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Global Optimization

Optimization problems arise in numerous settings, e.g.
decision-making, engineering.

Global optimization (GO) are optimization problems with
multiple extremal solutions.

GO problems can be discrete or continuous.
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Global Optimization Problem

GO (minimization) seeks a solution x∗ ∈ S ⊆ Rn such that
f (x∗) ≤ f (x), ∀x ∈ S, where S is some region of Rn and
the objective function f is defined by f : S → R.

Such a solution x∗ is called a global minimum.

A solution x ′ is a local minimum in a local neighborhood
S0 ⊂ S if f (x ′) ≤ f (x), ∀ x ∈ S0.
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Continuous GRASP

Continuous-GRASP (C-GRASP) extends the greedy
randomized adaptive search procedure (GRASP) of Feo
and Resende (1989, 1995) from the domain of discrete
optimization to that of continuous global optimization.

C-GRASP is a stochastic local search method that is
simple to implement, can be applied to a wide range of
problems, and that does not make use of derivative
information.

We illustrate the effectiveness of the procedure on a set of
standard test problems as well as two hard global
optimization problems.
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GRASP

GRASP is a multi-start local search procedure, where each
GRASP iteration consists of two phases, a construction
phase and a local search phase.

Construction combines greediness and randomization to
produce a diverse set of good-quality solutions from which
to start local search.

The best solution over all iterations is kept as the final
solution.

GRASP has been previously applied to numerous discrete
combinatorial optimization problems (Festa & Resende,
2001).
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GRASP

Multi-start stochastic
search.
Each iteration:

Construct greedy
randomized solution
x .
Perform local search
starting from x .

Best solution is
returned.

M.G.C. Resende, M.J. Hirsch, C.N. Meneses, P.M. Pardalos Global optimization by continuous GRASP



Introduction
Continuous GRASP

Experimental Results
Conclusion

GRASP
C-GRASP
Construction and Local Improvement

GRASP

Multi-start stochastic
search.
Each iteration:

Construct greedy
randomized solution
x .
Perform local search
starting from x .

Best solution is
returned.

M.G.C. Resende, M.J. Hirsch, C.N. Meneses, P.M. Pardalos Global optimization by continuous GRASP



Introduction
Continuous GRASP

Experimental Results
Conclusion

GRASP
C-GRASP
Construction and Local Improvement

GRASP

Multi-start stochastic
search.
Each iteration:

Construct greedy
randomized solution
x .
Perform local search
starting from x .

Best solution is
returned.

M.G.C. Resende, M.J. Hirsch, C.N. Meneses, P.M. Pardalos Global optimization by continuous GRASP



Introduction
Continuous GRASP

Experimental Results
Conclusion

GRASP
C-GRASP
Construction and Local Improvement

Continuous GRASP.

C-GRASP is a metaheuristic for solving continuous global
optimization problems subject to box constraints.

Without loss of generality, we take the domain S as the
hyper-rectangle S = {x = (x1, . . . , xn) ∈ Rn : l ≤ x ≤ u},
where l ∈ Rn and u ∈ Rn such that ui ≥ li , for i = 1, . . . , n.

The global optimization problem considered here is to find

x∗ = argmin{f (x) | l ≤ x ≤ u},

where f : Rn → R, and l , x , u ∈ Rn.
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Continuous GRASP

C-GRASP resembles GRASP in that it is a multi-start
stochastic search metaheuristic that uses a randomized
greedy procedure to generate starting solutions for a local
improvement algorithm.
The main difference is that

An iteration of C-GRASP does not consist of a single
greedy randomized construction followed by local
improvement.
Instead, it consists of a series of construction-local
improvement cycles where, as in GRASP, the output of
construction is the input of the local improvement.
Unlike GRASP, the output of the local improvement is the
input of the construction procedure.
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C-GRASP: Major iteration of multi-start procedure

Each major iteration
consists of a fixed
number of minor
iterations.
Each minor iteration:

Construct greedy
randomized
solution.
Attempt local
improvement.
Adjust search
space
discretization h if
necessary.
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Construction phase

Construction starts from x .

Initialize coordinates set S ← {1, 2, . . . , n}.
While S 6= ∅ do:

Let zi ← LineSearch(x , f (), i) and fi = f (zi). Let fmax and
fmin be the f values of the best and worst directions in S,
respectively.
Set RCL = {i ∈ S | fi ≤ (1− α) · fmin + α · fmax} where α is a
parameter such that 0 ≤ α ≤ 1.
Select index j at random from RCL and set xj ← zj and
S ← S \ {j}

Return x .
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Local Improvement

C-GRASP makes no use of gradients.

Local improvement phase can be seen as approximating
role of gradient.

From a given input point x∗ ∈ Rn, the local improvement
generates a set of directions and determines in which
direction, if any, the objective function value improves.

For direction d , test solution is x ← x∗ + h ∗ d , where h is
the search space discretization parameter.

If l ≤ x ≤ u and f (x) < f (x∗), then procedure moves to x
and x∗ ← x .
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Local Improvement Directions

Directions are generated at random. Repetitions are not
allowed.

A maximum number of directions to be generated is an
input parameter.

We use a function T ′(i) that maps the integers

i ∈ {1, 2, . . . , 3n − 1}

to the directions

T ′(i) ∈ d1, d2, . . . , d3n−1,

where each coordinate of di is one of {−1, 0, 1}.
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Local Improvement Directions

i −→ T(i) −→ T′(i) i −→ T(i) −→ T′(i)

1 −→ 01 −→ {0, 1} 2 −→ 02 −→ {0,−1}
3 −→ 10 −→ {1, 0} 4 −→ 11 −→ {1, 1}
5 −→ 12 −→ {1,−1} 6 −→ 20 −→ {−1, 0}
7 −→ 21 −→ {−1, 1} 8 −→ 22 −→ {−1,−1}

T (i) is the base-3 representation of i .

T ′(i) is T (i) with all 2’s replaced by −1’s.
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Experiment Setup
Comparing with Other Heuristics
Real-world applications

Experimental Results

Compare C-GRASP with other global optimization
heuristics on a set of standard test functions.
Show two applications of C-GRASP on real-world
problems:

Robot kinematics.
Chemical equilibrium system.
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Experiment Setup

Experiments run on Dell PowerEdge 2600 computer with
dual 3.2 GHz 1 Mb cache XEON III processors and 6 Gb
memory running RedHat Linux 3.2.3-53.

Heuristic implemented in C++ and complied with GNU g++
version 3.2.3 using options -O6 -funroll-all-loops
-fomit-frame-pointer -march=pentium4 .

Times measured with getusage() .
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C-GRASP Parameters

C-GRASP has six parameters:
RCL parameter: α = 0.4
Initial search space discretization size: h = 1
Number of outer loop (multi-start) iterations:
NumTimesToRun = 20
Number of C-GRASP inner iterations: MaxIters = 200
Maximum number of inner loop iterations without
improvement before h is reduced:
MaxNumIterNoImprov = 20
Maximum local improvement directions:
MaxDirToTry = 30
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Other Heuristics

We compare C-GRASP with other heuristics for global
optimization:

Enhanced simulated annealing (EAS) of Siarry et al.
(1997).
Monte Carlo simulated annealing (MCSA) of Vanderbilt and
Louie (1984).
Sniffer global optimization (SGO) of Butler and Slaminka
(1992). Uses gradient information.
Directed tabu search (DTS) of Hedar and Fukushima
(2006).
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Experiments

C-GRASP is compared to other heuristics on 14 test
problems.

Global minimum value f ∗ is known for all problems in test
set.

C-GRASP is run until objective function value f is
significantly close to global optimum, i.e. when

|f ∗ − f | ≤ 10−4|f ∗|+ 10−6

or NumTimesToRun restarts are done.

For each problem, 100 independent runs of C-GRASP are
done. We record the percentage of runs that find a
significantly close solution, the time to find such solutions
and the number of function evaluations.
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Experiments

We use published results for other heuristics.

ESA and DTS use same measure of closeness as
C-GRASP, i.e.

|f ∗ − f | ≤ 10−4|f ∗|+ 10−6.

MCSA and SGO use slightly different measure:

|f ∗ − f | ≤ 10−3|f ∗|.
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Branin Function

min (x2 −
5.1
4π2 x2

1 +
1
π

5x1 − 6)2 + 10(1− 1
8π

) cos(x1) + 10

subject to: (−5, 10) ≤ (x1, x2) ≤ (0, 15).

heuristic % runs sign. close func. eval. avg. time

ESA - - -
MCSA 100 557 -
SGO 100 205 -
DTS 100 212 -
C-GRASP 100 59,857 0.0016s
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Easom Function

min − cos(x1) cos(x2)e
−(x1−π)2−(x2−π)2

subject to: (−100,−100) ≤ (x1, x2) ≤ (100, 100).

heuristic % runs sign. close func. eval. avg. time

ESA - - -
MCSA - - -
SGO - - -
DTS 82 223 -
C-GRASP 100 89,630 0.0042s
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Goldstein-Price Function

min [1 + (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2 )]×
[30 + (2x1 − 3x2)

2(18− 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2 )]

subject to: (−2,−2) ≤ (x1, x2) ≤ (2, 2).

heuristic % runs sign. close func. eval. avg. time

ESA 100 783 -
MCSA 99 1186 -
SGO 100 664 -
DTS 100 230 -
C-GRASP 100 29 0.0000s
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Shubert Function

min (
5∑

i=1

i cos[(i + 1)x1 + i])(
5∑

i=1

i cos[(i + 1)x2 + i])

subject to: (−10,−10) ≤ (x1, x2) ≤ (10, 10).

heuristic % runs sign. close func. eval. avg. time

ESA - - -
MCSA - - -
SGO - - -
DTS 92 274 -
C-GRASP 100 82,363 0.0078s
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Hartmann-3 Function

min −
4∑

i=1

αie
−

P3
j=1 A(3)

ij (xj−P(3)
ij )2

subject to: (0, 0, 0) ≤ (x1, x2, x3) ≤ (1, 1, 1).

heuristic % runs sign. close func. eval. avg. time

ESA 100 698 -
MCSA 100 1224 -
SGO 99 534 -
DTS 100 438 -
C-GRASP 100 20,743 0.0026s
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Hartmann-6 Function

min −
4∑

i=1

αie
−

P6
j=1 A(6)

ij (xj−P(6)
ij )2

subject to: (0, 0, . . . , 0) ≤ (x1, x2, . . . , x6) ≤ (1, 1, . . . , 1).

heuristic % runs sign. close func. eval. avg. time

ESA 100 1638 -
MCSA 62 1914 -
SGO 99 1760 -
DTS 83 1787 -
C-GRASP 100 79,685 0.0140s
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Rosenbrock-2 Function

min 100(x2
1 − x2)

2 + (x1 − 1)2

subject to: (−2,−2) ≤ (x1, x2) ≤ (2, 2).

heuristic % runs sign. close func. eval. avg. time

ESA - - -
MCSA - - -
SGO - - -
DTS 100 254 -
C-GRASP 100 1,158,350 0.0132s
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Rosenbrock-5 Function

min
4∑

j=1

100(x2
j − xj+1)

2 + (xj − 1)2

subject to: (−2, . . . ,−2) ≤ (x1, . . . , x5) ≤ (2, . . . , 2).

heuristic % runs sign. close func. eval. avg. time

ESA - - -
MCSA - - -
SGO - - -
DTS 85 1684 -
C-GRASP 100 6,205,503 1.7520s
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Rosenbrock-10 Function

min
9∑

j=1

100(x2
j − xj+1)

2 + (xj − 1)2

subject to: (−2, . . . ,−2) ≤ (x1, . . . , x10) ≤ (2, . . . , 2).

heuristic % runs sign. close func. eval. avg. time

ESA - - -
MCSA - - -
SGO - - -
DTS 85 9037 -
C-GRASP 99 20,282,529 11.4388s
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Rosenbrock-10 Function

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100  120  140  160

cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty

time to target solution

Rosenbrock_n10_Time

empirical
theoretical

M.G.C. Resende, M.J. Hirsch, C.N. Meneses, P.M. Pardalos Global optimization by continuous GRASP



Introduction
Continuous GRASP

Experimental Results
Conclusion

Experiment Setup
Comparing with Other Heuristics
Real-world applications

Shekel-(4,5) Function

min −
5∑

i=1

[(x − āi)
T (x − āi) + ci ]

−1

subject to: (0, . . . , 0) ≤ (x1, . . . , x5) ≤ (10, . . . , 10).

heuristic % runs sign. close func. eval. avg. time

ESA 54 1487 -
MCSA 54 3910 -
SGO 90 3695 -
DTS 75 819 -
C-GRASP 100 5,545,982 2.3316s
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Shekel-(4,7) Function

min −
7∑

i=1

[(x − āi)
T (x − āi) + ci ]

−1

subject to: (0, . . . , 0) ≤ (x1, . . . , x7) ≤ (10, . . . , 10).

heuristic % runs sign. close func. eval. avg. time

ESA 54 1661 -
MCSA 64 3421 -
SGO 96 2655 -
DTS 65 812 -
C-GRASP 100 4,052,800 2.3768s
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Shekel-(4,10) Function

min −
10∑

i=1

[(x − āi)
T (x − āi) + ci ]

−1

subject to: (0, . . . , 0) ≤ (x1, . . . , x10) ≤ (10, . . . , 10).

heuristic % runs sign. close func. eval. avg. time

ESA 50 1363 -
MCSA 81 3078 -
SGO 95 3070 -
DTS 52 828 -
C-GRASP 100 4,701,358 3.5172s
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Zakharov-5 Function

min
5∑

i=1

x2
i + (

5∑
i=1

0.5ixi)
2 + (

5∑
i=1

0.5ixi)
4

subject to: (−5, . . . ,−5) ≤ (x1, . . . , x5) ≤ (10, . . . , 10).

heuristic % runs sign. close func. eval. avg. time

ESA - - -
MCSA - - -
SGO - - -
DTS 100 1003 -
C-GRASP 100 959 0.0000s
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Zakharov-10 Function

min
10∑

i=1

x2
i + (

10∑
i=1

0.5ixi)
2 + (

10∑
i=1

0.5ixi)
4

subject to: (−5, . . . ,−5) ≤ (x1, . . . , x10) ≤ (10, . . . , 10).

heuristic % runs sign. close func. eval. avg. time

ESA - - -
MCSA - - -
SGO - - -
DTS 100 4032 -
C-GRASP 100 3,607,653 1.0346s
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Robot kinematics application

We consider a robot kinematics application described by
Tsai and Morgan (1985).

Given a 6-revolute manipulator (rigid-bodies, or links,
connected together by joints), with the first link designated
the base, and the last link designated the hand of the
robot: Determine the possible positions of the hand, given
that the joints are movable.

Problem is reduced to solving a system of eight nonlinear
equations in eight unknowns.

Considered a “challenging problem” in Floudas et al.
(1999).
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Robot kinematics application

Find x = (x1, x2, . . . , x8) such that:

f1(x) = 4.731 · 10−3x1x3 − 0.3578x2x3 − 0.1238x1

+ x7 − 1.637 · 10−3x2 − 0.9338x4 − 0.3571 = 0

f2(x) = 0.2238x1x3 + 0.7623x2x3 + 0.2638x1

− x7 − 0.07745x2 − 0.6734x4 − 0.6022 = 0

f3(x) = x6x8 + 0.3578x1 + 4.731 · 10−3x2 = 0

f4(x) = − 0.7623x1 + 0.2238x2 + 0.3461 = 0

f5(x) = x2
1 + x2

2 − 1 = 0

f6(x) = x2
3 + x2

4 − 1 = 0

f7(x) = x2
5 + x2

6 − 1 = 0

f8(x) = x2
7 + x2

8 − 1 = 0
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Robot kinematics application

We form the optimization problem:

Find x∗ = argmin{F (x) =
∑8

i=1 f 2
i (x) | x ∈ [−1, 1]8}.

Since F (x) ≥ 0 for all x ∈ [−1, 1]8, then
F (x) = 0⇐⇒ fi(x) = 0 for all i ∈ {1, . . . , 8}.
Hence ∃ x∗ ∈ [−1, 1]8 3 F (x∗) = 0 =⇒ x∗ is a global
minimizer of problem and x∗ is a root of the system of
equations f1(x), . . . , f8(x).

There are 16 known roots to this system. Solving problem
16 times using C-GRASP with different starting solutions
gives no guarantee of finding all 16 roots.
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Robot kinematics application

Suppose the k -th root (roots are denoted x1, . . . , xk ) has
been found.
Then C-GRASP will restart, with the modified objective
function given by:

F (x) =
8∑

i=1

f 2
i (x) + β

k∑
j=1

e−‖x−x j‖χρ(‖x − x j‖),

where

χρ(δ) =

{
1 if δ ≤ ρ

0 otherwise
,

β is a large constant, and ρ is a small constant.
This has the effect of creating an area of repulsion near
solutions that have already been found by the heuristic.
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Robot kinematics application

We made ten independent runs of C-GRASP with ρ = 1,
β = 1010, and MaxItersNoImprov = 5.

In each case, the heuristic was able to find all 16 known
roots.

The average CPU time needed to find the 16 roots was
3048 seconds.
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Chemical equilibrium systems

We examine the chemical reaction that occurs during
combustion of propane (C3H8) in air (O2 and N2).

Meintjes and Morgan (1990) provide the derivation of this
chemical reaction.

This problem produces a system of ten nonlinear
equations in ten unknowns.
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Chemical equilibrium systems

There is one physical solution to this system in which all the
variables are positive. Due to the difficulty in finding this
solution, Meintjes and Morgan (1990) derive a transformation to
place the system in canonical form. The canonical form is a
system of five nonlinear equations in five unknowns:

g1 =y1y2 + y1 − 3y5 = 0

g2 =2y1y2 + y1 + 2R10y2
2 + y2y2

3 + R7y2y3+

R9y2y4 + R8y2 − Ry5 = 0

g3 =2y2y2
3 + R7y2y3 + 2R5y2

3 + R6y3 − 8y5 = 0

g4 =R9y2y4 + 2y2
4 + 4Ry5 = 0

g5 =y1y2 + y1 + R10y2
2 + y2y2

3 + R7y2y3 + R9y2y4+

R8y2 + R5y2
3 + R6y3 + y2

4 − 1 = 0
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Chemical equilibrium systems

For both systems, we formed an objective function as the
sum of the squares of the nonlinear equations.

We made ten independent runs of C-GRASP with the
parameter MaxNumIterNoImprov set to 10.

For the system in canonical form, C-GRASP was
successful on each of the ten runs.

For the more difficult original system, C-GRASP was
successful on eight of the ten runs.
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Chemical equilibrium systems

The average running time for C-GRASP was 37.53
seconds for the canonical system and 201.58 seconds for
the original system.

Meintjes and Morgan (1990) solve the canonical problem
by using a variant of Newton’s method, which requires the
gradient of each equation in the system.

They did not report their success on solving the original,
more difficult system.
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Conclusion

We describe C-GRASP, a new stochastic local search
based metaheuristic for continuous global optimization
subject to box constraints that makes no use of gradient
information.

Besides the test problems described in this talk, we have
successfully applied C-GRASP to over 150 test problems
collected from the literature.

We have a paper describing the work presented in this
talk: M.J. Hirsch, C.N. Meneses, P.M. Pardalos, and
M.G.C. Resende, “Global optimization by continuous
GRASP,” to appear in Optimization Letters.

The paper and these slides can be downloaded from
http://www.research.att.com/~mgcr .
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