
Speeding up Dynamic
Shortest Path Algorithms

Luciana S. Buriol
Ph.D. Student, UNICAMP – Brazil

Visitor, AT&T Labs Research

Joint work with
Mauricio Resende and Mikkel Thorup

AT&T Labs Research

Outline
• Problem definition;

• Applications;

• Current algorithms:

• Using reduced heaps;

• Computational results;

• Conclusions.

Objectives

• To compare current dynamic shortest
paths algorithms with respect to arc weight
increase and decrease;

• To propose a new idea for reducing heap
size to save computational time;

Dynamic Shortest Path problem
• Given a graph G = (V, E), a shortest path graph GSP = (V, E’),

and a vector W with a weight wi associated with each link i.
Update GSP considering a weight change without recomputing it
from scratch.

2

3

3

3

3

7

8

5

5

6

1

8

24

4

2

3

2
3

5

3
2

1 5
2

3

2

2 7

13

3

Destination
Node

2

3

3

3

3

7

8

6

5

6

1

8

24

4

2

3

2
3

5

3
2

1 5
2

3

2

2 7

13

3

Destination
Node

2

3

3

3

3

7

8

5

5

6

1

8

24

4

2

3

2
3

5

3
2

1 5
2

3

2

2 7

13

3

Destination
Node

Original Graph

Updated Graph

Weight Increase

2

3

3

3

3

6

7

4

5

6

1

8

24

4

2

3

2
3

5

3
2

1 5
2

3

2

2 1

13

3

Destination
Node

2

3

3

3

3

7

8

5

5

6

1

8

24

4
2

3

2
3

5

3
2

1 5
2

3

2

2 1

13

3

Destination
Node

Original Graph

Updated Graph

Weight Decrease

Applications
• Transportation network, when weights are

associated with traffic/distance;

• Databases: maintaining distances
between objects in a large data base;

• Data flow analysis and compilers;

• Document formatting;

• Local search procedure in packet routing.

Packet routing

router

router

router

router

router

When packet arrives at router,
router must decide where to
send it next.

Packet’s final
destination.

D1

D2

D3

D4

R1

R2

R3

R4 Routing table

Updating algorithms

• Specialized for weight increase and
decrease;

• An arc deletion can be considered an
increase of wi to ∞;

• The shortest paths can be a tree or a
graph, depending on the application;

Graph and tree representations

OSPF routing: Traffic flow
is routed along shortest
paths, splitting flow at
nodes with more than one
outgoing link.

Transportation: If the
load cannot be split, only
one shortest path is
needed.

Algorithms
• Graphs:

– R&R increase;
– R&R decrease;

• Trees:
– King & Thorup increase;
– Demetrescu increase;
– Frigioni et al. decrease;

The above algorithms have two versions: the standard
implementation and one avoiding use of heaps.

• Dijkstra’s algorithm: recomputes shortest path graph from
scratch only when at least one node distance changes.
Otherwise, update the local change without Dijkstra.

Ramalingan & Reps arc weight
increase

2

3

3

3

3

7

8

5

5

6

1

8

24

4

2

3

2 6
3

5

3
2

1 5
2

3

2

2

13

3

Destination
Node

Ramalingan & Reps arc weigh
increase

2

3

3

3

3

7

8

5

5

6

1

8

26

4

2

3

2 6
3

5

3
2

1 5
2

3

2

2

13

5

Destination
Node

Find set Q of affected nodes. Q will contain all nodes which have all shortest
paths traversing the changed arc.

Q

Determining set Q

2

3

∞

3

3

7

8

5

5

6

1

8

26

4

2

3

2 6
3

5

3
2

1 5
2

3

2

2

13

5

Destination
Node

Find set Q of affected nodes. Set Q will contain all nodes which have all
shortest paths crossing the changed arc.

Determining set Q

2

3

∞

3

3

7

8

∞

5

∞

1

8

26

4

2

3

2 6
3

5

3
2

1 5
2

3

2

2

13

5

Destination
Node

Find set Q of affected nodes. Set Q will contain all nodes which have all
shortest paths crossing the changed arc.

Determining set Q

2

3

∞

3

3

7

8

∞

5

∞

1

∞

26

4

2

3

2 6
3

5

3
2

1 5
2

3

2

2

13

5

Destination
Node

Find set Q of affected nodes. Set Q will contain all nodes which have all
shortest paths crossing the changed arc.

Determining set Q

2

3

∞

3

3

∞

8

∞

5

∞

1

∞

26

4

2

3

2 6
3

5

3
2

1 5
2

3

2

2

13

5

Destination
Node

Find set Q of affected nodes. Set Q will contain all nodes which have all
shortest paths crossing the changed arc.

2

3

∞

3

3

∞

8

∞

5

∞

1

∞

26

4

2

3

2 6
3

5

3
2

1 5
2

3

2

2

13

5

Destination
Node

All arcs s←u incoming into nodes s ∈ Q are removed from GSP. If u has
no outgoing links in GSP, u is an affected node. If u is an affected node,
it is added to Q and distu = ∞.

Q

Determining set Q

Updating Q-node distances

2

3

5

3

3

∞

8

6

5

9

1

9

26

4

2

3

2 6
3

5

3
2

1 5
2

3

2

2

13

5

Destination
Node

Update distances to nodes in Q considering arcs linking nodes outside Q.

Check all outgoing links from nodes u є Q and update distu if possible.
Insert all nodes u in a heap H considering their distances to the destination
H = {5, 6, 9, 9, ∞}

Updating Q-node distances

2

3

5

3

3

∞ 8

8

6

5

9 8

1

9

26

4

2

3

2 6
3

5

3
2

1 5
2

3

2

2

13

5

Destination
Node

Remove nodes u ∈ H, one by one. For each node u, traverse all incoming links
u←s and update dists if possible.

Determine the new SP graph

2

3

5

3

3

∞ 8

8

6

5

9 8

1

9

26

4

2

3

2 6
3

5

3
2

1 5
2

3

2

2

13

5

Destination
Node

Traverse each outgoing link e = u→v from nodes u ∈ Q. If distu=distv+we then
arc e ∈ GSP.

2

3

5

3

3

8

8

6

5

8

1

9

26

4

2

3

6
3

5

3
2

1 5
2

3

2

2

13

5

2

3

3

3

3

7

8

5

6

1

8

24

4

2

3

2 6
3

5

3
2

1 5
2

3

2

2

13

3Original Graph

Updated Graph

R&R weight increase

0.1

1

10

100

1000

10000

100000

1e+06

500 1000 1500 2000 2500 3000 3500 4000 4500

Dijkstra from scratch

Ramalingam & Reps

nodes

Ti
m

e
(s

ec
s)

Ramalingam & Reps vs Dijkstra on dense graphs

#arcs: [65536 , 4194304]

1

10

100

1000

10000

100000

1e+06

0 200000 400000 600000 800000 1e+06 1.2e+06

Ramalingam & Reps vs Dijkstra on sparse graphs

Dijkstra from scratch

Ramalingam & Reps

nodes

Ti
m

e
(s

ec
s)

#arcs: [32768 , 4194304]

R&R: determining set Q
Q

Destination node

+

∞
∞

∞
∞
∞

∞

∞

1 - Find set Q; remove all links from nodes u ∈Q and set distu = ∞.

Non affected
part of the graph

R&R: updating Q-node distances
Q

Destination node

+

b
∞

c
∞
d

e

a

Update distances of nodes u ∈ Q considering arcs linking nodes ∉ Q.

Q

Destination node

+

b
f

c
e
d

e

a

Update distances of nodes u ∈Q considering arcs linking nodes ∈Q.

R&R: updating Q-node distances

R&R: determining the new GSP
Q

Destination node

+

b
f

c
e
d

e

a

Traverse each outgoing link from nodes u ∈Q to compute GSP.

Avoiding use of heaps: Determining set Q &
updating Q-node distances

Q

Destination node

+

+∆u
+∆u

+∆u
+∆u

+∆u

+∆u

a

Instead of attributing ∞ to the distances of all nodes ∈ Q, add to their original
distances the value ∆u, where ∆u is the amount that distu will increase by
considering the cheapest outgoing link from u.

+∆u

v

Avoiding use of heaps: updating Q-
node distances

Q

Destination node

+

+∆u
+∆u

+∆u
+∆u

+∆u

+∆u

a

Insert in H only nodes that have an alternative cheapest path linking a node ∉ Q

+∆u

v

Avoiding use of heaps: determining the
new GSP

Q

Destination node

+

+∆u
+∆u

+∆u
+∆u

+∆u

+∆u

a

Remove nodes from H, one by one, and insert/update in H new nodes which
can have their distances decreased.

+∆u

v

0

200

400

600

800

1000

1200

1400

1 10 100

R & R

R & R reduced

H
ea

p
si

ze

Weight increment

Effect of weight increment on heap size

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

1 10 100

Effect of weight increment on time
Ti

m
e

(s
ec

s)

weight increment

R&R

R&R reduced

0

100

200

300

400

500

600

700

800

1000 10000 100000 1e+06 1e+07

Demetrescu
Demetrescu reduced

Ti
m

e
(s

ec
s)

nodes

Time vs #nodes on random weight increment

Demetrescu

Demetrescu reduced

0

200

400

600

800

1000

1200

1400

1000 10000 100000 1e+06 1e+07

R & R
R & R reduced

Demetrescu
Demetrescu reduced

Tree
Tree reduced

Ti
m

e
(s

ec
s)

nodes

Time vs #nodes on random weight increment

Tree

R&R

Tree reduced

R&R reduced

Demetrescu

Demetrescu reduced

0

200

400

600

800

1000

1200

1400

1600

1800

1000 10000 100000 1e+06 1e+07

R & R
R & R reduced

Tree
Tree reduced

Ti
m

e
(s

ec
s)

nodes

Time vs #nodes on random weight decrement

R&R

Tree reduced
R&R reduced

Tree

Avoiding heaps: Unit increase
Q

Destination node

+1

+1
+1

+1
+1
+1

+1

+1

Increment by 1 all distances from nodes u ∈ Q..

Q

Destination node

+1

+1
+1

+1
+1
+1

+1

+1

Traverse each outgoing link from nodes u ∈ Q to compute GSP.

Avoiding heaps: Unit increase

Avoiding use of heaps in unit weight
decrease

Q

Destination node

Considering unit decrement, the sets A and B are empty.

C

-1

-1

-1

-1-1

-1
-1

-1

Computational results
• 10 classes of graphs:

– Real data from AT&T;

– Small instances used in OSPF studies by Fortz & Thorup (2000);

– Sparse graphs, dense graphs, square/long/large shape, hard graphs,
etc. by A. Goldberg from DIMACS Challenge;

• Instance sizes from 50 to 3 million nodes; 200 to 5 million
arcs.

• Weight setting range: [1,10000];

• For each instance, we applied 5000 weight increases and
5000 decreases. We force the changes to always alter GSP.

0.1

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10

R&R
R&R reduced

Instance class

Ti
m

e
(s

ec
s.

)
R&R vs avoiding heaps for weight increase on 10 classes of instances

Average reduction in CPU time: 31%

0.1

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10

Demetrescu
Demetrescu reduced

Demetrescu vs avoiding heaps for weight increase on 10 classes of instances

Instance class

Ti
m

e
(s

ec
s.

)

Average reduction in CPU time: 30%

0.1

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10

King & Thorup
King & Thorup reduced

Instance class

Ti
m

e
(s

ec
s.

)
K&T vs avoiding heaps for weight increase on 10 classes of instances

Average reduction in CPU time: 28%

0.1

1

10

100

1000

10000

100000

1e+06

1 2 3 4 5 6 7 8 9 10

Dijkstra
King & Thorup reduced

Instance class

Ti
m

e
(s

ec
s.

)
Dijkstra vs K&T avoiding heaps for weight increase on 10 classes of instances

Average speedup varied from 18 to 624,000

0.1

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10

R&R
R&R reduced

Instance class

Ti
m

e
(s

ec
s.

)
R&R and avoiding heaps for weight decrease on 10 classes of instances

Average reduction in CPU time: 35%

0.1

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10

Frigioni
Frigioni reduced

Instance class

Ti
m

e
(s

ec
s.

)
Frigioni and avoiding heaps for weight decrease on 10 classes of instances

Average increase in CPU time: 1%

0.1

1

10

100

1000

10000

100000

1e+06

1 2 3 4 5 6 7 8 9 10

Dijkstra
Frigioni

Instance class

Ti
m

e
(s

ec
s.

)
Dijkstra & Frigioni for weight decrease on 10 classes of instances

Average speedup varied from 16 to 67,000

Conclusions
☺ Ramalingan & Reps on graphs: avoiding use of heaps

reduced CPU time by 31% for weight increase and by
35% for weight decrease;

☺ Demetrescu weight increase on trees: avoiding use of
heaps reduced CPU time by 30%;

☺ King & Thorup weight increase on trees: avoiding use
of heaps reduced CPU time by 28%;

Frigioni et al. weight decrease on trees: avoiding use
of heaps increased CPU time by 1%;

Conclusions
☺ Considering unit weight changes, the standard

algorithms are 3 times faster if they avoid using heaps;

• The incremental algorithm is 60% faster then the
decremental algorithm;

• On average, King & Thorup algorithm is 4% faster then
Demetrescu algorithm;

• Updating trees is 6% faster than updating graphs for
weight increase and 68% faster for weight decrease.

Local search for OSPF routing

☺ For unit increment/decrement the idea of
avoiding heaps reduced the
computational time by a factor of 3.

