
Talk given at the Ninth INFORMS Telecommunications
Conference, University of Maryland, College Park, MD
March 28, 2008

A memetic algorithm for
routing optimization in
networks using
exponential flow splitting

Mauricio G. C. Resende
AT&T Labs Research
Florham Park, New Jersey
mgcr@att.com

Joint work with Luciana Buriol,
Marcus Ritt, and Roger Reis  UFRGS, Brazil.

mailto:mgcr@att.com

Summary of talk

● Genetic algorithm with random keys
● OSPF routing
● Memetic algorithm for OSPF routing
● DEFT routing
● Implementation issues
● Numerical results for OSPF and DEFT
● Concluding remarks

Genetic algorithms
with random keys

GAs and random keys

● Introduced by Bean (1994)
for sequencing problems.

GAs and random keys

● Introduced by Bean (1994)
for sequencing problems.

● Individuals are strings of real-
valued numbers (random
keys) in the interval [0,1].

S = (0.25, 0.19, 0.67, 0.05, 0.89)
 s(1) s(2) s(3) s(4) s(5)

GAs and random keys

● Introduced by Bean (1994)
for sequencing problems.

● Individuals are strings of real-
valued numbers (random
keys) in the interval [0,1].

● Sorting random keys results in
a sequencing order.

S = (0.25, 0.19, 0.67, 0.05, 0.89)
 s(1) s(2) s(3) s(4) s(5)

S' = (0.05, 0.19, 0.25, 0.67, 0.89)
 s(4) s(2) s(1) s(3) s(5)

Sequence: 4 – 2 – 1 – 3 – 5

GAs and random keys

● Introduced by Bean (1994)
for sequencing problems.

● Mating is done using
parametrized uniform
crossover (Spears & DeJong , 1990)

a = (0.25, 0.19, 0.67, 0.05, 0.89)
b = (0.63, 0.90, 0.76, 0.93, 0.08)

GAs and random keys

● Introduced by Bean (1994)
for sequencing problems.

● Mating is done using
parametrized uniform
crossover (Spears & DeJong , 1990)

● For each gene, flip a biased
coin to choose which parent
passed the allele to the child.

a = (0.25, 0.19, 0.67, 0.05, 0.89)
b = (0.63, 0.90, 0.76, 0.93, 0.08)

GAs and random keys

a = (0.25, 0.19, 0.67, 0.05, 0.89)
b = (0.63, 0.90, 0.76, 0.93, 0.08)
c = ()

● Introduced by Bean (1994)
for sequencing problems.

● Mating is done using
parametrized uniform
crossover (Spears & DeJong , 1990)

● For each gene, flip a biased
coin to choose which parent
passed the allele to the child.

GAs and random keys

a = (0.25, 0.19, 0.67, 0.05, 0.89)
b = (0.63, 0.90, 0.76, 0.93, 0.08)
c = (0.25)

● Introduced by Bean (1994)
for sequencing problems.

● Mating is done using
parametrized uniform
crossover (Spears & DeJong , 1990)

● For each gene, flip a biased
coin to choose which parent
passed the allele to the child.

GAs and random keys

a = (0.25, 0.19, 0.67, 0.05, 0.89)
b = (0.63, 0.90, 0.76, 0.93, 0.08)
c = (0.25, 0.90)

● Introduced by Bean (1994)
for sequencing problems.

● Mating is done using
parametrized uniform
crossover (Spears & DeJong , 1990)

● For each gene, flip a biased
coin to choose which parent
passed the allele to the child.

GAs and random keys

a = (0.25, 0.19, 0.67, 0.05, 0.89)
b = (0.63, 0.90, 0.76, 0.93, 0.08)
c = (0.25, 0.90, 0.76)

● Introduced by Bean (1994)
for sequencing problems.

● Mating is done using
parametrized uniform
crossover (Spears & DeJong , 1990)

● For each gene, flip a biased
coin to choose which parent
passed the allele to the child.

GAs and random keys

a = (0.25, 0.19, 0.67, 0.05, 0.89)
b = (0.63, 0.90, 0.76, 0.93, 0.08)
c = (0.25, 0.90, 0.76, 0.05)

● Introduced by Bean (1994)
for sequencing problems.

● Mating is done using
parametrized uniform
crossover (Spears & DeJong , 1990)

● For each gene, flip a biased
coin to choose which parent
passed the allele to the child.

GAs and random keys

a = (0.25, 0.19, 0.67, 0.05, 0.89)
b = (0.63, 0.90, 0.76, 0.93, 0.08)
c = (0.25, 0.90, 0.76, 0.05, 0.89)

Every random-key array corresponds
to a feasible solution: Mating always
produces feasible offspring.

● Introduced by Bean (1994)
for sequencing problems.

● Mating is done using
parametrized uniform
crossover (Spears & DeJong , 1990)

● For each gene, flip a biased
coin to choose which parent
passed the allele to the child.

GAs and random keys

● Introduced by Bean (1994)
for sequencing problems.

● Initial population is made up
of P chromosomes, each with
N genes, each having a value
(allele) generated uniformly at
random in the interval [0,1].

GAs and random keys
● Introduced by Bean (1994)

for sequencing problems.
● At the K-th generation,

compute the cost of each
solution and partition the
solutions into two sets: elite
solutions, non-elite solutions.
Elite set should be smaller of
the two sets and contain best
solutions.

 Elite solutions

Population K

Non-elite
solutions

GAs and random keys
● Introduced by Bean (1994)

for sequencing problems.
● Evolutionary dynamics

Population K Population K+1

 Elite solutions

Non-elite
solutions

GAs and random keys
● Introduced by Bean (1994)

for sequencing problems.
● Evolutionary dynamics

– Copy elite solutions from population K
to population K+1

 Elite solutions

Population K+1Population K

 Elite solutions

Non-elite
solutions

GAs and random keys
● Introduced by Bean (1994)

for sequencing problems.
● Evolutionary dynamics

– Copy elite solutions from population K
to population K+1

– Add R random solutions (mutants) to
population K+1

 Elite solutions

Mutant
solutions

Population K+1Population K

 Elite solutions

Non-elite
solutions

GAs and random keys
● Introduced by Bean (1994)

for sequencing problems.
● Evolutionary dynamics

– Copy elite solutions from population K
to population K+1

– Add R random solutions (mutants) to
population K+1

– While K+1-th population < P
● Mate elite solution with non elite to

produce child in population K+1. Mates
are chosen at random.

 Elite solutions

Mutant
solutions

X

Population K+1

Probability
child inherits
allele of elite parent
> 0.5Population K

 Elite solutions

Non-elite
solutions

Mutant
solutions

Decoders
● A decoder is a deterministic algorithm that takes as input a random-key vector

and returns a feasible solution of the optimization problem and its cost.

● Bean (1994) proposed decoders based on sorting the random-key vector to
produce a sequence.

● A random-key GA searches the solution space indirectly by searching the
space of random keys and using the decoder to evaluate fitness of the random
key.

[0,1]N Solution space
of optimization
problem

decoder

Decoders

[0,1]N Solution space
of optimization
problem

decoder

Search solution
space indirectly

● A decoder is a deterministic algorithm that takes as input a random-key vector
and returns a feasible solution of the optimization problem and its cost.

● Bean (1994) proposed decoders based on sorting the random-key vector to
produce a sequence.

● A random-key GA searches the solution space indirectly by searching the
space of random keys and using the decoder to evaluate fitness of the random
key.

Decoders
● A decoder is a deterministic algorithm that takes as input a random-key vector

and returns a feasible solution of the optimization problem and its cost.

● Bean (1994) proposed decoders based on sorting the random-key vector to
produce a sequence.

● A random-key GA searches the solution space indirectly by searching the
space of random keys and using the decoder to evaluate fitness of the random
key.

[0,1]N Solution space
of optimization
problem

decoder

Search solution
space indirectly

Decoders
● A decoder is a deterministic algorithm that takes as input a random-key vector

and returns a feasible solution of the optimization problem and its cost.

● Bean (1994) proposed decoders based on sorting the random-key vector to
produce a sequence.

● A random-key GA searches the solution space indirectly by searching the
space of random keys and using the decoder to evaluate fitness of the random
key.

[0,1]N Solution space
of optimization
problem

decoder

Search solution
space indirectly

Framework for random-key genetic algorithms

Generate P vectors
of random keys

Decode each vector
of random keys

Stopping rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions
to next population

Generate mutants in
next population

Combine elite and
non-elite solutions
and add children to

next population

no

stop

yes

Framework for random-key genetic algorithms

Generate P vectors
of random keys

Decode each vector
of random keys

Stopping rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions
to next population

Generate mutants in
next population

Combine elite and
non-elite solutions
and add children to

next population

no

stop

yes

Problem independent

Framework for random-key genetic algorithms

Generate P vectors
of random keys

Decode each vector
of random keys

Stopping rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions
to next population

Generate mutants in
next population

Combine elite and
non-elite solutions
and add children to

next population

no

stop

yes

Problem independent

Problem dependent

OSPF routing in IP networks

Routing in IP networks

● Protocol: In OSPF, traffic is routed on shortest weight
paths from origination router to destination router.

● Splitting: If more than one link out of a router is on a
shortest weight path, traffic is evenly distributed on those
links.

● Weight setting problem: Determine OSPF weights such
that if traffic is routed according to OSPF protocol,
network congestion is minimized.

Minimization of congestion

● Consider the directed capacitated network G = (N,A,c),
where N are routers, A are links, and ca is the capacity of
link a ∈ A.

● We use the measure of Fortz & Thorup (2000) to
compute congestion:

 Φ = Φ1(l1) + Φ2(l2) + … + Φ|A|(l|A|)
 where la is the load on link a ∈ A,

 Φa(la) is piecewise linear and convex,

 Φa(0) = 0, for all a ∈ A.

Piecewise linear and convex Φa(la) link
congestion measure

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

0 0 .2 0 .4 0 .6 0 .8 1 1 .2

c
o

s
t

 p
e

r
 u

n
it

 o
f

 c
a

p
a

c
it

y

t r u n k u t il iza t io n r a t e

slope = 1
slope = 3 slope = 10

slope = 70

slope = 500

slope = 5000

(la  ca)

Genetic algorithm for OSPF routing in IP
networks Ericsson, R., & Pardalos (J. Comb. Opt., 2002)

● Chromosome:
– A vector X of N random keys, where N is the number of links.

The i-th random key corresponds to the i-th link weight.

● Decoder:

– For i = 1,N: set w(i) = ceil (X(i) × w
max

)

– Compute shortest paths and route traffic according to OSPF.
– Compute load on each link, compute link congestion, add up

all link congestions to compute network congestion.

cost
GA solutions

AT&T Worldnet backbone network (90 routers, 274 links)

generation

LP lower bound

0

0 .2

0 .4

0 .6

0 .8

1

1 .2

1 .4

1 .6

1 .8

2

0 5 0 0 0 1 0 0 0 0 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 4 0 0 0 0 4 5 0 0 0 5 0 0 0 0

In vCap

GA

LPLB

Weight setting with GA
permits a 50% increase in
traffic volume w.r.t. weight
setting with the Inverse
Capacity rule.

demand

Max
utilization

AT&T Worldnet backbone network (90 routers, 274 links)

Memetic algorithms for OSPF routing in IP
networks Buriol, R., Ribeiro, and Thorup (Networks, 2005)

 Elite solutions

● Chromosome:

– A vector X of N random keys, where N is the number of links. The
i-th random key corresponds to the i-th link weight.

● Decoder:

– For i = 1,N: set w(i) = ceil (X(i) × w
max

)

– Compute shortest paths and route traffic according to OSPF.

– Compute load on each link, compute link congestion, add up all link
congestions to compute network congestion.

– Apply fast local search to improve weights.

Memetic algorithm: Optimized crossover =
crossover + local search

X

 Elite solutions

Non-elite
solutions

Local search

 Elite solutions

Mutant
solutions
Mutant
solutions

Fast local search

● Let A* be the set of five arcs a ∈ A having largest Φa

values.
● Scan arcs a ∈ A* from largest to smallest Φa:

 Increase arc weight, one unit at a time, in the range

[wa , wa +  (wmax – wa)/4]
 If total cost Φ is reduced, restart local search.

Effect of decoder with fast local search

1 0

1 0 0

1 0 0 0

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0

c
o

s
t

t ime (sec o n ds)

MA finds solutions faster.
MA finds better solutions.

GA: Ericsson, R.,
and Pardalos (2002)

MA: Buriol, R., Ribeiro,
and Thorup (2005)

LP lower bound

DEFT routing in IP networks

DEFT routing

● Proposed by Dahai Xu, Mung Chiang, and Jennifer
Rexford, DEFT: Distributed Exponentially-weighted
Flow spliTting, INFOCOM 2007

● Flow is routed on all links that lead to the destination.
An exponential penalty is used to assign less flow to
links that are on longer paths.

DEFT routing

● Consider each forward link (u,v) outgoing a given node u.

● Denote by w
u,v

 the real-valued weight of link (u,v) and dt(u)

as the distance of node u from target t.
● The gap ht(u,v) between u and v is calculated as:

 ht(u,v) = dt(v) + w

u,v
– dt(u)

u

w

v

y

t
dt(v)dt(u) w

u,v

DEFT routing
● Exponential function:

 if dt(u) > dt(v) then [ht(u,v)] = exp[–ht(u,v)],
 otherwise [ht(u,v)] = 0

● The total flow ft(u) out of node u and destined to node t
is split according to:

 ft(u,v) = ft(u) [ht(u,v)]/

(u,j)E
[ht(u,j)]

OSPF vs. DEFT

● Xu, Chiang, and Rexford (2007) proposed a two-
stage iterative method, where each stage solves a non-
linear programming problem making use of a primal-
dual interior point algorithm. There method produces
real-valued weights.

● In experiments described in their paper, their
approach finds near-optimal solutions (i.e. near the
linear programming lower bounds).

Memetic algorithm for DEFT
weight setting

● Similar to memetic algorithm for OSPF weight setting
– GA with random keys
– fast local search

● Decoder is the only difference
– weights are set as in MA for OSPF
– shortest paths and gaps are determined, penalties defined,

and flows computed
– fast local search is adapted for DEFT

Implementation issues for OSPF and DEFT:
dynamic updates

● The local search makes lots of unit link weight
changes

● Each changed network has to be re-evaluated
– calculate new shortest paths
– calculate new network flow

● In both algorithms distances and flows should be
updated and not recomputed from scratch

Implementation issues for OSPF and DEFT:
dynamic distances

● Our MA for OSPF uses an improved version of the
algorithm of Ramalingan and Reps
– Buriol, Resende, Thorup: Speeding up dynamic shortest

path algorithms, INFORMS J. Comput. 2008

● For DEFT, the algorithm is slightly faster because it
only needs to update the distances and not the
shortest path graphs.

Implementation issues for OSPF and DEFT:
dynamic flows

● Given a change in a link flow, the flow in the graph
can be updated in both protocols.

● Updates affect a larger portion of the graph in DEFT
than in OSPF.

● For example: a link weight increase on a non-shortest
path does not require updating in OSPF but does so in
DEFT

Preliminary experimental results

● We tested 6 instances with 7 different demand
matrices

● Results are averages over 3 random seeds
● Stopping criterion: 2000 generations or 500

generations without improvement
● Each run takes about 1 hour on a SGI Altrix (1.6Ghz

Itanium 2 processor)

Preliminary experimental results

● DEFT reduces network congestion when compared to
OSPF
– NLP as well as MA
– Running times are about the same for both OSPF & DEFT

MA implementations

● Optimality gap is small for both (MA, NLP)
● Some instances permit large improvements (hier50b,

hier100a), others almost none (waxman)

OSPF vs. DEFT
Two level hierarchy with 50 nodes

hier50a
148 links

Hier50b
212 links

OSPF vs. DEFT
Two level hierarchy with 100 nodes

Hier100
280 links

Hier100a
360 links

OSPF vs. DEFT

AT&T
90 nodes, 274 links

Waxman
50 nodes,
169 links

DEFT
Comparison of NLP and MA approaches

Hier50a
50 nodes, 148 links

Conclusion

● DEFT routing archives better results than OSPF
routing

● Further experiments are necessary to conclude if it is
worthwhile to switch to DEFT

● Memetic algorithm is a flexible tool
– permits survivable network design (e.g. multiplicities)
– permits parallelization (e.g. island methods)

Future work

● Compare the network delay of DEFT and OSPF
● Explore DEFT with real weights

– Better local search using line search algorithms
– Continuous optimization methods, e.g. continuous GRASP

● Parallelize the memetic algorithm
● Implement survivable network design using DEFT

 Thanks to...

Dahai Xu, Mung Chiang, and Jennifer Rexford for
sharing their implementation and insights

Coauthors

Luciana Buriol
Universidade Federal do
Rio Grande do Sul, Brazil

Marcus Ritt,
Universidade Federal do
Rio Grande do Sul, Brazil

Roger Reis
Universidade Federal do
Rio Grande do Sul, Brazil

The End
These slides and all of my papers cited in this talk
can be downloaded from my homepage:

 http://mauricioresende.com

