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Objectives

• To compare current dynamic shortest 
paths algorithms with respect to arc weight 
increase and decrease;

• To propose a new idea for reducing heap 
size to save computational time;



Dynamic Shortest Path problem
• Given a graph G = (V, E), a shortest path graph GSP = (V, E’), 

and a vector W with a weight wi associated with each link i. 
Update GSP considering a weight change without recomputing it 
from scratch.
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Applications
• Transportation network, when weights are 

associated with traffic/distance;

• Databases: maintaining distances 
between objects in a large data base;

• Data flow analysis and compilers;

• Document formatting;

• Local search procedure in packet routing.



Packet routing

router

router

router

router

router

When packet arrives at router,
router must decide where to
send it next.

Packet’s final 
destination.
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Updating algorithms

• Specialized for weight increase and 
decrease;

• An arc deletion can be considered an 
increase of wi to ∞;

• The shortest paths can be a tree or a 
graph, depending on the application;



Graph and tree representations

OSPF routing: Traffic flow 
is routed along shortest 
paths, splitting flow at 
nodes with more than one 
outgoing link.

Transportation: If the 
load cannot be split, only 
one shortest path is 
needed.



Algorithms
• Graphs:

– R&R increase;
– R&R decrease;

• Trees:
– King & Thorup increase;
– Demetrescu increase;
– Frigioni et al. decrease;

The above algorithms have two versions: the standard 
implementation and one avoiding use of heaps.

• Dijkstra’s algorithm: recomputes shortest path graph from 
scratch only when at least one node distance changes. 
Otherwise, update the local change without Dijkstra.



Ramalingan & Reps arc weight 
increase
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Ramalingan & Reps arc weigh 
increase
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Determining set Q
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Determining set Q
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Determining set Q
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Determining set Q
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Updating Q-node distances

2

3

5

3

3

∞

8

6

5

9

1

9

26

4

2

3

2  6
3

5

3
2

1 5
2

3

2

2

13

5

Destination
Node

Update distances to nodes in Q considering arcs linking nodes outside Q.

Check all outgoing links from nodes u є Q and update distu if possible.
Insert all nodes u in a heap H considering their distances to the destination
H = {5, 6, 9, 9, ∞}



Updating Q-node distances
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Determine the new SP graph
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R&R: determining set Q
Q

Destination node

+

∞
∞

∞
∞
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∞

∞

1 - Find set Q; remove all links from nodes u ∈Q and set distu = ∞.

Non affected 
part of the graph



R&R: updating Q-node distances
Q

Destination node
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b
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Update distances of nodes u ∈ Q considering arcs linking nodes ∉ Q.
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R&R: updating Q-node distances



R&R: determining the new GSP
Q
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Traverse each outgoing link from nodes u ∈Q to compute GSP.



Avoiding use of heaps: Determining set Q & 
updating Q-node distances
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Avoiding use of heaps: updating Q-
node distances
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Avoiding use of heaps: determining the 
new GSP
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Avoiding heaps: Unit increase
Q

Destination node

+1

+1
+1

+1
+1
+1

+1

+1

Increment by 1 all distances from nodes u ∈ Q..
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Avoiding heaps: Unit increase



Avoiding use of heaps in unit weight 
decrease

Q

Destination node

Considering unit decrement, the sets A and B are empty.

C
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Computational results
• 10 classes of graphs: 

– Real data from AT&T;

– Small instances used in OSPF studies by Fortz & Thorup (2000); 

– Sparse graphs, dense graphs, square/long/large shape, hard graphs, 
etc. by A. Goldberg from DIMACS Challenge;

• Instance sizes from 50 to 3 million nodes; 200 to 5 million 
arcs.

• Weight setting range: [1,10000];

• For each instance, we applied 5000 weight increases and 
5000 decreases. We force the changes to always alter GSP.
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Conclusions
☺ Ramalingan & Reps on graphs: avoiding use of heaps 

reduced CPU time by 31% for weight increase and by 
35% for weight decrease;

☺ Demetrescu weight increase on trees: avoiding use of 
heaps reduced CPU time by 30%;

☺ King & Thorup weight increase on trees: avoiding use 
of heaps reduced CPU time by 28%;

Frigioni et al. weight decrease on trees: avoiding use 
of heaps increased CPU time by 1%;



Conclusions
☺ Considering unit weight changes, the standard 

algorithms are 3 times faster if they avoid using heaps;

• The incremental algorithm is 60% faster then the 
decremental algorithm;

• On average, King & Thorup algorithm is 4% faster then 
Demetrescu algorithm;

• Updating trees is 6% faster than updating graphs for 
weight increase and 68% faster for weight decrease.



Local search for OSPF routing

☺ For unit increment/decrement the idea of 
avoiding heaps reduced the 
computational time by a factor of 3. 


