v) = min { |f(v) − f(u)|: u ∈ N(v) }

– where N(v) is the set of nodes adjacent to v

6 4 5

1

3

2

undirected graph
G = (V,E) with a
labeling f

6-1=5

4-1=3

 Jul. 2009 GRASP for antibandwidth

Antibandwidth problem

• Given G and f, the antibandwidth AB
f
(v) of node v

is smallest difference between f(v) and the labels
of all of the nodes adjacent to v, i.e.
– AB

f
(v) = min { |f(v) − f(u)|: u ∈ N(v) }

– where N(v) is the set of nodes adjacent to v

6 4 5

1

3

2

undirected graph
G = (V,E) with a
labeling f

6-1=5

4-1=3 5-1=4

 Jul. 2009 GRASP for antibandwidth

Antibandwidth problem

• Given G and f, the antibandwidth AB
f
(v) of node v

is smallest difference between f(v) and the labels
of all of the nodes adjacent to v, i.e.
– AB

f
(v) = min { |f(v) − f(u)|: u ∈ N(v) }

– where N(v) is the set of nodes adjacent to v

6 4 5

1

3

2

undirected graph
G = (V,E) with a
labeling f

6-1=5

4-1=3 5-1=4

2-1=1

 Jul. 2009 GRASP for antibandwidth

Antibandwidth problem

• Given G and f, the antibandwidth AB
f
(v) of node v

is smallest difference between f(v) and the labels
of all of the nodes adjacent to v, i.e.
– AB

f
(v) = min { |f(v) − f(u)|: u ∈ N(v) }

– where N(v) is the set of nodes adjacent to v

6 4 5

1

3

2

undirected graph
G = (V,E) with a
labeling f

6-1=5

4-1=3 5-1=4

2-1=1
 AB

f
(1) = min {5,3,4,1} = 1

 Jul. 2009 GRASP for antibandwidth

Antibandwidth problem

• Given G and f, the antibandwidth AB
f
(G) of f is

smallest antibandwidth over all nodes in V, i.e.
– AB

f
(G) = min { AB

f
(v) : v ∈ V }

– where N(v) is the set of nodes adjacent to v

6 4 5

1

3

2

undirected graph
G = (V,E) with a
labeling f

 Jul. 2009 GRASP for antibandwidth

Antibandwidth problem

• Given G and f, the antibandwidth AB
f
(G) of f is

smallest antibandwidth over all nodes in V, i.e.
– AB

f
(G) = min { AB

f
(v) : v ∈ V }

– where N(v) is the set of nodes adjacent to v

6 4 5

1

3

2

AB
f
(G) = min { 1, 1, 1, 1, 2 } = 1

1

1

1
11

2

 Jul. 2009 GRASP for antibandwidth

Antibandwidth problem

• Given G, the antibandwidth AB(G) of G is largest
antibandwidth over all possible labelings, i.e.
– AB(G) = max { AB

f
(G) : f ∈ Π

n
 }

– where Π
n
 is the set of all permutations of {1, 2, ..., n}

6 4 5

1

3

2

AB
f
(G) = min { 1, 1, 1, 1, 2 } = 1

1

1

1
11

2

 Jul. 2009 GRASP for antibandwidth

AB
f
(G) = min { 2, 2, 2, 2, 3 } = 2

Antibandwidth problem

• Given G, the antibandwidth AB(G) of G is largest
antibandwidth over all possible labelings, i.e.
– AB(G) = max { AB

f
(G) : f ∈ Π

n
 }

– where Π
n
 is the set of all permutations of {1, 2, ..., n}

6 3 5

1

2

4

2

2

2
22

3

 Jul. 2009 GRASP for antibandwidth

AB(G) = 2

Antibandwidth problem

• Given G, the antibandwidth AB(G) of G is largest
antibandwidth over all possible labelings, i.e.
– AB(G) = max { AB

f
(G) : f ∈ Π

n
 }

– where Π
n
 is the set of all permutations of {1, 2, ..., n}

6 3 5

1

2

4

2

2

2
22

3

 Jul. 2009 GRASP for antibandwidth

Antibandwidth problem

• NP-hard (Leung et al., 1984)
• Special cases can be solved in polynomial time,

e.g. complements of intervals, arborescent
comparability, and on threshold graphs (Raspaud
et al., 2008)

 Jul. 2009 GRASP for antibandwidth

Antibandwidth problem

• Yixum and Jinjiang (2003) proposed the upper
bound: min { floor((n − δ + 1)/2), n − ∆ }, where
– δ is the smallest degree over all v ∈ V
– ∆ is the largest degree over all v ∈ V

 Jul. 2009 GRASP for antibandwidth

Antibandwidth problem

• Yixum and Jinjiang (2003) proposed the upper
bound: min { floor((n − δ + 1)/2), n − ∆ }, where
– δ is the smallest degree over all v ∈ V
– ∆ is the largest degree over all v ∈ V

2

2

3

deg = 2

4

3
δ = 2
∆ = 4
UB = min{ 2, 2 } = 2

 Jul. 2009 GRASP for antibandwidth

Antibandwidth problem

• Yixum and Jinjiang (2003) proposed the upper
bound: min { floor((n − δ + 1)/2), n − ∆ }, where
– δ is the smallest degree over all v ∈ V
– ∆ is the largest degree over all v ∈ V

δ = 2
∆ = 4
UB = min{ 2, 2 } = 2
AB

f
(G) = 2 is opt

AB(G) = 2

6 3 5

1

2

4

 Jul. 2009 GRASP for antibandwidth

Antibandwidth problem: IP formulation

• Let be a binary variable that takes on the value 1 if
and only if , i.e. node i takes label k.

• Define to be the label of node i.
• Finally, let

be the antibandwidth of labeling f.
• In the antibandwidth problem we want to determine the

labeling f * that maximizes b.

ikx
()f i k=

() {1,2, , }il f i n= ∈ K
() min{| () () | : (,) }fb AB G f u f v u v E= = − ∈

 Jul. 2009 GRASP for antibandwidth

Antibandwidth problem: IP formulation

• Objective: maximize b
• Constraints:

– One label is assigned to each node:

1

1, 1, ,
n

ik
i

x k n
=

= ∀ =∑ K

 Jul. 2009 GRASP for antibandwidth

Antibandwidth problem: IP formulation

• Objective: maximize b
• Constraints:

– One node is assigned to each label:

1

1, 1, ,
n

ik
k

x i n
=

= ∀ =∑ K

 Jul. 2009 GRASP for antibandwidth

Antibandwidth problem: IP formulation

• Objective: maximize b
• Constraints:

– Each label l
i
 is a function of the binary variables x

ik
:

1
, 1, ,

n

ik i
k

k x l i n
=

⋅ = ∀ =∑ K

 Jul. 2009 GRASP for antibandwidth

Antibandwidth problem: IP formulation

• Objective: maximize b
• Constraints:

– Require that :

| |, (,)i jb l l i j E≤ − ∈

min{| |: (,) }i jl l i jb E− ∈=

 Jul. 2009 GRASP for antibandwidth

Antibandwidth problem: IP formulation

• Objective: maximize b
• Constraints:

– Binary variables can only take values 0 or 1 :

{0,1}, , 1, ,ikx i k n∈ ∀ = K

ikx

 Jul. 2009 GRASP for antibandwidth

Antibandwidth problem: IP formulation

• Objective: maximize b
• Constraints:

– Labels can only take on values {1, ..., n} :

{1,2, , }, 1, ,il n i n∈ ∀ =K K

il

 Jul. 2009 GRASP for antibandwidth

Antibandwidth problem: IP formulation

• Objective: maximize b
• Constraints are

nonlinear:
– If then
– Otherwise,
– Introduce two binary variables to indicate case:

• If then and
• Otherwise, and

| |, (,)i jb l l i j E≤ − ∈

i jl l≥ i jb l l≤ −
()i jb l l≤ − −

i jl l≥ 0ijy = 1ijz =
1ijy = 0ijz =

 Jul. 2009 GRASP for antibandwidth

Antibandwidth problem: IP formulation

• Objective: maximize b
• Constraints become:

| |, (,)i jb l l i j E≤ − ∈

() 2 (1), (,)i j ijb l l y n i j E− − ≤ − ∀ ∈

() 2 (1), (,)i j ijb l l z n i j E+ − ≤ − ∀ ∈

1, (,)ij ijy z i j E+ = ∀ ∈

1b ≥

theni jl l≥ 0ijy = 1ijz =

1ijy = 0ijz =theni jl l<

 Jul. 2009 GRASP for antibandwidth

Antibandwidth problem: IP formulation

() 2 (1), (,)i j ijb l l y n i j E− − ≤ − ∀ ∈
() 2 (1), (,)i j ijb l l z n i j E+ − ≤ − ∀ ∈

1, (,)ij ijy z i j E+ = ∀ ∈

1b ≥

1
1, 1, ,

n

ik
i

x k n
=

= ∀ =∑ K

max b

1
1, 1, ,

n

ik
k

x i n
=

= ∀ =∑ K

1

, 1, ,
n

ik i
k

k x l i n
=

⋅ = ∀ =∑ K

{0,1}, (,)ikx i k E∈ ∀ ∈

{1,2, }, 1, 2,il n i n∈ ∀ =K K

{0,1}, (,)iky i k E∈ ∀ ∈
{0,1}, (,)ikz i k E∈ ∀ ∈

 Jul. 2009 GRASP for antibandwidth

Antibandwidth problem: IP formulation

() 2 (1), (,)i j ijb l l y n i j E− − ≤ − ∀ ∈
() 2 (1), (,)i j ijb l l z n i j E+ − ≤ − ∀ ∈

1, (,)ij ijy z i j E+ = ∀ ∈

1b ≥

1
1, 1, ,

n

ik
i

x k n
=

= ∀ =∑ K

max b

1
1, 1, ,

n

ik
k

x i n
=

= ∀ =∑ K

1

, 1, ,
n

ik i
k

k x l i n
=

⋅ = ∀ =∑ K

{0,1}, (,)ikx i k E∈ ∀ ∈

{1,2, }, 1, 2,il n i n∈ ∀ =K K

{0,1}, (,)iky i k E∈ ∀ ∈
{0,1}, (,)ikz i k E∈ ∀ ∈

IP has O(n2) variables and O(n2) constraints

 Jul. 2009 GRASP for antibandwidth

GRASP with evolutionary path-relinking

Repeat
inner
loop

Evolutionary-PR

1) Construct greedy randomized
2) Local search
3) Mixed path-relinking
4) Update pool

Repeat
outer
loop

 Jul. 2009 GRASP for antibandwidth

GRASP construction procedure

• We use the sampled greedy construction scheme
of R. & Werneck (2004)

Select first node at random & label it n/2

Select a small set C of unlabeled
nodes

Select the node in C with the
best incremental value and label
it with its best label

For each
node c in C:

Evaluate incremental
value of node c
(determine best label
for c)

Repeat while
there are
unlabeled nodes

 Jul. 2009 GRASP for antibandwidth

GRASP construction procedure:
Selecting a small set C of unlabeled nodes

• The set CL of candidate nodes is made up of nodes
adjacent to labeled nodes

• The small set C of candidate nodes is a set of α×|CL|
randomly sampled nodes from CL, where α is a random
real number ∈ [0,1]

• The value of α does not change during construction

• Values of α ≈ 1 makes sampled greedy resemble a
greedy construction, while values of α ≈ 0 makes it
behave like a random construction

 Jul. 2009 GRASP for antibandwidth

GRASP construction procedure:
Determine the best label for a candidate node c

• Let and be, respectively, the smallest and largest
assigned labels to the the nodes adjacent to c

• The “best” label for c is

• The closest available label to is assigned to c

cl
)

cl
(

* argmax{min(| |,| |): 1, , }c cl l l l l l n= − − =
) (

K

*l

 Jul. 2009 GRASP for antibandwidth

GRASP construction procedure:
Determine the best label for a candidate node

• Let and be, respectively, the smallest and largest
assigned labels to the the nodes adjacent to c

• The “best” label for c is

• The closest available label to is assigned to c

cl
)

cl
(

* argmax{min(| |,| |): 1, , }u ul l l l l l n= − − =
) (

K

*l

3 Choose first node
at random and label
it n/2 = 6/2 = 3

 Jul. 2009 GRASP for antibandwidth

GRASP construction procedure

3

Candidate node

Best label for both
candidates is 6.

Label one of the
nodes with a 6

 Jul. 2009 GRASP for antibandwidth

GRASP construction procedure

6

3

Best label for both
candidates on left
is 1 and on right is 6.

Label node on right
with a 5 (closest
available label to 6)

 Jul. 2009 GRASP for antibandwidth

GRASP construction procedure

6

3

Candidate node

Best label for both
candidates on left
is 1 and on right is 6.

Label node on right
with a 5 (closest
available label to 6)

 Jul. 2009 GRASP for antibandwidth

GRASP construction procedure

6

3

5

Best label for both
candidates on left
is 1 and on right is 6.

Label node on right
with a 5 (closest
available label to 6)

 Jul. 2009 GRASP for antibandwidth

GRASP construction procedure

6

3

5

Candidate node

Best label for both
candidates is 1.

Label node on top
with a 1.

 Jul. 2009 GRASP for antibandwidth

GRASP construction procedure

1 6

3

5 Best label for both
candidates is 1.

Label node on top
with a 1.

 Jul. 2009 GRASP for antibandwidth

GRASP construction procedure

1 6

3

5

Candidate node

Best label for node on
left is 6 and for node
on bottom is 3.

Label node on bottom
with a 2.

 Jul. 2009 GRASP for antibandwidth

GRASP construction procedure

1 6

2

3

5

Candidate node

Best label for node on
left is 6 and for node
on bottom is 2 or 3.

Label node on bottom
with a 2.

 Jul. 2009 GRASP for antibandwidth

GRASP construction procedure

1 6

2

3

5
Remaining node must
be labeled with a 4.

 Jul. 2009 GRASP for antibandwidth

GRASP construction procedure

4 1 6

2

3

5 Remaining node must
be labeled with a 4.

AB
f
(G) = 1

 Jul. 2009 GRASP for antibandwidth

Local Search

 Jul. 2009 GRASP for antibandwidth

GRASP local search procedure

• Antibandwidth problem has a flat landscape:
many solutions have same cost

• For a given labeling f, there may be multiple
nodes u such that AB

f
(u) = AB

f
(G)

• Therefore, in local search, a move (swap of labels
of a pair of nodes) that improves AB

f
(u) does not

necessarily change the value of the solution
AB

f
(G)

 Jul. 2009 GRASP for antibandwidth

GRASP local search procedure

• Nodes u with unequal AB
f
(u) values but that are

close to AB
f
(G) can be crucial in future iterations

(swaps) of the local search, even though they
cannot affect the value of the current labeling

• Define the set of crucial vertices of a labeling f
to be

() ())({ : }f fC AB u A Gf u V Bβ= ∈ ≤ ⋅

(1 2)β≤ ≤

 Jul. 2009 GRASP for antibandwidth

GRASP local search procedure

• Given a labeling f, operator move(u,v) assigns the label f (u)
to node v and the label f (v) to node u, resulting in a new
labeling f '

• Local search scans nodes u in C(f), changing their labels to
increase their antibandwidths

• Let and be, respectively, the smallest and largest
assigned labels to the the nodes adjacent to u

• The best label for u is

ul
(

ul
)

* argmax{min(| |,| |): 1, , }u u ul l l l l l n= − − =
) (

K

 Jul. 2009 GRASP for antibandwidth

GRASP local search procedure

• Once we determine the best label l* for u, we determine the
node v with this label to evaluate move(u,v)

• We know that label l* is good for u, but we need to
determine whether label f(u) is good for node v

• We extend the search for a good label for u not only to node
v with label l*, but also to nodes with labels close to l*

• The set N'(u) of suitable swapping nodes for u depends on
the relationship between l*, , and ul

(
ul
)

 Jul. 2009 GRASP for antibandwidth

GRASP local search procedure

• If then

• If then

• If then

*
u ul l<
(

* ()'() { : () }u fuN u v V l f ABv Gl= ∈ ≤ ≤ −
(

*
u ul l>
)

*'() { () }: ()u ufAN u v V lB Gl f v= ∈ + ≤ ≤
)

*
u u ul l l≤ ≤
()

'() { () (()}:)u uf fAB GN u v V l f v l AB G= ∈ + ≤ ≤ −
))

 Jul. 2009 GRASP for antibandwidth

GRASP local search procedure

• If then

• If then

• If then

*
u ul l<
(

* ()'() { : () }u fuN u v V l f ABv Gl= ∈ ≤ ≤ −
(

*
u ul l>
)

*'() { () }: ()u ufAN u v V lB Gl f v= ∈ + ≤ ≤
)

*
u u ul l l≤ ≤
()

'() { () (()}:)u uf fAB GN u v V l f v l AB G= ∈ + ≤ ≤ −
()

If N'(u) = ∅, then AB
f
(u) cannot be increased in a single step

by changing the current label of u.

 Jul. 2009 GRASP for antibandwidth

GRASP local search procedure

6 4 5

1

2

3

a 2
b 1
c 2
d 1
e 1
f 1

a b d

e

f

c

AB
f
(G) = 1

v AB
f
(v)

 Jul. 2009 GRASP for antibandwidth

GRASP local search procedure

6 4 5

1

2

3

a 2
b 1 crucial
c 2
d 1 crucial
e 1 crucial
f 1 crucial

a b d

e

f

c

AB
f
(G) = 1

v AB
f
(v)

 Jul. 2009 GRASP for antibandwidth

GRASP local search procedure

6 4 5

1

2

3 1 5 0
2 4 1
3 3 2
4 2 3
5 1 4
6 0 5

a b d

e

f

c

AB
f
(G) = 1

| | | |u ul l l l l− −
) (

6 1b bl l= =
) (

 Jul. 2009 GRASP for antibandwidth

GRASP local search procedure

6 4 5

1

2

3 1 5 0
2 4 1
3 3 2
4 2 3
5 1 4
6 0 5

a b d

e

f

c

AB
f
(G) = 1

| | | |u ul l l l l− −
) (

6 1b bl l= =
) (

* argmax{min(| |,| |): 1, , } 3u u ul l l l l l n= − − = =
) (

K

 Jul. 2009 GRASP for antibandwidth

GRASP local search procedure

6 4 5

1

2

3 1 5 0
2 4 1
3 3 2
4 2 3
5 1 4
6 0 5

a b d

e

f

c

AB
f
(G) = 1

| | | |u ul l l l l− −
) (

6 1b bl l= =
) (

* argmax{min(| |,| |): 1, , } 3u u ul l l l l l n= − − = =
) (

K

*Since 1 then6u u ul l l≤ ≤ ==
()

'() { : (() ()} { , , })u f u fN AB G Au v V l B G d e ff v l= ∈ + ≤ ≤ =−
()

 Jul. 2009 GRASP for antibandwidth

GRASP local search procedure

6 4 5

1

2

3 1 5 0
2 4 1
3 3 2
4 2 3
5 1 4
6 0 5

a b d

e

f

c

AB
f
(G) = 1

| | | |u ul l l l l− −
) (

6 1b bl l= =
) (

* argmax{min(| |,| |): 1, , } 3u u ul l l l l l n= − − = =
) (

K

*Since 1 then6u u ul l l≤ ≤ ==
()

'() { : (() ()} { , , })u f u fN AB G Au v V l B G d e ff v l= ∈ + ≤ ≤ =−
()

swap

 Jul. 2009 GRASP for antibandwidth

GRASP local search procedure

6 3 5

1

2

4

a b d

e

f

c

AB
f
(G) = 2

optimal!

 Jul. 2009 GRASP for antibandwidth

GRASP local search procedure

• Value of a move:
– Common practice is to define it as change in

objective function value
– In antibandwidth, change in objective function

provides little information

• Given node u and node v ∈C(u), we define value
of move(u,v) to be the difference in the
antibandwidth of u.

 Jul. 2009 GRASP for antibandwidth

GRASP local search procedure
• If f is the original labeling and f ' is the resulting

labeling after move(u,v), then

 moveValue(u,v) = AB
f'
(u) − AB

f
(u)

• Perform move(u,v) only if moveValue(u,v) > 0
and AB

f'
(v) ≥ AB

f
(G)

• Computation of AB
f
(G) is expensive: requires

examination of all vertices in graph
– AB

f
(G) is not updated after each move, only when C(f)

is computed (a la Glover & Laguna (1997))

 Jul. 2009 GRASP for antibandwidth

Define the crucial vertices set C(f) from labeling f: compute AB
f
(G)

GRASP local search procedure

Update labeling f

while C(f) is
not empty

 Randomly select and remove u from C(f)

while AB(G) is
improving

Find the best label l(u) for u

Find the vertex v with f(v) = l(u)

Compute neighborhood N'(u)

while N'(u) is
not empty and
there is no
improvement

Select the best
vertex v in N'(u)

Remove v from
N'(u)
If OK, swap labels
f(u) and f(v)

 Jul. 2009 GRASP for antibandwidth

GRASP with evolutionary
path-relinking

 Jul. 2009 GRASP for antibandwidth

GRASP with evolutionary path-relinking

Repeat
inner
loop

pool ← evolutionary-PR(pool)

1) f ← construct greedy randomized
2) f ← local search(f)
3) If pool not empty: select f' from pool
3) f ← mixed path-relinking (f, f')
4) Attempt to update pool with f

Repeat
outer
loop

Initialize pool as empty set

 Jul. 2009 GRASP for antibandwidth

Mixed path-relinking
Variants: trade-offs between computation time and
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)

I
G

 Jul. 2009 GRASP for antibandwidth

Mixed path-relinking
Variants: trade-offs between computation time and
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)

 Jul. 2009 GRASP for antibandwidth

Mixed path-relinking
Variants: trade-offs between computation time and
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)

IG

 Jul. 2009 GRASP for antibandwidth

Mixed path-relinking
Variants: trade-offs between computation time and
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)

 Jul. 2009 GRASP for antibandwidth

Mixed path-relinking
Variants: trade-offs between computation time and
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)

GI

 Jul. 2009 GRASP for antibandwidth

Mixed path-relinking
Variants: trade-offs between computation time and
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)

 Jul. 2009 GRASP for antibandwidth

Mixed path-relinking
Variants: trade-offs between computation time and
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)

I

G

 Jul. 2009 GRASP for antibandwidth

Mixed path-relinking
Variants: trade-offs between computation time and
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)

 Jul. 2009 GRASP for antibandwidth

Mixed path-relinking
Variants: trade-offs between computation time and
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)

GI

 Jul. 2009 GRASP for antibandwidth

Mixed path-relinking
Variants: trade-offs between computation time and
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)

 Jul. 2009 GRASP for antibandwidth

Mixed path-relinking
Variants: trade-offs between computation time and
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)

G

I

 Jul. 2009 GRASP for antibandwidth

Mixed path-relinking
Variants: trade-offs between computation time and
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)

 Jul. 2009 GRASP for antibandwidth

Mixed path-relinking
Variants: trade-offs between computation time and
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)

Advantage: explore around
neighborhoods of both input
solutions.

 Jul. 2009 GRASP for antibandwidth

Pool management
• Pool has at most p (e.g. p = 10 elements) ordered from

best {f(1)} to worst {f(p)}.
• Let AB

f(1)
(G) be the antibandwidth of the best labeling {f(1)}

in the pool
• Labeling f is accepted to the pool if AB

f
(G) > AB

f(1)
(G) or if

AB
f
(G) > AB

f(p)
(G) and ∆(f, pool) > δ, where

• If the pool is full and f is accepted into the pool: among all
labelings f' such that AB

f'
(G) < AB

f
(G) we remove from the

pool the labeling closest to f.

1
pool) min{ | () () | : pool}(,

n
i

k
f k f k if

=

= − ∈∆ ∑

 Jul. 2009 GRASP for antibandwidth

Evolutionary path-relinking
 (Resende & Werneck, 2004, 2006)

• Evolutionary path-relinking “evolves” the pool, i.e.
transforms it into a pool of diverse elements
whose solution values are better than those of
the original pool.

• Evolutionary path-relinking can be used
– as an intensification procedure at certain points of the

solution process;
– as a post-optimization procedure at the end of the

solution process.

 Jul. 2009 GRASP for antibandwidth

Evolutionary path-relinking (EvPR)

Start with the pool of elite solutions

We use a variant of EvPR introduced in
Resende, Martí, Gallego, & Duarte (2008)

 Jul. 2009 GRASP for antibandwidth

Evolutionary path-relinking (EvPR)

While there exists a pair of pool solutions
that have not yet been relinked:

 Jul. 2009 GRASP for antibandwidth

Evolutionary path-relinking (EvPR)

While there exists a pair of pool solutions
that have not yet been relinked:
 Apply mixed path-relinking between pair

 Jul. 2009 GRASP for antibandwidth

Evolutionary path-relinking (EvPR)

While there exists a pair of pool solutions
that have not yet been relinked:
 Apply mixed path-relinking between pair

Solution of path-relinking is candidate to
enter the pool: if accepted, it replaces
closest solution with smaller antibandwidth

 Jul. 2009 GRASP for antibandwidth

Evolutionary path-relinking (EvPR)

While there exists a pair of pool solutions
that have not yet been relinked:
 Apply mixed path-relinking between pair

Solution of path-relinking is candidate to
enter the pool: if accepted, it replaces
closest solution with smaller antibandwidth

 Jul. 2009 GRASP for antibandwidth

Evolutionary path-relinking (EvPR)

EvPR ends when all pairs of pool solutions
have been relinked and resulting labelings
are not accepted to enter the pool.

 Jul. 2009 GRASP for antibandwidth

Preliminary
experimental results

 Jul. 2009 GRASP for antibandwidth

Experiments

• Heuristics were coded in C and testing was done
on a 3.0 GHz Pentium 4 PC with 3 Gb of
memory

• CPLEX 11.1 was used to solve the integer
program on a 1.6 GHz Itanium 2 computer with
256 Gb of memory

• Four sets of test problems serve as our
benchmark

 Jul. 2009 GRASP for antibandwidth

Experiments
• Test problems derived from the Harwell-Boeing Sparse

Matrix Collection
– 12 small instances (having between 30 and 100 vertices)
– 12 large instances (having between 400 and 900

vertices)

• 2-dim meshes with optimal solutions known by
construction (Raspaud et al., 2008)
– 12 small instances (having between 90 and 120 vertices)
– 12 large instances (having between 900 and 1200

vertices)

 Jul. 2009 GRASP for antibandwidth

Experiments
• Test problems from the Harwell-Boeing Sparse Matrix

Collection
– 12 small instances (having between 30 and 100 vertices)
– 12 large instances (having between 400 and 900

vertices)

• 2-dim meshes with optimal solutions known by
construction (Raspaud et al., 2008)
– 12 small instances (having between 90 and 120 vertices)
– 12 large instances (having between 900 and 1200

vertices)

All instances are available at
http://www.uv.es/rmarti

 Jul. 2009 GRASP for antibandwidth

Integer programming: small Harwell-Boeing instances

name n m nz Iters
million

B&B
million

Time
(secs)

Soln UB

bcspwr01 209 1607 4931 74.8 3.7 14641 17 17

bcspwr02 265 2510 7675 426.6 8.9 >24h 21 22

ibm32 276 1147 3792 27.5 0.5 5709 9 9

pores1 296 1034 3524 352.6 16.9 >24h 6 8

curtis54 410 3095 9740 219.2 7.0 >24h 10 13

will57 425 3434 10763 216.0 3.8 >24h 12 14

bcsstk01 496 2529 8320 219.9 4.9 >24h 6 11

dwt234 675 13969 42363 91.9 1.7 >24h 23 58

ash85 693 7530 23427 116.2 3.8 >24h 12 27

bcspwr03 712 14222 43204 75.3 1.7 >24h 22 57

impcol.b 739 3822 12691 148.8 2.5 >24h 5 11

nos4 794 10348 31976 99.6 2.8 >24h 10 48

 Jul. 2009 GRASP for antibandwidth

Integer programming: large Harwell-Boeing instances

name n m nz
thous

Iters
million

B&B
nodes

Time
(secs)

Soln UB

494bus 2654 245117 736 4.52 949 >24h 12 247

662bus 3798 439813 1321 1.35 408 >24h 16 331

685bus 4619 471193 1417 1.53 10 >24h 3 342

bcsstk06 8700 180541 559 5.97 406 >24h 1 210

bcsstk07 8700 180541 559 5.85 401 >24h 1 210

can445 4699 200153 608 3.35 321 >24h 1 221

can715 8095 514916 1557 1.89 16 >24h 1 357

dwt503 7033 256275 781 2.40 103 >24h 1 250

dwt592 6288 353313 1069 3.38 84 >24h 2 295

impcold 3809 182318 552 4.59 466 >24h 2 212

nos6 4605 457591 1377 2.37 48 >24h 4 337

sherman 4320 300004 905 3.16 107 >24h 5 272

 Jul. 2009 GRASP for antibandwidth

Experiments with GRASP

• For each of the 48 instances, we apply G+evPR
and G+PR 30 times

• G+evPR: 25 iterations of inner loop and 4
iterations of the outer loop (total of 100 GRASP
iterations)

• G+PR: 250 iterations
• Size of elite set is 10

 Jul. 2009 GRASP for antibandwidth

Deviation w.r.t. best or optimum

minimum maximum average

Small grids
G+PR 2.9 % 5.9 % 3.8 %
G+evPR 2.2 % 4.8 % 3.4 %

Large grids
G+PR 2.4 % 3.8 % 3.3 %
G+evPR 2.2 % 3.6 % 3.0 %

Small H-B
G+PR 0.6 % 5.9 % 3.8 %
G+evPR 0.0 % 5.9 % 3.1 %

Large H-B
G+PR 1.0 % 3.9 % 2.7 %

G+evPR 0.0 % 3.4 % 2.1 %

 Jul. 2009 GRASP for antibandwidth

CPU time (seconds)

minimum maximum average
Small grids G+PR 2.4 2.7 2.6

G+evPR 4.0 5.4 4.7
Large grids G+PR 1009.0 1081.6 1046.8

G+evPR 2479.3 3281.1 2822.1
Small H-B G+PR 1.0 1.1 1.1

G+evPR 3.9 4.9 4.3
Large H-B G+PR 194.3 200.9 197.6

G+evPR 588.7 790.2 668.5

 Jul. 2009 GRASP for antibandwidth

Number of best (optimal) solutions

minimum maximum % best
Small grids G+PR 0 30 23%

G+evPR 0 30 25%
Large grids G+PR 0 0 0%

G+evPR 0 0 0%
Small H-B G+PR 0 30 51%

G+evPR 1 30 57%
Large H-B G+PR 0 30 12%

G+evPR 1 30 17%

 Jul. 2009 GRASP for antibandwidth

Number of best (optimal) solutions

minimum maximum % best
Small grids G+PR 0 30 23%

G+evPR 0 30 25%
Large grids G+PR 0 0 0%

G+evPR 0 0 0%
Small H-B G+PR 0 30 51%

G+evPR 1 30 57%
Large H-B G+PR 0 30 12%

G+evPR 1 30 17%

A minimum of 0 implies at least one instance (of the 12)
for which all 30 runs failed to find the best/opt

 Jul. 2009 GRASP for antibandwidth

Number of best (optimal) solutions

minimum maximum % best
Small grids G+PR 0 30 23%

G+evPR 0 30 25%
Large grids G+PR 0 0 0%

G+evPR 0 0 0%
Small H-B G+PR 0 30 51%

G+evPR 1 30 57%
Large H-B G+PR 0 30 12%

G+evPR 1 30 17%

A maximum of 30 implies at least one instance (of the 12)
for which all 30 runs found the best/opt

 Jul. 2009 GRASP for antibandwidth

Number of best (optimal) solutions

minimum maximum % best
Small grids G+PR 0 30 23%

G+evPR 0 30 25%
Large grids G+PR 0 0 0%

G+evPR 0 0 0%
Small H-B G+PR 0 30 51%

G+evPR 1 30 57%
Large H-B G+PR 0 30 12%

G+evPR 1 30 17%

%best = total number of runs that found best/opt / (12 × 30)

 Jul. 2009 GRASP for antibandwidth

Small Harwell-Boeing instances (solution values)

name IP CPLEX

G+PR G+evPR
max min avg max min avg

bcspwr01 17 17 16 16.13 17 16 16.40

bcspwr02 21 21 20 20.97 21 20 20.93

ibm32 9 9 8 8.30 9 8 8.27

pores1 6 6 6 6 6 6 6

curtis54 10 12 12 12 12 12 12

will57 12 13 12 12.3 13 12 12.43

bcsstk01 6 8 8 8 8 8 8

dwt234 23 51 49 49.5 51 49 49.67

ash85 12 21 19 19.87 22 19 20.30

bcspwr03 22 39 39 39 39 39 39

impcol.b 5 8 7 7.4 8 7 7.63

nos4 10 34 31 32.6 35 31 33.03

 Jul. 2009 GRASP for antibandwidth

Large Harwell-Boeing instances (solution values)

name IP CPLEX

G+PR G+evPR
max min avg max min avg

494bus 12 227 224 225.43 228 224 225.73

662bus 16 220 219 219.33 220 219 219.57

685bus 3 136 136 136.00 136 136 136.00

bcsstk06 1 32 31 31.2 33 31 31.57

bcsstk07 1 32 31 31.03 33 31 31.57

can445 1 82 75 78.2 85 78 80.67

can715 1 115 112 113.73 127 115 115.97

dwr503 1 53 51 51.97 58 51 53.73

dwr592 2 108 99 103.03 112 102 106.10

impcol.d 2 104 100 102.03 105 101 102.90

nos6 4 326 324 325.4 328 325 326.47

sherman 5 261 260 260.1 261 260 261.1

 Jul. 2009 GRASP for antibandwidth

 Concluding remarks
• We described a GRASP with evolutionary path-relinking for the

antibandwidth problem.

• The antibandwidth problem has an important application in
frequency assignment in cellular telephony.

• To complete the experiments, we will derive run time distributions
for the heuristics. Preliminary results indicate that G+PR and
G+evPR have similar run time distributions.

• We will also conclude the CPLEX runs on the mesh instances.
Preliminary results indicate that CPLEX cannot solve optimally
even the smallest of the mesh instances.

• Our current G+evPR implementation can be made more efficient,
resulting in a reduction in the number of path-relinking operations
in the evolutionary path-relinking procedure.

 Jul. 2009 GRASP for antibandwidth

Coauthors

Rafael Martí & Abraham Duarte

Ricardo M. A. Silva

 Jul. 2009 GRASP for antibandwidth

The End
These slides and a technical report
can be downloaded from my homepage:
http://www.research.att.com/~mgcr

http://www.research.att.com/~mgcr

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106

