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Summary
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• modem location for internet service provider
metaheuristic & LP-based upper bounds

• design local access network
metaheuristic & LP-based lower bounds

• SONET ring network design
LP-based solution procedure

• offline routing of permanent virtual circuits
Metaheuristic

• OSPF routing
metaheuristic & LP-based lower bounds



Modem pool location for 
dial-up ISP access

• user dials up to a modem to access an internet 
service provider

• modem pools are located at PoPs (points of 
presence)

• users prefer making free local calls to access 
internet service
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ISP access

Potential 
PoP location

many customers

few customers

Potential 
PoP location

Potential 
PoP location

calling area

calling area

calling area

calling area

calling area

calling areaA calling area is an
NPANXX (e.g. 973360)
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Location problem

• maximize number of customers that can make 
free local calls to a PoP

• where to locate PoPs
fixed number of PoPs
choose from set of potential PoP locations
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Typical size

• ~ 50,000 potential PoP locations
• ~ 50,000 calling areas (NPANXX)
• ~ 120 million residential lines
• + 255 PoPs to be located
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Greedy algorithm

PoP

PoP

PoP

PoP

PoP

NPANXX
assume # lines = 1

Locate 3 PoPs

greedy choice
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covers 7

greedy choice
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covers 7

covers an additional 4

total coverage = 12
(optimal)



Greedy algorithm

• Greediness does not always lead to optimality:

greedy solution: covers 7
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nongreedy solution: covers 8



GRASP
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• repeated applications of:
randomized greedy

select next PoP, at random, from quasi-greedy set of 
PoPs

local search
2-exchange:

Solution X Solution Y in
neighborhood of X



LP upper bound

• location problem has integer programming 
formulation

• relaxing integrality constraints results in linear 
program

• cost of optimal solution of linear program is an 
upper bound on the maximum number of lines 
that can make a free call to some  selected PoP
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GRASP
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poptool

• poptool is a Unix tool that integrates the GRASP 
with the LP upper bound

• it has been used in a number of studies and 
applications by AT&T’s WorldNet
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Coverage determination

“WorldNet will go online with more than 200 
PoPs, meaning that from the outset about 80%
of all AT&T long-distance customers will have 
local dial-up access to the Internet.’’  [Tom 
Evslin, VP for WorldNet Services, NY Times, 
February 28, 1996]
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Summary
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• modem location for internet service provider
metaheuristic & LP-based upper bounds

design local access network
metaheuristic & LP-based lower bounds

• SONET ring network design
LP-based solution procedure

• offline routing of permanent virtual circuits
Metaheuristic

• OSPF routing
metaheuristic & LP-based lower bounds



Local access network design

• Design a local access network taking into 
account tradeoff between:

cost of network
revenue potential of network
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Local access network design
residence
(revenue)street
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potential equipment
location (cost)
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coverage area of equipment
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area of coverage potential equipment
location

Locate p boxes to max revenue of covered residences.



equipment 
box

Assign to each equipment box the total revenue
of residences it covers which for which there is
no closer box.   This is the prize.
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Solve prize collecting Steiner tree problem

max  prize collected minus edge cost

Here all prizes are collected.
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Solve prize collecting Steiner tree problem

max  prize collected minus edge cost

Here not all prizes are collected.
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Solve prize collecting Steiner tree 
problem

• Typical dimension:  20,000 to 100,000 nodes.
• Use GRASP for max covering to locate equipment 

boxes
• Compute lower bounds with cutting planes algorithm 

of Lucena & Resende (Discrete Applied Math., 2003)
• Compute solutions (upper bounds) with local search 

with perturbations algorithm of Canuto, Resende, & 
Ribeiro (Networks, 2001)
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Summary
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• modem location for internet service provider
metaheuristic & LP-based upper bounds

• design local access network
metaheuristic & LP-based lower bounds

SONET ring network design
LP-based solution procedure

• offline routing of permanent virtual circuits
Metaheuristic

• OSPF routing
metaheuristic & LP-based lower bounds



SONET ring network design

• Businesses increasingly depend on continuous reliable 
communications.  

For example: banks, brokerage houses, reservation systems, and credit 
card companies.

• Demand for survivable telecom networks with fast restoration 
capability is growing.

• Synchronous Optical Network (SONET) has enabled deployment 
of networks with a high level of service availability.

• SONET compatible equipment is capable of detecting problems 
with the signal and quickly (in less than a millisecond) react to 
reestablish communications.
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SONET ring network design

• SONET is generally configured as a network of self-healing rings
each pair of demand points has at least two disjoint paths

ring 1 ring 2

ring 3
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SONET ring network design

• Telecommunications network can be 
represented by G = ( V, E ), where:

V are vertices, each representing a large customer 
or a remote terminal (where low bandwidth traffic is 
aggregated) or a central office where switching 
takes place
E are edges or links, each representing a fiber cable 
connecting two nodes
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SONET ring network design

• Demand between pairs of nodes (not all pairs 
have demands) is an estimate of the number of 
circuits needed to provide communications 
between that pair of nodes.

• Demand is given in units of DS3 (51.84 
Mbits/sec).
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SONET ring network design

• SONET equipment is configured on logical rings (a ring 
is a cycle in G )

• SONET network is a set of rings that covers the nodes 
of G and that allows the demand to be satisfied.

• Demand between pair of nodes is satisfied if bandwidth 
equal to the required number of DS3s is reserved on 
one or more paths between the pair of nodes, where 
paths traverse only nodes with SONET equipment.
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SONET ring network design

• Equipment required:
add-drop multiplexer (ADM) at each node per unit of OC48 
(48 DS3)
two dense wave division multiplexer (DWDM) per link per 
eight units of OC48 traversing that link
optical amplifier (OA) every 75 miles per OC48
signal regenerator (REGEN) every 225 miles per OC48
Digital cross-connect system (DCS) at each demand node 
and each interring node (one for each 3 units of DS3)
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SONET ring network design

• Rings are selected from a set of predetermined rings 
(candidate rings).

• Design problem: given nodes, links, demands, and set 
of candidate rings, find a minimum cost SONET ring 
network using only rings from candidate set such that 
resulting equipment and fiber links have sufficient 
capacity to satisfy the demands.
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Multicommodity flows

• Point-to-point demands are commodities that flow on 
the network sharing link and node resources.

• Ring size is a function of the maximum capacity over all 
links in the ring.

• Costs are linear functions of ring, link, and node 
capacities.

• Objective: move demand between demand pairs only 
on links that are part of at least one ring.

• Find optimal flows, and ring and link capacities.
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LP variables
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• y(r,k ) = demand of commodity k unloaded at sink 
node k from ring r

• z(r, i, k ) = demand of commodity k loaded on ring r at 
node i

• f(r, k, i, j ) = flow of commodity k on ring r directed 
from node i  to node j

• x(r, s, n, k ) = crossover flow at node n of commodity 
k from ring r to ring s

• u(r ) = size of ring r
• w(l ) = size of link l



LP constraints

• Demand unloaded at k must satisfy demand of k.
• Demand loaded at n must satisfy demand of n.
• Flow conservation is done at ring level.
• Sum of bi-directional flows on links on ring determine 

size of ring.
• Ring sizes are limited by link sizes.
• Ring sizes are bounded from above. 
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LP cost function

• total cost is sum of
total ring cost
total link cost
total cross-connect cost
total loading cost
total unloading cost

slide 39 Optimization in telecommunications



Heuristic solution of integer 
program

• IP is too large for current IP packages
• Use a GRASP rounding scheme to produce 

feasible integer solutions from the optimal LP 
solution

idea:  ring sizes may be fractional
round up each fractional ring size
enough slack may be produced to allow one or more 
rings to be reduced by one or more units
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Summary
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• modem location for internet service provider
metaheuristic & LP-based upper bounds

• design local access network
metaheuristic & LP-based lower bounds

• SONET ring network design
LP-based solution procedure

offline routing of permanent virtual circuits
Metaheuristic

• OSPF routing
metaheuristic & LP-based lower bounds



Routing Frame Relay Permanent Virtual 
Circuits (PVC)

• Frame relay (FR) service
provides virtual private networks to customers
by provisioning a set of permanent (long-term) virtual circuits 
(PVC) between customer endpoints on the backbone 
network

• Provisioning of PVCs
routing is done either automatically by switch or by network 
designer without any knowledge of future requests
over time these decisions cause inefficiencies in network and 
occasional rerouting of PVCs is needed
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PVC  routing: example
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PVC  routing: example
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PVC  routing: example
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PVC  routing: example
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PVC  routing: example
max capacity = 3
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PVC  routing: example
max capacity = 3very long path!

slide 48 Optimization in telecommunications



PVC  routing: example
max capacity = 3very long path!

reroute
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PVC  routing: example
max capacity = 3
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PVC  routing: example
max capacity = 3feasible and 

optimal!
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Routing Frame Relay Permanent Virtual 
Circuits (PVC)

• one approach is to order PVCs and apply 
algorithm on FR switch to reroute 

however, taking advantage of factors not considered 
by FR switch routing algorithm may lead to greater 
efficiency of network resource utilization
FR switch algorithm is typically fast since it is also 
used to reroute in case of switch or trunk failures
this can be traded off for improved network 
resource utilization when routing off-line
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FR PVC Routing Problem

• given undirected FR network G = (V, E), where
V denotes n backbone nodes (FR switches)
E  denotes m trunks connecting backbone nodes

• for each trunk e = (i,j ) let
b (e )  be the bandwidth (max kbits/sec rate) of trunk e 
c (e ) be the max number of PVCs that can be routed on 
trunk e
d (e ) be the propagation and hopping delay associated with 
trunk e
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FR PVC Routing Problem

• list of demands (or commodities K = {1,…,p } ) is defined by
origin - destination pairs
r (p) - effective bandwidth requirement (forward, backward, overbooking) 
for PVC p

• objective is to minimize
delays
network load unbalance  

• subject to
technological constraints
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FR PVC Routing (bandwidth packing) Problem

• route for PVC (o, d ) is
sequence of adjacent trunks
first trunk originates in node o
last trunk terminates in node d

• set of routing assignments is feasible if for all trunks e
total PVC bandwidth requirements routed on e does exceed 
b (e)
number of PVCs routed on e is not greater than c (e)

slide 55 Optimization in telecommunications



Mathematical programming formulation

slide 56 Optimization in telecommunications

, ,
( , ) ( , )

1

, , ,

1
, , , , ,

,

, , ,

( ) ,

1,

min ( ) ( , ..., , , ..., )

subject 

 if  is source for 
1

to

( ) , (

,  if

, ) ,

( ) , ( , ) ,k k
k i j j i i j

k
k k
i j j i i j

k K

k k
i j

p k
i j i j i j j i j i

i j E i j

j i

K

i j E i j E

x x x

r

i V k

x x b i j E

x x c i j E i j

x

j

x

i

x

K
x

φ φ

∈

∈ <

∈

∈

∈

+ ≤ ∀

+ ≤ ∀

∈ <

∈

∈
− =

<

∈

=

−∑

∑

∑

∑

∑

{ },

  is destination for 
0, other

0,1 , ( , ) ,

w ise

.k
i jx i j

i K

E k K

V k

∈

⎧
⎪ ∈ ∈⎨

∀ ∈ ∀ ∈

⎪
⎩

subject to ,
k
i jx = 1, iff trunk (i,j )

is used to route 
PVC k.



Cost function

• Linear combination of 
delay component 
load balancing component

• Delay component: , , ,( )k k
i j k i j j i

k K
d x xρ

∈

+∑
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Cost function: Load balancing 
component

• We use the measure of Fortz & Thorup (2000) 
to compute congestion:

Φ = Φ1(l1) + Φ2(l2) + … + Φ|E|(l|E|)
where la  is the load on link e ∈ E, 

Φe(le) is piecewise linear and convex,
Φe(0) = 0, for all e ∈ E.
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Piecewise linear and convex Φe(le) 
link congestion measure 
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Solution method

• GRASP
Construct by choosing unrouted pair, biasing in 
favor of high bandwidth requirement.  Use shortest 
path routing using as edge distance the incremental 
cost associated with routing rk additional units of 
demand on edge (i , j ).
Local search: for each PVC k ∈K , remove rk units 
of flow from each edge in its current route, compute 
incremental edge weights, and reroute.

slide 60 Optimization in telecommunications



Path relinking

• Introduced in context of tabu search in Glover & 
Laguna (1997):

Approach to integrate intensification & 
diversification in search.

• Consists in exploring trajectories that connect 
high quality solutions.

guiding
solution
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path in neighborhood of solutionsinitial
solution



Path relinking
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• Path is generated by selecting moves that introduce in 
the initial solution attributes of the guiding solution.

• At each step, all moves that incorporate attributes of 
the guiding solution are analyzed and best move is 
taken.



0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

0.0001 0.001 0.01 0.1 1
92000

94000

96000

98000

100000

102000

104000

m
ax

im
um

 u
til

iz
at

io
n

de
la

y

delta

delay

maximum utilization

slide 63 Optimization in telecommunications



Summary

slide 64 Optimization in telecommunications

• modem location for internet service provider
metaheuristic & LP-based upper bounds

• design local access network
metaheuristic & LP-based lower bounds

• SONET ring network design
LP-based solution procedure

• offline routing of permanent virtual circuits
• Metaheuristic

OSPF routing
Metaheuristic & lower bounds



Internet traffic engineering

• Internet traffic has been doubling each year 
[Coffman & Odlyzko, 2001]

• In the1995-96 period, there was a doubling of 
traffic each three months!

Web browsers were introduced.

• Increasingly heavy traffic (due to video, voice, 
etc.) will raise the requirements of the Internet 
of tomorrow.
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Internet traffic engineering

• Objective: make more efficient use of existing 
network resources.

• Routing of traffic can have a major impact on 
efficiency of network resource utilization.
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Packet routing

router

router

router

router

router

When packet arrives at router,
router must decide where to
send it next.

Packet’s final 
destination.

Routing consists in finding a
link-path from source to 
destination.

D1

D2

D3

D4

R1

R2

R3

R4 Routing table
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OSPF (Open Shortest Path First)

• OSPF is a commonly used 
intra-domain routing 
protocol (IGP).

• Routers exchange routing 
information with all other 
routers in the autonomous 
system (AS).

Complete network topology 
knowledge is available to all 
routers, i.e. state of all routers 
and links in the AS.

AT&T

U. of Calif.

UUNET

Ecuador

Autonomous Systems

slide 68 Optimization in telecommunications



OSPF routing

• Assign an integer weight ∈ [1, wmax ] to each 
link in AS.   In general, wmax = 65535=216−1. 

• Each router computes tree of shortest weight 
paths to all other routers in the AS, with itself as 
the root, using Dijkstra’s algorithm.

slide 69 Optimization in telecommunications



OSPF routing
Routing table is filled
with first hop routers
for each possible destination.

Routing table
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OSPF routing
Routing table is filled
with first hop routers
for each possible destination.
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OSPF routing
Routing table is filled
with first hop routers
for each possible destination.

Routing table
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OSPF routing
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OSPF routing
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OSPF weight setting

• OSPF weights are assigned by network operator.
CISCO assigns, by default, a weight proportional to the 
inverse of the link bandwidth (Inv Cap).
If all weights are unit, the weight of a path is the number of 
hops in the path.

• We propose a hybrid genetic algorithm to find good 
OSPF weights.

Memetic algorithm
Genetic algorithm with optimized crossover
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Minimization of congestion

• Consider the directed capacitated network G = (N,A,c), 
where N are routers, A are links, and ca is the capacity 
of link a ∈ A.

• We use the measure of Fortz & Thorup (2000) to 
compute congestion:

Φ = Φ1(l1) + Φ2(l2) + … + Φ|A|(l|A|)
where la  is the load on link a ∈ A, 

Φa(la) is piecewise linear and convex,
Φa(0) = 0, for all a ∈ A.
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Piecewise linear and convex Φa(la) 
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OSPF weight setting problem

• Given a directed network G = (N, A ) with link 
capacities ca ∈ A  and demand matrix D = (ds,t ) 
specifying a demand to be sent from node s to 
node t :

Assign weights wa ∈[1, wmax ] to each link a ∈ A, 
such that the objective function Φ is minimized 
when demand is routed according to the OSPF 
protocol.
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Cost normalization

Consider the demand matrix D = (ds,t ) and let hs,t
be the min hop count between s and t . 

Normalize         by  Φ , ,
( , )

s t s t
s

un
t

a
N

c
N

p d h
∈ ×

Φ = ∑
Total load if all traffic goes 
along unit weight shortest paths.

Normalized cost: * / uncapΦ = Φ Φ
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Normalized cost  * / uncapΦ = Φ Φ

• Fortz & Thorup (2000) show that:
•
• If             , then all loads are below 1/3 of 

capacity.
• If a packet follows a shortest path and if all arcs 

are exactly full, then  
• Routing congests the network if

* 1Φ =

* * *1 5000opt optOSPF unitOSPF≤ Φ ≤ Φ ≤ Φ <

2*
310Φ =

2*
310Φ ≥
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AT&T Worldnet backbone network (90 routers, 274 links)
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Genetic algorithms
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Initialize and 
evaluate P (0);

Set t = 1
Test termination

Select P (t ) from
P (t−1)

Alter P (t ) 

Evaluate P (t )t = t + 1

done

crossover

mutationP (t ) is population of
solutions at generation t.



Solution encoding

• A population consists of nPop = 50 integer 
weight arrays: w = (w1, w2 ,…, w|A| ), 

where wa ∈[1, wmax = 20]
• All possible weight arrays correspond to feasible 

solutions.
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Initial population

• nPop solutions, with each weight randomly 
generated, uniformly in the interval [1, wmax /3].
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Solution evaluation

• For each demand pair (s,t ), route using OSPF, 
computing demand pair loads las,t on each link a ∈ A.

• Add up demand pair loads on each link a ∈ A, yielding 
total load la on link.

• Compute link congestion cost Φa(la) for each link         
a ∈ A.

• Add up costs: Φ = Φ1(l1) + Φ2(l2) + … + Φ|A|(l|A|)
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Population partitioning

Class A 25% most fit

Population is sorted according to
solution value Φ and  solutions are
classified into three categories.

Class B

Class C 5% least fit
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Population dynamics
generation t

Class A

Class B

Class C
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Population dynamics
generation t + 1generation t

Class A

Class C

Class B

Class A
Class A is promoted unchanged
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Population dynamics
generation t + 1generation t

Class A

Class C

Class B

Class A

Class C

Class A is promoted unchanged
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Class C is replaced by randomly
generated solutions.



Population dynamics
generation t + 1generation t

Class A

Class C

Class B

Class A

Class C

Class A is promoted unchanged
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Class C is replaced by randomly
generated solutions.

Class B is replaced by
crossover of:
one Class A parent

and



Population dynamics
generation t + 1generation t

Class A

Class C

Class B

Class A

Class C
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Class A is promoted unchanged

Class C is replaced by randomly
generated solutions.

Class B is replaced by
crossover of:
one Class A parent

and

one Class B or C
parent.

X



Population dynamics
generation t + 1

Class A

Class C
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Class A is promoted unchanged

Class C is replaced by randomly
generated solutions.

Class B is replaced by
crossover of:
one Class A parent

and

one Class B or C
parent.

Class A

Class C

Class B

generation t

X Class B



Parent selection

• Parents are chosen at random:
one parent from Class A (elite).
one parent from Class B or C (non-elite).

• Reselection is allowed, i.e. parents can breed 
more than once per generation.

• Better individuals are more likely to reproduce.
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Crossover with random keys 
(Bean, 1994)

Crossover combines elite parent p1 with non-elite parent 
p2 to produce child c :

for all genes i = 1,2,…,|A | do
if rrandom[0,1] < 0.01 then

c [i ] = irandom[1, wmax ]
else if rrandom[0,1] < 0.7 then

c [i ] = p1[i ]
else c [i ] = p2[i ]

end

With small probability child
has single gene mutation.

Child is more likely to inherit
gene of elite parent.
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Weight setting with GA
permits a 50% increase in
traffic volume w.r.t.  weight
setting with the Inverse 
Capacity rule.
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Optimized crossover = crossover + 
local search

Class A

Class C

Class B X Local search Class B
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Fast local search

• Let A * be the set of five arcs a ∈ A having 
largest Φa values.

• Scan arcs a ∈ A * from largest to smallest Φa:
Increase arc weight, one unit at a time, in the range 

[wa , wa + ⎡(wmax − wa )/4⎤ ]
If total cost Φ is reduced, restart local search.
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Dynamic shortest path

• In local search, when arc weight increases, 
shortest path trees:

may change completely (rarely do) 
may remain unchanged (e.g. arc not in a tree)
may change partially

Few trees change
Small portion of tree changes

Does not make sense to 

recompute trees from

scratch.
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Dynamic shortest path

Consider one tree
at a time.
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Dynamic shortest path

increase
weight

Arc weight is increase
by 1.
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Dynamic shortest path

increase
weight

Do not consider nodes
whose shortest path to
destination does not
go through blue
arc.
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Dynamic shortest path

increase
weight

X

X

X

Arc (u,v ) is removed
from tree since
alternative paths from 
node u to the destination
node exist.
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Dynamic shortest path

distance labels
increase by 1

Shortest paths
from red nodes
must traverse 
blue arc.
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Dynamic shortest path

Test all arcs of type

If d − d  = w , then
enters 

tree.d

d
w
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Dynamic shortest path
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Dynamic shortest path

• Ramalingam & Reps (1996) allow arbitrary arc 
weight change.

• We specialized the Ramalingam & Reps 
algorithm for unit arc weight change.

Avoid use of heaps
Achieve a factor of 2∼3 speedup w.r.t. Ramalingam
& Reps on these test problems
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Remark

• Memetic algorithm (MA) improves over pure 
genetic algorithm (GA) in two ways:

Finds solutions faster
Finds better solutions
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MA
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Collaborative parallel implementation

P1

P4P3

P2 MPI: Message Passing
Interface
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Collaborative parallel implementation

P1

P4P3

P2

If P4 finds a new 
incumbent solution.
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Collaborative parallel implementation

P1

P4P3

P2
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If P4 finds a new 
incumbent solution.
Incumbent solution is
broadcast to P1, P2, P3.



AT&T Worldnet backbone network (90 routers, 274 links)
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Extensions

• Network design: Minimize total capacity × 
distance of links to guarantee traffic flow subject 
to failures.

• Routing: Minimize maximum utilization subject 
to single link and router failures.

• Server placement: Locate minimum number of 
cache servers on network for multicast of 
streaming video.
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Other applications of optimization in 
telecommunications

• location of traffic concentrators
It is sometimes beneficial to concentrate traffic into a high 
capacity circuit and backhaul the traffic
Traffic is concentrated at specific nodes
Problem is to decided how many nodes and which

• global routing of Frame Relay service
To maximize the utilization of transport infrastructure one 
can take advantage of varying point-to-point demands due to 
time zone differences
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Other applications of optimization in 
telecommunications

• disjoint paths
for survivability, route several circuits between pairs of nodes on 
resource (node, edge) disjoint paths
if impossible, minimize sharing of resources

• frequency assignment
assign different frequencies to cellular telephone antennas to avoid 
interference

• communities of interest
in call detail graph, find communities of interest
find cliques or large dense subsets of phone numbers that call each other
found cliques of size 33 in 5 day graph with 250 million nodes and one 
billion edges
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Concluding Remarks

• we have seen a small sample of applications of 
optimization in telecommunications

• opportunities for optimization arise in practice 
all the time

• our profession call have a major impact in 
telecommunications

• these slides are in my homepage
http://www.research.att.com/~mgcr
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