
04/26/01 GRASP & path relinking for 3-index
assignment

Page 1/47

GRASP with path relinking for
the 3-index assignment

problem
Mauricio G. C. Resende

mgcr@research.att.com
www.research.att.com/~mgcr

Algorithms & Optimization Research Department
Information Sciences Research Center / AT&T Labs Research

Joint work with R.M. Aiex, P.M. Pardalos, & G. Toraldo

04/26/01 GRASP & path relinking for 3-index
assignment

Page 2/47

3-index assignment (AP3)

cost = 10

Complete tripartite graph:
Each triangle made up of
three distinctly colored
nodes has a cost.

cost = 5

AP3: Find a set of triangles
such that each node appears
in exactly one triangle and the
sum of the costs of the
triangles is minimized.

04/26/01 GRASP & path relinking for 3-index
assignment

Page 3/47

3-index assignment (AP3)

• Let I, J, and K be disjoint sets of size n.
• Consider the complete tripartite graph:

Kn,n,n = (I ∪ J ∪ K, (I ×J) ∪ (I ×K) ∪ (J ×K))
• If each triangle (i, j, k) ∈ I ×J ×K costs ci,j,k

• AP3 consists in finding a subset A Õ I ×J ×K of
n triangles such that every element of I ×J ×K
occurs in exactly one triangle of A and the cost
of the chosen triangles is minimized.

04/26/01 GRASP & path relinking for 3-index
assignment

Page 4/47

3-index assignment (AP3)

• First stated by Pierskalla (1967) as a straightforward
extension of the 2-dim assignment problem.

• AP3 is NP-complete (Frieze, 1983)
• Applications include:

– Scheduling capital investments
– Military troop assignment
– Satellite coverage optimization
– Production of printed circuit boards

04/26/01 GRASP & path relinking for 3-index
assignment

Page 5/47

Exact algorithms & heuristics
for AP3

• Pierskalla (1967)
• Vlach (1967)
• Hansen & Kaufman (1973)
• Burkard & Fröhlich (1980)
• Balas & Saltzman (1991)
• Crama & Spieksma (1992)
• Burkard & Rudolf (1993)
• Burkard, Rudolf, & Woeginger (1996)

04/26/01 GRASP & path relinking for 3-index
assignment

Page 6/47

Summary of talk

• GRASP for AP3
– Construction of greedy randomized solution
– Local search

• Path relinking for AP3
• GRASP with path relinking for AP3
• Computational experience with sequential

algorithms
• Parallel implementation & computation

04/26/01 GRASP & path relinking for 3-index
assignment

Page 7/47

GRASP: greedy randomized adaptive
search procedure

• Multi-start meta-heuristic (Feo & R., 1989)
• Repeat:

– Construct greedy randomized solution
– Use local search to improve constructed solution
– Keep track of best solutions found

04/26/01 GRASP & path relinking for 3-index
assignment

Page 8/47

GRASP for assignment problems

• QAP: Li, Pardalos, & R. (1994); Pardalos, Pitsoulis, & R.
(1995); R., Pardalos, & Li (1996); Pardalos, Pitsoulis, &
R. (1997); Rangel, Abreu, Boaventura-Netto, & Boeres
(1998); Fleurent & Glover (1999); Pitsoulis (1999);
Rangel, Abreu, & Boaventura-Netto (1999); Ahuja,
Orlin, & Tiwari (2000)

• Biquadratic assignment: Mavridou, Pardalos, Pitsoulis,
& R. (1998)

• Multi-dimensional assignment: Robertson (1998);
Murphey, Pardalos, & Pitsoulis (1998); Pitsoulis (1999)

04/26/01 GRASP & path relinking for 3-index
assignment

Page 9/47

GRASP for assignment problems

• Intermodal trailer assignment: Feo & Gonzalez-
Velarde (1995)

• Turbine balancing: Pitsoulis (1999); Pitsoulis,
Pardalos, & Hearn (2001)

04/26/01 GRASP & path relinking for 3-index
assignment

Page 10/47

Greedy randomized construction for AP3

• Solution A is built by selecting n triplets, one at
a time.

• Let C be the set of candidate triplets (initially
the set of all triplets)

• c* = min {ci,j,k | (i,j,k)∈ C }; c* = max {ci,j,k | (i,j,k)∈ C }

• C ’ = { (i,j,k) ∈ C | ci,j,k £ c* + a (c* - c*) }
(a random, 0 £ a £1)

04/26/01 GRASP & path relinking for 3-index
assignment

Page 11/47

Greedy randomized construction for AP3

• A = ∆
• Repeat n -1 times:

– Build restricted candidate list C ‘

– Choose (i,j,k) ∈ C ‘ at random

– A = A » (i,j,k)
– Update candidate list C

• A = A » C

Data structure uses
4 doubly linked lists.

04/26/01 GRASP & path relinking for 3-index
assignment

Page 12/47

Local search for AP3

• Permutation representation of AP3 solution.

1

1 1

2

22

(p, q) = ({2,1}, {1,2})

Solution space consists of all
(n !)2 possible combinations of
permutations.

04/26/01 GRASP & path relinking for 3-index
assignment

Page 13/47

Local search for AP3

• Difference between 2 permutations s and s’ :
d (s,s’) = { i | s (i) π s’ (i) }

• Distance between them:
d (s,s’) = |d (s,s’)|

• The neighborhood used in our local search:
N2 (p, q) = { p’, q’ | d (p,p’) + d (q,q’) = 2}

04/26/01 GRASP & path relinking for 3-index
assignment

Page 14/47

Local search for AP3

(p,q) is starting solution;
while (∃ (p’,q’) ∈ N2 (p,q) | c (p’,q’) < c (p,q)){

(p,q) = (p’,q’);
}

04/26/01 GRASP & path relinking for 3-index
assignment

Page 15/47

Path relinking

• Introduced in context of tabu search in Glover &
Laguna (1997):
– Approach to integrate intensification &

diversification in search.

• Consists in exploring trajectories that connect
high quality solutions.

initial
solution

guiding
solution

path in neighborhood of solutions

04/26/01 GRASP & path relinking for 3-index
assignment

Page 16/47

Path relinking

• Path is generated by selecting moves that introduce in
the initial solution attributes of the guiding solution.

• At each step, all moves that incorporate attributes of
the guiding solution are analyzed and best move is
taken.

04/26/01 GRASP & path relinking for 3-index
assignment

Page 17/47

Path relinking in GRASP

• Introduced by Laguna & Martí (1999)
• Maintain an elite set of solutions found during

GRASP iterations.
• After each GRASP iteration (construction & local

search):
– Select an elite solution at random: guiding solution.
– Use GRASP solution as initial solution.
– Do path relinking between these two solutions.

04/26/01 GRASP & path relinking for 3-index
assignment

Page 18/47

Path relinking for AP3

• Path relinking is done between
– Initial solution

S = { (1, j1S, k1
S), (2, j2S, k2

S), …, (n, jnS, kn
S) }

– Guiding solution
T = { (1, j1T, k1

T), (2, j2T, k2
T), …, (n, jnT, kn

T) }

04/26/01 GRASP & path relinking for 3-index
assignment

Page 19/47

Path relinking for AP3

• Symmetric difference between S and T :
dJ = {i = 1,…,n | jiS π jiT }
dK = {i = 1,…,n | ki

S π ki
T }

• while (|dJ | + |dK | > 0) {
evaluate moves corresponding to dJ and dK
make best move
update symmetric difference

}

04/26/01 GRASP & path relinking for 3-index
assignment

Page 20/47

Path relinking moves

• Guided by dJ : for all i ∈ dJ , let q be such that jqT = jiS

Triplets {(i, jiS, ki
S), (q, jqS, kq

S)} are replaced by

triplets {(i, jqS, ki
S), (q, jiS, kq

S)}

• Guided by dK: for all i ∈ dK, let q be such that
kq

T = ki
S

Triplets {(i, jiS, ki
S), (q, jqS, kq

S)} are replaced by

triplets {(i, jiS, kq
S), (q, jqS, ki

S)}

04/26/01 GRASP & path relinking for 3-index
assignment

Page 21/47

Path relinking: Elite set

• P is set of elite solutions
• Each iteration of first |P | GRASP iterations

adds one solution to P.
• After that: solution x is promoted to P if:

– x is better than best solution in P.
– x is not better than best solution in P, but is better

than worst and it is sufficiently different from all
solutions in P .

04/26/01 GRASP & path relinking for 3-index
assignment

Page 22/47

Path relinking: Solution dissimilarity

• Initial solution
S = { (1, j1S, k1

S), (2, j2S, k2
S), …, (n, jnS, kn

S) }

• Guiding solution
T = { (1, j1T, k1

T), (2, j2T, k2
T), …, (n, jnT, kn

T) }

• Dissimilarity: D (S, T) = count of non-matching
triplet indices.

• Solutions are sufficiently different if D (S, T) > n

04/26/01 GRASP & path relinking for 3-index
assignment

Page 23/47

Path relinking: Intensification &
post-optimization

• Elite set intensification (periodically or as post-
optimization phase):
– Apply path relinking between all pairs of elite set solutions.
– Update elite set, if necessary, and repeat until no change

occurs.

• If done as post-optimization:
– Apply local search to each elite set solution.
– Repeat if necessary.

04/26/01 GRASP & path relinking for 3-index
assignment

Page 24/47

Path relinking: Variants

• How targets are chosen:
– Select a subset of targets P Õ P from elite set.
– We test |P | = 1 and |P | = |P |.

• Direction of path relinking:
– Forward: from S to T .
– Forward and back: from S to T , then from T to S.

S T

S T

04/26/01 GRASP & path relinking for 3-index
assignment

Page 25/47

Computational experiments

• Test problems (358 instances):
– Balas & Saltzman: Integer costs ci,j,k randomly generated in

uniform interval [0,100]. Five instances of sizes n =
12,14,16,18, 20, 22, 24, and 26.

– Crama & Spieksma: Edge (i,j) of Kn,n,n has cost di,j and triplet
(i,j,k) has cost ci,j,k = di,j + di,k + dk,j. . Three types of
instances use different schemes to generate the costs di,j .
Each type has three instances of sizes n = 33 and 66.

– Burkard, Rudolf, & Woeginger: ci,j,k = αi * βj * γk , where
αi, βj, and γk are uniformly distributed in [0,10]. One
hundred instances of sizes n = 12, 14, and 16.

04/26/01 GRASP & path relinking for 3-index
assignment

Page 26/47

Computational experiments:
Algorithm variants

• GRASP: pure GRASP with no path relinking
• GPR(RAND): Adds to GRASP 2-way PR between

initiating & randomly selected guiding solution.
• GPR(ALL): Adds to GRASP 2-way PR between initiating

& all elite solutions.
• GPR(RAND,POST): Adds to GPR(RAND) a post-

optimization PR phase.
• GPR(ALL,POST): Adds to GPR(ALL) a post-optimization

PR phase.

04/26/01 GRASP & path relinking for 3-index
assignment

Page 27/47

Computational experiments:
Algorithm variants

• GPR(RAND,POST,INT): Adds an intensification
phase to GPR(RAND,POST). Intensification is
done in fixed intervals.

• GPR(ALL,POST,INT): Adds an intensification
phase to GPR(ALL,POST). Intensification is
done in fixed intervals.

04/26/01 GRASP & path relinking for 3-index
assignment

Page 28/47

Computational experiments:
Questions

• Does PR improve performance of GRASP and
what is the tradeoff in terms of CPU time?

• What are the tradeoffs between CPU time and
solution quality for the different variants of
GRASP with PR?

• Are random variables time to target solution
exponentially distributed, and if so, how does a
straightforward parallel implementation do?

04/26/01 GRASP & path relinking for 3-index
assignment

Page 29/47

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600

pr
ob

ab
ilit

y

time (seconds)

Balas & Saltzman 20.1

GRASP
GPR(RAND)

look4 = 19

200 independent runs
of each algorithm.

04/26/01 GRASP & path relinking for 3-index
assignment

Page 30/47

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000 1200 1400

pr
ob

ab
ilit

y

time (seconds)

Balas & Saltzman 22.1

GRASP
GPR(RAND)

look4 = 20

200 independent runs
of each algorithm.

04/26/01 GRASP & path relinking for 3-index
assignment

Page 31/47

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000 1200 1400 1600

pr
ob

ab
ilit

y

time (seconds)

Balas & Saltzman 24.1

GRASP
GPR(RAND)

look4 = 17

200 independent runs
of each algorithm.

04/26/01 GRASP & path relinking for 3-index
assignment

Page 32/47

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000 1200 1400 1600

pr
ob

ab
ilit

y

time (seconds)

Balas & Saltzman 26.1

GRASP
GPR(RAND)

look4 = 19

200 independent runs
of each algorithm.

04/26/01 GRASP & path relinking for 3-index
assignment

Page 33/47

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000 100000

pr
ob

ab
ilit

y

time (seconds)

Balas & Saltzman 20.1

GPR(RAND)
GPR(RAND,INT)

GPR(ALL)
GPR(ALL,INT)

look4 = 7

200 independent runs
of each algorithm.

04/26/01 GRASP & path relinking for 3-index
assignment

Page 34/47

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000 100000

pr
ob

ab
ilit

y

time (seconds)

Balas & Saltzman 22.1

GPR(RAND)
GPR(RAND,INT)

GPR(ALL)
GPR(ALL,INT)

look4 = 8

200 independent runs
of each algorithm.

04/26/01 GRASP & path relinking for 3-index
assignment

Page 35/47

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000 100000

pr
ob

ab
ilit

y

time (seconds)

Balas & Saltzman 24.1

GPR(RAND)
GPR(RAND,INT)

GPR(ALL)
GPR(ALL,INT)

look4 = 7

200 independent runs
of each algorithm.

04/26/01 GRASP & path relinking for 3-index
assignment

Page 36/47

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000 100000

pr
ob

ab
ilit

y

time (seconds)

Balas & Saltzman 26.1

GPR(RAND)
GPR(RAND,INT)

GPR(ALL)
GPR(ALL,INT)

look4 = 8

200 independent runs
of each algorithm.

04/26/01 GRASP & path relinking for 3-index
assignment

Page 37/47

Computational experiments:
General remarks

• Extensive computational experiments were done.
• GRASP with path relinking was shown to improve

performance of pure GRASP
– Finds solution faster.
– Finds better solutions in fixed number of iterations.

• In general, variants requiring more work per iteration
were shown to find solutions of a given quality in less
time than variants doing less work per iteration.

• New GRASP with path relinking improved upon all
previously described heuristics.

04/26/01 GRASP & path relinking for 3-index
assignment

Page 38/47

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

pr
ob

ab
ilit

y

time to target solution value (seconds)

 0

1

2

3

4

5

6

0 1 2 3 4 5 6

m
ea

su
re

d
tim

es

exponential quantiles

Use standard graphical methodology described in Aiex, R., & Ribeiro (2000)
to study if random variable time to target solution value fits a two-
parameter exponential distribution.

Since it does, one should expect approximate linear speedup in a
straightforward parallel implementation.

04/26/01 GRASP & path relinking for 3-index
assignment

Page 39/47

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000

pr
ob

ab
ilit

y

time to sub-optimal

1 processor
2 processors
4 processors
8 processors

16 processors

Balas & Saltzman 20.1

look4 = 7

60 independent runs
of each algorithm.

MPI implementation.

04/26/01 GRASP & path relinking for 3-index
assignment

Page 40/47

2

4

6

8

10

12

14

16

18

2 4 6 8 10 12 14 16

sp
ee

du
p

number of processors

linear speedup
parallel implementation

Balas & Saltzman 20.1

look4 = 7

Average speedup of 60
independent runs.

MPI implementation.

04/26/01 GRASP & path relinking for 3-index
assignment

Page 41/47

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000 100000

pr
ob

ab
ilit

y

time to sub-optimal

1 processor
2 processors
4 processors
8 processors

16 processors

Balas & Saltzman 22.1

look4 = 8

60 independent runs
of each algorithm.

MPI implementation.

04/26/01 GRASP & path relinking for 3-index
assignment

Page 42/47

2

4

6

8

10

12

14

16

18

2 4 6 8 10 12 14 16

sp
ee

du
p

number of processors

linear speedup
parallel implementation

Balas & Saltzman 22.1

look4 = 8

Average speedup of 60
independent runs.

MPI implementation.

04/26/01 GRASP & path relinking for 3-index
assignment

Page 43/47

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000 100000

pr
ob

ab
ilit

y

time to sub-optimal

1 processor
2 processors
4 processors
8 processors

16 processors

Balas & Saltzman 24.1

look4 = 7

60 independent runs
of each algorithm.

MPI implementation.

04/26/01 GRASP & path relinking for 3-index
assignment

Page 44/47

2

4

6

8

10

12

14

16

18

2 4 6 8 10 12 14 16

sp
ee

du
p

number of processors

linear speedup
parallel implementation

Balas & Saltzman 24.1

look4 = 7

Average speedup of 60
independent runs.

MPI implementation.

04/26/01 GRASP & path relinking for 3-index
assignment

Page 45/47

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000 100000

pr
ob

ab
ilit

y

time to sub-optimal

1 processor
2 processors
4 processors
8 processors

16 processors

Balas & Saltzman 26.1

look4 = 8

60 independent runs
of each algorithm.

MPI implementation.

04/26/01 GRASP & path relinking for 3-index
assignment

Page 46/47

2

4

6

8

10

12

14

16

18

2 4 6 8 10 12 14 16

sp
ee

du
p

number of processors

linear speedup
parallel implementation

Balas & Saltzman 26.1

look4 = 8

Average speedup of 60
independent runs.

MPI implementation.

04/26/01 GRASP & path relinking for 3-index
assignment

Page 47/47

Concluding remarks

• We show that memory mechanisms using path relinking improve
performance of GRASP.

• Sophistication pays off: faster and better.
• Running time is exponentially distributed and parallel

implementations enjoy good speedup.
• We have recently implemented a parallel algorithm with

collaborating elite sets and observe super-linear speedup.
• Paper is available at http://www.research.att.com/~mgcr

