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● Buriol, Resende, and Thorup (Networks, 2006) use 
weight setting to design survivable IP networks.

● Given 
– directed graph G = (N,A), where N is the set of routers, A is 

the set of potential arcs where capacity can be installed, 

– a demand matrix D that for each pair (s,t)  NN, specifies 
the demand D(s,t) between s and t,

– a cost K(a) to lay fiber on arc a 
– a capacity increment C for the fiber.



Survivable IP network design

● Buriol, Resende, and Thorup (Networks, 2006) use 
weight setting to design survivable IP networks.

● Determine 
– OSPF weight w(a) to assign to each arc a  A,
– which arcs should be used to deploy fiber and how many 

units (multiplicities) M(a) of capacity C should be installed 
on each arc a  A,

● such that all the demand can be routed on the network 
even when any single arc fails.

● Minimize total design cost = 
aA 

M(a)K(a). 



Survivable IP network design

● Buriol, Resende, and Thorup (Networks, 2006) use 
weight setting to design survivable IP networks.

● Use genetic algorithm (GA) to determine weights.
● GA needs to compute “fitness” of each solution it 

produces. 
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● Link types = { 1, 2, ..., T }
● Capacities = { c(1), c(2), ..., c(T) } : c(i) < c(i+1)
● Prices / unit length = { p(1), p(2), ..., p(T) }: p(i) < p(i+1)
● Assumptions:

– [p(T)/c(T)] < [p(T–1)/c(T–1)] < ··· < [p(1)/c(1)]: economies 
of scale

– c(i) =   c(i–1), for   N,  > 1,                                  
e.g. c(OC192) = 4  c(OC48);  c(OC48) = 4  c(OC12);       
c(OC12) = 4  c(OC3);

OC3 OC192OC48OC12

155 Mb/s 10 Gb/s 2.5 Gb/s 622 Mb/s  = 4 
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Set k = T
Input 
load L

Use as many as 
possible ( L/c(k) ) of 
type k links without 
exceeding the load L

Update load: 
L = L – L/c(k)

 k = 1 ?

 Set k = k – 1

Use L/c(1) units
of type 1 links

yes

no

done



Min cost heuristic

Set k = T

Input 
load L

Use as many as 
possible ( L/c(k) ) of 
type k links without 
exceeding the load L

Compute cost (k) of
satisfying remaining
load with link type k

 k = 0 ?

 Set k = k – 1

Let k*=argmin { (k) }

yes

no

Update load: 
L = L – L/c(k)

Release links of types
k*– 1, ..., 1 and use

 L/c(k*) of type k* links

done

(k) is total cost of using links of types T, T– 1, ..., k.
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● Can use at most k different link types.
● In some applications, this additional constraint can be 

imposed.
● Use small values of k, e.g. k=1, k=2
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Observations

● Subject to the assumptions listed earlier, all heuristics 
(except min cost k > 1 types) can be implemented to 
take O(T) time to execute per arc.

● Min capacity gives optimal solution for the minimum 
capacity objective function.

● Min cost gives the optimal solution for the minimum 
cost objective function.

● Without the assumptions, a knapsack problem must be 
solved to find min cap and min cost solutions.
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● Use a “real” network with 54 routers and 278 arcs.
● Three link types used: { 1, 2, 3 }
● c(2) = 4 c(1);   c(3) = 16 c(1)
● p(2)/c(2) = 0.95 p(1)/c(1);   p(3)/c(3) = 0.90 p(1)/c(1)
● All four heuristics tested.  Min cost k types was tested 

for k=1 and k=2.
● GA was run 100, 200, 300, ..., 1000 generations and 

costs were recorded for each heuristic.
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min cost

With all heuristics, network cost
decreases with number of GA 
generations.
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min cost

Min cost was had the best
(least cost) designs.
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min cost 1 type
min capacitymin cost 2 types

min cost

Min cost 2 types performs 
better than min cost 1 type.



min multiplicities

min cost 1 type
min capacitymin cost 2 types

min cost

Min capacities & min multiplicities
do not make use of cost information
and do worse than min cost and 
min cost 2 types.  
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● We have extended our survivable IP network design 
tool to handle composite links.

● Min cost heuristic runs fast and finds best-quality 
solutions.

● In this talk, traffic splitting was not implemented for the 
composite link case, as was done in Buriol, Resende, 
and Thorup (2006).

● We have recently added a traffic splitting option to our 
tool.
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