Speeding up Dynamic Shortest Path Algorithms

Luciana S. Buriol
Ph.D. Student, UNICAMP - Brazil
Visitor, AT\&T Labs Research

Joint work with
Mauricio Resende and Mikkel Thorup
AT\&T Labs Research

Outline

- Problem definition;
- Applications;
- Current algorithms:
- Using reduced heaps;
- Computational results;
- Conclusions.

Objectives

- To compare current dynamic shortest paths algorithms with respect to arc weight increase and decrease;
- To propose a new idea for reducing heap size to save computational time;

Dynamic Shortest Path problem

- Given a graph $G=(V, E)$, a shortest path graph $G_{S P}=\left(V, E^{\prime}\right)$, and a vector W with a weight w_{i} associated with each link i. Update G_{SP} considering a weight change without recomputing it from scratch.

Original Graph

Applications

- Transportation network, when weights are associated with traffic/distance;
- Databases: maintaining distances between objects in a large data base;
- Data flow analysis and compilers;
- Document formatting;
- Local search procedure in packet routing.

Packet routing

Updating algorithms

- Specialized for weight increase and decrease;
- An arc deletion can be considered an increase of w_{i} to ${ }^{\infty}$;
- The shortest paths can be a tree or a graph, depending on the application;

Graph and tree representations

OSPF routing: Traffic flow is routed along shortest paths, splitting flow at nodes with more than one outgoing link.

Transportation: If the load cannot be split, only one shortest path is needed.

Algorithms

- Trees:
- King \& Thorup increase;
- Demetrescu increase;
- Frigioni et al. decrease;
- Graphs:
- R\&R increase;
- R\&R decrease;

The above algorithms have two versions: the standard implementation and one avoiding use of heaps.

- Dijkstra's algorithm: recomputes shortest path graph from scratch only when at least one node distance changes. Otherwise, update the local change without Dijkstra.

Ramalingan \& Reps arc weight increase

Ramalingan \& Reps arc weigh increase

Find set Q of affected nodes. Q will contain all nodes which have all shortest paths traversing the changed arc.

Determining set Q

Find set Q of affected nodes. Set Q will contain all nodes which have all shortest paths crossing the changed arc.

Determining set Q

Find set Q of affected nodes. Set Q will contain all nodes which have all shortest paths crossing the changed arc.

Determining set Q

Find set Q of affected nodes. Set Q will contain all nodes which have all shortest paths crossing the changed arc.

Determining set Q

Find set Q of affected nodes. Set Q will contain all nodes which have all shortest paths crossing the changed arc.

Determining set Q

All arcs $s \leftarrow u$ incoming into nodes $s \in Q$ are removed from $G_{s p}$. If u has no outgoing links in $G_{S P}, u$ is an affected node. If u is an affected node, it is added to Q and $\operatorname{dist}_{u}=\infty$.

Updating Q-node distances

Update distances to nodes in Q considering arcs linking nodes outside Q.

Check all outgoing links from nodes $u \in Q$ and update dist if possible. Insert all nodes u in a heap H considering their distances to the destination $H=\{5,6,9,9, \infty\}$

Updating Q-node distances

Remove nodes $u \in \mathrm{H}$, one by one. For each node u, traverse all incoming links $u \leftarrow s$ and update dist $_{s}$ if possible.

Determine the new SP graph

Traverse each outgoing link $e=u \rightarrow v$ from nodes $u \in Q$. If $\operatorname{dist}_{u}=\operatorname{dist}_{v}+w_{e}$ then $\operatorname{arc} e \in G_{S P}$.

Ramalingam \& Reps vs Dijkstra on dense graphs

Ramalingam \& Reps vs Dijkstra on sparse graphs

R\&R: determining set Q

1 - Find set Q; remove all links from nodes $u \in Q$ and set $\operatorname{dist}_{u}=\infty$.

R\&R: updating Q-node distances

Update distances of nodes $u \in Q$ considering arcs linking nodes $\notin Q$.

R\&R: updating Q-node distances

Update distances of nodes $u \in Q$ considering arcs linking nodes $\in Q$.

$R \& R$: determining the new $G_{S P}$

Traverse each outgoing link from nodes $u \in Q$ to compute $G_{\text {SP }}$.

Avoiding use of heaps: Determining set Q \& updating Q-node distances

Instead of attributing ∞ to the distances of all nodes $\in Q$, add to their original distances the value Δ_{u}, where Δ_{u} is the amount that dist ${ }_{u}$ will increase by considering the cheapest outgoing link from u.

Avoiding use of heaps: updating Qnode distances

Insert in H only nodes that have an alternative cheapest path linking a node $\notin \mathrm{Q}$

Avoiding use of heaps: determining the

 new $G_{S P}$

Remove nodes from H , one by one, and insert/update in H new nodes which can have their distances decreased.

Effect of weight increment on heap size

Effect of weight increment on time

Time vs \#nodes on random weight increment

Time vs \#nodes on random weight decrement

Avoiding heaps: Unit increase

Increment by 1 all distances from nodes $u \in Q$.

Avoiding heaps: Unit increase

Traverse each outgoing link from nodes $u \in Q$ to compute $G_{\text {SP }}$.

Avoiding use of heaps in unit weight decrease

Considering unit decrement, the sets A and B are empty.

Computational results

- 10 classes of graphs:
- Real data from AT\&T;
- Small instances used in OSPF studies by Fortz \& Thorup (2000);
- Sparse graphs, dense graphs, square/long/large shape, hard graphs, etc. by A. Goldberg from DIMACS Challenge;
- Instance sizes from 50 to 3 million nodes; 200 to 5 million arcs.
- Weight setting range: [1,10000];
- For each instance, we applied 5000 weight increases and 5000 decreases. We force the changes to always alter G_{SP}.
$R \& R$ vs avoiding heaps for weight increase on 10 classes of instances

Demetrescu vs avoiding heaps for weight increase on 10 classes of instances

K\&T vs avoiding heaps for weight increase on 10 classes of instances

Dijkstra vs K\&T avoiding heaps for weight increase on 10 classes of instances

$R \& R$ and avoiding heaps for weight decrease on 10 classes of instances

Frigioni and avoiding heaps for weight decrease on 10 classes of instances

Dijkstra \& Frigioni for weight decrease on 10 classes of instances

Conclusions

© Ramalingan \& Reps on graphs: avoiding use of heaps reduced CPU time by 31% for weight increase and by 35% for weight decrease;
(3) Demetrescu weight increase on trees: avoiding use of heaps reduced CPU time by 30%;
© King \& Thorup weight increase on trees: avoiding use of heaps reduced CPU time by 28%;
(:) Frigioni et al. weight decrease on trees: avoiding use of heaps increased CPU time by 1%;

Conclusions

© Considering unit weight changes, the standard algorithms are 3 times faster if they avoid using heaps;

- The incremental algorithm is 60% faster then the decremental algorithm;
- On average, King \& Thorup algorithm is 4% faster then Demetrescu algorithm;
- Updating trees is 6% faster than updating graphs for weight increase and 68\% faster for weight decrease.

Local search for OSPF routing

© For unit increment/decrement the idea of avoiding heaps reduced the computational time by a factor of 3 .

