Speeding up Dynamic Shortest Path Algorithms

Luciana S. Buriol
Ph.D. Student, UNICAMP – Brazil
Visitor, AT&T Labs Research

Joint work with

Mauricio Resende and Mikkel Thorup

AT&T Labs Research

Outline

- Problem definition;
- Applications;
- Current algorithms:
- Using reduced heaps;
- Computational results;
- · Conclusions.

Objectives

 To compare current dynamic shortest paths algorithms with respect to arc weight increase and decrease;

 To propose a new idea for reducing heap size to save computational time;

Dynamic Shortest Path problem

• Given a graph G = (V, E), a shortest path graph $G_{SP} = (V, E')$, and a vector W with a weight w_i associated with each link i. Update G_{SP} considering a weight change without recomputing it from scratch.

Applications

- Transportation network, when weights are associated with traffic/distance;
- Databases: maintaining distances between objects in a large data base;
- Data flow analysis and compilers;
- Document formatting;
- Local search procedure in packet routing.

Packet routing

Updating algorithms

- Specialized for weight increase and decrease;
- An arc deletion can be considered an increase of w_i to ∞;
- The shortest paths can be a tree or a graph, depending on the application;

Graph and tree representations

OSPF routing: Traffic flow is routed along shortest paths, splitting flow at nodes with more than one outgoing link.

Transportation: If the load cannot be split, only one shortest path is needed.

Algorithms

Trees:

- King & Thorup increase;
- Demetrescu increase;
- Frigioni et al. decrease;

Graphs:

- R&R increase;
- R&R decrease;

The above algorithms have two versions: the standard implementation and one avoiding use of heaps.

 Dijkstra's algorithm: recomputes shortest path graph from scratch only when at least one node distance changes.
 Otherwise, update the local change without Dijkstra.

Ramalingan & Reps arc weight increase

Ramalingan & Reps arc weigh increase

All arcs $s \leftarrow u$ incoming into nodes $s \in Q$ are removed from G_{SP} . If u has no outgoing links in G_{SP} , u is an affected node. If u is an affected node, it is added to Q and dist_u = ∞ .

Updating Q-node distances

Update distances to nodes in Q considering arcs linking nodes outside Q.

Check all outgoing links from nodes $u \in Q$ and update $dist_u$ if possible. Insert all nodes u in a heap H considering their distances to the destination $H = \{5, 6, 9, 9, \infty\}$

Updating Q-node distances

Remove nodes $u \in H$, one by one. For each node u, traverse all incoming links $u \leftarrow s$ and update dist_s if possible.

Determine the new SP graph

Traverse each outgoing link $e = u \rightarrow v$ from nodes $u \in Q$. If $dist_u = dist_v + w_e$ then arc $e \in G_{SP}$.

Ramalingam & Reps vs Dijkstra on dense graphs

#arcs: [65536 , 4194304] # nodes

Ramalingam & Reps vs Dijkstra on sparse graphs

#arcs: [32768, 4194304]

nodes

R&R: determining set Q

1 - Find set Q; remove all links from nodes $u \in Q$ and set dist_u = ∞ .

R&R: updating Q-node distances

Update distances of nodes $u \in Q$ considering arcs linking nodes $\notin Q$.

R&R: updating Q-node distances

Update distances of nodes $u \in Q$ considering arcs linking nodes $\in Q$.

R&R: determining the new G_{SP}

Traverse each outgoing link from nodes $u \in Q$ to compute G_{SP}

Avoiding use of heaps: Determining set Q & updating Q-node distances

Instead of attributing ∞ to the distances of all nodes \in Q, add to their original distances the value Δ_u , where Δ_u is the amount that $dist_u$ will increase by considering the cheapest outgoing link from u.

Avoiding use of heaps: updating Q-node distances

Insert in H only nodes that have an alternative cheapest path linking a node ∉ Q

Avoiding use of heaps: determining the

Remove nodes from H, one by one, and insert/update in H new nodes which can have their distances decreased.

Effect of weight increment on heap size

Weight increment

Effect of weight increment on time

Time vs #nodes on random weight increment

Time vs #nodes on random weight decrement

Avoiding heaps: Unit increase

Increment by 1 all distances from nodes $u \in Q$.

Avoiding heaps: Unit increase

Traverse each outgoing link from nodes $u \in Q$ to compute G_{SP}

Avoiding use of heaps in unit weight

Considering unit decrement, the sets A and B are empty.

Computational results

- 10 classes of graphs:
 - Real data from AT&T;
 - Small instances used in OSPF studies by Fortz & Thorup (2000);
 - Sparse graphs, dense graphs, square/long/large shape, hard graphs, etc. by A. Goldberg from DIMACS Challenge;
- Instance sizes from 50 to 3 million nodes; 200 to 5 million arcs.
- Weight setting range: [1,10000];
- For each instance, we applied 5000 weight increases and 5000 decreases. We force the changes to always alter $G_{\rm SP}$.

R&R vs avoiding heaps for weight increase on 10 classes of instances

Demetrescu vs avoiding heaps for weight increase on 10 classes of instances

K&T vs avoiding heaps for weight increase on 10 classes of instances

Dijkstra vs K&T avoiding heaps for weight increase on 10 classes of instances

R&R and avoiding heaps for weight decrease on 10 classes of instances

Frigioni and avoiding heaps for weight decrease on 10 classes of instances

Dijkstra & Frigioni for weight decrease on 10 classes of instances

Conclusions

- Ramalingan & Reps on graphs: avoiding use of heaps reduced CPU time by 31% for weight increase and by 35% for weight decrease;
- Demetrescu weight increase on trees: avoiding use of heaps reduced CPU time by 30%;
- King & Thorup weight increase on trees: avoiding use of heaps reduced CPU time by 28%;
- Frigioni et al. weight decrease on trees: avoiding use of heaps increased CPU time by 1%;

Conclusions

- Considering unit weight changes, the standard algorithms are 3 times faster if they avoid using heaps;
- The incremental algorithm is 60% faster then the decremental algorithm;
- On average, King & Thorup algorithm is 4% faster then Demetrescu algorithm;
- Updating trees is 6% faster than updating graphs for weight increase and 68% faster for weight decrease.

Local search for OSPF routing

For unit increment/decrement the idea of avoiding heaps reduced the computational time by a factor of 3.