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Summary

• Antibandwidth
• Integer programming formulation
• GRASP construction
• Local search
• GRASP with evolutionary path-relinking
• Experimental results
• Concluding remarks
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Antibandwidth problem

• Given an undirected graph G = (V,E), where
– V is the set of nodes (n = |V|)
– E is the set of edges (m = |E|)

• A labeling f of V is a one-to-one mapping of 
{1,2,...,n} onto V.
– Each vertex v ∈ V has a unique label f(v) ∈ {1,2,...,n}
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Antibandwidth problem

• Given G and f, the antibandwidth AB
f
(v) of node v 

is smallest difference between f(v) and the labels 
of all of the nodes adjacent to v, i.e.
– AB

f
(v) = min { |f(v)  − f(u)|: u ∈ N(v) }

– where N(v) is the set of nodes adjacent to v
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Antibandwidth problem
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Antibandwidth problem

• Given G and f, the antibandwidth AB
f
(G) of f is 

smallest antibandwidth over all nodes in V, i.e.
– AB

f
(G) = min { AB

f
(v) : v ∈ V }

– where N(v) is the set of nodes adjacent to v

6 4 5

1

3

2

undirected graph 
G = (V,E) with a
labeling f



 Jul. 2009 GRASP for antibandwidth
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Antibandwidth problem

• Given G, the antibandwidth AB(G) of G is largest 
antibandwidth over all possible labelings, i.e.
– AB(G) = max { AB

f
(G) : f ∈ Π

n
 }

– where Π
n
 is the set of all permutations of {1, 2, ..., n}
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AB
f
(G) = min { 2, 2, 2, 2, 3 } = 2

Antibandwidth problem

• Given G, the antibandwidth AB(G) of G is largest 
antibandwidth over all possible labelings, i.e.
– AB(G) = max { AB

f
(G) : f ∈ Π

n
 }

– where Π
n
 is the set of all permutations of {1, 2, ..., n}

6 3 5

1

2

4

2

2

2
22

3



 Jul. 2009 GRASP for antibandwidth

AB(G) = 2

Antibandwidth problem

• Given G, the antibandwidth AB(G) of G is largest 
antibandwidth over all possible labelings, i.e.
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f
(G) : f ∈ Π

n
 }

– where Π
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Antibandwidth problem

• NP-hard (Leung et al., 1984)
• Special cases can be solved in polynomial time, 

e.g. complements of intervals, arborescent 
comparability, and on threshold graphs (Raspaud 
et al., 2008)
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Antibandwidth problem

• Yixum and Jinjiang (2003) proposed the upper 
bound: min { floor( (n − δ + 1)/2), n − ∆ }, where
– δ is the smallest degree over all v ∈ V
– ∆ is the largest degree over all v ∈ V



 Jul. 2009 GRASP for antibandwidth

Antibandwidth problem

• Yixum and Jinjiang (2003) proposed the upper 
bound: min { floor( (n − δ + 1)/2), n − ∆ }, where
– δ is the smallest degree over all v ∈ V
– ∆ is the largest degree over all v ∈ V

2

2

3

deg = 2

4

3
δ = 2
∆ = 4
UB = min{ 2, 2 } = 2



 Jul. 2009 GRASP for antibandwidth

Antibandwidth problem

• Yixum and Jinjiang (2003) proposed the upper 
bound: min { floor( (n − δ + 1)/2), n − ∆ }, where
– δ is the smallest degree over all v ∈ V
– ∆ is the largest degree over all v ∈ V
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Antibandwidth problem: IP formulation

• Let         be a binary variable that takes on the value 1 if 
and only if              , i.e. node i takes label k.

• Define                                   to be the label of node i. 
• Finally, let                                                                        

be the antibandwidth of labeling  f. 
• In the antibandwidth problem we want to determine the 

labeling  f * that maximizes b.

ikx
( )f i k=

( ) {1,2, , }il f i n= ∈ K
( ) min{| ( ) ( ) | : ( , ) }fb AB G f u f v u v E= = − ∈
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Antibandwidth problem: IP formulation

• Objective: maximize b
• Constraints:

– One label is assigned to each node: 

1

1, 1, ,
n

ik
i

x k n
=

= ∀ =∑ K
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Antibandwidth problem: IP formulation

• Objective: maximize b
• Constraints:

– Each label l
i
 is a function of the binary variables x

ik
: 

1
, 1, ,

n

ik i
k

k x l i n
=

⋅ = ∀ =∑ K
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Antibandwidth problem: IP formulation

• Objective: maximize b
• Constraints:

–  Require that                                             : 

| |, ( , )i jb l l i j E≤ − ∈

min{| |: ( , ) }i jl l i jb E− ∈=
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Antibandwidth problem: IP formulation

• Objective: maximize b
• Constraints:

–  Binary variables       can only take values 0 or 1 : 

{0,1}, , 1, ,ikx i k n∈ ∀ = K

ikx
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Antibandwidth problem: IP formulation

• Objective: maximize b
• Constraints:

–  Labels       can only take on values {1, ..., n} : 

{1,2, , }, 1, ,il n i n∈ ∀ =K K

il
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Antibandwidth problem: IP formulation

• Objective: maximize b
• Constraints                                       are 

nonlinear:
–  If                then
– Otherwise,
– Introduce two binary variables to indicate case:  

• If           then             and
• Otherwise,             and      

| |, ( , )i jb l l i j E≤ − ∈

i jl l≥ i jb l l≤ −
( )i jb l l≤ − −

i jl l≥ 0ijy = 1ijz =
1ijy = 0ijz =
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Antibandwidth problem: IP formulation

• Objective: maximize b
• Constraints                                       become:

    

| |, ( , )i jb l l i j E≤ − ∈

( ) 2 ( 1), ( , )i j ijb l l y n i j E− − ≤ − ∀ ∈

( ) 2 ( 1), ( , )i j ijb l l z n i j E+ − ≤ − ∀ ∈

1, ( , )ij ijy z i j E+ = ∀ ∈

1b ≥

theni jl l≥ 0ijy = 1ijz =

1ijy = 0ijz =theni jl l<
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Antibandwidth problem: IP formulation

    

( ) 2 ( 1), ( , )i j ijb l l y n i j E− − ≤ − ∀ ∈
( ) 2 ( 1), ( , )i j ijb l l z n i j E+ − ≤ − ∀ ∈

1, ( , )ij ijy z i j E+ = ∀ ∈

1b ≥

1
1, 1, ,

n

ik
i

x k n
=

= ∀ =∑ K

max b

1
1, 1, ,

n

ik
k

x i n
=

= ∀ =∑ K

1

, 1, ,
n

ik i
k

k x l i n
=

⋅ = ∀ =∑ K

{0,1}, ( , )ikx i k E∈ ∀ ∈

{1,2, }, 1, 2,il n i n∈ ∀ =K K

{0,1}, ( , )iky i k E∈ ∀ ∈
{0,1}, ( , )ikz i k E∈ ∀ ∈
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Antibandwidth problem: IP formulation

    

( ) 2 ( 1), ( , )i j ijb l l y n i j E− − ≤ − ∀ ∈
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1, ( , )ij ijy z i j E+ = ∀ ∈
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1
1, 1, ,

n

ik
i

x k n
=

= ∀ =∑ K

max b

1
1, 1, ,

n

ik
k

x i n
=

= ∀ =∑ K

1

, 1, ,
n

ik i
k

k x l i n
=

⋅ = ∀ =∑ K

{0,1}, ( , )ikx i k E∈ ∀ ∈

{1,2, }, 1, 2,il n i n∈ ∀ =K K

{0,1}, ( , )iky i k E∈ ∀ ∈
{0,1}, ( , )ikz i k E∈ ∀ ∈

IP has O(n2) variables and O(n2) constraints 
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GRASP with evolutionary path-relinking

Repeat
inner
loop

Evolutionary-PR

1) Construct greedy randomized
2) Local search
3) Mixed path-relinking
4) Update pool

Repeat
outer
loop
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GRASP construction procedure

• We use the sampled greedy construction scheme 
of R. & Werneck (2004)

Select first node at random & label it n/2 

Select a small set C of unlabeled
nodes 

Select the node in C with the
best incremental value and label
it with its best label

For each
node c in C:

Evaluate  incremental
value of node c 
(determine best label
for c)

Repeat while
there are 
unlabeled nodes
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GRASP construction procedure:
Selecting a small set C of unlabeled nodes

• The set CL of candidate nodes is made up of nodes 
adjacent to labeled nodes

• The small set C of candidate nodes is a set of α×|CL| 
randomly sampled nodes from CL, where α is a random 
real number ∈ [0,1]

• The value of α does not change during construction

• Values of α ≈ 1 makes sampled greedy resemble a 
greedy construction, while values of α ≈ 0 makes it 
behave like a random construction
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GRASP construction procedure:
Determine the best label for a candidate node c

• Let       and      be, respectively, the smallest and largest 
assigned labels to the the nodes adjacent to c 

• The “best” label for c is

• The closest available label to     is assigned to c   

cl
)

cl
(

* argmax{min(| |,| |): 1, , }c cl l l l l l n= − − =
) (

K

*l
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GRASP construction procedure:
Determine the best label for a candidate node

• Let       and      be, respectively, the smallest and largest 
assigned labels to the the nodes adjacent to c 

• The “best” label for c is

• The closest available label to     is assigned to c   

cl
)

cl
(

* argmax{min(| |,| |): 1, , }u ul l l l l l n= − − =
) (

K

*l

3 Choose first node
at random and label
it n/2 = 6/2 = 3
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GRASP construction procedure

3

Candidate node

Best label for both
candidates is 6.

Label one of the
nodes with a 6
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GRASP construction procedure

6

3

Best label for both
candidates on left
is 1 and on right is 6.

Label node on right
with a 5 (closest
available label to 6)
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GRASP construction procedure

6

3

5

Best label for both
candidates on left
is 1 and on right is 6.

Label node on right
with a 5 (closest
available label to 6)
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GRASP construction procedure

6

3

5

Candidate node

Best label for both
candidates is 1.

Label node on top
with a 1.



 Jul. 2009 GRASP for antibandwidth

GRASP construction procedure

1 6

3

5 Best label for both
candidates is 1.

Label node on top
with a 1.
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GRASP construction procedure

1 6

3

5

Candidate node

Best label for node on
left is 6 and for node
on bottom is 3.

Label node on bottom
with a 2.
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GRASP construction procedure

1 6

2

3

5

Candidate node

Best label for node on
left is 6 and for node
on bottom is 2 or 3.

Label node on bottom
with a 2.
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GRASP construction procedure

1 6

2

3

5
Remaining node must
be labeled with a 4.
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GRASP construction procedure

4 1 6

2

3

5 Remaining node must
be labeled with a 4.

AB
f
(G) = 1
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Local Search
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GRASP local search procedure

• Antibandwidth problem has a flat landscape:  
many solutions have same cost

• For a given labeling f, there may be multiple 
nodes u such that AB

f
(u) = AB

f
(G)

• Therefore, in local search, a move (swap of labels 
of a pair of nodes) that improves AB

f
(u) does not 

necessarily change the value of the solution 
AB

f
(G)
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GRASP local search procedure

• Nodes u  with unequal AB
f
(u) values but that are 

close to AB
f
(G) can be crucial in future iterations 

(swaps) of the local search, even though they 
cannot affect the value of the current labeling

• Define the set of crucial vertices of a labeling  f   
to be 

( ) () )( { : }f fC AB u A Gf u V Bβ= ∈ ≤ ⋅

(1 2)β≤ ≤
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GRASP local search procedure

• Given a labeling f,  operator move(u,v) assigns the label f (u) 
to node  v  and the label  f (v)  to node  u, resulting in a new 
labeling f '

• Local search scans nodes u in C(f ), changing their labels to 
increase their antibandwidths

• Let       and      be, respectively, the smallest and largest 
assigned labels to the the nodes adjacent to u

•  The best label for u is

ul
(

ul
)

* argmax{min(| |,| |): 1, , }u u ul l l l l l n= − − =
) (

K
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GRASP local search procedure

• Once we determine the best label l* for u, we determine the 
node v with this label to evaluate move(u,v)  

• We know that label l* is good for u, but we need to 
determine whether label f(u) is good for node v

• We extend the search for a good label for u not only to node 
v with label l*, but also to nodes with labels close to l*

• The set N'(u) of suitable swapping nodes for u depends on 
the relationship between l*,     , and ul

(
ul
)
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GRASP local search procedure

• If             then

• If             then

• If                  then  

*
u ul l<
(

* ( )'( ) { : ( ) }u fuN u v V l f ABv Gl= ∈ ≤ ≤ −
(

*
u ul l>
)

*'( ) { ( ) }: ( )u ufAN u v V lB Gl f v= ∈ + ≤ ≤
)

*
u u ul l l≤ ≤
( )

'( ) { ( ) ( ( )}: )u uf fAB GN u v V l f v l AB G= ∈ + ≤ ≤ −
) )
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GRASP local search procedure

• If             then

• If             then

• If                  then  

*
u ul l<
(

* ( )'( ) { : ( ) }u fuN u v V l f ABv Gl= ∈ ≤ ≤ −
(

*
u ul l>
)

*'( ) { ( ) }: ( )u ufAN u v V lB Gl f v= ∈ + ≤ ≤
)

*
u u ul l l≤ ≤
( )

'( ) { ( ) ( ( )}: )u uf fAB GN u v V l f v l AB G= ∈ + ≤ ≤ −
( )

If N'(u) = ∅, then AB
f
(u) cannot be increased in a single step

by changing the current label of u.



 Jul. 2009 GRASP for antibandwidth

GRASP local search procedure

6 4 5

1

2

3

a              2
b              1
c              2
d              1
e              1
f               1

a b d

e

f

c

AB
f
(G) = 1

v           AB
f
(v)
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GRASP local search procedure

6 4 5

1

2

3

a              2
b              1 crucial
c              2 
d              1 crucial
e              1 crucial
f               1 crucial

a b d

e

f

c

AB
f
(G) = 1

v           AB
f
(v)
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GRASP local search procedure

6 4 5

1

2

3 1         5              0    
2         4              1
3         3              2
4         2              3
5         1              4
6         0              5

a b d

e

f

c

AB
f
(G) = 1

| | | |u ul l l l l− −
) (

6 1b bl l= =
) (
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GRASP local search procedure

6 4 5

1

2

3 1         5              0    
2         4              1
3         3              2
4         2              3
5         1              4
6         0              5

a b d

e

f

c

AB
f
(G) = 1

| | | |u ul l l l l− −
) (

6 1b bl l= =
) (

* argmax{min(| |,| |): 1, , } 3u u ul l l l l l n= − − = =
) (

K
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GRASP local search procedure

6 4 5

1

2

3 1         5              0    
2         4              1
3         3              2
4         2              3
5         1              4
6         0              5

a b d

e

f

c

AB
f
(G) = 1

| | | |u ul l l l l− −
) (

6 1b bl l= =
) (

* argmax{min(| |,| |): 1, , } 3u u ul l l l l l n= − − = =
) (

K

*Since 1 then6u u ul l l≤ ≤ ==
( )

'( ) { : (( ) ( )} { , , })u f u fN AB G Au v V l B G d e ff v l= ∈ + ≤ ≤ =−
( )
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GRASP local search procedure

6 4 5

1

2

3 1         5              0    
2         4              1
3         3              2
4         2              3
5         1              4
6         0              5

a b d

e

f

c

AB
f
(G) = 1

| | | |u ul l l l l− −
) (

6 1b bl l= =
) (

* argmax{min(| |,| |): 1, , } 3u u ul l l l l l n= − − = =
) (

K

*Since 1 then6u u ul l l≤ ≤ ==
( )

'( ) { : (( ) ( )} { , , })u f u fN AB G Au v V l B G d e ff v l= ∈ + ≤ ≤ =−
( )

swap
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GRASP local search procedure

6 3 5

1

2

4

a b d

e

f

c

AB
f
(G) = 2

optimal!
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GRASP local search procedure

• Value of a move:
– Common practice is to define it as change in 

objective function value
– In antibandwidth, change in objective function 

provides little information

• Given node u and node v ∈C(u), we define value 
of move(u,v) to be the difference in the 
antibandwidth of u.
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GRASP local search procedure
• If f is the original labeling and f ' is the resulting 

labeling after move(u,v), then 

                  moveValue(u,v) = AB
f'
(u) − AB

f
(u) 

• Perform move(u,v) only if moveValue(u,v) > 0 
and AB

f'
(v) ≥ AB

f
(G) 

• Computation of AB
f
(G) is expensive: requires 

examination of all vertices in graph
– AB

f
(G) is not updated after each move, only when C(f) 

is computed (a la Glover & Laguna (1997))



 Jul. 2009 GRASP for antibandwidth

Define the crucial vertices set C(f) from labeling f: compute AB
f
(G)

 

 

GRASP local search procedure

Update labeling f

while C(f) is 
not empty 

 Randomly select and remove u from C(f)

while AB(G) is 
improving

Find the best label l(u) for u

Find the vertex v with f(v) = l(u)

Compute neighborhood N'(u)

while N'(u) is 
not empty and 
there is no 
improvement 

 
Select the best 
vertex v in N'(u) 

Remove v from 
N'(u) 
If OK, swap labels 
f(u) and f(v) 
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GRASP with evolutionary 
path-relinking 
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GRASP with evolutionary path-relinking

Repeat
inner
loop

pool ← evolutionary-PR(pool)

1) f ← construct greedy randomized
2) f ← local search(f)
3) If pool not empty: select f' from pool
3) f ← mixed path-relinking (f, f')
4) Attempt to update pool with f

Repeat
outer
loop

Initialize pool as empty set
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Mixed path-relinking
Variants: trade-offs between computation time and 
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)

I
G
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Mixed path-relinking
Variants: trade-offs between computation time and 
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)
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Mixed path-relinking
Variants: trade-offs between computation time and 
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)

Advantage: explore around 
neighborhoods of both input 
solutions.
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Pool management
• Pool has at most p (e.g. p = 10 elements) ordered from 

best {f(1)} to worst {f(p)}.
• Let AB

f(1)
(G) be the antibandwidth of the best labeling {f(1)} 

in the pool
• Labeling f is accepted to the pool if AB

f
(G) > AB

f(1)
(G) or if 

AB
f
(G) > AB

f(p)
(G) and ∆(f, pool) > δ, where

• If the pool is full and f is accepted into the pool: among all 
labelings f' such that AB

f'
(G) < AB

f
(G) we remove from the 

pool the labeling closest to f.

1
pool) min{ | ( ) ( ) | : pool}( ,

n
i

k
f k f k if

=

= − ∈∆ ∑
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Evolutionary path-relinking
 ( Resende & Werneck, 2004, 2006 )

• Evolutionary path-relinking “evolves” the pool, i.e. 
transforms it into a pool of diverse elements 
whose solution values are better than those of 
the original pool.

• Evolutionary path-relinking can be used 
– as an intensification procedure at certain points of the 

solution process;
– as a post-optimization procedure at the end of the 

solution process. 
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Evolutionary path-relinking (EvPR)

Start with the pool of elite solutions

We use a variant of EvPR introduced in 
Resende, Martí, Gallego, & Duarte (2008)
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Evolutionary path-relinking (EvPR)

While there exists a pair of pool solutions
that have not yet been relinked:
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     Apply mixed path-relinking between pair
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Evolutionary path-relinking (EvPR)

While there exists a pair of pool solutions
that have not yet been relinked:                 
     Apply mixed path-relinking between pair

Solution of path-relinking is candidate to 
enter the pool:  if accepted, it replaces 
closest solution with smaller antibandwidth



 Jul. 2009 GRASP for antibandwidth

Evolutionary path-relinking (EvPR)

While there exists a pair of pool solutions
that have not yet been relinked:                 
     Apply mixed path-relinking between pair

Solution of path-relinking is candidate to 
enter the pool:  if accepted, it replaces 
closest solution with smaller antibandwidth
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Evolutionary path-relinking (EvPR)

EvPR ends when all pairs of pool solutions
have been relinked and resulting labelings
are not accepted to enter the pool.                
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Preliminary 
experimental results
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Experiments

• Heuristics were coded in C and testing was done 
on a 3.0 GHz Pentium 4 PC with 3 Gb of 
memory

• CPLEX 11.1 was used to solve the integer 
program on a 1.6 GHz Itanium 2 computer with 
256 Gb of memory

• Four sets of test problems serve as our 
benchmark
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Experiments
• Test problems derived from the Harwell-Boeing Sparse 

Matrix Collection
– 12 small instances (having between 30 and 100 vertices) 
– 12 large instances (having between 400 and 900 

vertices)

• 2-dim meshes with optimal solutions known by 
construction (Raspaud et al., 2008)
– 12 small instances (having between 90 and 120 vertices)
– 12 large instances (having between 900 and 1200 

vertices)
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Experiments
• Test problems from the Harwell-Boeing Sparse Matrix 

Collection
– 12 small instances (having between 30 and 100 vertices) 
– 12 large instances (having between 400 and 900 

vertices)

• 2-dim meshes with optimal solutions known by 
construction (Raspaud et al., 2008)
– 12 small instances (having between 90 and 120 vertices)
– 12 large instances (having between 900 and 1200 

vertices)

All instances are available at 
http://www.uv.es/rmarti
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Integer programming: small Harwell-Boeing instances

name n m nz Iters 
million

B&B 
million

Time 
(secs)

Soln UB

bcspwr01 209 1607 4931 74.8 3.7 14641 17 17

bcspwr02 265 2510 7675 426.6 8.9 >24h 21 22

ibm32 276 1147 3792 27.5 0.5 5709 9 9

pores1 296 1034 3524 352.6 16.9 >24h 6 8

curtis54 410 3095 9740 219.2 7.0 >24h 10 13

will57 425 3434 10763 216.0 3.8 >24h 12 14

bcsstk01 496 2529 8320 219.9 4.9 >24h 6 11

dwt234 675 13969 42363 91.9 1.7 >24h 23 58

ash85 693 7530 23427 116.2 3.8 >24h 12 27

bcspwr03 712 14222 43204 75.3 1.7 >24h 22 57

impcol.b 739 3822 12691 148.8 2.5 >24h 5 11

nos4 794 10348 31976 99.6 2.8 >24h 10 48
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Integer programming: large Harwell-Boeing instances

name n m nz 
thous

Iters 
million

B&B 
nodes

Time 
(secs)

Soln UB

494bus 2654 245117 736 4.52 949 >24h 12 247

662bus 3798 439813 1321 1.35 408 >24h 16 331

685bus 4619 471193 1417 1.53 10 >24h 3 342

bcsstk06 8700 180541 559 5.97 406 >24h 1 210

bcsstk07 8700 180541 559 5.85 401 >24h 1 210

can445 4699 200153 608 3.35 321 >24h 1 221

can715 8095 514916 1557 1.89 16 >24h 1 357

dwt503 7033 256275 781 2.40 103 >24h 1 250

dwt592 6288 353313 1069 3.38 84 >24h 2 295

impcold 3809 182318 552 4.59 466 >24h 2 212

nos6 4605 457591 1377 2.37 48 >24h 4 337

sherman 4320 300004 905 3.16 107 >24h 5 272
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Experiments with GRASP

• For each of the 48 instances, we apply G+evPR 
and G+PR 30 times

• G+evPR: 25 iterations of inner loop and 4 
iterations of the outer loop (total of 100 GRASP 
iterations)

• G+PR: 250 iterations
• Size of elite set is 10
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Deviation w.r.t. best or optimum

minimum maximum average

Small grids
G+PR 2.9 % 5.9 % 3.8 %
G+evPR 2.2 % 4.8 % 3.4 %

Large grids
G+PR 2.4 % 3.8 % 3.3 %
G+evPR 2.2 % 3.6 % 3.0 %

Small H-B
G+PR 0.6 % 5.9 % 3.8 %
G+evPR 0.0 % 5.9 % 3.1 %

Large H-B
G+PR 1.0 % 3.9 % 2.7 %

G+evPR 0.0 % 3.4 % 2.1 %
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CPU time (seconds)

minimum maximum average
Small grids G+PR 2.4 2.7 2.6

G+evPR 4.0 5.4 4.7
Large grids G+PR 1009.0 1081.6 1046.8

G+evPR 2479.3 3281.1 2822.1
Small H-B G+PR 1.0 1.1 1.1

G+evPR 3.9 4.9 4.3
Large H-B G+PR 194.3 200.9 197.6

G+evPR 588.7 790.2 668.5
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Number of best (optimal) solutions

minimum maximum % best
Small grids G+PR 0 30 23%

G+evPR 0 30 25%
Large grids G+PR 0 0 0%

G+evPR 0 0 0%
Small H-B G+PR 0 30 51%

G+evPR 1 30 57%
Large H-B G+PR 0 30 12%

G+evPR 1 30 17%
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Number of best (optimal) solutions

minimum maximum % best
Small grids G+PR 0 30 23%

G+evPR 0 30 25%
Large grids G+PR 0 0 0%

G+evPR 0 0 0%
Small H-B G+PR 0 30 51%

G+evPR 1 30 57%
Large H-B G+PR 0 30 12%

G+evPR 1 30 17%

A minimum of 0 implies at least one instance (of the 12)
for which all 30 runs failed to find the best/opt
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Number of best (optimal) solutions

minimum maximum % best
Small grids G+PR 0 30 23%

G+evPR 0 30 25%
Large grids G+PR 0 0 0%

G+evPR 0 0 0%
Small H-B G+PR 0 30 51%

G+evPR 1 30 57%
Large H-B G+PR 0 30 12%

G+evPR 1 30 17%

A maximum of 30 implies at least one instance (of the 12)
for which all 30 runs found the best/opt
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Number of best (optimal) solutions

minimum maximum % best
Small grids G+PR 0 30 23%

G+evPR 0 30 25%
Large grids G+PR 0 0 0%

G+evPR 0 0 0%
Small H-B G+PR 0 30 51%

G+evPR 1 30 57%
Large H-B G+PR 0 30 12%

G+evPR 1 30 17%

%best = total number of runs that found best/opt / (12 × 30)
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Small Harwell-Boeing instances (solution values)

name IP CPLEX

G+PR G+evPR
max min avg max min avg

bcspwr01 17 17 16 16.13 17 16 16.40

bcspwr02 21 21 20 20.97 21 20 20.93

ibm32 9 9 8 8.30 9 8 8.27

pores1 6 6 6 6 6 6 6

curtis54 10 12 12 12 12 12 12

will57 12 13 12 12.3 13 12 12.43

bcsstk01 6 8 8 8 8 8 8

dwt234 23 51 49 49.5 51 49 49.67

ash85 12 21 19 19.87 22 19 20.30

bcspwr03 22 39 39 39 39 39 39

impcol.b 5 8 7 7.4 8 7 7.63

nos4 10 34 31 32.6 35 31 33.03
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Large Harwell-Boeing instances (solution values)

name IP CPLEX

G+PR G+evPR
max min avg max min avg

494bus 12 227 224 225.43 228 224 225.73

662bus 16 220 219 219.33 220 219 219.57

685bus 3 136 136 136.00 136 136 136.00

bcsstk06 1 32 31 31.2 33 31 31.57

bcsstk07 1 32 31 31.03 33 31 31.57

can445 1 82 75 78.2 85 78 80.67

can715 1 115 112 113.73 127 115 115.97

dwr503 1 53 51 51.97 58 51 53.73

dwr592 2 108 99 103.03 112 102 106.10

impcol.d 2 104 100 102.03 105 101 102.90

nos6 4 326 324 325.4 328 325 326.47

sherman 5 261 260 260.1 261 260 261.1
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 Concluding remarks
• We described a GRASP with evolutionary path-relinking for the 

antibandwidth problem.

• The antibandwidth problem has an important application in 
frequency assignment in cellular telephony.

• To complete the experiments, we will derive run time distributions 
for the heuristics.  Preliminary results indicate that G+PR and 
G+evPR have similar run time distributions.

• We will also conclude the CPLEX runs on the mesh instances.  
Preliminary results indicate that CPLEX cannot solve optimally 
even the smallest of the mesh instances.

• Our current G+evPR implementation can be made more efficient, 
resulting in a reduction in the number of path-relinking operations 
in the evolutionary path-relinking procedure.
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Coauthors
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The End
These slides and a technical report
can be downloaded from my homepage:
http://www.research.att.com/~mgcr

http://www.research.att.com/~mgcr
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