
Finding approximate solutions for
the p-median problem

Mauricio G. C. Resende
Algorithms & Optimization Research

AT&T Labs Research
Florham Park, New Jersey

mgcr@att.com
http://www.research.att.com/~mgcr

Joint work with
Renato Werneck, Princeton U.

Talk given at U. of Florida on April 4, 2003

Summary

• The p-median problem
• New swap-based local search
• GRASP
• Path-relinking
• GRASP with path-relinking using the new swap-

based local search

p-median problem

n (=11) potential service locations

m (=15) customers

p-median problem

n (=11) potential service locations

m (=15) customers

p (=4) service sites to be
deployed

p-median problem

Customers home into nearest
service center.

p-median problem

Objective of optimization:

Minimize sum of the distances
between customers and their
nearest service center.

Total distance = 61

4

4

4

6

3

3
2

1

6

3

6

5

7
6

1

p-median problem

Objective of optimization:

Minimize sum of the distances
between customers and their
nearest service center.

Total distance = 61

4

4

4

6

3

3
2

1

6

3

6

5

7
6

1

Swap service centers

p-median problem

Objective of optimization:

Minimize sum of the distances
between customers and their
nearest service center.

Total distance = 40 < 61

4

4

4
3

2

1

5
3

1
2

2 4

11

3

Instance Solution

Potential service location () Customer location ()

Example: 1000 customer locations, choose
best 20 of 100 service locations

The p-median problem

• Also known as the k-median problem.
• NP-hard (Kariv & Hakimi, 1979)
• Input:

– a set U of n users (or customers);
– a set F of m potential facilities;
– a distance function (d: U × F → ℜ);
– the number of facilities p to open (0 < p < m).

• Output:
– a set S ⊆ F with p open facilities.

• Goal:
– minimize the sum of the distances from each user to the closest

open facility.

Swap-based local search

Basic Steps:
1. Start with some valid solution.
2. Look for a pair of facilities (fi, fr) such that:

• fi does not belong to the solution;
• fr belongs to the solution;
• swapping fi and fr improves the solution.

3. If (2) is successful, swap fi and fr and repeat (2); else
stop (a local minimum was found).

Swap-based local search

original solution

Swap-based local search

original solution
(not a local optimum)

Swap-based local search

improved solution

Swap-based local search

improved solution
(with wrong assignments)

Swap-based local search

improved solution
(with proper assignments)

Swap-based local search

• Introduced in Teitz and Bart (1968).
• Widely used in practice:

– On its own:
• Whitaker (1983);
• Rosing (1997).

– As a subroutine of metaheuristics:
• [Rolland et al., 1996] - Tabu Search
• [Voss, 1996] - “Reverse Elimination” (Tabu Search)
• [Hansen and Mladenović, 1997] - VNS
• [Rosing and ReVelle, 1997] - “Heuristic Concentration”
• [Hansen et al., 2001] - VNDS

Previous implementations

• Straightforward implementation:
– For each candidate pair of facilities, compute profit:

• p (m–p) = O (pm) pairs;
• O (n) time to compute profit in each case;
• O (pmn) total time (cubic).

• In 1983, Whitaker proposed a much better
implementation: Fast interchange

• Key observation:
– Given a candidate for insertion, the best removal can be

computed in O (n+m) time.
– There are O (m) candidates, so the overall running time is

quadratic.

Our implementation

• We propose another implementation:
– same worst case complexity;
– faster in practice, especially for large instances.

• Key idea: use information gathered in early iterations to
speed up later ones.

– Solution changes very little between iterations:
• swap has a local effect.

– Whitaker’s implementation does not use this fact:
• iterations are independent.

– We use extra memory to avoid repeating previously executed
calculations.

Deletion

• For each facility fr in the solution, compute amount lost if
it were deleted from the solution (and not replaced);

• That’s the cost of transferring all facilities assigned to fr to
their second closest facilities:

• Save the result: loss is an array.

∑
=

−=
rfuu

rr fuduudfloss
)(:

2
1

)],())(,([)(
φ

φ

Notation:
–φ1(u): facility in the solution that is closest to u;
–φ2(u): second closest facility to u in the solution.

Insertion

• For each facility fi not in the solution, compute amount
gained if it were inserted (and no facility removed);

• That’s the amount saved by transferring to fi users that
are closer to it than to their current facilities:

• Save the result: gain is also an array.

∑
∈

−=
Uu

ii fuduudfgain)},())(,(,0max{)(1φ

Swap

• We are interested in how profitable a swap is:

)()(),(riri flossfgainffprofit −=

Swap

• We are interested in how profitable a swap is.
– It would be nice if the profit were

– But it isn’t: fi and fr interact with each other.
– The correct expression is

(for a properly defined extra function).
– extra can be thought of as a correction factor.

),()()(),(ririri ffextraflossfgainffprofit +−=

)()(),(riri flossfgainffprofit −=

Correction factor

Things will go wrong for a user u iff:
fr is the facility that is closest to u and
one of two things happens:
1. The new facility is closer to u than φ1(u) is.

– When computing loss, we predicted that u would be reassigned to φ2(u).
This will not happen and there will be no loss.

– Loss overestimated by [d (u, φ2(u)) – d (u, fr)].
2. The new facility is farther from u than φ1(u) is, but closer than φ2(u).

– When computing loss, we predicted that u would be reassigned to φ2(u),
but it should be reassigned to fi.

– Loss overestimated by [d (u, φ2(u)) – d (u, fi)].

Note that in both wrong cases we have overestimated the
loss ⇒ extra will be additive.

fr=φ1(u)

φ2(u)

u
fi

fr=φ1(u)

u

fi
φ2(u)

Correction factor

– From the conditions in the previous slide, we can determine
what extra must be:

– Simplifying, we get

This can be computed in O (mn) time for all pairs.

∑

∑

≤<
∧=

<≤
∧=

−+

−=

))](,())(,(),([
])([:

2

))](,(),())(,([
])([:

2

21
1

21
1

)],())(,([

)],())(,([),(

uuduudfud
fuu

r

uudfuduud
fuu

iri

i
r

i
r

fuduud

fuduudffextra

φφ
φ

φφ
φ

φ

φ

∑
<

∧=

−=
))](,(),([

])([:
2

2
1

)}],(),,(max{))(,([),(
uudfud

fuu
riri

i
r

fudfuduudffextra
φ

φ
φ

extra is a matrix

Our implementation

• So we have to compute three structures:

• Each of them is a summation over the set of users:

∑
=

−=
rfuu

rr fuduudfloss
)(:

2
1

)],())(,([)(
φ

φ

∑
∈

−=
Uu

ii fuduudfgain)},())(,(,0max{)(1φ

The contribution of each user can be computed independently.

∑
<

∧=

−=
))](,(),([

])([:
2

2
1

)}],(),,(max{))(,([),(
uudfud

fuu
riri

i
r

fudfuduudffextra
φ

φ
φ

Our implementation
function updateStructures (S,u,loss,gain,extra,φ1,φ2)

fr = φ1(u);
loss[fr] += d(u,φ2(u)) - d(u,φ1(u));
forall (fi∉S) do {

if (d(u,fi)<d(u,φ2(u))) then
gain[fi] += max{0, d(u,φ1(u)) - d(u,fi)};
extra[fi,fr] += d(u,φ2(u)) – max{d(u,fi),d(u,fr)};

endif

endforall

end updateStructures

We can compute the contribution of each user independently.
O (m) time per user.

Our implementation

• So each iteration of our method is as follows:
Determine closeness information: O (pm) time
Compute gain, loss, and extra: O (mn) time
Use gain, loss, and extra to find best swap: O (pm) time

• That’s the same complexity as Whitaker’s implementation,
but

much more complicated
uses much more memory: extra is an O (pm)-sized matrix

• Why would this be better?
Don’t need to compute everything in every iteration
we just need to update gain, loss, and extra
only contributions of affected users are recomputed

Our implementation
function localSearch (S,φ1,φ2)

A := U;

resetStructures(gain,loss,extra);

while (TRUE) do {

forall (u∈A) do updateStructures (S,u,gain,loss,extra,φ1,φ2);
(fr,fi,profit) := findBestNeighbor (gain,loss,extra);

if (profit ≤ 0) then break;

A := ∅;
forall (u∈U) do

if ((φ1(u)=fr) or (φ2(u)=fr) or (d(u,fi)<d(u,φ2(u)))) then
A := A∪{u};

endif;
endforall
forall (u∈A) do
undoUpdateStructures(S,u,gain,loss,extra,φ1,φ2);
insert(S,fi);
remove(S,fr);
updateClosest(S,fi,fr,φ1,φ2);

endwhile
end localSearch

Our implementation
function localSearch (S,φ1,φ2)

A := U;

resetStructures(gain,loss,extra);

while (TRUE) do {

forall (u∈A) do updateStructures (S,u,gain,loss,extra,φ1,φ2);
(fr,fi,profit) := findBestNeighbor (gain,loss,extra);

if (profit ≤ 0) then break;

A := ∅;
forall (u∈U) do

if ((φ1(u)=fr) or (φ2(u)=fr) or (d(u,fi)<d(u,φ2(u)))) then
A := A∪{u};

endif;
endforall
forall (u∈A) do
undoUpdateStructures(S,u,gain,loss,extra,φ1,φ2);
insert(S,fi);
remove(S,fr);
updateClosest(S,fi,fr,φ1,φ2);

endwhile
end localSearch

Input: solution to be changed and
related closeness information.

Our implementation
function localSearch (S,φ1,φ2)

A := U;

resetStructures(gain,loss,extra);

while (TRUE) do {

forall (u∈A) do updateStructures (S,u,gain,loss,extra,φ1,φ2);
(fr,fi,profit) := findBestNeighbor (gain,loss,extra);

if (profit ≤ 0) then break;

A := ∅;
forall (u∈U) do

if ((φ1(u)=fr) or (φ2(u)=fr) or (d(u,fi)<d(u,φ2(u)))) then
A := A∪{u};

endif;
endforall
forall (u∈A) do
undoUpdateStructures(S,u,gain,loss,extra,φ1,φ2);
insert(S,fi);
remove(S,fr);
updateClosest(S,fi,fr,φ1,φ2);

endwhile
end localSearch

All users affected in the beginning.
(gain, loss, and extra must be computed
for all of them).

Our implementation
function localSearch (S,φ1,φ2)

A := U;

resetStructures(gain,loss,extra);

while (TRUE) do {

forall (u∈A) do updateStructures (S,u,gain,loss,extra,φ1,φ2);
(fr,fi,profit) := findBestNeighbor (gain,loss,extra);

if (profit ≤ 0) then break;

A := ∅;
forall (u∈U) do

if ((φ1(u)=fr) or (φ2(u)=fr) or (d(u,fi)<d(u,φ2(u)))) then
A := A∪{u};

endif;
endforall
forall (u∈A) do
undoUpdateStructures(S,u,gain,loss,extra,φ1,φ2);
insert(S,fi);
remove(S,fr);
updateClosest(S,fi,fr,φ1,φ2);

endwhile
end localSearch

Initialize all positions of
gain, loss, and extra to zero.

Our implementation
function localSearch (S,φ1,φ2)

A := U;

resetStructures(gain,loss,extra);

while (TRUE) do {

forall (u∈A) do updateStructures (S,u,gain,loss,extra,φ1,φ2);
(fr,fi,profit) := findBestNeighbor (gain,loss,extra);

if (profit ≤ 0) then break;

A := ∅;
forall (u∈U) do

if ((φ1(u)=fr) or (φ2(u)=fr) or (d(u,fi)<d(u,φ2(u)))) then
A := A∪{u};

endif;
endforall
forall (u∈A) do
undoUpdateStructures(S,u,gain,loss,extra,φ1,φ2);
insert(S,fi);
remove(S,fr);
updateClosest(S,fi,fr,φ1,φ2);

endwhile
end localSearch

Add contributions of all affected
users to gain, loss, and extra.

Our implementation
function localSearch (S,φ1,φ2)

A := U;

resetStructures(gain,loss,extra);

while (TRUE) do {

forall (u∈A) do updateStructures (S,u,gain,loss,extra,φ1,φ2);
(fr,fi,profit) := findBestNeighbor (gain,loss,extra);

if (profit ≤ 0) then break;

A := ∅;
forall (u∈U) do

if ((φ1(u)=fr) or (φ2(u)=fr) or (d(u,fi)<d(u,φ2(u)))) then
A := A∪{u};

endif;
endforall
forall (u∈A) do
undoUpdateStructures(S,u,gain,loss,extra,φ1,φ2);
insert(S,fi);
remove(S,fr);
updateClosest(S,fi,fr,φ1,φ2);

endwhile
end localSearch

Determine the best swap to make.

Our implementation
function localSearch (S,φ1,φ2)

A := U;

resetStructures(gain,loss,extra);

while (TRUE) do {

forall (u∈A) do updateStructures (S,u,gain,loss,extra,φ1,φ2);
(fr,fi,profit) := findBestNeighbor (gain,loss,extra);

if (profit ≤ 0) then break;

A := ∅;
forall (u∈U) do

if ((φ1(u)=fr) or (φ2(u)=fr) or (d(u,fi)<d(u,φ2(u)))) then
A := A∪{u};

endif;
endforall
forall (u∈A) do
undoUpdateStructures(S,u,gain,loss,extra,φ1,φ2);
insert(S,fi);
remove(S,fr);
updateClosest(S,fi,fr,φ1,φ2);

endwhile
end localSearch

Swap will be performed
only if profitable.

Our implementation
function localSearch (S,φ1,φ2)

A := U;

resetStructures(gain,loss,extra);

while (TRUE) do {

forall (u∈A) do updateStructures (S,u,gain,loss,extra,φ1,φ2);
(fr,fi,profit) := findBestNeighbor (gain,loss,extra);

if (profit ≤ 0) then break;

A := ∅;
forall (u∈U) do

if ((φ1(u)=fr) or (φ2(u)=fr) or (d(u,fi)<d(u,φ2(u)))) then
A := A∪{u};

endif;
endforall
forall (u∈A) do
undoUpdateStructures(S,u,gain,loss,extra,φ1,φ2);
insert(S,fi);
remove(S,fr);
updateClosest(S,fi,fr,φ1,φ2);

endwhile
end localSearch

Determine which users will be affected
(those that are close to at least one
of the facilities involved in the swap).

Our implementation
function localSearch (S,φ1,φ2)

A := U;

resetStructures(gain,loss,extra);

while (TRUE) do {

forall (u∈A) do updateStructures (S,u,gain,loss,extra,φ1,φ2);
(fr,fi,profit) := findBestNeighbor (gain,loss,extra);

if (profit ≤ 0) then break;

A := ∅;
forall (u∈U) do

if ((φ1(u)=fr) or (φ2(u)=fr) or (d(u,fi)<d(u,φ2(u)))) then
A := A∪{u};

endif;
endforall
forall (u∈A) do
undoUpdateStructures(S,u,gain,loss,extra,φ1,φ2);
insert(S,fi);
remove(S,fr);
updateClosest(S,fi,fr,φ1,φ2);

endwhile
end localSearch

Disregard previous contributions
from affected users to gain, loss,
and extra.

Our implementation
function localSearch (S,φ1,φ2)

A := U;

resetStructures(gain,loss,extra);

while (TRUE) do {

forall (u∈A) do updateStructures (S,u,gain,loss,extra,φ1,φ2);
(fr,fi,profit) := findBestNeighbor (gain,loss,extra);

if (profit ≤ 0) then break;

A := ∅;
forall (u∈U) do

if ((φ1(u)=fr) or (φ2(u)=fr) or (d(u,fi)<d(u,φ2(u)))) then
A := A∪{u};

endif;
endforall
forall (u∈A) do
undoUpdateStructures(S,u,gain,loss,extra,φ1,φ2);
insert(S,fi);
remove(S,fr);
updateClosest(S,fi,fr,φ1,φ2);

endwhile
end localSearch

Finally, perform the swap.

Our implementation
function localSearch (S,φ1,φ2)

A := U;

resetStructures(gain,loss,extra);

while (TRUE) do {

forall (u∈A) do updateStructures (S,u,gain,loss,extra,φ1,φ2);
(fr,fi,profit) := findBestNeighbor (gain,loss,extra);

if (profit ≤ 0) then break;

A := ∅;
forall (u∈U) do

if ((φ1(u)=fr) or (φ2(u)=fr) or (d(u,fi)<d(u,φ2(u)))) then
A := A∪{u};

endif;
endforall
forall (u∈A) do
undoUpdateStructures(S,u,gain,loss,extra,φ1,φ2);
insert(S,fi);
remove(S,fr);
updateClosest(S,fi,fr,φ1,φ2);

endwhile
end localSearch Update closeness information

for next iteration.

Bottlenecks
function localSearch (S,φ1,φ2)

A := U;

resetStructures(gain,loss,extra);

while (TRUE) do {

forall (u∈A) do updateStructures (S,u,gain,loss,extra,φ1,φ2);
(fr,fi,profit) := findBestNeighbor (gain,loss,extra);

if (profit ≤ 0) then break;

A := ∅;
forall (u∈U) do

if ((φ1(u)=fr) or (φ2(u)=fr) or (d(u,fi)<d(u,φ2(u)))) then
A := A∪{u};

endif;
endforall
forall (u∈A) do
undoUpdateStructures(S,u,gain,loss,extra,φ1,φ2);
insert(S,fi);
remove(S,fr);
updateClosest(S,fi,fr,φ1,φ2);

endwhile
end localSearch

1

3

3
2

1. Updating closeness information;

2. Finding the best swap to make;

3. Updating auxiliary structures.

Bottleneck 1: Closeness
function localSearch (S,φ1,φ2)

A := U;

resetStructures(gain,loss,extra);

while (TRUE) do {

forall (u∈A) do updateStructures (S,u,gain,loss,extra,φ1,φ2);
(fr,fi,profit) := findBestNeighbor (gain,loss,extra);

if (profit ≤ 0) then break;

A := ∅;
forall (u∈U) do

if ((φ1(u)=fr) or (φ2(u)=fr) or (d(u,fi)<d(u,φ2(u)))) then
A := A∪{u};

endif;
endforall
forall (u∈A) do
undoUpdateStructures(S,u,gain,loss,extra,φ1,φ2);
insert(S,fi);
remove(S,fr);
updateClosest(S,fi,fr,φ1,φ2);

endwhile
end localSearch

Bottleneck 1 – Closeness

• Two kinds of change may occur with a user:
1. The new facility (fi) becomes its closest or second closest

facility:
• Update takes constant time for each user: O (n) time

2. The facility removed (fr) was the user’s closest or second
closest:
• Need to look for a new second closest;
• Takes O(p) time per user.

• The second case could be a bottleneck, but in practice
only a few users fall into this case.
– Only these need to be tested.
– This was observed by Hansen and Mladenović (1997).

Bottleneck 2: Best neighbor
function localSearch (S,φ1,φ2)

A := U;

resetStructures(gain,loss,extra);

while (TRUE) do {

forall (u∈A) do updateStructures (S,u,gain,loss,extra,φ1,φ2);
(fr,fi,profit) := findBestNeighbor (gain,loss,extra);

if (profit ≤ 0) then break;

A := ∅;
forall (u∈U) do

if ((φ1(u)=fr) or (φ2(u)=fr) or (d(u,fi)<d(u,φ2(u)))) then
A := A∪{u};

endif;
endforall
forall (u∈A) do
undoUpdateStructures(S,u,gain,loss,extra,φ1,φ2);
insert(S,fi);
remove(S,fr);
updateClosest(S,fi,fr,φ1,φ2);

endwhile
end localSearch

Bottleneck 2 – Best Neighbor

• Number of potential swaps: p(m-p).
• Straightforward way to compute the best one:

– Compute profit (fi, fr) for all pairs and pick minimum:

– This requires O(mp) time.

• Alternative:
– As the initial candidate, pick the fi with the largest gain and the fr

with the smallest loss.
• The best swap is at least as good as this (extra is always nonnegative)

– Compute the exact profit only for pairs that have extra greater
than zero.

),()()(),(ririri ffextraflossfgainffprofit +−=

Bottleneck 2 – Best Neighbor

• Worst case:
– O (pm) (exactly the same as for straightforward approach)

• In practice:
– extra(fi, fr) represents the interference between these two

facilities.
– Local phenomenon: each facility interacts with some facilities

nearby.
– extra is likely to have very few nonzero elements, especially when

p is large.

• Use sparse matrix representation for extra:
– each row represented as a linked list of nonzero elements.
– side effect: less memory (usually).

Bottleneck 3: Update structures
function localSearch (S,φ1,φ2)

A := U;

resetStructures(gain,loss,extra);

while (TRUE) do {

forall (u∈A) do updateStructures (S,u,gain,loss,extra,φ1,φ2);
(fr,fi,profit) := findBestNeighbor (gain,loss,extra);

if (profit ≤ 0) then break;

A := ∅;
forall (u∈U) do

if ((φ1(u)=fr) or (φ2(u)=fr) or (d(u,fi)<d(u,φ2(u)))) then
A := A∪{u};

endif;
endforall
forall (u∈A) do
undoUpdateStructures(S,u,gain,loss,extra,φ1,φ2);
insert(S,fi);
remove(S,fr);
updateClosest(S,fi,fr,φ1,φ2);

endwhile
end localSearch

Bottleneck 3 – Update Structures
function updateStructures (S,u,loss,gain,extra,φ1,φ2)

fr = φ1(u);
loss[fr] += d(u,φ2(u)) - d(u,φ1(u));
forall (fi∉S) do

if (d(u,fi)<d(u,φ2(u))) then
gain[fi] += max{0, d(u,φ1(u)) - d(u,fi)};

extra[fi,fr] += d(u,φ2(u)) – max{d(u,fi), d(u,fr)};

endif

endforall

end updateStructures

This loop always takes m-p
iterations.

Bottleneck 3 – Update Structures
function updateStructures (S,u,loss,gain,extra,φ1,φ2)

fr = φ1(u);
loss[fr] += d(u,φ2(u)) - d(u,φ1(u));
forall (fi∉S such that d(u,fi)<d(u,φ2(u))) do

gain[fi] += max{0, d(u,φ1(u)) - d(u,fi)};

extra[fi,fr] += d(u,φ2(u)) – max{d(u,fi), d(u,fr)};
endforall

end updateStructures

Preprocessing step:
for each user, sort all facilities in increasing order by
distance (and keep the resulting list);
in the function above, we just need to check the
appropriate prefix of the list.

We actually need only facilities that
are very close to u.

Bottleneck 3: Update Structures

• Preprocessing step: Time
– O (nm log m);
– preprocessing step executed only once, even if local search is run

several times.

• Preprocessing step: Space
– O (mn) memory positions, which can be too much.
– Alternative:

• Keep only a prefix of the list (the closest facilities).
• Use list as a cache:

– If enough elements present, use it;
– Otherwise, do as before: check all facilities.

• Same worst case.

Results

• Three classes of instances:
– ORLIB (sparse graphs):

• 100 to 900 users, p between 5 and 200;
• Distances given by shortest paths in the graph.

– RW (random instances):
• 100 to 1000 users, p between 10 and n/2;
• Distances picked at random from [1,n].

– TSP (points on the plane):
• 1400, 3038, or 5934 users, p between 10 and n/3;
• Distances are Euclidean.

• In all cases, the sets of users and potential facilities are the
same.

Results
• Three variations analyzed:

– FM: Full Matrix, no preprocessing;
– SM: Sparse Matrix, no preprocessing;
– SMP: Sparse Matrix, with Preprocessing.

• These were run on all instances and compared to
Whitaker’s fast interchange method (FI).
– As implemented in [Hansen and Mladenović, 1997].

• All methods (including FI) use the smart update of
closeness information.

• Measure of relative performance: speedup
– Ratio between the running time of FI and the running time of our

method.
– All methods start from the same (greedy) solution.

Results

Mean speedups when compared to Whitaker’s FI:

– Even our simplest variation is faster than FI in practice;
– Updating only affected users does pay off;
– Speedups greater for larger instances.

FM

Method

11.74.13.0full matrix, no preprocessing

TSPRWORLIBDescription

Results

Mean speedups when compared to Whitaker’s FI:

– Checking only the nonzero elements of the extra matrix gives an
additional speedup.

– Again, better for larger instances.

SM

FM

Method

26.25.33.1sparse matrix, no preprocessing

11.74.13.0full matrix, no preprocessing

TSPRWORLIBDescription

Results

Mean speedups when compared to Whitaker’s FI:

– Preprocessing appears to be a little too expensive.
• Still much faster than the original implementation.

– But remember that preprocessing must be run just once, even if
the local search is run more than once.

20.32.11.2sparse matrix, full preprocessing SMP

SM

FM

Method

26.25.33.1sparse matrix, no preprocessing

11.74.13.0full matrix, no preprocessing

TSPRWORLIBDescription

Results

Mean speedups when compared to Whitaker’s FI:

– If we are able to amortize away the preprocessing time,
significantly greater speedups are observed on average.

– Typical case in metaheuristics (like GRASP, tabu search, VNS, …).

20.32.11.2sparse matrix, full preprocessing SMP

SMP*

SM

FM

Method

177.615.18.7sparse matrix, full preprocessing

26.25.33.1sparse matrix, no preprocessing

11.74.13.0full matrix, no preprocessing

TSPRWORLIBDescription

(in SMP*, preprocessing times are not included)

Results

Speedups w.r.t. Whitaker’s FI (best cases):

– Speedups of up to three orders of magnitude were observed.
– Greater for large instances with large values of p.

79.29.67.5sparse matrix, full preprocessing SMP

SMP*

SM

FM

Method

862.1113.967.0sparse matrix, full preprocessing

147.732.417.2sparse matrix, no preprocessing

31.112.412.7full matrix, no preprocessing

TSPRWORLIBDescription

(in SMP*, preprocessing times are not included)

Results

Speedups w.r.t. Whitaker’s FI (worst cases):

– For small instances, our method can be slower than Whitaker’s;
our constants are higher.

– Once preprocessing times are amortized, even that does not
happen.

1.330.180.22sparse matrix, full preprocessing SMP

SMP*

SM

FM

Method

3.271.401.30sparse matrix, full preprocessing

1.720.750.74sparse matrix, no preprocessing

1.850.880.84full matrix, no preprocessing

TSPRWORLIBDescription

(in SMP*, preprocessing times are not included)

Results

1

10

100

1000

10000

0 300 600 900 1200 1500

p (num ber o f facilities)

ti
m
e
(s
ec

on
ds

) F I

F M

S M

S M P

Largest instance tested: 5934 users, Euclidean.
(preprocessing times not considered)

Results

1

10

100

1000

10000

0 300 600 900 1200 1500

p p p p (num ber of facilities)

ti
m
e
 (
s
ec

o
n
d
s
)

S M

S M P

Note that preprocessing significantly
accelerates the algorithm.

Results
• Preprocessing greatly accelerates the algorithm.
• However, it requires a great amount of memory:

– n lists of size m each.

• We can make only partial lists.
– We would like each list to the second closest open facility to be

as small as possible:
• the larger m is, the larger the list needs to be;
• the larger p is, the smaller the list needs to be.

• Method SMq :
– Each user has a list of size q m/p.
– Example: if m = 6000, p = 300, q = 5, then

• Each user keeps a list of size 100;
• in the “full” version, the list would have size 6000.

Results

1

10

100

1000

10000

0 300 600 900 1200 1500

p p p p (num ber of facilities)

ti
m
e
 (
s
ec

o
n
d
s
) S M

S M 1

S M 2

S M 3

S M 5

S M P

For this instance, q = 5 is already
as fast as the full version.

Final remarks on local search

• New implementation of well-known local search.
• Uses extra memory, but much faster in practice.
• Accelerations are metric-independent.
• Especially useful for metaheuristics:

– We have implemented a GRASP based on this local search with
very promising results.

– Other existing methods may benefit from it.

• There is still room for improvement:
– metric-specific techniques (graphs, Euclidean);

– perform preprocessing on demand.

GRASP: greedy randomized adaptive
search procedure

• Multi-start metaheuristic (Feo & Resende, 1989)
• Repeat:

– Construct greedy randomized solution
– Use local search to improve constructed solution
– Keep track of best solutions found

global opt

Basin of attraction
of global opt

global
opt

generate soln

In basin?
No Yes

Greedy construction for p-median

p (=4) service sites to be
deployed

Start with empty
solution

Greedy construction for p-median

p (=4) service sites to be
deployed

Add most
profitable center
(least cost)

Greedy construction for p-median

p (=4) service sites to be
deployed

Add most
profitable center
(One whose
addition causes
greatest drop
in cost)

Greedy construction for p-median

p (=4) service sites to be
deployed

Add most
profitable center
(One whose
addition causes
greatest drop
in cost)

Greedy construction for p-median

p (=4) service sites to be
deployed

Add most
profitable center
(One whose
addition causes
greatest drop
in cost)

Randomized greedy

• Greedy construction cannot be used within GRASP
framework:
– Being deterministic, it yields identical solutions in all

iterations

Randomized greedy

• Randomization needs to be added to greedy
construction:
– Random: select p sites at random (O(m + pn) time)
– Random plus greedy: select a fraction α of the p

facilities at random, then complete in a greedy fashion
(O(pmn) time if α is not too close to 1)

– Randomized greedy: similar to greedy, but choose
randomly from α (m − i + 1) best options, where
0≤α≤1 is an input parameter (O(pnm) time)

Randomized greedy

• Randomization needs to be added to greedy construction:
– Proportional greedy: for each facility fi compute how much

would be saved if fi were added to solution. Let s (fi) be this
amount. Pick facility at random with probability proportional to
s (fi) − minks (fk) (O(pmn) time)

– Proportional worst: (Taillard, 1998) First facility chosen at
random. Others one at a time. For each customer, compute the
difference between how much its current assignment costs and
how much the best assignment would cost. Select customer at
random proportional to this difference and open closest facility.
(O(mn) time)

Randomized greedy

• After extensive testing, we chose this scheme:
– Sample greedy: Similar to greedy. Instead of selecting

among all possible options, consider only q < m
possible insertions (chosen uniformly at random). The
most profitable facility is selected. Running time is
O(m+qpn). Idea is to make q small enough to reduce
running time, while insuring a fair degree of
randomization. We use q =  log2 (m / p) .

Intensification

• Works with a pool of elite solutions.
• Occurs in two different stages:

– Every GRASP iteration: newly generated GRASP
solution is combined with an elite solution chosen from
pool.

– In post-optimization phase, solutions in the pool are
combined themselves.

• Path-relinking is used to combine solutions.

Path-relinking (PR)

• Introduced in context of tabu and scatter search by
Glover (1996, 2000):
– Approach to integrate intensification & diversification in

search.

• Consists in exploring trajectories that connect high
quality solutions.

initial
solution

guiding
solution

path in neighborhood of solutions

Path-relinking

• Path is generated by selecting moves that introduce in the
initial solution attributes of the guiding solution.

• At each step, all moves that incorporate attributes of the
guiding solution are analyzed and best move is taken.

Path-relinking

• Path is generated by selecting moves that introduce in the
initial solution attributes of the guiding solution.

• At each step, all moves that incorporate attributes of the
guiding solution are analyzed and best move is taken.

Path-relinking

• Path is generated by selecting moves that introduce in the
initial solution attributes of the guiding solution.

• At each step, all moves that incorporate attributes of the
guiding solution are analyzed and best move is taken.

Path-relinking

• Path is generated by selecting moves that introduce in the
initial solution attributes of the guiding solution.

• At each step, all moves that incorporate attributes of the
guiding solution are analyzed and best move is taken.

Path-relinking

• Path is generated by selecting moves that introduce in the
initial solution attributes of the guiding solution.

• At each step, all moves that incorporate attributes of the
guiding solution are analyzed and best move is taken.

Path-relinking

• Path is generated by selecting moves that introduce in the
initial solution attributes of the guiding solution.

• At each step, all moves that incorporate attributes of the
guiding solution are analyzed and best move is taken.

Output of PR usually is best solution in path.

Path-relinking

• Output of PR usually is best solution in path.
• We use a slight variation:

– Outcome is best local minimum in path, where a solution in the
path is a local minimum if it is both succeeded (immediately) and
preceded (either immediately or through a series of same-valued
solutions) in the path by strictly worse solutions.

– If path has no local minimum, one of the path’s extreme solutions
is returned with equal probability.

– When PR fails, our scheme tries to increase diversity by selecting
some solution other than the extremes of the path.

Path-relinking

• We augment the intensification by performing a full
local search on the solution produced by PR.
– Usually much faster than local search on constructed

solution since PR solutions are either a local minimum
or very close to a local minimum.

– A nice side effect of this is increased diversity, since we
are free to use facilities that did not belong to either
extreme solution of the path.

Path-relinking & local search

• Steps of path-relinking are very similar to the local
search described earlier. Two main differences:
– Number of allowed moves is restricted: only elements

in symmetric difference S2 \ S1 can be inserted, and the
ones in S1 \ S2 can be removed.

– Non-improving moves are allowed.
• These differences are subtle enough to be easily

incorporated into the basic implementation of the
local search procedure (both procedures share the
same code).

Pool management

• Relinking between a pair of similar solutions is less
likely to be successful.

• Pool must support two essential operations:
– Addition of new solutions;
– Selection of a solution for path-relinking.

Pool management: Updates

• For a solution S with cost v (S) to be added to the
pool, two conditions must be met:
– The symmetric difference between S and all solutions

currently in the pool whose value is less than S must
be at least 4.

• Path relinking between solutions that differ in fewer than four
facilities cannot produce solutions that are better than the
extremes.

– If the pool is full, S must be at least as good as the
worst elite solution.

Pool management: Selection

• Previous work has selected an element from the
pool, uniformly at random, to combine with S.

• However, this often results in selecting a solution
that is too similar to S.

• We pick at random, but not uniformly. We use
probabilities proportional to their symmetric
difference with respect to S.
– In paper, we show that this pays off.

Path relinking: Post-optimization

a) Start with pool found at end of GRASP: P0 ;
Set k = 0;

b) Combine with path-relinking all pairs of solutions
in pool Pk ;

c) Solutions obtained by combining solutions in Pk
are added to a new pool Pk+1 following same
constraints for updates as before;

d) If best solution of Pk+1 is better than best solution
of Pk , then set k = k + 1, and go to step (b);

Results: Algorithmic setup

• Constructive procedure: sample greedy.
• Path-relinking is done during GRASP and as post-

optimization.
• Path-relinking is performed from best to worst during

GRASP, and from worst to best during post-optimization.
• Solutions are selected from pool during GRASP using

biased scheme.
• GRASP iterations: 32
• Size of pool of elite solutions: 10

Results: Test problems

• TSP: Set of points on the plane (74 instances with 1400,
3038, and 5934 nodes)
– 1400 node instance: p = 10, 20, … 450, 500
– 3038 node instance: p = 10, 20, … 950, 1000
– 5934 node instance: p = 10, 20, … 1400, 1500

• ORLIB: From Beasley’s ORLibrary (40 instances with 100
to 900 nodes and p from 5 to 200)

• SL: slight extension of ORLIB (3 instances with 700 nodes
(p = 233), 800 nodes (p = 267), and 900 nodes (p = 300).

Results: Test problems

• GR: Galvão and ReVelle (1996) (16 instances with
two graphs having 100 and 150 nodes and eight
values of p between 5 and 50).

• RW: Resende & Werneck (2002) of completely
random distance matrices. Distance between each
facilty and customer is integer taken at random in
interval [1,n], where n is the number of customers.
28 instances with 100, 250, 500, and 1000
customers and different values of p .

Results: Compared with best known solutions

01616GR*

033SL*

04040ORLIB*

19928TSP: rl5934

21728TSP: pcb3038

12618TSP: fl1400

Improved# Ties# InstancesInstance

* Optimal solution known for all instances in ORLIB, SL, and GR.

Results: Other methods

• VNS: Variable neighborhood search by Hansen and
Mladenović (1997)

• VNDS: Variable neighborhood decomposition search by
Hansen, Mladenović, and Perez-Brito (2001)

• LOPT: Local optimization method by Taillard (1998)
• DEC: Decomposition procedure by Taillard (1998)
• LSH: Lagrangean-surrogate heuristic by Senne and Lorena

(2000)
• CGLS: Column generation with Lagrangean/surrogate

relaxation by Senne and Lorena (2002)

GRASP vs other methods

0.1420.022rl5924

0.3540.1172.3160.7124.1200.0430.025pcb3038

0.1910.0710.031fl1400

0.0070.1160.0000.1010.000ORLIB

0.3320.6910.000SL

0.7270.009GR

VNSVNDSLSHLOPTDECCGLSGRASPseries

Mean percentage deviation w.r.t best known solution.
Green is best algorithm; Red when not all instances tested; Black not tested.

GRASP vs other methods

2.9301.000rl5924

30.942.6001.6700.3500.2109.5501.000pcb3038

19.010.5801.000fl1400

5.4700.4604.13055.981.000ORLIB

24.200.5101.000SL

1.1101.000GR

VNS
Sun

SparcStation
10

VNDS
147 MHz
UltraSparc

LSH
Sun

Ultra 30

LOPT
195 MHz
R10000

DEC
195 MHz
R10000

CGLS
Sun

Ultra 30

GRASP
196 MHz
R10000

series

Mean ratio of running times w.r.t. GRASP.
Green GRASP is faster; Red GRASP is slower; Black not tested.

Concluding remarks

• New heuristic algorithm for p-median problem.
• We show that the method is remarkably robust:

– Handles a wide variety of instances.
– Obtains results competitive with those found by best

heuristics in the literature.

• Our method is a valuable candidate for a general-
purpose solver for the p-median problem.

Concluding remarks

• We do not claim our method is the best in every
circumstance.

• Other methods are able to produce results of remarkably
good quality, often at the expense of higher running times:
– VNS (Hansen & Mladenović, 1997) is specially succesful for

graph instances;
– VNDS (Hansen, Mladenović, and Perez-Brito, 2001) is strong on

Euclidean instances and very fast on problems with small p ;
– CGLS (Senne & Lorena, 2002) can obtain very good results for

Euclidean instances and provides good lower bounds.

Concluding remarks

• Papers:
– M.G.C. Resende and R. Werneck, “On the implementation of a

swap-based local search procedure for the p-median problem,’’
ALENEX03, 2003:

http://www.research.att.com/~mgcr/doc/pmedianls.pdf

– M.G.C. Resende and R. Werneck, “A GRASP with path-relinking
for the p-median problem,” submitted to J. of Heuristics (2002):

http://www.research.att.com/~mgcr/doc/gpmedian.pdf

• Code: http://www.research.att.com/~mgcr/popstar

• Slides: http://www.research.att.com/~mgcr/talks/gpmedian.pdf

