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the p-median problem
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p-median problem

n (=11) potential service locations

m  (=15) customers



p-median problem

p  (=4) service sites to be 
opened

n (=11) potential service locations

m  (=15) customers



p-median problem

Customers home into nearest open
service center.



p-median problem
4

4

Objective of optimization:

Minimize sum of the distances
between customers and their
nearest open service center.

Total distance = 61
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p-median problem
4

4

Objective of optimization:

Minimize sum of the distances
between customers and their
nearest open service center.

Total distance = 61
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Swap service centers
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p-median problem
4
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Objective of optimization:

Minimize sum of the distances
between customers and their
nearest open service center.

Total distance = 40 < 61
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Instance Solution

Potential service location (  ) Customer location (  )

Example: 1000 customer locations, choose
best 20 of 100 service locations



The p-median problem
• Also known as the k-median problem. 
• NP-hard  (Kariv & Hakimi, 1979)
• Input:

– a set U of n users (or customers);
– a set F of m potential facilities;
– a distance function (d: U × F → ℜ);
– the number of facilities p  to open (0 < p < m).

• Output:
– a set S ⊆ F with p open facilities.

• Goal:
– minimize the sum of the distances from each user to the closest 

open facility.



Swap-based local search 

Basic Steps:
1. Start with some valid solution.
2. Look for a pair of facilities (fi, fr ) such that:

• fi does not belong to the solution;
• fr belongs to the solution;
• swapping fi and fr improves the solution.

3. If (2) is successful, swap fi and fr and repeat (2); else 
stop (a local minimum was found).



Swap-based local search

• Introduced in Teitz and Bart (1968).
• 5-opt for metric cases (Arya et al. , 2001)
• Widely used in practice:

– On its own:
• Whitaker (1983);
• Rosing (1997).

– As a subroutine of metaheuristics:
• [Rolland et al., 1996] - Tabu Search
• [Voss, 1996] - “Reverse Elimination” (Tabu Search)
• [Hansen and Mladenović, 1997] - VNS
• [Rosing and ReVelle, 1997] - “Heuristic Concentration”
• [Hansen et al., 2001] - VNDS



Swap based local search

in out

Complexity of local search:
O(pmn) total time



Whitaker’s algorithm (1983): Given facility fi to swap in, finds 
facility fr to swap out in Θ(n) time.

Complexity of swap-based local
search is reduced to O(mn)

Whitaker’s observation: Profit can be decomposed into two 
components, which we call gain and netloss.



Whitaker’s algorithm

• Whitaker computes gain and netloss to determine 
profit of a swap:



Our algorithm

• We propose another implementation:
– same worst case complexity;
– faster in practice, especially for large instances.

• Key idea: use information gathered in early iterations to 
speed up later ones.

– Solution changes very little between iterations:
• swap has a local effect.

– Whitaker’s implementation does not use this fact:
• iterations are independent.

– We use extra memory to avoid repeating previously executed 
calculations.



Our algorithm

We have a paper describing the local search 
algorithm: 

M.G.C. Resende and R.F. Werneck, A fast swap-based 
local search procedure for location problems, AT&T 
Labs Research Technical Report TD-5R3KBH, 
Florham Park, NJ, Sept. 2003.

http://www.research.att.com/~mgcr/doc/locationls.pdf



Our algorithm

• Defines gain like Whitaker:

• But computes netloss indirectly, by using loss:

Decrease in solution value if fi is added, 
assuming no facility is removed.

Increase in solution value if fr is 
removed, assuming no facility is added.



Our algorithm

• From Whitaker, we have:

• For all pairs {fi,fr}, we define:

Substituting loss and netloss into the
expression for extra, (after some 
algebra) we get …



Our algorithm

• Our final expression for extra:

• And now, we can compute the profit of swapping fi
in and fr out:



Our algorithm

• So we have to compute three structures:

• Each of them is a summation over the set of users:

The contribution of each user can be computed independently.



Our implementation
function updateStructures (S,u,loss,gain,extra,φ1,φ2) 

fr = φ1(u);
loss[fr] += d(u,φ2(u)) - d(u,φ1(u));
forall (fi∉S) do {

if (d(u,fi)<d(u,φ2(u))) then
gain[fi] += max{0, d(u,φ1(u)) - d(u,fi)};
extra[fi,fr] += d(u,φ2(u)) – max{d(u,fi),d(u,fr)};

endif
endforall

end updateStructures

We can compute the contribution of each user  independently.
O (m) time per user.



Our implementation

• So each iteration of our method is as follows:
Determine closeness information: O (pm) time
Compute gain, loss, and extra: O (mn) time
Use gain, loss, and extra to find best swap: O (pm) time

• That’s the same complexity as Whitaker’s implementation, 
but

more complicated
uses more memory: extra is an O (pm)-sized matrix

• Why would this be better?
Don’t need to compute everything in every iteration
we just need to update gain, loss, and extra
only contributions of affected users are recomputed



Our implementation
function localSearch (S,φ1,φ2) 
A := U;

resetStructures(gain,loss,extra);

while (TRUE) do {

forall (u∈A) do updateStructures (S,u,gain,loss,extra,φ1,φ2);
(fr,fi,profit) := findBestNeighbor (gain,loss,extra);

if (profit ≤ 0) then break;

A := ∅;
forall (u∈U) do
if ((φ1(u)=fr) or (φ2(u)=fr) or (d(u,fi)<d(u,φ2(u)))) then

A := A∪{u};
endif;

endforall
forall (u∈A) do
undoUpdateStructures(S,u,gain,loss,extra,φ1,φ2);
insert(S,fi);
remove(S,fr);
updateClosest(S,fi,fr,φ1,φ2);

endwhile
end localSearch



Our implementation
function localSearch (S,φ1,φ2) 
A := U;

resetStructures(gain,loss,extra);

while (TRUE) do {

forall (u∈A) do updateStructures (S,u,gain,loss,extra,φ1,φ2);
(fr,fi,profit) := findBestNeighbor (gain,loss,extra);

if (profit ≤ 0) then break;

A := ∅;
forall (u∈U) do
if ((φ1(u)=fr) or (φ2(u)=fr) or (d(u,fi)<d(u,φ2(u)))) then

A := A∪{u};
endif;

endforall
forall (u∈A) do
undoUpdateStructures(S,u,gain,loss,extra,φ1,φ2);
insert(S,fi);
remove(S,fr);
updateClosest(S,fi,fr,φ1,φ2);

endwhile
end localSearch

Input: solution to be changed and 
related closeness information.



Our implementation
function localSearch (S,φ1,φ2) 
A := U;

resetStructures(gain,loss,extra);

while (TRUE) do {

forall (u∈A) do updateStructures (S,u,gain,loss,extra,φ1,φ2);
(fr,fi,profit) := findBestNeighbor (gain,loss,extra);

if (profit ≤ 0) then break;

A := ∅;
forall (u∈U) do
if ((φ1(u)=fr) or (φ2(u)=fr) or (d(u,fi)<d(u,φ2(u)))) then

A := A∪{u};
endif;

endforall
forall (u∈A) do
undoUpdateStructures(S,u,gain,loss,extra,φ1,φ2);
insert(S,fi);
remove(S,fr);
updateClosest(S,fi,fr,φ1,φ2);

endwhile
end localSearch

All users affected in the beginning.
(gain, loss,  and extra must be computed 
for all of them).



Our implementation
function localSearch (S,φ1,φ2) 
A := U;

resetStructures(gain,loss,extra);

while (TRUE) do {

forall (u∈A) do updateStructures (S,u,gain,loss,extra,φ1,φ2);
(fr,fi,profit) := findBestNeighbor (gain,loss,extra);

if (profit ≤ 0) then break;

A := ∅;
forall (u∈U) do
if ((φ1(u)=fr) or (φ2(u)=fr) or (d(u,fi)<d(u,φ2(u)))) then

A := A∪{u};
endif;

endforall
forall (u∈A) do
undoUpdateStructures(S,u,gain,loss,extra,φ1,φ2);
insert(S,fi);
remove(S,fr);
updateClosest(S,fi,fr,φ1,φ2);

endwhile
end localSearch

Initialize all positions of 
gain, loss, and extra to zero.



Our implementation
function localSearch (S,φ1,φ2) 
A := U;

resetStructures(gain,loss,extra);

while (TRUE) do {

forall (u∈A) do updateStructures (S,u,gain,loss,extra,φ1,φ2);
(fr,fi,profit) := findBestNeighbor (gain,loss,extra);

if (profit ≤ 0) then break;

A := ∅;
forall (u∈U) do
if ((φ1(u)=fr) or (φ2(u)=fr) or (d(u,fi)<d(u,φ2(u)))) then

A := A∪{u};
endif;

endforall
forall (u∈A) do
undoUpdateStructures(S,u,gain,loss,extra,φ1,φ2);
insert(S,fi);
remove(S,fr);
updateClosest(S,fi,fr,φ1,φ2);

endwhile
end localSearch

Add contributions of all affected 
users to gain, loss, and extra.



Our implementation
function localSearch (S,φ1,φ2) 
A := U;

resetStructures(gain,loss,extra);

while (TRUE) do {

forall (u∈A) do updateStructures (S,u,gain,loss,extra,φ1,φ2);
(fr,fi,profit) := findBestNeighbor (gain,loss,extra);

if (profit ≤ 0) then break;

A := ∅;
forall (u∈U) do
if ((φ1(u)=fr) or (φ2(u)=fr) or (d(u,fi)<d(u,φ2(u)))) then

A := A∪{u};
endif;

endforall
forall (u∈A) do
undoUpdateStructures(S,u,gain,loss,extra,φ1,φ2);
insert(S,fi);
remove(S,fr);
updateClosest(S,fi,fr,φ1,φ2);

endwhile
end localSearch

Determine the best swap to make.



Our implementation
function localSearch (S,φ1,φ2) 
A := U;

resetStructures(gain,loss,extra);

while (TRUE) do {

forall (u∈A) do updateStructures (S,u,gain,loss,extra,φ1,φ2);
(fr,fi,profit) := findBestNeighbor (gain,loss,extra);

if (profit ≤ 0) then break;

A := ∅;
forall (u∈U) do
if ((φ1(u)=fr) or (φ2(u)=fr) or (d(u,fi)<d(u,φ2(u)))) then

A := A∪{u};
endif;

endforall
forall (u∈A) do
undoUpdateStructures(S,u,gain,loss,extra,φ1,φ2);
insert(S,fi);
remove(S,fr);
updateClosest(S,fi,fr,φ1,φ2);

endwhile
end localSearch

Swap will be performed 
only if profitable.



Our implementation
function localSearch (S,φ1,φ2) 
A := U;

resetStructures(gain,loss,extra);

while (TRUE) do {

forall (u∈A) do updateStructures (S,u,gain,loss,extra,φ1,φ2);
(fr,fi,profit) := findBestNeighbor (gain,loss,extra);

if (profit ≤ 0) then break;

A := ∅;
forall (u∈U) do
if ((φ1(u)=fr) or (φ2(u)=fr) or (d(u,fi)<d(u,φ2(u)))) then

A := A∪{u};
endif;

endforall
forall (u∈A) do
undoUpdateStructures(S,u,gain,loss,extra,φ1,φ2);
insert(S,fi);
remove(S,fr);
updateClosest(S,fi,fr,φ1,φ2);

endwhile
end localSearch

Determine which users will be affected
(those that are close to at least one 
of the facilities involved in the swap).



Our implementation
function localSearch (S,φ1,φ2) 
A := U;

resetStructures(gain,loss,extra);

while (TRUE) do {

forall (u∈A) do updateStructures (S,u,gain,loss,extra,φ1,φ2);
(fr,fi,profit) := findBestNeighbor (gain,loss,extra);

if (profit ≤ 0) then break;

A := ∅;
forall (u∈U) do
if ((φ1(u)=fr) or (φ2(u)=fr) or (d(u,fi)<d(u,φ2(u)))) then

A := A∪{u};
endif;

endforall
forall (u∈A) do
undoUpdateStructures(S,u,gain,loss,extra,φ1,φ2);
insert(S,fi);
remove(S,fr);
updateClosest(S,fi,fr,φ1,φ2);

endwhile
end localSearch

Disregard previous contributions 
from affected users to gain, loss, 
and extra.



Our implementation
function localSearch (S,φ1,φ2) 
A := U;

resetStructures(gain,loss,extra);

while (TRUE) do {

forall (u∈A) do updateStructures (S,u,gain,loss,extra,φ1,φ2);
(fr,fi,profit) := findBestNeighbor (gain,loss,extra);

if (profit ≤ 0) then break;

A := ∅;
forall (u∈U) do
if ((φ1(u)=fr) or (φ2(u)=fr) or (d(u,fi)<d(u,φ2(u)))) then

A := A∪{u};
endif;

endforall
forall (u∈A) do
undoUpdateStructures(S,u,gain,loss,extra,φ1,φ2);
insert(S,fi);
remove(S,fr);
updateClosest(S,fi,fr,φ1,φ2);

endwhile
end localSearch

Finally, perform the swap.



Our implementation
function localSearch (S,φ1,φ2) 
A := U;

resetStructures(gain,loss,extra);

while (TRUE) do {

forall (u∈A) do updateStructures (S,u,gain,loss,extra,φ1,φ2);
(fr,fi,profit) := findBestNeighbor (gain,loss,extra);

if (profit ≤ 0) then break;

A := ∅;
forall (u∈U) do
if ((φ1(u)=fr) or (φ2(u)=fr) or (d(u,fi)<d(u,φ2(u)))) then

A := A∪{u};
endif;

endforall
forall (u∈A) do
undoUpdateStructures(S,u,gain,loss,extra,φ1,φ2);
insert(S,fi);
remove(S,fr);
updateClosest(S,fi,fr,φ1,φ2);

endwhile
end localSearch Update closeness information 

for next iteration.



Bottlenecks
function localSearch (S,φ1,φ2) 
A := U;

resetStructures(gain,loss,extra);

while (TRUE) do {

forall (u∈A) do updateStructures (S,u,gain,loss,extra,φ1,φ2);
(fr,fi,profit) := findBestNeighbor (gain,loss,extra);

if (profit ≤ 0) then break;

A := ∅;
forall (u∈U) do
if ((φ1(u)=fr) or (φ2(u)=fr) or (d(u,fi)<d(u,φ2(u)))) then

A := A∪{u};
endif;

endforall
forall (u∈A) do
undoUpdateStructures(S,u,gain,loss,extra,φ1,φ2);
insert(S,fi);
remove(S,fr);
updateClosest(S,fi,fr,φ1,φ2);

endwhile
end localSearch

1

3

3
2

1. Updating closeness information;

2. Finding the best swap to make;

3. Updating auxiliary structures.



Bottleneck 1: Closeness
function localSearch (S,φ1,φ2) 
A := U;

resetStructures(gain,loss,extra);

while (TRUE) do {

forall (u∈A) do updateStructures (S,u,gain,loss,extra,φ1,φ2);
(fr,fi,profit) := findBestNeighbor (gain,loss,extra);

if (profit ≤ 0) then break;

A := ∅;
forall (u∈U) do
if ((φ1(u)=fr) or (φ2(u)=fr) or (d(u,fi)<d(u,φ2(u)))) then

A := A∪{u};
endif;

endforall
forall (u∈A) do
undoUpdateStructures(S,u,gain,loss,extra,φ1,φ2);
insert(S,fi);
remove(S,fr);
updateClosest(S,fi,fr,φ1,φ2);

endwhile
end localSearch



Bottleneck 1 – Closeness

• Two kinds of change may occur with a user:
1. The new facility (fi ) becomes its closest or second closest 

facility:
• Update takes constant time for each user: O(n) time

2. The facility removed (fr ) was the user’s closest or second 
closest:
• Need to look for a new second closest;
• Takes O(p) time per user.

• The second case could be a bottleneck, but in practice 
only a few users fall into this case.
– Only these need to be tested.
– This was observed by Hansen and Mladenović (1997).



Bottleneck 2: Best neighbor
function localSearch (S,φ1,φ2) 
A := U;

resetStructures(gain,loss,extra);

while (TRUE) do {

forall (u∈A) do updateStructures (S,u,gain,loss,extra,φ1,φ2);
(fr,fi,profit) := findBestNeighbor (gain,loss,extra);

if (profit ≤ 0) then break;

A := ∅;
forall (u∈U) do
if ((φ1(u)=fr) or (φ2(u)=fr) or (d(u,fi)<d(u,φ2(u)))) then

A := A∪{u};
endif;

endforall
forall (u∈A) do
undoUpdateStructures(S,u,gain,loss,extra,φ1,φ2);
insert(S,fi);
remove(S,fr);
updateClosest(S,fi,fr,φ1,φ2);

endwhile
end localSearch



Bottleneck 2 – Best Neighbor

• Number of potential swaps: p(m-p).
• Straightforward way to compute the best one:

– Compute profit (fi, fr ) for all pairs and pick minimum:

– This requires O(mp) time.

• Alternative:
– As the initial candidate, pick the fi with the largest gain and the fr with the 

smallest loss.
• The best swap is at least as good as this (recall extra is always nonnegative)

– Compute the exact profit only for pairs that have extra greater than zero.



Bottleneck 2 – Best Neighbor

• Worst case:
– O (pm) (exactly the same as for straightforward approach)

• In practice:
– extra( fi, fr ) represents the interference between these two 

facilities.
– Local phenomenon: each facility interacts with some facilities 

nearby.
– extra is likely to have very few nonzero elements, especially when 

p is large.

• Use sparse matrix representation for extra:
– each row represented as a linked list of nonzero elements.
– side effect: less memory (usually).



Bottleneck 3: Update Structures
function localSearch (S,φ1,φ2) 
A := U;

resetStructures(gain,loss,extra);

while (TRUE) do {

forall (u∈A) do updateStructures (S,u,gain,loss,extra,φ1,φ2);
(fr,fi,profit) := findBestNeighbor (gain,loss,extra);

if (profit ≤ 0) then break;

A := ∅;
forall (u∈U) do
if ((φ1(u)=fr) or (φ2(u)=fr) or (d(u,fi)<d(u,φ2(u)))) then

A := A∪{u};
endif;

endforall
forall (u∈A) do
undoUpdateStructures(S,u,gain,loss,extra,φ1,φ2);
insert(S,fi);
remove(S,fr);
updateClosest(S,fi,fr,φ1,φ2);

endwhile
end localSearch



Bottleneck 3 – Update Structures
function updateStructures (S,u,loss,gain,extra,φ1,φ2) 

fr = φ1(u);
loss[fr] += d(u,φ2(u)) - d(u,φ1(u));
forall (fi∉S) do

if (d(u,fi)<d(u,φ2(u))) then
gain[fi] += max{0, d(u,φ1(u)) - d(u,fi)};

extra[fi,fr] += d(u,φ2(u)) – max{d(u,fi), d(u,fr)};

endif

endforall

end updateStructures

This loop always takes m-p 
iterations.



Bottleneck 3 – Update Structures
function updateStructures (S,u,loss,gain,extra,φ1,φ2) 

fr = φ1(u);
loss[fr] += d(u,φ2(u)) - d(u,φ1(u));
forall (fi∉S such that d(u,fi)<d(u,φ2(u))) do

gain[fi] += max{0, d(u,φ1(u)) - d(u,fi)};

extra[fi,fr] += d(u,φ2(u)) – max{d(u,fi), d(u,fr)};
endforall

end updateStructures

Preprocessing step:
for each user, sort all facilities in increasing order by 
distance (and keep the resulting list);
in the function above, we just need to check the 
appropriate prefix of the list.

We actually need only facilities that 
are very close to u.



Bottleneck 3: Update Structures

• Preprocessing step: Time
– O (nm log m);
– preprocessing step executed only once, even if local search is run 

several times.

• Preprocessing step: Space
– O (mn) memory positions, which can be too much.
– Alternative:

• Keep only a prefix of the list (the closest facilities).
• Use list as a cache:

– If enough elements present, use it;
– Otherwise, do as before: check all facilities.

• Same worst case.



Local search results

• Three classes of instances:
– ORLIB (sparse graphs):

• 100 to 900 users, p  between 5 and 200;
• Distances given by shortest paths in the graph.

– RW (random instances):
• 100 to 1000 users, p between 10 and n/2;
• Distances picked at random from [1,n].

– TSP (points on the plane):
• 1400, 3038, or 5934 users, p between 10 and n/3;
• Distances are Euclidean.

• In all cases, the sets of users and potential facilities are the
same.



Local search results
• Three variations analyzed:

– FM: Full Matrix, no preprocessing;
– SM: Sparse Matrix, no preprocessing;
– SMP: Sparse Matrix, with Preprocessing.

• These were run on all instances and compared to 
Whitaker’s fast interchange method (FI).
– As implemented in [Hansen and Mladenović, 1997].

• All methods (including FI) use the smart update of 
closeness information.

• Measure of relative performance: speedup
– Ratio between the running time of FI and the running time of our 

method.
– All methods start from the same (greedy) solution.



Local search results

Mean speedups when compared to Whitaker’s FI:

– Even our simplest variation is faster than FI in practice;
– Updating only affected users does pay off;
– Speedups greater for larger instances.

Method Description ORLIB RW TSP

FM full matrix, no preprocessing 3.0 4.1 11.7



Local search results

Mean speedups when compared to Whitaker’s FI:

– Checking only the nonzero elements of the extra matrix gives an 
additional speedup.

– Again, better for larger instances.

Method Description ORLIB RW TSP

FM

SM

full matrix, no preprocessing 3.0 4.1 11.7

sparse matrix, no preprocessing 3.1 5.3 26.2



Local search results

Mean speedups when compared to Whitaker’s FI:

– Preprocessing appears to be a little too expensive.
• Still much faster than the original implementation.

– But remember that preprocessing must be run just once, even if 
the local search is run more than once.

Method Description ORLIB RW TSP

FM

SM

SMP sparse matrix, full preprocessing 1.2 2.1 20.3

full matrix, no preprocessing 3.0 4.1 11.7

sparse matrix, no preprocessing 3.1 5.3 26.2



Local search results

Mean speedups when compared to Whitaker’s FI:

– If we are able to amortize away the preprocessing time, 
significantly greater speedups are observed on average.

– Typical case in metaheuristics (like GRASP, tabu search, VNS, …).

Method Description ORLIB RW TSP

FM

SM

SMP sparse matrix, full preprocessing 1.2 2.1 20.3

SMP*

full matrix, no preprocessing 3.0 4.1 11.7

sparse matrix, no preprocessing 3.1 5.3 26.2

sparse matrix, full preprocessing 8.7 15.1 177.6

(in SMP*, preprocessing times are not included)



Local search results

Speedups w.r.t. Whitaker’s FI (best cases):

– Speedups of up to three orders of magnitude were observed.
– Greater for large instances with large values of p.

Method Description ORLIB RW TSP

FM

SM

SMP sparse matrix, full preprocessing 7.5 9.6 79.2

SMP*

full matrix, no preprocessing 12.7 12.4 31.1

sparse matrix, no preprocessing 17.2 32.4 147.7

sparse matrix, full preprocessing 67.0 113.9 862.1

(in SMP*, preprocessing times are not included)



Local search results

Speedups w.r.t. Whitaker’s FI (worst cases):

– For small instances, our method can be slower than Whitaker’s; 
our constants are higher.

– Once preprocessing times are amortized, even that does not 
happen.

Method Description ORLIB RW TSP

FM

SM

SMP sparse matrix, full preprocessing 0.22 0.18 1.33

SMP*

full matrix, no preprocessing 0.84 0.88 1.85

sparse matrix, no preprocessing 0.74 0.75 1.72

sparse matrix, full preprocessing 1.30 1.40 3.27

(in SMP*, preprocessing times are not included)



Local search results
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Largest instance tested: 5934 users, Euclidean.
(preprocessing times not considered)



Local search results
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Note that preprocessing significantly 
accelerates the algorithm.



Local search results
• Preprocessing greatly accelerates the algorithm.
• However, it requires a great amount of memory:

– n  lists of size m  each.

• We can make only partial lists. 
– We would like each list to the second closest open facility to be 

as small as possible:
• the larger m is, the larger the list needs to be;
• the larger p is, the smaller the list needs to be.

• Method SMq :
– Each user has a list of size q m/p.
– Example: if m = 6000, p = 300, q = 5, then

• Each user keeps a list of size 100;
• in the “full” version, the list would have size 6000.



Local search results
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For this instance, q = 5 is already 
as fast as the full version.



Final remarks on local search

• New implementation of well-known local search.
• Uses extra memory, but much faster in practice.
• Accelerations are metric-independent.
• Especially useful for metaheuristics:

– We next show results of a GRASP with path-relinking 
based on this local search.

– Other existing methods may benefit from it.



GRASP: greedy randomized adaptive 
search procedure

• Multi-start metaheuristic (Feo & Resende, 1989)
• Repeat:

– Construct greedy randomized solution to be stating 
solution for swap-based local search

– Use swap-based local search to improve constructed 
solution

– Keep track of best solutions found



Paper

We have a paper describing the GRASP with path-
relinking (hybrid algorithm): 

M.G.C. Resende and R.F. Werneck, A hybrid heuristic  
for the p-median problem, AT&T Labs Research 
Technical Report TD-5NWRCR, Florham Park, NJ, 
June 2003.

http://www.research.att.com/~mgcr/doc/hhpmedian.pdf



Sample greedy construction

• Similar to greedy.  Instead of selecting among all 
possible options, consider only q < m possible 
insertions (chosen uniformly at random).  The most 
profitable facility is selected.  

• Running time is O(m+qpn).
• Idea is to make q small enough to reduce running 

time, while insuring a fair degree of randomization. 
We use q = ⎡ log2 (m / p )⎤ .



Path-relinking (PR)

• Introduced in context of tabu and scatter search by 
Glover (1996, 2000):
– Approach to integrate intensification & diversification in 

search.

• Consists in exploring trajectories that connect high 
quality solutions.

guiding
solution

path in neighborhood of solutionsinitial
solution



Path-relinking

• Path is generated by selecting moves that introduce in the 
initial solution attributes of the guiding solution.

• At each step, all moves that incorporate attributes of the 
guiding solution are analyzed and best move is taken.
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Path-relinking

• Path is generated by selecting moves that introduce in the 
initial solution attributes of the guiding solution.

• At each step, all moves that incorporate attributes of the 
guiding solution are analyzed and best move is taken.
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Output of PR usually is best solution in path.



Path-relinking & local search

• Steps of path-relinking are very similar to the local 
search described earlier. Two main differences:
– Number of allowed moves is restricted:  only elements 

in symmetric difference S2 \ S1 can be inserted, and the 
ones in S1 \ S2 can be removed.

– Non-improving moves are allowed.
• These differences are subtle enough to be easily 

incorporated into the basic implementation of the 
local search procedure (both procedures share the 
same code).



GRASP & path-relinking

• Use the solution GRASP iterate, produced after 
construction and local search, as the initial 
solution.

• Use a solution selected at random from the set of 
elite solutions as the target solution.



Path relinking: Post-optimization

a) Start with pool found at end of GRASP: P0 ;       
Set k = 0;

b) Combine with path-relinking all pairs of solutions
in pool Pk ;

c) Solutions obtained by combining solutions in Pk
are added to a new pool Pk+1 following same 
constraints for updates as before;

d) If best solution of Pk+1 is better than best solution 
of Pk , then set k = k + 1, and go to step (b);



Results: Algorithmic setup

• Constructive procedure: sample greedy.
• Path-relinking is done during GRASP and as post-

optimization.
• Path-relinking is performed from best to worst during 

GRASP, and from worst to best during post-optimization.
• Solutions are selected from pool during GRASP using 

biased scheme.
• GRASP iterations: 32
• Size of pool of elite solutions: 10



Results: Test problems

• TSP: Set of points on the plane (74 instances with 1400, 
3038, and 5934 nodes)
– 1400 node instance: p = 10,  20, … 450, 500
– 3038 node instance: p = 10,  20, … 950, 1000
– 5934 node instance: p = 10,  20, … 1400, 1500

• ORLIB: From Beasley’s ORLibrary (40 instances with 100 
to 900 nodes and p from 5 to 200)

• SL: slight extension of ORLIB (3 instances with 700 nodes 
(p = 233), 800 nodes (p = 267), and 900 nodes (p = 300).



Results: Test problems

• GR: Galvão and ReVelle (1996) (16 instances with 
two graphs having 100 and 150 nodes and eight 
values of p between 5 and 50).

• RW: Resende & Werneck (2002) of completely 
random distance matrices. Distance between each 
facilty and customer is integer taken at random in 
interval [1,n ], where n is the number of customers. 
28 instances with 100, 250, 500, and 1000 
customers and different values of p.



Results: Compared with best known solutions

Instance # Instances # Ties # Improved

TSP: fl1400 18 6 12

TSP: pcb3038 28 7 21

TSP: rl5934 28 9 19

ORLIB* 40 40 0

SL* 3 3 0

GR* 16 16 0

* Optimal solution known for all instances in ORLIB, SL, and GR.



Concluding remarks

• New heuristic algorithm for p-median problem.
• We show that the method is remarkably robust:

– Handles a wide variety of instances.
– Obtains results competitive with those found by best 

heuristics in the literature.

• Our method is a valuable candidate for a general-
purpose solver for the p-median problem.



Concluding remarks

• We do not claim our method is the best in every 
circumstance.

• Other methods are able to produce results of remarkably 
good quality, often at the expense of higher running times:
– VNS (Hansen & Mladenović, 1997) is specially succesful for 

graph instances;
– VNDS (Hansen, Mladenović, and Perez-Brito, 2001) is strong on 

Euclidean instances and very fast on problems with small p ;
– CGLS (Senne & Lorena, 2002) can obtain very good results for 

Euclidean instances and provides good lower bounds.



Local search was also applied to 
uncapacitated facility location problem
• Consistently outperforms other heuristics in the 

literature.
• Paper: M.G.C. Resende and R.F. Werneck, A hybrid 

multi-start heuristic  for the uncapacitated facility 
location problem, AT&T Labs Research Technical 
Report TD-5RELRR, Florham Park, NJ, Sept. 2003.

http://www.research.att.com/~mgcr/doc/guflp.pdf



Software availability

Our software (local search, and hybrid heuristics for 
p-median and facility location) as well as all test 
instances used in our studies are available for 
download at:

http://www.research.att.com/~mgcr/popstar
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