
Maurício G.C. RESENDE
AT&T Labs Research

USA

Renato F. WERNECK
Princeton University

USA

Mathematical Programming
in Rio
Búzios, November 9-12, 2003

A hybrid heuristic for
the p-median problem

a

p-median problem

n (=11) potential service locations

m (=15) customers

p-median problem

p (=4) service sites to be
opened

n (=11) potential service locations

m (=15) customers

p-median problem

Customers home into nearest open
service center.

p-median problem
4

4

Objective of optimization:

Minimize sum of the distances
between customers and their
nearest open service center.

Total distance = 61

6

3

6

5

7
6

14
3

2

1

6

3

p-median problem
4

4

Objective of optimization:

Minimize sum of the distances
between customers and their
nearest open service center.

Total distance = 61

6

3

6

5

7
6

1

Swap service centers

4
3

2

1

6

3

p-median problem
4

4

11

3

4
3

2

1

Objective of optimization:

Minimize sum of the distances
between customers and their
nearest open service center.

Total distance = 40 < 61

3

1
2

2 45

Instance Solution

Potential service location () Customer location ()

Example: 1000 customer locations, choose
best 20 of 100 service locations

The p-median problem
• Also known as the k-median problem.
• NP-hard (Kariv & Hakimi, 1979)
• Input:

– a set U of n users (or customers);
– a set F of m potential facilities;
– a distance function (d: U × F → ℜ);
– the number of facilities p to open (0 < p < m).

• Output:
– a set S ⊆ F with p open facilities.

• Goal:
– minimize the sum of the distances from each user to the closest

open facility.

Swap-based local search

Basic Steps:
1. Start with some valid solution.
2. Look for a pair of facilities (fi, fr) such that:

• fi does not belong to the solution;
• fr belongs to the solution;
• swapping fi and fr improves the solution.

3. If (2) is successful, swap fi and fr and repeat (2); else
stop (a local minimum was found).

Swap-based local search

• Introduced in Teitz and Bart (1968).
• 5-opt for metric cases (Arya et al. , 2001)
• Widely used in practice:

– On its own:
• Whitaker (1983);
• Rosing (1997).

– As a subroutine of metaheuristics:
• [Rolland et al., 1996] - Tabu Search
• [Voss, 1996] - “Reverse Elimination” (Tabu Search)
• [Hansen and Mladenović, 1997] - VNS
• [Rosing and ReVelle, 1997] - “Heuristic Concentration”
• [Hansen et al., 2001] - VNDS

Swap based local search

in out

Complexity of local search:
O(pmn) total time

Whitaker’s algorithm (1983): Given facility fi to swap in, finds
facility fr to swap out in Θ(n) time.

Complexity of swap-based local
search is reduced to O(mn)

Whitaker’s observation: Profit can be decomposed into two
components, which we call gain and netloss.

Whitaker’s algorithm

• Whitaker computes gain and netloss to determine
profit of a swap:

Our algorithm

• We propose another implementation:
– same worst case complexity;
– faster in practice, especially for large instances.

• Key idea: use information gathered in early iterations to
speed up later ones.

– Solution changes very little between iterations:
• swap has a local effect.

– Whitaker’s implementation does not use this fact:
• iterations are independent.

– We use extra memory to avoid repeating previously executed
calculations.

Our algorithm

We have a paper describing the local search
algorithm:

M.G.C. Resende and R.F. Werneck, A fast swap-based
local search procedure for location problems, AT&T
Labs Research Technical Report TD-5R3KBH,
Florham Park, NJ, Sept. 2003.

http://www.research.att.com/~mgcr/doc/locationls.pdf

Our algorithm

• Defines gain like Whitaker:

• But computes netloss indirectly, by using loss:

Decrease in solution value if fi is added,
assuming no facility is removed.

Increase in solution value if fr is
removed, assuming no facility is added.

Our algorithm

• From Whitaker, we have:

• For all pairs {fi,fr}, we define:

Substituting loss and netloss into the
expression for extra, (after some
algebra) we get …

Our algorithm

• Our final expression for extra:

• And now, we can compute the profit of swapping fi
in and fr out:

Our algorithm

• So we have to compute three structures:

• Each of them is a summation over the set of users:

The contribution of each user can be computed independently.

Our implementation
function updateStructures (S,u,loss,gain,extra,φ1,φ2)

fr = φ1(u);
loss[fr] += d(u,φ2(u)) - d(u,φ1(u));
forall (fi∉S) do {

if (d(u,fi)<d(u,φ2(u))) then
gain[fi] += max{0, d(u,φ1(u)) - d(u,fi)};
extra[fi,fr] += d(u,φ2(u)) – max{d(u,fi),d(u,fr)};

endif
endforall

end updateStructures

We can compute the contribution of each user independently.
O (m) time per user.

Our implementation

• So each iteration of our method is as follows:
Determine closeness information: O (pm) time
Compute gain, loss, and extra: O (mn) time
Use gain, loss, and extra to find best swap: O (pm) time

• That’s the same complexity as Whitaker’s implementation,
but

more complicated
uses more memory: extra is an O (pm)-sized matrix

• Why would this be better?
Don’t need to compute everything in every iteration
we just need to update gain, loss, and extra
only contributions of affected users are recomputed

Our implementation
function localSearch (S,φ1,φ2)
A := U;

resetStructures(gain,loss,extra);

while (TRUE) do {

forall (u∈A) do updateStructures (S,u,gain,loss,extra,φ1,φ2);
(fr,fi,profit) := findBestNeighbor (gain,loss,extra);

if (profit ≤ 0) then break;

A := ∅;
forall (u∈U) do
if ((φ1(u)=fr) or (φ2(u)=fr) or (d(u,fi)<d(u,φ2(u)))) then

A := A∪{u};
endif;

endforall
forall (u∈A) do
undoUpdateStructures(S,u,gain,loss,extra,φ1,φ2);
insert(S,fi);
remove(S,fr);
updateClosest(S,fi,fr,φ1,φ2);

endwhile
end localSearch

Our implementation
function localSearch (S,φ1,φ2)
A := U;

resetStructures(gain,loss,extra);

while (TRUE) do {

forall (u∈A) do updateStructures (S,u,gain,loss,extra,φ1,φ2);
(fr,fi,profit) := findBestNeighbor (gain,loss,extra);

if (profit ≤ 0) then break;

A := ∅;
forall (u∈U) do
if ((φ1(u)=fr) or (φ2(u)=fr) or (d(u,fi)<d(u,φ2(u)))) then

A := A∪{u};
endif;

endforall
forall (u∈A) do
undoUpdateStructures(S,u,gain,loss,extra,φ1,φ2);
insert(S,fi);
remove(S,fr);
updateClosest(S,fi,fr,φ1,φ2);

endwhile
end localSearch

Input: solution to be changed and
related closeness information.

Our implementation
function localSearch (S,φ1,φ2)
A := U;

resetStructures(gain,loss,extra);

while (TRUE) do {

forall (u∈A) do updateStructures (S,u,gain,loss,extra,φ1,φ2);
(fr,fi,profit) := findBestNeighbor (gain,loss,extra);

if (profit ≤ 0) then break;

A := ∅;
forall (u∈U) do
if ((φ1(u)=fr) or (φ2(u)=fr) or (d(u,fi)<d(u,φ2(u)))) then

A := A∪{u};
endif;

endforall
forall (u∈A) do
undoUpdateStructures(S,u,gain,loss,extra,φ1,φ2);
insert(S,fi);
remove(S,fr);
updateClosest(S,fi,fr,φ1,φ2);

endwhile
end localSearch

All users affected in the beginning.
(gain, loss, and extra must be computed
for all of them).

Our implementation
function localSearch (S,φ1,φ2)
A := U;

resetStructures(gain,loss,extra);

while (TRUE) do {

forall (u∈A) do updateStructures (S,u,gain,loss,extra,φ1,φ2);
(fr,fi,profit) := findBestNeighbor (gain,loss,extra);

if (profit ≤ 0) then break;

A := ∅;
forall (u∈U) do
if ((φ1(u)=fr) or (φ2(u)=fr) or (d(u,fi)<d(u,φ2(u)))) then

A := A∪{u};
endif;

endforall
forall (u∈A) do
undoUpdateStructures(S,u,gain,loss,extra,φ1,φ2);
insert(S,fi);
remove(S,fr);
updateClosest(S,fi,fr,φ1,φ2);

endwhile
end localSearch

Initialize all positions of
gain, loss, and extra to zero.

Our implementation
function localSearch (S,φ1,φ2)
A := U;

resetStructures(gain,loss,extra);

while (TRUE) do {

forall (u∈A) do updateStructures (S,u,gain,loss,extra,φ1,φ2);
(fr,fi,profit) := findBestNeighbor (gain,loss,extra);

if (profit ≤ 0) then break;

A := ∅;
forall (u∈U) do
if ((φ1(u)=fr) or (φ2(u)=fr) or (d(u,fi)<d(u,φ2(u)))) then

A := A∪{u};
endif;

endforall
forall (u∈A) do
undoUpdateStructures(S,u,gain,loss,extra,φ1,φ2);
insert(S,fi);
remove(S,fr);
updateClosest(S,fi,fr,φ1,φ2);

endwhile
end localSearch

Add contributions of all affected
users to gain, loss, and extra.

Our implementation
function localSearch (S,φ1,φ2)
A := U;

resetStructures(gain,loss,extra);

while (TRUE) do {

forall (u∈A) do updateStructures (S,u,gain,loss,extra,φ1,φ2);
(fr,fi,profit) := findBestNeighbor (gain,loss,extra);

if (profit ≤ 0) then break;

A := ∅;
forall (u∈U) do
if ((φ1(u)=fr) or (φ2(u)=fr) or (d(u,fi)<d(u,φ2(u)))) then

A := A∪{u};
endif;

endforall
forall (u∈A) do
undoUpdateStructures(S,u,gain,loss,extra,φ1,φ2);
insert(S,fi);
remove(S,fr);
updateClosest(S,fi,fr,φ1,φ2);

endwhile
end localSearch

Determine the best swap to make.

Our implementation
function localSearch (S,φ1,φ2)
A := U;

resetStructures(gain,loss,extra);

while (TRUE) do {

forall (u∈A) do updateStructures (S,u,gain,loss,extra,φ1,φ2);
(fr,fi,profit) := findBestNeighbor (gain,loss,extra);

if (profit ≤ 0) then break;

A := ∅;
forall (u∈U) do
if ((φ1(u)=fr) or (φ2(u)=fr) or (d(u,fi)<d(u,φ2(u)))) then

A := A∪{u};
endif;

endforall
forall (u∈A) do
undoUpdateStructures(S,u,gain,loss,extra,φ1,φ2);
insert(S,fi);
remove(S,fr);
updateClosest(S,fi,fr,φ1,φ2);

endwhile
end localSearch

Swap will be performed
only if profitable.

Our implementation
function localSearch (S,φ1,φ2)
A := U;

resetStructures(gain,loss,extra);

while (TRUE) do {

forall (u∈A) do updateStructures (S,u,gain,loss,extra,φ1,φ2);
(fr,fi,profit) := findBestNeighbor (gain,loss,extra);

if (profit ≤ 0) then break;

A := ∅;
forall (u∈U) do
if ((φ1(u)=fr) or (φ2(u)=fr) or (d(u,fi)<d(u,φ2(u)))) then

A := A∪{u};
endif;

endforall
forall (u∈A) do
undoUpdateStructures(S,u,gain,loss,extra,φ1,φ2);
insert(S,fi);
remove(S,fr);
updateClosest(S,fi,fr,φ1,φ2);

endwhile
end localSearch

Determine which users will be affected
(those that are close to at least one
of the facilities involved in the swap).

Our implementation
function localSearch (S,φ1,φ2)
A := U;

resetStructures(gain,loss,extra);

while (TRUE) do {

forall (u∈A) do updateStructures (S,u,gain,loss,extra,φ1,φ2);
(fr,fi,profit) := findBestNeighbor (gain,loss,extra);

if (profit ≤ 0) then break;

A := ∅;
forall (u∈U) do
if ((φ1(u)=fr) or (φ2(u)=fr) or (d(u,fi)<d(u,φ2(u)))) then

A := A∪{u};
endif;

endforall
forall (u∈A) do
undoUpdateStructures(S,u,gain,loss,extra,φ1,φ2);
insert(S,fi);
remove(S,fr);
updateClosest(S,fi,fr,φ1,φ2);

endwhile
end localSearch

Disregard previous contributions
from affected users to gain, loss,
and extra.

Our implementation
function localSearch (S,φ1,φ2)
A := U;

resetStructures(gain,loss,extra);

while (TRUE) do {

forall (u∈A) do updateStructures (S,u,gain,loss,extra,φ1,φ2);
(fr,fi,profit) := findBestNeighbor (gain,loss,extra);

if (profit ≤ 0) then break;

A := ∅;
forall (u∈U) do
if ((φ1(u)=fr) or (φ2(u)=fr) or (d(u,fi)<d(u,φ2(u)))) then

A := A∪{u};
endif;

endforall
forall (u∈A) do
undoUpdateStructures(S,u,gain,loss,extra,φ1,φ2);
insert(S,fi);
remove(S,fr);
updateClosest(S,fi,fr,φ1,φ2);

endwhile
end localSearch

Finally, perform the swap.

Our implementation
function localSearch (S,φ1,φ2)
A := U;

resetStructures(gain,loss,extra);

while (TRUE) do {

forall (u∈A) do updateStructures (S,u,gain,loss,extra,φ1,φ2);
(fr,fi,profit) := findBestNeighbor (gain,loss,extra);

if (profit ≤ 0) then break;

A := ∅;
forall (u∈U) do
if ((φ1(u)=fr) or (φ2(u)=fr) or (d(u,fi)<d(u,φ2(u)))) then

A := A∪{u};
endif;

endforall
forall (u∈A) do
undoUpdateStructures(S,u,gain,loss,extra,φ1,φ2);
insert(S,fi);
remove(S,fr);
updateClosest(S,fi,fr,φ1,φ2);

endwhile
end localSearch Update closeness information

for next iteration.

Bottlenecks
function localSearch (S,φ1,φ2)
A := U;

resetStructures(gain,loss,extra);

while (TRUE) do {

forall (u∈A) do updateStructures (S,u,gain,loss,extra,φ1,φ2);
(fr,fi,profit) := findBestNeighbor (gain,loss,extra);

if (profit ≤ 0) then break;

A := ∅;
forall (u∈U) do
if ((φ1(u)=fr) or (φ2(u)=fr) or (d(u,fi)<d(u,φ2(u)))) then

A := A∪{u};
endif;

endforall
forall (u∈A) do
undoUpdateStructures(S,u,gain,loss,extra,φ1,φ2);
insert(S,fi);
remove(S,fr);
updateClosest(S,fi,fr,φ1,φ2);

endwhile
end localSearch

1

3

3
2

1. Updating closeness information;

2. Finding the best swap to make;

3. Updating auxiliary structures.

Bottleneck 1: Closeness
function localSearch (S,φ1,φ2)
A := U;

resetStructures(gain,loss,extra);

while (TRUE) do {

forall (u∈A) do updateStructures (S,u,gain,loss,extra,φ1,φ2);
(fr,fi,profit) := findBestNeighbor (gain,loss,extra);

if (profit ≤ 0) then break;

A := ∅;
forall (u∈U) do
if ((φ1(u)=fr) or (φ2(u)=fr) or (d(u,fi)<d(u,φ2(u)))) then

A := A∪{u};
endif;

endforall
forall (u∈A) do
undoUpdateStructures(S,u,gain,loss,extra,φ1,φ2);
insert(S,fi);
remove(S,fr);
updateClosest(S,fi,fr,φ1,φ2);

endwhile
end localSearch

Bottleneck 1 – Closeness

• Two kinds of change may occur with a user:
1. The new facility (fi) becomes its closest or second closest

facility:
• Update takes constant time for each user: O(n) time

2. The facility removed (fr) was the user’s closest or second
closest:
• Need to look for a new second closest;
• Takes O(p) time per user.

• The second case could be a bottleneck, but in practice
only a few users fall into this case.
– Only these need to be tested.
– This was observed by Hansen and Mladenović (1997).

Bottleneck 2: Best neighbor
function localSearch (S,φ1,φ2)
A := U;

resetStructures(gain,loss,extra);

while (TRUE) do {

forall (u∈A) do updateStructures (S,u,gain,loss,extra,φ1,φ2);
(fr,fi,profit) := findBestNeighbor (gain,loss,extra);

if (profit ≤ 0) then break;

A := ∅;
forall (u∈U) do
if ((φ1(u)=fr) or (φ2(u)=fr) or (d(u,fi)<d(u,φ2(u)))) then

A := A∪{u};
endif;

endforall
forall (u∈A) do
undoUpdateStructures(S,u,gain,loss,extra,φ1,φ2);
insert(S,fi);
remove(S,fr);
updateClosest(S,fi,fr,φ1,φ2);

endwhile
end localSearch

Bottleneck 2 – Best Neighbor

• Number of potential swaps: p(m-p).
• Straightforward way to compute the best one:

– Compute profit (fi, fr) for all pairs and pick minimum:

– This requires O(mp) time.

• Alternative:
– As the initial candidate, pick the fi with the largest gain and the fr with the

smallest loss.
• The best swap is at least as good as this (recall extra is always nonnegative)

– Compute the exact profit only for pairs that have extra greater than zero.

Bottleneck 2 – Best Neighbor

• Worst case:
– O (pm) (exactly the same as for straightforward approach)

• In practice:
– extra(fi, fr) represents the interference between these two

facilities.
– Local phenomenon: each facility interacts with some facilities

nearby.
– extra is likely to have very few nonzero elements, especially when

p is large.

• Use sparse matrix representation for extra:
– each row represented as a linked list of nonzero elements.
– side effect: less memory (usually).

Bottleneck 3: Update Structures
function localSearch (S,φ1,φ2)
A := U;

resetStructures(gain,loss,extra);

while (TRUE) do {

forall (u∈A) do updateStructures (S,u,gain,loss,extra,φ1,φ2);
(fr,fi,profit) := findBestNeighbor (gain,loss,extra);

if (profit ≤ 0) then break;

A := ∅;
forall (u∈U) do
if ((φ1(u)=fr) or (φ2(u)=fr) or (d(u,fi)<d(u,φ2(u)))) then

A := A∪{u};
endif;

endforall
forall (u∈A) do
undoUpdateStructures(S,u,gain,loss,extra,φ1,φ2);
insert(S,fi);
remove(S,fr);
updateClosest(S,fi,fr,φ1,φ2);

endwhile
end localSearch

Bottleneck 3 – Update Structures
function updateStructures (S,u,loss,gain,extra,φ1,φ2)

fr = φ1(u);
loss[fr] += d(u,φ2(u)) - d(u,φ1(u));
forall (fi∉S) do

if (d(u,fi)<d(u,φ2(u))) then
gain[fi] += max{0, d(u,φ1(u)) - d(u,fi)};

extra[fi,fr] += d(u,φ2(u)) – max{d(u,fi), d(u,fr)};

endif

endforall

end updateStructures

This loop always takes m-p
iterations.

Bottleneck 3 – Update Structures
function updateStructures (S,u,loss,gain,extra,φ1,φ2)

fr = φ1(u);
loss[fr] += d(u,φ2(u)) - d(u,φ1(u));
forall (fi∉S such that d(u,fi)<d(u,φ2(u))) do

gain[fi] += max{0, d(u,φ1(u)) - d(u,fi)};

extra[fi,fr] += d(u,φ2(u)) – max{d(u,fi), d(u,fr)};
endforall

end updateStructures

Preprocessing step:
for each user, sort all facilities in increasing order by
distance (and keep the resulting list);
in the function above, we just need to check the
appropriate prefix of the list.

We actually need only facilities that
are very close to u.

Bottleneck 3: Update Structures

• Preprocessing step: Time
– O (nm log m);
– preprocessing step executed only once, even if local search is run

several times.

• Preprocessing step: Space
– O (mn) memory positions, which can be too much.
– Alternative:

• Keep only a prefix of the list (the closest facilities).
• Use list as a cache:

– If enough elements present, use it;
– Otherwise, do as before: check all facilities.

• Same worst case.

Local search results

• Three classes of instances:
– ORLIB (sparse graphs):

• 100 to 900 users, p between 5 and 200;
• Distances given by shortest paths in the graph.

– RW (random instances):
• 100 to 1000 users, p between 10 and n/2;
• Distances picked at random from [1,n].

– TSP (points on the plane):
• 1400, 3038, or 5934 users, p between 10 and n/3;
• Distances are Euclidean.

• In all cases, the sets of users and potential facilities are the
same.

Local search results
• Three variations analyzed:

– FM: Full Matrix, no preprocessing;
– SM: Sparse Matrix, no preprocessing;
– SMP: Sparse Matrix, with Preprocessing.

• These were run on all instances and compared to
Whitaker’s fast interchange method (FI).
– As implemented in [Hansen and Mladenović, 1997].

• All methods (including FI) use the smart update of
closeness information.

• Measure of relative performance: speedup
– Ratio between the running time of FI and the running time of our

method.
– All methods start from the same (greedy) solution.

Local search results

Mean speedups when compared to Whitaker’s FI:

– Even our simplest variation is faster than FI in practice;
– Updating only affected users does pay off;
– Speedups greater for larger instances.

Method Description ORLIB RW TSP

FM full matrix, no preprocessing 3.0 4.1 11.7

Local search results

Mean speedups when compared to Whitaker’s FI:

– Checking only the nonzero elements of the extra matrix gives an
additional speedup.

– Again, better for larger instances.

Method Description ORLIB RW TSP

FM

SM

full matrix, no preprocessing 3.0 4.1 11.7

sparse matrix, no preprocessing 3.1 5.3 26.2

Local search results

Mean speedups when compared to Whitaker’s FI:

– Preprocessing appears to be a little too expensive.
• Still much faster than the original implementation.

– But remember that preprocessing must be run just once, even if
the local search is run more than once.

Method Description ORLIB RW TSP

FM

SM

SMP sparse matrix, full preprocessing 1.2 2.1 20.3

full matrix, no preprocessing 3.0 4.1 11.7

sparse matrix, no preprocessing 3.1 5.3 26.2

Local search results

Mean speedups when compared to Whitaker’s FI:

– If we are able to amortize away the preprocessing time,
significantly greater speedups are observed on average.

– Typical case in metaheuristics (like GRASP, tabu search, VNS, …).

Method Description ORLIB RW TSP

FM

SM

SMP sparse matrix, full preprocessing 1.2 2.1 20.3

SMP*

full matrix, no preprocessing 3.0 4.1 11.7

sparse matrix, no preprocessing 3.1 5.3 26.2

sparse matrix, full preprocessing 8.7 15.1 177.6

(in SMP*, preprocessing times are not included)

Local search results

Speedups w.r.t. Whitaker’s FI (best cases):

– Speedups of up to three orders of magnitude were observed.
– Greater for large instances with large values of p.

Method Description ORLIB RW TSP

FM

SM

SMP sparse matrix, full preprocessing 7.5 9.6 79.2

SMP*

full matrix, no preprocessing 12.7 12.4 31.1

sparse matrix, no preprocessing 17.2 32.4 147.7

sparse matrix, full preprocessing 67.0 113.9 862.1

(in SMP*, preprocessing times are not included)

Local search results

Speedups w.r.t. Whitaker’s FI (worst cases):

– For small instances, our method can be slower than Whitaker’s;
our constants are higher.

– Once preprocessing times are amortized, even that does not
happen.

Method Description ORLIB RW TSP

FM

SM

SMP sparse matrix, full preprocessing 0.22 0.18 1.33

SMP*

full matrix, no preprocessing 0.84 0.88 1.85

sparse matrix, no preprocessing 0.74 0.75 1.72

sparse matrix, full preprocessing 1.30 1.40 3.27

(in SMP*, preprocessing times are not included)

Local search results

1

10

100

1000

10000

0 300 600 900 1200 1500

p (number of facilities)

tim
e

(s
ec

on
ds

) FI
FM
SM
SMP

Largest instance tested: 5934 users, Euclidean.
(preprocessing times not considered)

Local search results

1

10

100

1000

10000

0 300 600 900 1200 1500

p (number of facilities)

tim
e

(s
ec

on
ds

)

SM
SMP

Note that preprocessing significantly
accelerates the algorithm.

Local search results
• Preprocessing greatly accelerates the algorithm.
• However, it requires a great amount of memory:

– n lists of size m each.

• We can make only partial lists.
– We would like each list to the second closest open facility to be

as small as possible:
• the larger m is, the larger the list needs to be;
• the larger p is, the smaller the list needs to be.

• Method SMq :
– Each user has a list of size q m/p.
– Example: if m = 6000, p = 300, q = 5, then

• Each user keeps a list of size 100;
• in the “full” version, the list would have size 6000.

Local search results

1

10

100

1000

10000

0 300 600 900 1200 1500

p (number of facilities)

tim
e

(s
ec

on
ds

) SM
SM1
SM2
SM3
SM5
SMP

For this instance, q = 5 is already
as fast as the full version.

Final remarks on local search

• New implementation of well-known local search.
• Uses extra memory, but much faster in practice.
• Accelerations are metric-independent.
• Especially useful for metaheuristics:

– We next show results of a GRASP with path-relinking
based on this local search.

– Other existing methods may benefit from it.

GRASP: greedy randomized adaptive
search procedure

• Multi-start metaheuristic (Feo & Resende, 1989)
• Repeat:

– Construct greedy randomized solution to be stating
solution for swap-based local search

– Use swap-based local search to improve constructed
solution

– Keep track of best solutions found

Paper

We have a paper describing the GRASP with path-
relinking (hybrid algorithm):

M.G.C. Resende and R.F. Werneck, A hybrid heuristic
for the p-median problem, AT&T Labs Research
Technical Report TD-5NWRCR, Florham Park, NJ,
June 2003.

http://www.research.att.com/~mgcr/doc/hhpmedian.pdf

Sample greedy construction

• Similar to greedy. Instead of selecting among all
possible options, consider only q < m possible
insertions (chosen uniformly at random). The most
profitable facility is selected.

• Running time is O(m+qpn).
• Idea is to make q small enough to reduce running

time, while insuring a fair degree of randomization.
We use q = ⎡ log2 (m / p)⎤ .

Path-relinking (PR)

• Introduced in context of tabu and scatter search by
Glover (1996, 2000):
– Approach to integrate intensification & diversification in

search.

• Consists in exploring trajectories that connect high
quality solutions.

guiding
solution

path in neighborhood of solutionsinitial
solution

Path-relinking

• Path is generated by selecting moves that introduce in the
initial solution attributes of the guiding solution.

• At each step, all moves that incorporate attributes of the
guiding solution are analyzed and best move is taken.

Guiding
solutionInitial

solution

Path-relinking

• Path is generated by selecting moves that introduce in the
initial solution attributes of the guiding solution.

• At each step, all moves that incorporate attributes of the
guiding solution are analyzed and best move is taken.

Guiding
solutionInitial

solution

Path-relinking

• Path is generated by selecting moves that introduce in the
initial solution attributes of the guiding solution.

• At each step, all moves that incorporate attributes of the
guiding solution are analyzed and best move is taken.

Guiding
solutionInitial

solution

Path-relinking

• Path is generated by selecting moves that introduce in the
initial solution attributes of the guiding solution.

• At each step, all moves that incorporate attributes of the
guiding solution are analyzed and best move is taken.

Guiding
solutionInitial

solution

Path-relinking

• Path is generated by selecting moves that introduce in the
initial solution attributes of the guiding solution.

• At each step, all moves that incorporate attributes of the
guiding solution are analyzed and best move is taken.

Guiding
solutionInitial

solution

Path-relinking

• Path is generated by selecting moves that introduce in the
initial solution attributes of the guiding solution.

• At each step, all moves that incorporate attributes of the
guiding solution are analyzed and best move is taken.

Guiding
solutionInitial

solution

Output of PR usually is best solution in path.

Path-relinking & local search

• Steps of path-relinking are very similar to the local
search described earlier. Two main differences:
– Number of allowed moves is restricted: only elements

in symmetric difference S2 \ S1 can be inserted, and the
ones in S1 \ S2 can be removed.

– Non-improving moves are allowed.
• These differences are subtle enough to be easily

incorporated into the basic implementation of the
local search procedure (both procedures share the
same code).

GRASP & path-relinking

• Use the solution GRASP iterate, produced after
construction and local search, as the initial
solution.

• Use a solution selected at random from the set of
elite solutions as the target solution.

Path relinking: Post-optimization

a) Start with pool found at end of GRASP: P0 ;
Set k = 0;

b) Combine with path-relinking all pairs of solutions
in pool Pk ;

c) Solutions obtained by combining solutions in Pk
are added to a new pool Pk+1 following same
constraints for updates as before;

d) If best solution of Pk+1 is better than best solution
of Pk , then set k = k + 1, and go to step (b);

Results: Algorithmic setup

• Constructive procedure: sample greedy.
• Path-relinking is done during GRASP and as post-

optimization.
• Path-relinking is performed from best to worst during

GRASP, and from worst to best during post-optimization.
• Solutions are selected from pool during GRASP using

biased scheme.
• GRASP iterations: 32
• Size of pool of elite solutions: 10

Results: Test problems

• TSP: Set of points on the plane (74 instances with 1400,
3038, and 5934 nodes)
– 1400 node instance: p = 10, 20, … 450, 500
– 3038 node instance: p = 10, 20, … 950, 1000
– 5934 node instance: p = 10, 20, … 1400, 1500

• ORLIB: From Beasley’s ORLibrary (40 instances with 100
to 900 nodes and p from 5 to 200)

• SL: slight extension of ORLIB (3 instances with 700 nodes
(p = 233), 800 nodes (p = 267), and 900 nodes (p = 300).

Results: Test problems

• GR: Galvão and ReVelle (1996) (16 instances with
two graphs having 100 and 150 nodes and eight
values of p between 5 and 50).

• RW: Resende & Werneck (2002) of completely
random distance matrices. Distance between each
facilty and customer is integer taken at random in
interval [1,n], where n is the number of customers.
28 instances with 100, 250, 500, and 1000
customers and different values of p.

Results: Compared with best known solutions

Instance # Instances # Ties # Improved

TSP: fl1400 18 6 12

TSP: pcb3038 28 7 21

TSP: rl5934 28 9 19

ORLIB* 40 40 0

SL* 3 3 0

GR* 16 16 0

* Optimal solution known for all instances in ORLIB, SL, and GR.

Concluding remarks

• New heuristic algorithm for p-median problem.
• We show that the method is remarkably robust:

– Handles a wide variety of instances.
– Obtains results competitive with those found by best

heuristics in the literature.

• Our method is a valuable candidate for a general-
purpose solver for the p-median problem.

Concluding remarks

• We do not claim our method is the best in every
circumstance.

• Other methods are able to produce results of remarkably
good quality, often at the expense of higher running times:
– VNS (Hansen & Mladenović, 1997) is specially succesful for

graph instances;
– VNDS (Hansen, Mladenović, and Perez-Brito, 2001) is strong on

Euclidean instances and very fast on problems with small p ;
– CGLS (Senne & Lorena, 2002) can obtain very good results for

Euclidean instances and provides good lower bounds.

Local search was also applied to
uncapacitated facility location problem
• Consistently outperforms other heuristics in the

literature.
• Paper: M.G.C. Resende and R.F. Werneck, A hybrid

multi-start heuristic for the uncapacitated facility
location problem, AT&T Labs Research Technical
Report TD-5RELRR, Florham Park, NJ, Sept. 2003.

http://www.research.att.com/~mgcr/doc/guflp.pdf

Software availability

Our software (local search, and hybrid heuristics for
p-median and facility location) as well as all test
instances used in our studies are available for
download at:

http://www.research.att.com/~mgcr/popstar

	p-median problem
	p-median problem
	p-median problem
	p-median problem
	p-median problem
	p-median problem
	The p-median problem
	Swap-based local search
	Swap-based local search
	Whitaker’s algorithm
	Our algorithm
	Our algorithm
	Our algorithm
	Our algorithm
	Our algorithm
	Our algorithm
	Our implementation
	Our implementation
	Our implementation
	Our implementation
	Our implementation
	Our implementation
	Our implementation
	Our implementation
	Our implementation
	Our implementation
	Our implementation
	Our implementation
	Our implementation
	Bottlenecks
	Bottleneck 1: Closeness
	Bottleneck 1 – Closeness
	Bottleneck 2: Best neighbor
	Bottleneck 2 – Best Neighbor
	Bottleneck 2 – Best Neighbor
	Bottleneck 3: Update Structures
	Bottleneck 3 – Update Structures
	Bottleneck 3 – Update Structures
	Bottleneck 3: Update Structures
	Local search results
	Local search results
	Local search results
	Local search results
	Local search results
	Local search results
	Local search results
	Local search results
	Local search results
	Local search results
	Local search results
	Local search results
	Final remarks on local search
	GRASP: greedy randomized adaptive search procedure
	Paper
	Sample greedy construction
	Path-relinking (PR)
	Path-relinking
	Path-relinking
	Path-relinking
	Path-relinking
	Path-relinking
	Path-relinking
	Path-relinking & local search
	GRASP & path-relinking
	Path relinking: Post-optimization
	Results: Algorithmic setup
	Results: Test problems
	Results: Test problems
	Results: Compared with best known solutions
	Concluding remarks
	Concluding remarks
	Local search was also applied to uncapacitated facility location problem
	Software availability

