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The Internet

● The Internet is composed 
of many (inter-connected) 
autonomous systems (AS).

● An AS is a network 
controlled by a single 
entity, e.g. ISP, university, 
corporation, country, ...
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IGP Routing

● IGP (interior gateway 
protocol) routing is 
concerned with routing 
within an AS.

● Routing decisions are 
made by AS operator.
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BGP Routing

● BGP (border gateway 
protocol) routing deals 
with routing between 
different ASes.

● AS operators choose 
egress point and route in 
AS from ingress point to 
egress point.
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IGP Routing
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OSPF routing

● Given a network G = (N,A), where N is the set of 
routers and A is the set of links. 

● The OSPF (open shortest path first) routing protocol 
assumes each link a has a weight w(a) assigned to it so 
that a packet from a source router s to a destination 
router t is routed on a shortest weight path from s to t.

s
t

Traffic splitting



OSPF routing
● By setting OSPF weights appropriately, one can do 

traffic engineering, i.e. route traffic so as to optimize 
some objective (e.g. minimize congestion, maximize 
throughput, etc.).

● Some recent papers on this topic:
– Fortz & Thorup (2000, 2004)
– Ramakrishnan & Rodrigues (2001)
– Sridharan, Guérin, & Diot (2002)
– Fortz, Rexford, & Thorup (2002)
– Ericsson, Resende, & Pardalos (2002)
– Buriol, Resende, Ribeiro, & Thorup (2002, 2005)
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Packet routing

router

router

router

router

router

When packet arrives at router,
router must decide where to
send it next.

Packet’s final 
destination.

Routing consists in finding a
link-path from source to 
destination.
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OSPF routing

• Assign an integer weight  [1, wmax ] to each link in AS. 
  In general, wmax = 65535=216 −1.

● Each router computes tree of shortest weight paths to 
all other routers in the AS, with itself as the root, 
using Dijkstra’s algorithm.
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OSPF routing
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OSPF weight setting

● OSPF weights are assigned by network operator.
– CISCO assigns, by default, a weight proportional to the inverse of 

the link bandwidth (Inv Cap).
– If all weights are unit, the weight of a path is the number of hops in 

the path.
● We propose evolutionary algorithms to find good OSPF 

weights.
– Genetic algorithm
– Memetic algorithm: Genetic algorithm with optimized crossover



Minimization of congestion

● Consider the directed capacitated network G = (N,A,c), where 
N  are routers, A  are links, and ca is the capacity of link         
a  A.

● We use the measure of Fortz & Thorup (2000) to compute 
congestion:

                   F = F1(l1) + F2(l2) + … + F|A|(l|A|) 
    where la  is the load on link a  A, 

              Fa(la) is piecewise linear and convex,

              Fa(0) = 0, for all a  A.



Piecewise linear and convex Fa(la) link 
congestion measure 

0

10

20

30

40

50

60

70

0 0.2 0.4 0.6 0.8 1 1.2

c
o

s
t

 p
e

r
 u

n
it

 o
f

 c
a

p
a

c
it

y

trunk utilization rate

slope = 1
slope = 3 slope = 10

slope = 70

slope = 500

slope = 5000

(la ÷ ca )



OSPF weight setting problem

● Given a directed network G = (N, A ) with link 
capacities ca  A  and demand matrix D = (ds,t ) 
specifying a demand to be sent from node s  to   
node t :
– Assign weights wa  [1, wmax ] to each link a  A, such 

that the objective function F is minimized when demand 
is routed according to the OSPF protocol.
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Genetic and hybrid genetic algorithms for 
OSPF weight setting problem

● Genetic
– M. Ericsson, M.G.C. Resende, & P.M. Pardalos, “ A 

genetic algorithm for the weight setting problem in OSPF 
routing, J. of Combinatorial Optimization, vol. 6, pp. 299-
333, 2002.

● Hybrid genetic
–  L.S. Buriol, M.G.C. Resende, C.C. Ribeiro, & M. Thorup, 

“A hybrid genetic algorithm for the weight setting problem 
in OSPF/IS-IS routing,” Networks, vol. 46, pp. 36-56, 
2005.



Solution encoding

● A population consists of nPop = 50  integer weight 
arrays: w = (w1, w2 ,…, w|A| ), 

                           where wa  [1, wmax = 20] 
● All possible weight arrays correspond to feasible 

solutions.



Initial population

● nPop solutions, with each weight randomly generated, 
uniformly in the interval [1, wmax /3].



Solution evaluation (fitness)

● For each demand pair (s,t ), route using OSPF, computing 
demand pair loads las,t

  on each link a  A.
● Add up demand pair loads on each link a  A, yielding total 

load la  on link.
● Compute link congestion cost Fa(la) for each link a  A.
● Add up costs: F = F1(l1) + F2(l2) + … + F|A|(l|A|) 



Population partitioning

Class A

Class C

Class B

25% most fit

5% least fit

Population is sorted according to
solution value F and  solutions are
classified into three categories.
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Parent selection

● Parents are chosen at random:
– one parent from Class A (elite).
– one parent from Class B or C (non-elite).

● Re-selection is allowed, i.e. parents can breed more 
than once per generation.

● Better individuals are more likely to reproduce.



Crossover with random keys 
Bean (1994)

Crossover combines elite parent p1  with non-elite parent p2  to 
produce child c :

for each link a A do:
       with probability 0.7: c[a] = p1[a]
       with probability 0.3: c[a] = p2[a]
       



Crossover with random keys 
Bean (1994)

Crossover combines elite parent p1  with non-elite parent p2  to 
produce child c :

for each link a A do:
       with probability 0.7: c[a] = p1[a]
       with probability 0.3: c[a] = p2[a]
       

Child is more likely to inherit
gene of elite parent.



cost
GA solutions

AT&T Worldnet backbone network (90 routers, 274 links)

generation

LP lower bound
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Optimized crossover = crossover + local 
search

Class A

Class C

Class B X Local search Class B



Fast local search

● Let A * be the set of five arcs a  A  having largest Fa 

values.
● Scan arcs a  A * from largest to smallest Fa:

 Increase arc weight, one unit at a time, in the range        

[wa , wa + (wmax − wa )/4 ]
 If total cost F is reduced, restart local search.
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Survivable IP 
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Survivable IP network design

● Buriol, Resende, and Thorup (Networks, 2006) use 
weight setting to design survivable IP networks.

● Given 
– directed graph G = (N,A), where N is the set of routers, A is 

the set of potential arcs where capacity can be installed, 

– a demand matrix D that for each pair (s,t)  NN, specifies 
the demand D(s,t) between s and t,

– a cost K(a) to lay fiber on arc a 
– a capacity increment C for the fiber.



Survivable IP network design

● Buriol, Resende, and Thorup (Networks, 2006) use 
weight setting to design survivable IP networks.

● Determine 
– OSPF weight w(a) to assign to each arc a  A,
– which arcs should be used to deploy fiber and how many 

units (multiplicities) M(a) of capacity C should be installed 
on each arc a  A,

● such that all the demand can be routed on the network 
even when any single arc fails.

● Minimize total design cost = 
aA 

M(a)K(a). 



Survivable IP network design

● Buriol, Resende, and Thorup (Networks, 2006) use 
weight setting to design survivable IP networks.

● Use genetic algorithm (GA) to determine weights.
● GA needs to compute “fitness” of each solution it 

produces. 
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Composite-link design

● In Buriol, Resende, and Thorup (2006)
– links were all of the same type,
– only the link multiplicity had to be determined.

● Now consider composite links. Given a load L(a) on arc 
a, we can compose several different link types that sum 
up to the needed capacity c(a)  L(a):

– c(a) = 
t used in arc a 

M(t)  (t), where

– M(t) is the multiplicity of link type t

– (t) is the capacity of link type t
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Composite-link design

● Link types = { 1, 2, ..., T }
● Capacities = { c(1), c(2), ..., c(T) } : c(i) < c(i+1)
● Prices / unit length = { p(1), p(2), ..., p(T) }: p(i) < p(i+1)
● Assumptions:

– [p(T)/c(T)] < [p(T–1)/c(T–1)] < ··· < [p(1)/c(1)], i.e. price 
per unit of capacity is smaller for links with greater capacity

– c(i) =   c(i–1), for   N,  > 1, i.e. capacities are 
multiples of each other by powers of 
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Composite-link design
● Link types = { 1, 2, ..., T }
● Capacities = { c(1), c(2), ..., c(T) } : c(i) < c(i+1)
● Prices / unit length = { p(1), p(2), ..., p(T) }: p(i) < p(i+1)
● Assumptions:

– [p(T)/c(T)] < [p(T–1)/c(T–1)] < ··· < [p(1)/c(1)]: economies 
of scale

– c(i) =   c(i–1), for   N,  > 1,                                  
e.g. c(OC192) = 4  c(OC48);  c(OC48) = 4  c(OC12);       
c(OC12) = 4  c(OC3);

OC3 OC192OC48OC12

155 Mb/s 10 Gb/s 2.5 Gb/s 622 Mb/s  = 4 



Heuristics for composite-link design

● Designed to minimize overall network cost.
● Heuristics are:

– Min capacity
– Min cost
– Min cost k types
– Min multiplicities
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Heuristics for composite-link design

● Designed to minimize overall network cost.
● Heuristics are:

– Min capacity
– Min cost
– Min cost k types
– Min multiplicities

We describe this heuristic next.



Min cost heuristic

Set k = T

Input 
load L

Use as many as 
possible ( L/c(k) ) of 
type k links without 
exceeding the load L

Compute cost (k) of
satisfying remaining
load with link type k

 k = 0 ?

 Set k = k – 1

Let k*=argmin { (k) }

yes

no

Update load: 
L = L – L/c(k)

Release links of types
k*– 1, ..., 1 and use

 L/c(k*) of type k* links

done

(k) is total cost of using links of types T, T– 1, ..., k.



Observations

● Subject to the assumptions listed earlier, all heuristics 
(except min cost k > 1 types) can be implemented to 
take O(T) time to execute per arc.

● Min capacity gives optimal solution for the minimum 
capacity objective function.

● Min cost gives the optimal solution for the minimum 
cost objective function.

● Without the assumptions, a knapsack problem must be 
solved to find min cap and min cost solutions.
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Experimental results

● Use a “real” network with 54 routers and 278 arcs.
● Three link types used: { 1, 2, 3 }
● c(2) = 4 c(1);   c(3) = 16 c(1)
● p(2)/c(2) = 0.95 p(1)/c(1);   p(3)/c(3) = 0.90 p(1)/c(1)
● All four heuristics tested.  Min cost k types was tested 

for k=1 and k=2.
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min multiplicities

min cost 1 type
min capacitymin cost 2 types

min cost

With all heuristics, network cost
decreases with number of GA 
generations.



min multiplicities

min cost 1 type
min capacitymin cost 2 types

min cost

Min cost was had the best
(least cost) designs.



BGP Routing
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Hot potato (early exit) routing

Ingress point

BGP: Each router in the AS directs
traffic to its closest border 
router (in terms of IGP distances).

Idea is to send traffic along to 
next AS as soon as possible.

Destination prefix

We believe hot potato is:

 a) Too restrictive: dictates a
     policy rather than support
     performance objectives.

 b) Too disruptive: small 
     changes in IGP distances
     can lead to large shifts in
     traffic.

 c) Too convoluted: administrators
     are forced to select IGP metrics
     that make BGP sense.



Hot potato sensitivity to failures

AS 0

AS 2 AS 3

BA

D E

C

P

AS 1

1 5

5

41



Hot potato sensitivity to failures

AS 0

AS 2 AS 3

BA

D E

C

P

AS 1

1 5

5

41

Traffic from C to P can
exit AS 1 at either A 
or B.



Hot potato sensitivity to failures

AS 0

AS 2 AS 3

BA

D E

C

P

AS 1

1 5

5

41

Traffic from C to P can
exit AS 1 at either A 
or B.

Distance C to A is 2 &
C to B is 9.

Hot potato selects 
egress point A.



Hot potato sensitivity to failures

AS 0

AS 2 AS 3

BA

D E

C

P

AS 1

1 5

5

41

Traffic from C to P can
exit AS 1 at either A 
or B.

Distance C to A is 2 &
C to B is 9.

Hot potato selects 
egress point A.



Hot potato sensitivity to failures

AS 0

AS 2 AS 3

BA

D E

C

P

AS 1

1 5

5

41

Suppose link C to D
fails.

Now, distance C to A 
is 10 & C to B is 9.

Hot potato selects 
egress point B.



Hot potato sensitivity to failures

AS 0

AS 2 AS 3

BA

D E

C

P

AS 1

1 5

5

41

Suppose link C to D
fails.

Now, distance C to A 
is 10 & C to B is 9.

Hot potato selects 
egress point B.

Small topology changes
can lead to performance
disruptions:

a) large shifts in traffic

b) changes in downstream
    paths

c) BGP update messages
    for neighboring domains



Teixeira, Griffin, Resende, & Rexford, “TIE Breaking: Tunable 
Interdomain Egress Selection,” IEEE/ACM Transactions on 
Networking, to appear (2006).

● Propose a method to solve the sensitivity problem.
● Ranking metric: router i has a metric m(i,p,e) across all 

prefixes p and egress points e.
● For each prefix p, router i selects egress point e that has 

the smallest value m(i,p,e).
● m(i,p,e) = (i,p,e) · d(G,i,e) + (i,p,e), where d(G,i,e) is 

the shortest IGP distance from ingress router i to 
egress router e in AS G and (i,p,e) and (i,p,e) are 
computed.



TIE metric

A

CB

P

6
4

12
5

Initial topology: 
4  

B
+

B 
< 5  

C
+

C

Failure mode of link with 
weight 4: 
6  

B
+

B 
< 5  

C
+

C

Failure mode of links with 
weights 4 and 6: 
12  

B
+

B
 > 5  

C
+

C
For all situations where propagation delay
does not increase by a more than a factor
of 2, we require that traffic from A to P go
through B.



Constraint generation phase

For each (i,p) pair, do:

     1) Identify closest egress point in original graph: b = argmin{d(G,i,e) | e E(p)}
     2) For each e E(p) \ {b}, generate constraint:
                (i,p,b)·d(G,i,b) + (i,p,b) < (i,p,e)·d(G,i,e) + (i,p,e)

For each network topology change G, do:

     1) Identify preferred egress point b':
                if d((G),i,b)  T·d(G,i,b), then b'=b
                else b' = argmin{d((G),i,e) | e E(p)}
     2) For each e E(p) \ {b'}, generate constraint:
                (i,p,b')·d((G),i,b') + (i,p,b') < (i,p,e)·d((G),i,e) + (i,p,e)

E(p) : egress set for prefix p
G: set of topology changes
(G): topology after change
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 Algorithm produces 
 (|G|1)·(|E(p)|1) constraints
 for each pair (i,p).

 Size of E(p) is usually 1, 2, or 3 
 and at most 10.
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 values.
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     2) For each e E(p) \ {b'}, generate constraint:
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G: set of topology changes
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Number of unique egress sets is 
typically orders of magnitude 
smaller than number of prefixes.



Optimization phase

● Finite-precision parameter values:  the  and  values 
should have finite precision to be configured on the 
routers and are therefore required to be integer:                
(i,p,b)·d(G,i,b) + (i,p,b)  (i,p,e)·d(G,i,e) + (i,p,e) + 1 

● Robustness to unplanned events:  to avoid having router i 
be unable to adapt to a change in IGP distance, we require  
(i,p,e)  1, for all i, p, and e. 

● Limiting the number of number of unique parameter values: 
to reduce overhead of configuring and storing the  and  
values, we  minimize   (i,p,e) + (i,p,e) thus favoring 
solutions with (i,p,e) = 1 and (i,p,e) = 0.



An experiment with TIE
● Abilene network (April 2003): 

– Backbone of US research network
– 11 PoPs with one router each
– 7500 prefixes
– 23 distinct egress sets
– link weights are geographic distance to approximate 

propagation
● TIE optimized for single-node failures but evaluated with 

single-link failures
● delay threshold T=2



An experiment with TIE

● Used AMPL/CPLEX to determine  and  values 
● Simulation phase took 0.5 s on Sun Fire 15000
● Optimization phase took 37 s on SGI Challenge
●  = 1 for 93% of (i,p,e) tuples and had only four 

distinct values  {1,2,3,4}
●  = 0 for 90% of (i,p,e) tuples and had only three 

distinct values  {0,1,3251}



An experiment with TIE

● Compare TIE with Hot Potato ( = 1 and  = 0) and 
Fixed Ranking ( = 0 and  = d(G,i,b(G,i,p)) routing 

● We make comparisons with two metrics
– Delay ratio: For each (i,p,) we compute the delay for i to 

reach the best egress point for p after the topology change 
 and divide it by the delay to reach the best egress in the 
original topology. 

– Routing sensitivity: For each (i,) we compute the fraction 
of prefixes at i that change egress point after a topology 
change .
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Since weights are geographic distances,
the delay ratio achieved by Hot Potato is
the smallest feasible delay ratio.



TIE was optimized for single-link failures
but was evaluated for single-node failures.
Similar parameters were obtained for TIE
when optimizing for single-node failures.



TIE behaves according to original goal.
It exceeds the delay threshold of 2 for
only 20% of (i,p,) triples.  Hot Potato 
also exceeds the threshold for these 
triples.



Fixed ranking delay ratios are higher
than those of TIE for the majority of
(i,p,) triples.  



This plot shows sensitivity 
values for all (i,) pairs.



Fixed ranking has lowest
sensitivity.  It has non-zero
sensitivity only when the best
egress node fails, forcing it to
go the the second-closest 
node.



TIE follows fixed ranking for
most (i,) pairs.  TIE only 
changes egress points when
this in unavoidable.



The gap between the Hot Potato curve 
and the TIE curve (around 15% of 
(i,) pairs) represents the scenarios
 for which egress  selection disruptions
could be avoided without violating the
delay threshold.



Conclusion

● We have just had a glimpse of a few examples of 
optimization problems that arise in IP networks.

● Interesting optimization problems arise in many fields 
of telecommunications.
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The End
These slides and all papers cited in this talk
can be downloaded from my homepage:
http://www.research.att.com/~mgcr

google.com search key: Mauricio


