
Survivable
composite-link IP
network design
with OSPF routing

Mauricio G. C. Resende

AT&T Labs Research
Florham Park, New Jersey
mgcr@research.att.com
www.research.att.com/~mgcr

Joint work with D.V. Andrade, L.S. Buriol &
M. Thorup

Talk given at
Eighth INFORMS Telecommunications Conference
Dallas, Texas
April 1, 2006

Summary of talk

● OSPF routing
● Survivable IP network design
● Composite-link design
● Concluding remarks

Summary of talk

● OSPF routing
● Survivable IP network design
● Composite-link design
● Concluding remarks

Summary of talk

● OSPF routing
● Survivable IP network design
● Composite-link design
● Concluding remarks

Summary of talk

● OSPF routing
● Survivable IP network design
● Composite-link design
● Concluding remarks

OSPF routing

● Given a network G = (N,A), where N is the set of
routers and A is the set of links.

OSPF routing

● Given a network G = (N,A), where N is the set of
routers and A is the set of links.

● The OSPF (open shortest path first) routing protocol
assumes each link a has a weight w(a) assigned to it so
that a packet from a source router s to a destination
router t is routed on a shortest weight path from s to t.

OSPF routing

● Given a network G = (N,A), where N is the set of
routers and A is the set of links.

● The OSPF (open shortest path first) routing protocol
assumes each link a has a weight w(a) assigned to it so
that a packet from a source router s to a destination
router t is routed on a shortest weight path from s to t.

s
t

OSPF routing

● Given a network G = (N,A), where N is the set of
routers and A is the set of links.

● The OSPF (open shortest path first) routing protocol
assumes each link a has a weight w(a) assigned to it so
that a packet from a source router s to a destination
router t is routed on a shortest weight path from s to t.

s
t

OSPF routing

● Given a network G = (N,A), where N is the set of
routers and A is the set of links.

● The OSPF (open shortest path first) routing protocol
assumes each link a has a weight w(a) assigned to it so
that a packet from a source router s to a destination
router t is routed on a shortest weight path from s to t.

s
t

Traffic splitting

OSPF routing
● By setting OSPF weights appropriately, one can do

traffic engineering, i.e. route traffic so as to optimize
some objective (e.g. minimize congestion, maximize
throughput, etc.).

● Some recent papers on this topic:
– Fortz & Thorup (2000, 2004)
– Ramakrishnan & Rodrigues (2001)
– Sridharan, Guérin, & Diot (2002)
– Fortz, Rexford, & Thorup (2002)
– Ericsson, Resende, & Pardalos (2002)
– Buriol, Resende, Ribeiro, & Thorup (2002, 2005)

OSPF routing
● By setting OSPF weights appropriately, one can do

traffic engineering, i.e. route traffic so as to optimize
some objective (e.g. minimize congestion, maximize
throughput, etc.).

● Some recent papers on this topic:
– Fortz & Thorup (2000, 2004)
– Ramakrishnan & Rodrigues (2001)
– Sridharan, Guérin, & Diot (2002)
– Fortz, Rexford, & Thorup (2002)
– Ericsson, Resende, & Pardalos (2002)
– Buriol, Resende, Ribeiro, & Thorup (2002, 2005)

Survivable IP network design

● Buriol, Resende, and Thorup (Networks, 2006) use
weight setting to design survivable IP networks.

Survivable IP network design

● Buriol, Resende, and Thorup (Networks, 2006) use
weight setting to design survivable IP networks.

● Given
– directed graph G = (N,A), where N is the set of routers, A is

the set of potential arcs where capacity can be installed,

– a demand matrix D that for each pair (s,t) NN, specifies
the demand D(s,t) between s and t,

– a cost K(a) to lay fiber on arc a
– a capacity increment C for the fiber.

Survivable IP network design

● Buriol, Resende, and Thorup (Networks, 2006) use
weight setting to design survivable IP networks.

● Determine
– OSPF weight w(a) to assign to each arc a A,
– which arcs should be used to deploy fiber and how many

units (multiplicities) M(a) of capacity C should be installed
on each arc a A,

● such that all the demand can be routed on the network
even when any single arc fails.

● Minimize total design cost =
aA

M(a)K(a).

Survivable IP network design

● Buriol, Resende, and Thorup (Networks, 2006) use
weight setting to design survivable IP networks.

● Use genetic algorithm (GA) to determine weights.
● GA needs to compute “fitness” of each solution it

produces.

Computing the “fitness” of a solution

Route all demand
on shortest
path graph

Determine load L(a)
 on each arc a A.

For each arc a A,
set maxL(a) =

max{L(a),maxL(a)}

Determine load L(a)
 on each arc a A.

For each arc a A,
set maxL(a) =

max{L(a), maxL(a)}

For each arc e A,
remove arc e from

network G.

Compute shortest
path graph on

G \ {e}

Route all demand
on shortest
path graph

For each arc e A,
compute M(a)

For each arc
a A, set

maxL(a) = –

Computing the “fitness” of a solution

Route all demand
on shortest
path graph

Determine load L(a)
 on each arc a A.

For each arc a A,
set maxL(a) =

max{L(a),maxL(a)}

Determine load L(a)
 on each arc a A.

For each arc a A,
set maxL(a) =

max{L(a), maxL(a)}

For each arc e A,
remove arc e from

network G.

Compute shortest
path graph on

G \ {e}

Route all demand
on shortest
path graph

For each arc e A,
compute M(a)

For each arc
a A, set

maxL(a) = –

Computing the “fitness” of a solution

Route all demand
on shortest
path graph

Determine load L(a)
 on each arc a A.

For each arc a A,
set maxL(a) =

max{L(a),maxL(a)}

Determine load L(a)
 on each arc a A.

For each arc a A,
set maxL(a) =

max{L(a), maxL(a)}

For each arc e A,
remove arc e from

network G.

Compute shortest
path graph on

G \ {e}

Route all demand
on shortest
path graph

For each arc e A,
compute M(a)

For each arc
a A, set

maxL(a) = –

Computing the “fitness” of a solution

Route all demand
on shortest
path graph

Determine load L(a)
 on each arc a A.

For each arc a A,
set maxL(a) =

max{L(a),maxL(a)}

Determine load L(a)
 on each arc a A.

For each arc a A,
set maxL(a) =

max{L(a), maxL(a)}

For each arc e A,
remove arc e from

network G.

Compute shortest
path graph on

G \ {e}

Route all demand
on shortest
path graph

For each arc e A,
compute M(a)

For each arc
a A, set

maxL(a) = –

Composite-link design

● In Buriol, Resende, and Thorup (2006)
– links were all of the same type,
– only the link multiplicity had to be determined.

● Now consider composite links. Given a load L(a) on arc
a, we can compose several different link types that sum
up to the needed capacity c(a) L(a):

– c(a) =
t used in arc a

M(t) (t), where

– M(t) is the multiplicity of link type t

– (t) is the capacity of link type t

Composite-link design

● In Buriol, Resende, and Thorup (2006)
– links were all of the same type,
– only the link multiplicity had to be determined.

● Now consider composite links. Given a load L(a) on arc
a, we can compose several different link types that sum
up to the needed capacity c(a) L(a):

– c(a) =
t used in arc a

M(t) (t), where

– M(t) is the multiplicity of link type t

– (t) is the capacity of link type t

Composite-link design

● Link types = { 1, 2, ..., T }
● Capacities = { c(1), c(2), ..., c(T) } : c(i) < c(i+1)
● Prices / unit length = { p(1), p(2), ..., p(T) }: p(i) < p(i+1)
● Assumptions:

– [p(T)/c(T)] < [p(T–1)/c(T–1)] < ··· < [p(1)/c(1)], i.e. price
per unit of capacity is smaller for links with greater capacity

– c(i) = c(i–1), for N, > 1, i.e. capacities are
multiples of each other by powers of

Composite-link design

● Link types = { 1, 2, ..., T }
● Capacities = { c(1), c(2), ..., c(T) } : c(i) < c(i+1)
● Prices / unit length = { p(1), p(2), ..., p(T) }: p(i) < p(i+1)
● Assumptions:

– [p(T)/c(T)] < [p(T–1)/c(T–1)] < ··· < [p(1)/c(1)], i.e. price
per unit of capacity is smaller for links with greater capacity

– c(i) = c(i–1), for N, > 1, i.e. capacities are
multiples of each other by powers of

Composite-link design
● Link types = { 1, 2, ..., T }
● Capacities = { c(1), c(2), ..., c(T) } : c(i) < c(i+1)
● Prices / unit length = { p(1), p(2), ..., p(T) }: p(i) < p(i+1)
● Assumptions:

– [p(T)/c(T)] < [p(T–1)/c(T–1)] < ··· < [p(1)/c(1)]: economies
of scale

– c(i) = c(i–1), for N, > 1,
e.g. c(OC192) = 4 c(OC48); c(OC48) = 4 c(OC12);
c(OC12) = 4 c(OC3);

OC3 OC192OC48OC12

155 Mb/s 10 Gb/s 2.5 Gb/s 622 Mb/s = 4

Heuristics for composite-link design

● Designed to minimize overall network cost.
● Heuristics are:

– Min capacity
– Min cost
– Min cost k types
– Min multiplicities

Heuristics for composite-link design

● Designed to minimize overall network cost.
● Heuristics are:

– Min capacity
– Min cost
– Min cost k types
– Min multiplicities

Heuristics for composite-link design

● Designed to minimize overall network cost.
● Heuristics are:

– Min capacity
– Min cost
– Min cost k types
– Min multiplicities

Heuristics for composite-link design

● Designed to minimize overall network cost.
● Heuristics are:

– Min capacity
– Min cost
– Min cost k types
– Min multiplicities

Heuristics for composite-link design

● Designed to minimize overall network cost.
● Heuristics are:

– Min capacity
– Min cost
– Min cost k types
– Min multiplicities

Heuristics for composite-link design

● Designed to minimize overall network cost.
● Heuristics are:

– Min capacity
– Min cost
– Min cost k types
– Min multiplicities

Min capacity heuristic

Set k = T
Input
load L

Use as many as
possible (L/c(k)) of
type k links without
exceeding the load L

Update load:
L = L – L/c(k)

 k = 1 ?

 Set k = k – 1

Use L/c(1) units
of type 1 links

yes

no

done

Min cost heuristic

Set k = T

Input
load L

Use as many as
possible (L/c(k)) of
type k links without
exceeding the load L

Compute cost (k) of
satisfying remaining
load with link type k

 k = 0 ?

 Set k = k – 1

Let k*=argmin { (k) }

yes

no

Update load:
L = L – L/c(k)

Release links of types
k*– 1, ..., 1 and use

 L/c(k*) of type k* links

done

(k) is total cost of using links of types T, T– 1, ..., k.

Min cost k types

● Follows same idea as “Min cost” heuristic.
● Can use at most k different link types.
● In some applications, this additional constraint can be

imposed.
● Use small values of k, e.g. k=1, k=2

Min cost k types

● Follows same idea as “Min cost” heuristic.
● Can use at most k different link types.
● In some applications, this additional constraint can be

imposed.
● Use small values of k, e.g. k=1, k=2

Min cost k types

● Follows same idea as “Min cost” heuristic.
● Can use at most k different link types.
● In some applications, this additional constraint can be

imposed.
● Use small values of k, e.g. k=1, k=2

Min cost k types

● Follows same idea as “Min cost” heuristic.
● Can use at most k different link types.
● In some applications, this additional constraint can be

imposed.
● Use small values of k, e.g. k=1, k=2

Min cost k=1 type

● Let L be the load on the arc.
● For each link type k { 1, 2, ..., T } compute cost (k)

of deploying L/c(k) units of link type k.
● Let k*=argmin { (k): k { 1, 2, ..., T } } be the least

cost link type.
● Deploy L/c(k*) units of link type k*.

Min cost k=1 type

● Let L be the load on the arc.
● For each link type k { 1, 2, ..., T } compute cost (k)

of deploying L/c(k) units of link type k.
● Let k*=argmin { (k): k { 1, 2, ..., T } } be the least

cost link type.
● Deploy L/c(k*) units of link type k*.

Min cost k=1 type

● Let L be the load on the arc.
● For each link type k { 1, 2, ..., T } compute cost (k)

of deploying L/c(k) units of link type k.
● Let k*=argmin { (k): k { 1, 2, ..., T } } be the least

cost link type.
● Deploy L/c(k*) units of link type k*.

Min cost k=1 type

● Let L be the load on the arc.
● For each link type k { 1, 2, ..., T } compute cost (k)

of deploying L/c(k) units of link type k.
● Let k*=argmin { (k): k { 1, 2, ..., T } } be the least

cost link type.
● Deploy L/c(k*) units of link type k*.

Min cost k=2 types
● Let L be the load on the arc.
● For each link type k { 1, 2, ..., T } compute cost (k)

of deploying L/c(k) units of link type k.
● For each pair of link types i and j (j > i) compute cost

(i,j) of deploying L/c(j) units of link type j and
L/c(i) units of link type i.

● Let k*=argmin { (k) } and (i*,j*) = argmin { (i,j) }.
● If (i*,j*) > (k*) deploy L/c(k*) units of link type k*;
● Else deploy L/c(j*) units of link type j* and L/c(i*)

units of link type i*.

Min cost k=2 types
● Let L be the load on the arc.
● For each link type k { 1, 2, ..., T } compute cost (k)

of deploying L/c(k) units of link type k.
● For each pair of link types i and j (j > i) compute cost

(i,j) of deploying L/c(j) units of link type j and
L/c(i) units of link type i.

● Let k*=argmin { (k) } and (i*,j*) = argmin { (i,j) }.
● If (i*,j*) > (k*) deploy L/c(k*) units of link type k*;
● Else deploy L/c(j*) units of link type j* and L/c(i*)

units of link type i*.

Min cost k=2 types
● Let L be the load on the arc.
● For each link type k { 1, 2, ..., T } compute cost (k)

of deploying L/c(k) units of link type k.
● For each pair of link types i and j (j > i) compute cost

(i,j) of deploying L/c(j) units of link type j and
L/c(i) units of link type i.

● Let k*=argmin { (k) } and (i*,j*) = argmin { (i,j) }.
● If (i*,j*) > (k*) deploy L/c(k*) units of link type k*;
● Else deploy L/c(j*) units of link type j* and L/c(i*)

units of link type i*.

Min cost k=2 types
● Let L be the load on the arc.
● For each link type k { 1, 2, ..., T } compute cost (k)

of deploying L/c(k) units of link type k.
● For each pair of link types i and j (j > i) compute cost

(i,j) of deploying L/c(j) units of link type j and
L/c(i) units of link type i.

● Let k*=argmin { (k) } and (i*,j*) = argmin { (i,j) }.
● If (i*,j*) > (k*) deploy L/c(k*) units of link type k*;
● Else deploy L/c(j*) units of link type j* and L/c(i*)

units of link type i*.

Min cost k=2 types
● Let L be the load on the arc.
● For each link type k { 1, 2, ..., T } compute cost (k)

of deploying L/c(k) units of link type k.
● For each pair of link types i and j (j > i) compute cost

(i,j) of deploying L/c(j) units of link type j and
L/c(i) units of link type i.

● Let k*=argmin { (k) } and (i*,j*) = argmin { (i,j) }.
● If (i*,j*) > (k*) deploy L/c(k*) units of link type k*;
● Else deploy L/c(j*) units of link type j* and L/c(i*)

units of link type i*.

Min cost k=2 types
● Let L be the load on the arc.
● For each link type k { 1, 2, ..., T } compute cost (k)

of deploying L/c(k) units of link type k.
● For each pair of link types i and j (j > i) compute cost

(i,j) of deploying L/c(j) units of link type j and
L/c(i) units of link type i.

● Let k*=argmin { (k) } and (i*,j*) = argmin { (i,j) }.
● If (i*,j*) > (k*) deploy L/c(k*) units of link type k*;
● Else deploy L/c(j*) units of link type j* and L/c(i*)

units of link type i*.

Min multiplicities
● Minimizes number of copies of links used to satisfy the

load.
● Multiplicity of link type k is L/c(k);
● If L/c(T) > 1, then deploy L/c(T) units of link type T

and stop;
● For k = T – 1, ..., 1 do:

– If L/c(k) > 1, then deploy L/c(k+1) units of link
type k+1 and stop;

Min multiplicities
● Minimizes number of copies of links used to satisfy the

load.
● Multiplicity of link type k is L/c(k);
● If L/c(T) > 1, then deploy L/c(T) units of link type T

and stop;
● For k = T – 1, ..., 1 do:

– If L/c(k) > 1, then deploy L/c(k+1) units of link
type k+1 and stop;

Min multiplicities
● Minimizes number of copies of links used to satisfy the

load.
● Multiplicity of link type k is L/c(k);
● If L/c(T) > 1, then deploy L/c(T) units of link type T

and stop;
● For k = T – 1, ..., 1 do:

– If L/c(k) > 1, then deploy L/c(k+1) units of link
type k+1 and stop;

Min multiplicities
● Minimizes number of copies of links used to satisfy the

load.
● Multiplicity of link type k is L/c(k);
● If L/c(T) > 1, then deploy L/c(T) units of link type T

and stop;
● For k = T – 1, ..., 1 do:

– If L/c(k) > 1, then deploy L/c(k+1) units of link
type k+1 and stop;

Observations

● Subject to the assumptions listed earlier, all heuristics
(except min cost k > 1 types) can be implemented to
take O(T) time to execute per arc.

● Min capacity gives optimal solution for the minimum
capacity objective function.

● Min cost gives the optimal solution for the minimum
cost objective function.

● Without the assumptions, a knapsack problem must be
solved to find min cap and min cost solutions.

Observations

● Subject to the assumptions listed earlier, all heuristics
(except min cost k > 1 types) can be implemented to
take O(T) time to execute per arc.

● Min capacity gives optimal solution for the minimum
capacity objective function.

● Min cost gives the optimal solution for the minimum
cost objective function.

● Without the assumptions, a knapsack problem must be
solved to find min cap and min cost solutions.

Observations

● Subject to the assumptions listed earlier, all heuristics
(except min cost k > 1 types) can be implemented to
take O(T) time to execute per arc.

● Min capacity gives optimal solution for the minimum
capacity objective function.

● Min cost gives the optimal solution for the minimum
cost objective function.

● Without the assumptions, a knapsack problem must be
solved to find min cap and min cost solutions.

Observations

● Subject to the assumptions listed earlier, all heuristics
(except min cost k > 1 types) can be implemented to
take O(T) time to execute per arc.

● Min capacity gives optimal solution for the minimum
capacity objective function.

● Min cost gives the optimal solution for the minimum
cost objective function.

● Without the assumptions, a knapsack problem must be
solved to find min cap and min cost solutions.

Experimental results

● Use a “real” network with 54 routers and 278 arcs.
● Three link types used: { 1, 2, 3 }
● c(2) = 4 c(1); c(3) = 16 c(1)
● p(2)/c(2) = 0.95 p(1)/c(1); p(3)/c(3) = 0.90 p(1)/c(1)
● All four heuristics tested. Min cost k types was tested

for k=1 and k=2.
● GA was run 100, 200, 300, ..., 1000 generations and

costs were recorded for each heuristic.

Experimental results

● Use a “real” network with 54 routers and 278 arcs.
● Three link types used: { 1, 2, 3 }
● c(2) = 4 c(1); c(3) = 16 c(1)
● p(2)/c(2) = 0.95 p(1)/c(1); p(3)/c(3) = 0.90 p(1)/c(1)
● All four heuristics tested. Min cost k types was tested

for k=1 and k=2.
● GA was run 100, 200, 300, ..., 1000 generations and

costs were recorded for each heuristic.

Experimental results

● Use a “real” network with 54 routers and 278 arcs.
● Three link types used: { 1, 2, 3 }
● c(2) = 4 c(1); c(3) = 16 c(1)
● p(2)/c(2) = 0.95 p(1)/c(1); p(3)/c(3) = 0.90 p(1)/c(1)
● All four heuristics tested. Min cost k types was tested

for k=1 and k=2.
● GA was run 100, 200, 300, ..., 1000 generations and

costs were recorded for each heuristic.

Experimental results

● Use a “real” network with 54 routers and 278 arcs.
● Three link types used: { 1, 2, 3 }
● c(2) = 4 c(1); c(3) = 16 c(1)
● p(2)/c(2) = 0.95 p(1)/c(1); p(3)/c(3) = 0.90 p(1)/c(1)
● All four heuristics tested. Min cost k types was tested

for k=1 and k=2.
● GA was run 100, 200, 300, ..., 1000 generations and

costs were recorded for each heuristic.

Experimental results

● Use a “real” network with 54 routers and 278 arcs.
● Three link types used: { 1, 2, 3 }
● c(2) = 4 c(1); c(3) = 16 c(1)
● p(2)/c(2) = 0.95 p(1)/c(1); p(3)/c(3) = 0.90 p(1)/c(1)
● All four heuristics tested. Min cost k types was tested

for k=1 and k=2.
● GA was run 100, 200, 300, ..., 1000 generations and

costs were recorded for each heuristic.

Experimental results

● Use a “real” network with 54 routers and 278 arcs.
● Three link types used: { 1, 2, 3 }
● c(2) = 4 c(1); c(3) = 16 c(1)
● p(2)/c(2) = 0.95 p(1)/c(1); p(3)/c(3) = 0.90 p(1)/c(1)
● All four heuristics tested. Min cost k types was tested

for k=1 and k=2.
● GA was run 100, 200, 300, ..., 1000 generations and

costs were recorded for each heuristic.

min multiplicities

min cost 1 type
min capacitymin cost 2 types

min cost

min multiplicities

min cost 1 type
min capacitymin cost 2 types

min cost

With all heuristics, network cost
decreases with number of GA
generations.

min multiplicities

min cost 1 type
min capacitymin cost 2 types

min cost

Min cost was had the best
(least cost) designs.

min multiplicities

min cost 1 type
min capacitymin cost 2 types

min cost

Min cost 2 types performs
better than min cost 1 type.

min multiplicities

min cost 1 type
min capacitymin cost 2 types

min cost

Min capacities & min multiplicities
do not make use of cost information
and do worse than min cost and
min cost 2 types.

Concluding remarks

● We have extended our survivable IP network design
tool to handle composite links.

● Min cost heuristic runs fast and finds best-quality
solutions.

● In this talk, traffic splitting was not implemented for the
composite link case, as was done in Buriol, Resende,
and Thorup (2006).

● We have recently added a traffic splitting option to our
tool.

Concluding remarks

● We have extended our survivable IP network design
tool to handle composite links.

● Min cost heuristic runs fast and finds best-quality
solutions.

● In this talk, traffic splitting was not implemented for the
composite link case, as was done in Buriol, Resende,
and Thorup (2006).

● We have recently added a traffic splitting option to our
tool.

Concluding remarks

● We have extended our survivable IP network design
tool to handle composite links.

● Min cost heuristic runs fast and finds best-quality
solutions.

● In this talk, traffic splitting was not implemented for the
composite link case, as was done in Buriol, Resende,
and Thorup (2006).

● We have recently added a traffic splitting option to our
tool.

Concluding remarks

● We have extended our survivable IP network design
tool to handle composite links.

● Min cost heuristic runs fast and finds best-quality
solutions.

● In this talk, traffic splitting was not implemented for the
composite link case, as was done in Buriol, Resende,
and Thorup (2006).

● We have recently added a traffic splitting option to our
tool.

My coauthors

Diogo V. Andrade
Rutgers University Luciana S. Buriol

Federal University of
Rio Grande do Sul

Mikkel Thorup
AT&T Labs Research

The End

