# A GRASP for Graph Planarization

### Maurício G.C. Resende

Mathematical Sciences Research
AT&T Bell Laboratories
Murray Hill, New Jersey - USA

(joint with Celso C. Ribeiro - Catholic U. of Rio de Janeiro)



### **Graph Planarization**

Planar graph: A graph that can be drawn on a plane, such that its edges do not cross.







Nonplanar graph



## Graph planarization problem

- Given an undirected graph G = (V,E), find the largest subset of edges  $A \subseteq E$  such that H = (V,A) is planar.
- The graph planarization problem is also called the maximum planar subgraph problem.



nonplanar graph G

#### maximum planar subgraph of G





#### **Previous work**

- Cimikowski (1995) does extensive empirical evaluation of heuristics, concluding:
  - -Jünger & Mutzel (1993)
    heuristic is overall best in
    finding the largest planar
    subgraphs.
  - -Goldschmidt & Takvorian (1994) is second best, but is slow as input graph size increases.
  - -If time is critical, heuristics based on planarity testing are recommended.



### Goldschmidt-Takvorian Heuristic

As in the Takefuji & Lee (1989) heuristic, a 2-phase process is used in the Goldschmidt & Takvorian (G&T) heuristic:

phase 1: linear ordering of
vertices is produced

phase 2: Partition E into edge sets A, B, C, so:

- » no 2 edges both in A or both in B intersect with respect to linear ordering of phase 1
- » |A| + |B| is large (hopefully maximum)



#### 2 Phase Heuristic



Nonplanar graph

phase 2: subset A of edges



phase 1: linear ordering





phase 2: subset B of edges



### Phase 1 of Goldschmidt-Takvorian Heuristic

Finding a Hamiltonian cycle in a graph is NP-complete. Greedy heuristic:

First vertex in ordering O is a vertex with smallest degree.

After first k vertices of O have been determined, vertex  $V_{k+1}$  is vertex adjacent to  $V_k$  having smallest degree in the graph induced on

$$V - \{v_1, \ldots, v_k\}$$

If  $V_k$  has no neighbor,  $V_{k+1}$  is smallest degree vertex in induced graph.



### Phase 2 of Goldschmidt-Takvorian Heuristic

Edge partition is made.

Lay vertices on a line according to phase 1:

Definition: let (i,j) and (k,l) be edges of the input graph such that i < j and k < l (assume w.l.g. that i < k). Edge (i,j) intersects edge (k,l) if k < j < l.





### Phase 2 of Goldschmidt-Takvorian Heuristic

- Define a graph H = (E,A), where:
  - -to each edge of input graph G corresponds a vertex in H.
  - -Two vertices in H have an edge between them if their corresponding edges in G intersect (over-lap) in the linear ordering of phase 1.

Phase 2 of G&T applies a greedy heuristic to find a maximal bipartite subgraph of H.



## Phase 2 of Goldschmidt-Takvorian Heuristic





nonplanar input graph G



The overlap graph H



#### Maximal bipartite subgraph of H?



Resulting planar subgraph



## Bipartite subgraph of interval graph

- G & T propose the following greedy heuristic to produce a maximal bipartite subgraph of an interval graph:
  - -Find a maximum independent set of H using Gavril's polynomial-time algorithm [1973]
  - -Color vertices in max indep set red (these are red edges in original graph)
  - Remove vertices in max indep set (and incident edges) from H, and find a max indep set on reduced graph (in polynomial time)
  - -Color vertices in max indep set blue.



#### Bipartite subgraph of interval graph



Original interval graph

Reduced graph



#### The GRASP Metaheuristic

- Greedy Randomized Adaptive Search Procedure is a metaheuristic for combinatorial optimization
- Tutorial: Feo & Resende (1995)
  http://netlib.att.com/netlib/att/math/resende/doc/gtut.ps.Z
- Iterative method (many solutions produced, best one kept as GRASP solution)
- Each GRASP iteration has 2 phases:
  - -construction phase
  - -local search phase



#### **GRASP** construction phase

- Solution is constructed, one element at a time.
- All yet-unselected elements are ranked according to a greedy function.
- Restricted candidate list (RCL) contains highly ranked elements.
- An element is selected, at random, from RCL and is placed in the solution.
- Greedy function is adapted to take into account new element in solution.

## GRASP phase 1 for linear ordering

- Let deg(min) & deg(max) be the min & max degrees of vertices in G = (V,E).
- RCL(U) are vertices in vertex subset U with degree < (deg(max)-deg(min))/2.
- Pick node v(1) of ordering:
  - -RCL is defined with U=V
  - -v(1) is selected at random from RCL
  - $-V=V\setminus\{v(1)\}$
  - –G is graph induced by V



## GRASP phase 1 for linear ordering

- Select 2nd, 3rd, ..., n-th nodes in ordering
- To pick k-th node:
  - -If ADJ\_NODES[v(k-1)] not
    empty
    - then  $U = ADJ_NODES[v(k-1)]$
    - else U = V
  - -Select v(k) at random from RCL(U)
  - $-V=V\setminus v(k)$
  - -G is graph induced by V



## GRASP phase 2 for linear ordering

· Local search:

- Objective function f(x): number of crossing edges with respect to ordering
- Neighborhood N(x) definition:
   2-exchange





## GRASP for graph planarization

#### Repeat MAXITR times:

- -GRASP phase 1 for linear ordering
- -GRASP phase 2 for linear ordering
- -Phase 2 of Goldschmidt & Takvorian heuristic
  - » exact method: use Gavril's algorithm (1973)
  - » approx method: use GRASP for max indep set (Feo, Resende & Smith, 1994)
- Local search to improve solution



## Local search to enlarge subgraph

The heuristic (phase 2 of G&T) used to produce an approximate maximal bipartite subgraph produces 3 sets of edges:

-set A: red edges

-set B: blue edges

-set C: the remaining, or pale, edges

Attempt to color a red edge blue and a pale edge red, thus increasing size of planar subgraph.



## Local search to enlarge subgraph

 Blue edges cannot be colored red, but red edges can be colored blue (if they do not intersect with any blue edge)



$$|E| = 5$$



$$|E| = 6$$



### Computational results

- Several variants:
  - —A: Grasp ph 1+2 + G&T ph 2 + local ph 3
  - B: Grasp ph 1 + G&T ph 2 + local ph 3
  - -C: Grasp ph 1+2 + Grasp MIS + local ph 3
  - D: Pure greedy GRASP ph 1 + G&T ph 2 (i.e. the G&T heuristic)
- In this talk, we limit ourselves to a subset of the experimental results: we consider variant A.



## Hamiltonian Graphs

| nodes arcs |    | T&L | G&T | Grasp |
|------------|----|-----|-----|-------|
| 10         | 22 | 20  | 20  | 20    |
| 10         | 24 | 21  | 24  | 24    |
| 10         | 25 | 22  | 24  | 24    |
| 10         | 26 | 22  | 24  | 24    |
| 10         | 34 | 23  | 24  | 24    |



## Hamiltonian Graphs

| nodes arcs |    | T&L | G&T | Grasp |
|------------|----|-----|-----|-------|
| 25         | 70 | 59  | 69  | 69    |
| 25         | 71 | 58  | 68  | 69    |
| 25         | 72 | 60  | 68  | 69    |
| 25         | 90 | 61  | 67  | 69    |



## Hamiltonian Graphs

| nodes | arcs | T&L | G&T | Grasp |
|-------|------|-----|-----|-------|
| 50    | 367  | 70  | 129 | 134   |
| 50    | 491  | 100 | 138 | 143   |
| 50    | 582  | 101 | 142 | 144   |
| 100   | 451  | 92  | 183 | 191   |
| 100   | 742  | 116 | 215 | 231   |
| 100   | 922  | 115 | 234 | 243   |
| 150   | 1064 | 127 | 291 | 305   |



## Cimikowski graphs

| nodes arcs |     | G&T | J&M | Grasp |
|------------|-----|-----|-----|-------|
| 10         | 21  | 19  | 19  | 19    |
| 60         | 166 | 149 | 165 | 165   |
| 28         | 75  | 73  | 73  | 73    |
| 10         | 22  | 19  | 20  | 20    |
| 45         | 85  | 80  | 82  | 82    |
| 43         | 63  | 54  | 59  | 58    |



## Random nonplanar graphs

| nodes | arcs | G&T | J&M | Grasp |
|-------|------|-----|-----|-------|
| 150   | 387  | 210 | 231 | 219   |
| 150   | 402  | 213 | 227 | 222   |
| 150   | 453  | 222 | 229 | 232   |
| 150   | 473  | 223 | 234 | 236   |
| 150   | 481  | 227 | 241 | 238   |



## Random nonplanar graphs

| nodes | arcs | G&T | J&M | Grasp |
|-------|------|-----|-----|-------|
| 200   | 514  | 268 | 284 | 276   |
| 200   | 519  | 278 | 283 | 279   |
| 200   | 644  | 286 | 295 | 300   |
| 200   | 684  | 296 | 297 | 303   |
| 200   | 701  | 296 | 300 | 309   |



## Random nonplanar graphs

| nodes | arcs | G&T | J&M | Grasp |
|-------|------|-----|-----|-------|
| 300   | 814  | 395 | 398 | 405   |
| 300   | 1159 | 431 | 420 | 450   |
| 300   | 1176 | 439 | 428 | 449   |
| 300   | 1474 | 458 | 469 | 473   |
| 300   | 1507 | 467 | 472 | 472   |



## Graphs with known optimal solution

| nodes arcs |     | G&T | J&M | Grasp |
|------------|-----|-----|-----|-------|
| 100        | 314 | 223 | 294 | 244   |
| 100        | 334 | 228 | 294 | 243   |
| 100        | 354 | 242 | 287 | 235   |
| 100        | 374 | 221 | 281 | 236   |
| 100        | 394 | 224 | 277 | 229   |



## Graphs with known optimal solution

| nodes | arcs | G&T | J&M        | Grasp |
|-------|------|-----|------------|-------|
| 200   | 614  | 439 | 594        | 449   |
| 200   | 634  | 464 | 591        | 449   |
| 200   | 654  | 411 | <b>572</b> | 447   |
| 200   | 674  | 423 | 550        | 441   |
| 200   | 694  | 461 | 536        | 427   |
|       | l l  |     |            |       |



#### Conclusion

- Extended the heuristic of Goldschmidt and Takvorian
  - -substituted G&T's phase 1 by a two phase GRASP
  - -added a local search after G&T's phase 2 to try to increase size of bipartite subgraph
- GRASP dominates G&T with very little overhead
- Jünger and Muztel, which dominated G&T, does not dominate GRASP



#### Conclusion

- We tried using approximate solutions of max indep set with little success (GRASP for MIS)
- We use the  $O(|E|^3)$  time exact algorithm of Gavril (1973) to compute the max indep sets
- Goldschmidt & Takvorian
   (1994) have described an O(VE)
   time exact algorithm for max
   indep set
- GRASP can be implemented in parallel in a straightforward way

