
Talk given at the Ninth INFORMS Telecommunications 
Conference, University of Maryland, College Park, MD               
March 28, 2008

A memetic algorithm for  
routing optimization in 
networks using 
exponential flow splitting

Mauricio G. C. Resende
AT&T Labs Research
Florham Park, New Jersey
mgcr@att.com

Joint work with Luciana Buriol, 
Marcus Ritt, and  Roger Reis  UFRGS, Brazil.

mailto:mgcr@att.com


Summary of talk
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GAs and random keys

● Introduced by Bean (1994) 
for sequencing problems.

● Individuals are strings of real-
valued numbers (random 
keys) in the interval [0,1].

● Sorting random keys results in 
a sequencing order.

S = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
          s(1)   s(2)   s(3)   s(4)    s(5)

S' = ( 0.05, 0.19, 0.25, 0.67, 0.89 )
          s(4)   s(2)   s(1)   s(3)    s(5)

Sequence: 4 – 2 – 1 – 3 – 5 



GAs and random keys

● Introduced by Bean (1994) 
for sequencing problems.

● Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )



GAs and random keys

● Introduced by Bean (1994) 
for sequencing problems.

● Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

● For each gene, flip a biased 
coin to choose which parent 
passed the allele to the child.

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )



GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = (                                              )

● Introduced by Bean (1994) 
for sequencing problems.

● Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

● For each gene, flip a biased 
coin to choose which parent 
passed the allele to the child.



GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25                                      )

● Introduced by Bean (1994) 
for sequencing problems.

● Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

● For each gene, flip a biased 
coin to choose which parent 
passed the allele to the child.



GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90                             )

● Introduced by Bean (1994) 
for sequencing problems.

● Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

● For each gene, flip a biased 
coin to choose which parent 
passed the allele to the child.



GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90, 0.76                    )

● Introduced by Bean (1994) 
for sequencing problems.

● Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

● For each gene, flip a biased 
coin to choose which parent 
passed the allele to the child.



GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90, 0.76, 0.05          )

● Introduced by Bean (1994) 
for sequencing problems.

● Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

● For each gene, flip a biased 
coin to choose which parent 
passed the allele to the child.



GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
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Every random-key array corresponds
to a feasible solution: Mating always
produces feasible offspring.

● Introduced by Bean (1994) 
for sequencing problems.

● Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

● For each gene, flip a biased 
coin to choose which parent 
passed the allele to the child.



GAs and random keys

● Introduced by Bean (1994) 
for sequencing problems.

● Initial population is made up 
of P chromosomes, each with 
N genes, each having a value 
(allele) generated uniformly at 
random in the interval [0,1].



GAs and random keys
● Introduced by Bean (1994) 

for sequencing problems.
● At the K-th generation, 

compute the cost of each 
solution and partition the 
solutions into two sets: elite 
solutions, non-elite solutions. 
Elite set should be smaller of 
the two sets and contain best 
solutions.

 Elite solutions

Population K

Non-elite
solutions
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GAs and random keys
● Introduced by Bean (1994) 

for sequencing problems.
● Evolutionary dynamics

– Copy elite solutions from population K 
to population K+1

– Add R random solutions (mutants) to 
population K+1

– While K+1-th population < P
● Mate elite solution with non elite to 

produce child in population K+1. Mates 
are chosen at random.

 Elite solutions

Mutant
solutions

X

Population K+1

Probability
child inherits
allele of elite parent 
> 0.5Population K

 Elite solutions

Non-elite
solutions

Mutant
solutions



Decoders
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OSPF routing in IP networks



Routing in IP networks

● Protocol: In OSPF, traffic is routed on shortest weight 
paths from origination router to destination router.

● Splitting: If more than one link out of a router is on a 
shortest weight path, traffic is evenly distributed on those 
links.

● Weight setting problem:  Determine OSPF weights such 
that if traffic is routed according to OSPF protocol, 
network congestion is minimized.



Minimization of congestion

● Consider the directed capacitated network G = (N,A,c), 
where N  are routers, A  are links, and ca is the capacity of 
link a ∈ A.

● We use the measure of Fortz & Thorup (2000) to 
compute congestion:

                   Φ = Φ1(l1) + Φ2(l2) + … + Φ|A|(l|A|) 
    where la  is the load on link a ∈ A, 

              Φa(la) is piecewise linear and convex,

              Φa(0) = 0, for all a ∈ A.



Piecewise linear and convex Φa(la) link 
congestion measure
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Genetic algorithm for OSPF routing in IP 
networks        Ericsson, R., & Pardalos (J. Comb. Opt., 2002)

● Chromosome:
– A vector X of N random keys, where N is the number of links. 

The i-th random key corresponds to the i-th link weight.

● Decoder:

– For i = 1,N:  set w(i) = ceil ( X(i) × w
max

 )

– Compute shortest paths and route traffic according to OSPF.
– Compute load on each link, compute link congestion, add up 

all link congestions to compute network congestion.



cost
GA solutions

AT&T Worldnet backbone network (90 routers, 274 links)

generation

LP lower bound
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Memetic algorithms for OSPF routing in IP 
networks      Buriol, R., Ribeiro, and Thorup (Networks, 2005)

 Elite solutions

● Chromosome:

– A vector X of N random keys, where N is the number of links. The 
i-th random key corresponds to the i-th link weight.

● Decoder:

– For i = 1,N:  set w(i) = ceil ( X(i) × w
max

 )

– Compute shortest paths and route traffic according to OSPF.

– Compute load on each link, compute link congestion, add up all link 
congestions to compute network congestion.

– Apply fast local search to improve weights.



Memetic algorithm: Optimized crossover = 
crossover + local search

X

 Elite solutions

Non-elite
solutions

Local search

 Elite solutions

Mutant
solutions
Mutant
solutions



Fast local search

● Let A* be the set of five arcs a ∈ A  having largest Φa 

values.
● Scan arcs a ∈ A* from largest to smallest Φa:

 Increase arc weight, one unit at a time, in the range        

[wa , wa +  (wmax – wa )/4  ]
 If total cost Φ is reduced, restart local search.



Effect of decoder with fast local search 
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DEFT routing in IP networks



DEFT routing

● Proposed by Dahai Xu, Mung Chiang, and Jennifer 
Rexford, DEFT: Distributed Exponentially-weighted 
Flow spliTting, INFOCOM 2007

● Flow is routed on all links that lead to the destination. 
An exponential penalty  is used to assign less flow to 
links that are on longer paths.



DEFT routing

● Consider each forward link (u,v) outgoing a given node u. 

● Denote by w
u,v

 the real-valued weight of link (u,v) and dt(u) 

as the distance of node u from target t.
● The gap ht(u,v) between u and v is calculated as:                   

                                                                                            
                                                  ht(u,v) =   dt(v) + w

u,v
– dt(u) 

                             

u

w

v

y

t
dt(v)dt(u) w

u,v



DEFT routing
● Exponential function:                                                       

                                                                                       
  if dt(u) > dt(v) then [ht(u,v)] = exp[–ht(u,v)],                  
               otherwise [ht(u,v)] = 0                                    
         

● The total flow ft(u) out of node u and destined to node t 
is split according to:                                                         
                                                                                       
                       ft(u,v) = ft(u) [ht(u,v)]/

(u,j)E
[ht(u,j)]

   



OSPF vs. DEFT

● Xu,  Chiang, and Rexford (2007) proposed a two-
stage iterative method, where each stage solves a non-
linear programming problem making use of a primal-
dual interior point algorithm. There method produces 
real-valued weights.

● In experiments described in their paper, their  
approach finds near-optimal solutions (i.e. near the 
linear programming lower bounds).



Memetic algorithm for DEFT 
weight setting

● Similar to memetic algorithm for OSPF weight setting
– GA with random keys
– fast local search

● Decoder is the only difference
– weights are set as in MA for OSPF
– shortest paths and gaps are determined, penalties defined, 

and flows computed
– fast local search is adapted for DEFT



Implementation issues for OSPF and DEFT: 
dynamic updates

● The local search makes lots of unit link weight 
changes

● Each changed network has to be re-evaluated 
– calculate new shortest paths
– calculate new network flow

● In both algorithms distances and flows should be 
updated and not recomputed from scratch



Implementation issues for OSPF and DEFT: 
dynamic distances

● Our MA for OSPF uses an improved version of the 
algorithm of Ramalingan and Reps
– Buriol, Resende, Thorup: Speeding up dynamic shortest 

path algorithms, INFORMS J. Comput. 2008

● For DEFT, the algorithm is slightly faster because it 
only needs to update the distances and not the 
shortest path graphs.



Implementation issues for OSPF and DEFT: 
dynamic flows

● Given a change in a link flow, the flow in the graph 
can be updated in both protocols.

● Updates affect a larger portion of the graph in DEFT 
than in OSPF.

● For example: a link weight increase on a non-shortest 
path does not require updating in OSPF but does so in 
DEFT



Preliminary experimental results

● We tested 6 instances with 7 different demand 
matrices

● Results are averages over 3 random seeds
● Stopping criterion: 2000 generations or 500 

generations without improvement
● Each run takes about 1 hour on a SGI Altrix (1.6Ghz 

Itanium 2 processor)



Preliminary experimental results

● DEFT reduces network congestion when compared to 
OSPF
– NLP as well as MA
– Running times are about the same for both OSPF & DEFT 

MA implementations

● Optimality gap is small for both (MA, NLP)
● Some instances permit large improvements (hier50b, 

hier100a), others almost none (waxman)



OSPF vs. DEFT
Two level hierarchy with 50 nodes

hier50a
148 links

Hier50b
212 links



OSPF vs. DEFT
Two level hierarchy with 100 nodes

Hier100
280 links

Hier100a
360 links



OSPF vs. DEFT

AT&T
90 nodes, 274 links

Waxman
50 nodes, 
169 links



DEFT
Comparison of NLP and MA approaches

Hier50a
50 nodes, 148 links



Conclusion

● DEFT routing archives better results than OSPF 
routing

● Further experiments are necessary to conclude if it is 
worthwhile to switch to DEFT

● Memetic algorithm is a flexible tool
– permits survivable network design (e.g. multiplicities)
– permits parallelization (e.g. island methods)



Future work

● Compare the network delay of DEFT and OSPF
● Explore DEFT with real weights

– Better local search using line search algorithms
– Continuous optimization methods, e.g. continuous GRASP

● Parallelize the memetic algorithm
● Implement survivable network design using DEFT
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The End
These slides and all of my papers cited in this talk
can be downloaded from my homepage:

                                  http://mauricioresende.com


