
Mauricio G. C. Resende

AT&T Labs Research
Florham Park, New Jersey
mgcr@research.att.com
www.research.att.com/~mgcr

Talk given at
University of Arizona

Tucson, Arizona
November 16, 2006

2003

2005

Some optimization
issues arising in Internet
traffic engineering

Summary of talk

● IGP routing
● Survivable IP network design
● BGP routing
● Concluding remarks

Summary of talk

● IGP routing
● Survivable IP network design
● BGP routing
● Concluding remarks

Summary of talk

● IGP routing
● Survivable IP network design
● BGP routing
● Concluding remarks

Summary of talk

● IGP routing
● Survivable IP network design
● BGP routing
● Concluding remarks

The Internet

● The Internet is composed
of many (inter-connected)
autonomous systems (AS).

● An AS is a network
controlled by a single
entity, e.g. ISP, university,
corporation, country, ...

Routing

● A packet is sent from a origination router S to a
destination router T.

● S and T may be in
– same AS:
– different ASes:

Routing

● A packet is sent from a origination router S to a
destination router T.

● S and T may be in
– same AS: IGP routing
– different ASes:

Routing

● A packet is sent from a origination router S to a
destination router T.

● S and T may be in
– same AS: IGP routing
– different ASes: BGP routing

IGP Routing

● IGP (interior gateway
protocol) routing is
concerned with routing
within an AS.

S

T

AS

IGP Routing

● IGP (interior gateway
protocol) routing is
concerned with routing
within an AS.

S

T

AS

IGP Routing

● IGP (interior gateway
protocol) routing is
concerned with routing
within an AS.

S

T

AS

IGP Routing

● IGP (interior gateway
protocol) routing is
concerned with routing
within an AS.

S

T

AS

IGP Routing

● IGP (interior gateway
protocol) routing is
concerned with routing
within an AS.

S

T

AS

IGP Routing

● IGP (interior gateway
protocol) routing is
concerned with routing
within an AS.

S

T

AS

IGP Routing

● IGP (interior gateway
protocol) routing is
concerned with routing
within an AS.

● Routing decisions are
made by AS operator.

S

T

AS

BGP Routing

● BGP (border gateway
protocol) routing deals
with routing between
different ASes.

AS

AS

AS

BGP Routing

● BGP (border gateway
protocol) routing deals
with routing between
different ASes.

AS

AS

AS

Peering points

Peering points

BGP Routing

● BGP (border gateway
protocol) routing deals
with routing between
different ASes.

S

T

AS

AS

AS

Peering points

Peering points

BGP Routing

● BGP (border gateway
protocol) routing deals
with routing between
different ASes.

S

T

AS

AS

AS

Peering points

Peering points

BGP Routing

● BGP (border gateway
protocol) routing deals
with routing between
different ASes.

S

T

AS

AS

AS

Peering points

Peering points

Ingress point

BGP Routing

● BGP (border gateway
protocol) routing deals
with routing between
different ASes.

S

T

AS

AS

AS

Peering points

Peering points

Ingress point

Egress point

BGP Routing

● BGP (border gateway
protocol) routing deals
with routing between
different ASes.

S

T

AS

AS

AS

Peering points

Peering points

Ingress point

Egress point

BGP Routing

● BGP (border gateway
protocol) routing deals
with routing between
different ASes.

● AS operators choose
egress point and route in
AS from ingress point to
egress point.

S

T

AS

AS

AS

Peering points

Peering points

Ingress point

Egress point

IGP Routing

OSPF routing

● Given a network G = (N,A), where N is the set of
routers and A is the set of links.

OSPF routing

● Given a network G = (N,A), where N is the set of
routers and A is the set of links.

● The OSPF (open shortest path first) routing protocol
assumes each link a has a weight w(a) assigned to it so
that a packet from a source router s to a destination
router t is routed on a shortest weight path from s to t.

OSPF routing

● Given a network G = (N,A), where N is the set of
routers and A is the set of links.

● The OSPF (open shortest path first) routing protocol
assumes each link a has a weight w(a) assigned to it so
that a packet from a source router s to a destination
router t is routed on a shortest weight path from s to t.

s
t

OSPF routing

● Given a network G = (N,A), where N is the set of
routers and A is the set of links.

● The OSPF (open shortest path first) routing protocol
assumes each link a has a weight w(a) assigned to it so
that a packet from a source router s to a destination
router t is routed on a shortest weight path from s to t.

s
t

OSPF routing

● Given a network G = (N,A), where N is the set of
routers and A is the set of links.

● The OSPF (open shortest path first) routing protocol
assumes each link a has a weight w(a) assigned to it so
that a packet from a source router s to a destination
router t is routed on a shortest weight path from s to t.

s
t

Traffic splitting

OSPF routing
● By setting OSPF weights appropriately, one can do

traffic engineering, i.e. route traffic so as to optimize
some objective (e.g. minimize congestion, maximize
throughput, etc.).

● Some recent papers on this topic:
– Fortz & Thorup (2000, 2004)
– Ramakrishnan & Rodrigues (2001)
– Sridharan, Guérin, & Diot (2002)
– Fortz, Rexford, & Thorup (2002)
– Ericsson, Resende, & Pardalos (2002)
– Buriol, Resende, Ribeiro, & Thorup (2002, 2005)

OSPF routing
● By setting OSPF weights appropriately, one can do

traffic engineering, i.e. route traffic so as to optimize
some objective (e.g. minimize congestion, maximize
throughput, etc.).

● Some recent papers on this topic:
– Fortz & Thorup (2000, 2004)
– Ramakrishnan & Rodrigues (2001)
– Sridharan, Guérin, & Diot (2002)
– Fortz, Rexford, & Thorup (2002)
– Ericsson, Resende, & Pardalos (2002)
– Buriol, Resende, Ribeiro, & Thorup (2002, 2005)

Packet routing

router

router

router

router

router

When packet arrives at router,
router must decide where to
send it next.

Packet’s final
destination.

Routing consists in finding a
link-path from source to
destination.

D1

D2

D3

D4

R1

R2

R3

R4 Routing table

OSPF routing

• Assign an integer weight  [1, wmax] to each link in AS.
 In general, wmax = 65535=216 −1.

● Each router computes tree of shortest weight paths to
all other routers in the AS, with itself as the root,
using Dijkstra’s algorithm.

OSPF routing

321

351

2

4

D1

D2

D3

D4

R1

R1

R2

R3

root

First hop routers.

Routing table

Destination routers

Routing table is filled
with first hop routers
for each possible destination.

D5

D6

R1

R3
6

OSPF routing

321

351

2

4

D1

D2

D3

D4

R1

R1

R2

R3

root

First hop routers.

Routing table

Destination routers

Routing table is filled
with first hop routers
for each possible destination.

D5

D6

R1

R3
6

OSPF routing

321

351

2

4

D1

D2

D3

D4

R1

R1

R2

R3

root

First hop routers.

Routing table

Destination routers

Routing table is filled
with first hop routers
for each possible destination.

D5

D6

R1

R3
6

OSPF routing

321

351

2

4

D1

D2

D3

D4

R1

R1

R2

R3

root

First hop routers.

Routing table

Destination routers

Routing table is filled
with first hop routers
for each possible destination.

D5

D6

R1

R3
6

OSPF routing

321

351

2

4

D1

D2

D3

D4

R1

R1, R2

R2

R3

root

First hop routers.

Routing table

Destination routers

Routing table is filled
with first hop routers
for each possible destination.
In case of multiple shortest
paths, flow is evenly split.

D5

D6

R1

R3
6

OSPF weight setting

● OSPF weights are assigned by network operator.
– CISCO assigns, by default, a weight proportional to the inverse of

the link bandwidth (Inv Cap).
– If all weights are unit, the weight of a path is the number of hops in

the path.
● We propose evolutionary algorithms to find good OSPF

weights.
– Genetic algorithm
– Memetic algorithm: Genetic algorithm with optimized crossover

Minimization of congestion

● Consider the directed capacitated network G = (N,A,c), where
N are routers, A are links, and ca is the capacity of link
a  A.

● We use the measure of Fortz & Thorup (2000) to compute
congestion:

 F = F1(l1) + F2(l2) + … + F|A|(l|A|)
 where la is the load on link a  A,

 Fa(la) is piecewise linear and convex,

 Fa(0) = 0, for all a  A.

Piecewise linear and convex Fa(la) link
congestion measure

0

10

20

30

40

50

60

70

0 0.2 0.4 0.6 0.8 1 1.2

c
o

s
t

 p
e

r
 u

n
it

 o
f

 c
a

p
a

c
it

y

trunk utilization rate

slope = 1
slope = 3 slope = 10

slope = 70

slope = 500

slope = 5000

(la ÷ ca)

OSPF weight setting problem

● Given a directed network G = (N, A) with link
capacities ca  A and demand matrix D = (ds,t)
specifying a demand to be sent from node s to
node t :
– Assign weights wa  [1, wmax] to each link a  A, such

that the objective function F is minimized when demand
is routed according to the OSPF protocol.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

UNIT

Inv Cap

RAND

LPLB

max
utilization

demand

AT&T Worldnet backbone network (90 routers, 274 links)

Genetic and hybrid genetic algorithms for
OSPF weight setting problem

● Genetic
– M. Ericsson, M.G.C. Resende, & P.M. Pardalos, “ A

genetic algorithm for the weight setting problem in OSPF
routing, J. of Combinatorial Optimization, vol. 6, pp. 299-
333, 2002.

● Hybrid genetic
– L.S. Buriol, M.G.C. Resende, C.C. Ribeiro, & M. Thorup,

“A hybrid genetic algorithm for the weight setting problem
in OSPF/IS-IS routing,” Networks, vol. 46, pp. 36-56,
2005.

Solution encoding

● A population consists of nPop = 50 integer weight
arrays: w = (w1, w2 ,…, w|A|),

 where wa  [1, wmax = 20]
● All possible weight arrays correspond to feasible

solutions.

Initial population

● nPop solutions, with each weight randomly generated,
uniformly in the interval [1, wmax /3].

Solution evaluation (fitness)

● For each demand pair (s,t), route using OSPF, computing
demand pair loads las,t

 on each link a  A.
● Add up demand pair loads on each link a  A, yielding total

load la on link.
● Compute link congestion cost Fa(la) for each link a  A.
● Add up costs: F = F1(l1) + F2(l2) + … + F|A|(l|A|)

Population partitioning

Class A

Class C

Class B

25% most fit

5% least fit

Population is sorted according to
solution value F and solutions are
classified into three categories.

Population dynamics

Class A

Class C

Class B

generation t

Population dynamics

Class A

Class C

Class B

Class A

generation t generation t + 1
Class A is promoted unchanged

Population dynamics

Class A

Class C

Class B

Class A

Class C

generation t generation t + 1

Class C is replaced by randomly
generated solutions.

Class A is promoted unchanged

Population dynamics

Class A

Class C

Class B

Class A

Class C

generation t generation t + 1

Class B is replaced by
 crossover of:
 one Class A parent
 and

Class A is promoted unchanged

Class C is replaced by randomly
generated solutions.

Population dynamics

Class A

Class C

Class B

Class A

Class C

generation t generation t + 1

Class B is replaced by
 crossover of:
 one Class A parent
 and

one Class B or C
parent.

X

Class A is promoted unchanged

Class C is replaced by randomly
generated solutions.

Population dynamics

Class A

Class C

generation t + 1

Class B is replaced by
 crossover of:
 one Class A parent
 and

one Class B or C
parent.

Class A

Class C

Class B

generation t

Class B

Class A is promoted unchanged

X

Class C is replaced by randomly
generated solutions.

Parent selection

● Parents are chosen at random:
– one parent from Class A (elite).
– one parent from Class B or C (non-elite).

● Re-selection is allowed, i.e. parents can breed more
than once per generation.

● Better individuals are more likely to reproduce.

Crossover with random keys
Bean (1994)

Crossover combines elite parent p1 with non-elite parent p2 to
produce child c :

for each link a A do:
 with probability 0.7: c[a] = p1[a]
 with probability 0.3: c[a] = p2[a]

Crossover with random keys
Bean (1994)

Crossover combines elite parent p1 with non-elite parent p2 to
produce child c :

for each link a A do:
 with probability 0.7: c[a] = p1[a]
 with probability 0.3: c[a] = p2[a]

Child is more likely to inherit
gene of elite parent.

cost
GA solutions

AT&T Worldnet backbone network (90 routers, 274 links)

generation

LP lower bound

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

InvCap

GA

LPLB

max
utilization

AT&T Worldnet backbone network (90 routers, 274 links)

Weight setting with GA
permits a 50% increase in
traffic volume w.r.t. weight
setting with the Inverse
Capacity rule.

demand

Optimized crossover = crossover + local
search

Class A

Class C

Class B X Local search Class B

Fast local search

● Let A * be the set of five arcs a  A having largest Fa

values.
● Scan arcs a  A * from largest to smallest Fa:

 Increase arc weight, one unit at a time, in the range

[wa , wa + (wmax − wa)/4]
 If total cost F is reduced, restart local search.

10

100

1000

0 50 100 150 200 250 300

c
o

s
t

time (seconds)

GA
MA

LP lower bound

Memetic algorithm (MA) improves over pure genetic algorithm in
two ways:

Finds solutions faster.
Finds better solutions.

Survivable IP
network design

Survivable IP network design

● Buriol, Resende, and Thorup (Networks, 2006) use
weight setting to design survivable IP networks.

Survivable IP network design

● Buriol, Resende, and Thorup (Networks, 2006) use
weight setting to design survivable IP networks.

● Given
– directed graph G = (N,A), where N is the set of routers, A is

the set of potential arcs where capacity can be installed,

– a demand matrix D that for each pair (s,t)  NN, specifies
the demand D(s,t) between s and t,

– a cost K(a) to lay fiber on arc a
– a capacity increment C for the fiber.

Survivable IP network design

● Buriol, Resende, and Thorup (Networks, 2006) use
weight setting to design survivable IP networks.

● Determine
– OSPF weight w(a) to assign to each arc a  A,
– which arcs should be used to deploy fiber and how many

units (multiplicities) M(a) of capacity C should be installed
on each arc a  A,

● such that all the demand can be routed on the network
even when any single arc fails.

● Minimize total design cost = 
aA

M(a)K(a).

Survivable IP network design

● Buriol, Resende, and Thorup (Networks, 2006) use
weight setting to design survivable IP networks.

● Use genetic algorithm (GA) to determine weights.
● GA needs to compute “fitness” of each solution it

produces.

Computing the “fitness” of a solution

Route all demand
on shortest
path graph

Determine load L(a)
 on each arc a A.

For each arc a A,
set maxL(a) =

max{L(a),maxL(a)}

Determine load L(a)
 on each arc a A.

For each arc a A,
set maxL(a) =

max{L(a), maxL(a)}

For each arc e A,
remove arc e from

network G.

Compute shortest
path graph on

G \ {e}

Route all demand
on shortest
path graph

For each arc e A,
compute M(a)

For each arc
a A, set

maxL(a) = –

Computing the “fitness” of a solution

Route all demand
on shortest
path graph

Determine load L(a)
 on each arc a A.

For each arc a A,
set maxL(a) =

max{L(a),maxL(a)}

Determine load L(a)
 on each arc a A.

For each arc a A,
set maxL(a) =

max{L(a), maxL(a)}

For each arc e A,
remove arc e from

network G.

Compute shortest
path graph on

G \ {e}

Route all demand
on shortest
path graph

For each arc e A,
compute M(a)

For each arc
a A, set

maxL(a) = –

Computing the “fitness” of a solution

Route all demand
on shortest
path graph

Determine load L(a)
 on each arc a A.

For each arc a A,
set maxL(a) =

max{L(a),maxL(a)}

Determine load L(a)
 on each arc a A.

For each arc a A,
set maxL(a) =

max{L(a), maxL(a)}

For each arc e A,
remove arc e from

network G.

Compute shortest
path graph on

G \ {e}

Route all demand
on shortest
path graph

For each arc e A,
compute M(a)

For each arc
a A, set

maxL(a) = –

Computing the “fitness” of a solution

Route all demand
on shortest
path graph

Determine load L(a)
 on each arc a A.

For each arc a A,
set maxL(a) =

max{L(a),maxL(a)}

Determine load L(a)
 on each arc a A.

For each arc a A,
set maxL(a) =

max{L(a), maxL(a)}

For each arc e A,
remove arc e from

network G.

Compute shortest
path graph on

G \ {e}

Route all demand
on shortest
path graph

For each arc e A,
compute M(a)

For each arc
a A, set

maxL(a) = –

Composite-link design

● In Buriol, Resende, and Thorup (2006)
– links were all of the same type,
– only the link multiplicity had to be determined.

● Now consider composite links. Given a load L(a) on arc
a, we can compose several different link types that sum
up to the needed capacity c(a)  L(a):

– c(a) = 
t used in arc a

M(t)  (t), where

– M(t) is the multiplicity of link type t

– (t) is the capacity of link type t

Composite-link design

● In Buriol, Resende, and Thorup (2006)
– links were all of the same type,
– only the link multiplicity had to be determined.

● Now consider composite links. Given a load L(a) on arc
a, we can compose several different link types that sum
up to the needed capacity c(a)  L(a):

– c(a) = 
t used in arc a

M(t)  (t), where

– M(t) is the multiplicity of link type t

– (t) is the capacity of link type t

Composite-link design

● Link types = { 1, 2, ..., T }
● Capacities = { c(1), c(2), ..., c(T) } : c(i) < c(i+1)
● Prices / unit length = { p(1), p(2), ..., p(T) }: p(i) < p(i+1)
● Assumptions:

– [p(T)/c(T)] < [p(T–1)/c(T–1)] < ··· < [p(1)/c(1)], i.e. price
per unit of capacity is smaller for links with greater capacity

– c(i) =   c(i–1), for   N,  > 1, i.e. capacities are
multiples of each other by powers of 

Composite-link design

● Link types = { 1, 2, ..., T }
● Capacities = { c(1), c(2), ..., c(T) } : c(i) < c(i+1)
● Prices / unit length = { p(1), p(2), ..., p(T) }: p(i) < p(i+1)
● Assumptions:

– [p(T)/c(T)] < [p(T–1)/c(T–1)] < ··· < [p(1)/c(1)], i.e. price
per unit of capacity is smaller for links with greater capacity

– c(i) =   c(i–1), for   N,  > 1, i.e. capacities are
multiples of each other by powers of 

Composite-link design
● Link types = { 1, 2, ..., T }
● Capacities = { c(1), c(2), ..., c(T) } : c(i) < c(i+1)
● Prices / unit length = { p(1), p(2), ..., p(T) }: p(i) < p(i+1)
● Assumptions:

– [p(T)/c(T)] < [p(T–1)/c(T–1)] < ··· < [p(1)/c(1)]: economies
of scale

– c(i) =   c(i–1), for   N,  > 1,
e.g. c(OC192) = 4  c(OC48); c(OC48) = 4  c(OC12);
c(OC12) = 4  c(OC3);

OC3 OC192OC48OC12

155 Mb/s 10 Gb/s 2.5 Gb/s 622 Mb/s  = 4

Heuristics for composite-link design

● Designed to minimize overall network cost.
● Heuristics are:

– Min capacity
– Min cost
– Min cost k types
– Min multiplicities

Heuristics for composite-link design

● Designed to minimize overall network cost.
● Heuristics are:

– Min capacity
– Min cost
– Min cost k types
– Min multiplicities

Heuristics for composite-link design

● Designed to minimize overall network cost.
● Heuristics are:

– Min capacity
– Min cost
– Min cost k types
– Min multiplicities

Heuristics for composite-link design

● Designed to minimize overall network cost.
● Heuristics are:

– Min capacity
– Min cost
– Min cost k types
– Min multiplicities

Heuristics for composite-link design

● Designed to minimize overall network cost.
● Heuristics are:

– Min capacity
– Min cost
– Min cost k types
– Min multiplicities

Heuristics for composite-link design

● Designed to minimize overall network cost.
● Heuristics are:

– Min capacity
– Min cost
– Min cost k types
– Min multiplicities

Heuristics for composite-link design

● Designed to minimize overall network cost.
● Heuristics are:

– Min capacity
– Min cost
– Min cost k types
– Min multiplicities

We describe this heuristic next.

Min cost heuristic

Set k = T

Input
load L

Use as many as
possible (L/c(k)) of
type k links without
exceeding the load L

Compute cost (k) of
satisfying remaining
load with link type k

 k = 0 ?

 Set k = k – 1

Let k*=argmin { (k) }

yes

no

Update load:
L = L – L/c(k)

Release links of types
k*– 1, ..., 1 and use

 L/c(k*) of type k* links

done

(k) is total cost of using links of types T, T– 1, ..., k.

Observations

● Subject to the assumptions listed earlier, all heuristics
(except min cost k > 1 types) can be implemented to
take O(T) time to execute per arc.

● Min capacity gives optimal solution for the minimum
capacity objective function.

● Min cost gives the optimal solution for the minimum
cost objective function.

● Without the assumptions, a knapsack problem must be
solved to find min cap and min cost solutions.

Observations

● Subject to the assumptions listed earlier, all heuristics
(except min cost k > 1 types) can be implemented to
take O(T) time to execute per arc.

● Min capacity gives optimal solution for the minimum
capacity objective function.

● Min cost gives the optimal solution for the minimum
cost objective function.

● Without the assumptions, a knapsack problem must be
solved to find min cap and min cost solutions.

Observations

● Subject to the assumptions listed earlier, all heuristics
(except min cost k > 1 types) can be implemented to
take O(T) time to execute per arc.

● Min capacity gives optimal solution for the minimum
capacity objective function.

● Min cost gives the optimal solution for the minimum
cost objective function.

● Without the assumptions, a knapsack problem must be
solved to find min cap and min cost solutions.

Experimental results

● Use a “real” network with 54 routers and 278 arcs.
● Three link types used: { 1, 2, 3 }
● c(2) = 4 c(1); c(3) = 16 c(1)
● p(2)/c(2) = 0.95 p(1)/c(1); p(3)/c(3) = 0.90 p(1)/c(1)
● All four heuristics tested. Min cost k types was tested

for k=1 and k=2.
● GA was run 100, 200, 300, ..., 1000 generations and

costs were recorded for each heuristic.

Experimental results

● Use a “real” network with 54 routers and 278 arcs.
● Three link types used: { 1, 2, 3 }
● c(2) = 4 c(1); c(3) = 16 c(1)
● p(2)/c(2) = 0.95 p(1)/c(1); p(3)/c(3) = 0.90 p(1)/c(1)
● All four heuristics tested. Min cost k types was tested

for k=1 and k=2.
● GA was run 100, 200, 300, ..., 1000 generations and

costs were recorded for each heuristic.

Experimental results

● Use a “real” network with 54 routers and 278 arcs.
● Three link types used: { 1, 2, 3 }
● c(2) = 4 c(1); c(3) = 16 c(1)
● p(2)/c(2) = 0.95 p(1)/c(1); p(3)/c(3) = 0.90 p(1)/c(1)
● All four heuristics tested. Min cost k types was tested

for k=1 and k=2.
● GA was run 100, 200, 300, ..., 1000 generations and

costs were recorded for each heuristic.

Experimental results

● Use a “real” network with 54 routers and 278 arcs.
● Three link types used: { 1, 2, 3 }
● c(2) = 4 c(1); c(3) = 16 c(1)
● p(2)/c(2) = 0.95 p(1)/c(1); p(3)/c(3) = 0.90 p(1)/c(1)
● All four heuristics tested. Min cost k types was tested

for k=1 and k=2.
● GA was run 100, 200, 300, ..., 1000 generations and

costs were recorded for each heuristic.

Experimental results

● Use a “real” network with 54 routers and 278 arcs.
● Three link types used: { 1, 2, 3 }
● c(2) = 4 c(1); c(3) = 16 c(1)
● p(2)/c(2) = 0.95 p(1)/c(1); p(3)/c(3) = 0.90 p(1)/c(1)
● All four heuristics tested. Min cost k types was tested

for k=1 and k=2.
● GA was run 100, 200, 300, ..., 1000 generations and

costs were recorded for each heuristic.

Experimental results

● Use a “real” network with 54 routers and 278 arcs.
● Three link types used: { 1, 2, 3 }
● c(2) = 4 c(1); c(3) = 16 c(1)
● p(2)/c(2) = 0.95 p(1)/c(1); p(3)/c(3) = 0.90 p(1)/c(1)
● All four heuristics tested. Min cost k types was tested

for k=1 and k=2.
● GA was run 100, 200, 300, ..., 1000 generations and

costs were recorded for each heuristic.

min multiplicities

min cost 1 type
min capacitymin cost 2 types

min cost

min multiplicities

min cost 1 type
min capacitymin cost 2 types

min cost

With all heuristics, network cost
decreases with number of GA
generations.

min multiplicities

min cost 1 type
min capacitymin cost 2 types

min cost

Min cost was had the best
(least cost) designs.

BGP Routing

Egress selection

S

T

AS

AS

Peering points

Peering points

AS
Ingress point

Egress point

Egress selection

S

T

AS

AS

Peering points

Peering points

AS
Ingress point

Egress point

Ingress point

Egress selection

S

T

AS

AS

Peering points

Peering points

AS
Ingress point

Egress point

Ingress point

Destination prefix

Egress selection

S

T

AS

AS

Peering points

Peering points

AS
Ingress point

Egress point

Ingress point

Destination prefix

Candidate egress points

Egress selection

S

T

AS

AS

Peering points

Peering points

AS
Ingress point

Egress point

Ingress point

Destination prefix

Candidate egress points
Which egress point
to select?

Egress selection

S

T

AS

AS

Peering points

Peering points

AS
Ingress point

Egress point

Destination prefix

Candidate egress points
Which egress point
to select?

Ingress point

Hot potato (early exit) routing

Ingress point

BGP: Each router in the AS directs
traffic to its closest border
router (in terms of IGP distances).

Idea is to send traffic along to
next AS as soon as possible.

Destination prefix

Hot potato (early exit) routing

Ingress point

BGP: Each router in the AS directs
traffic to its closest border
router (in terms of IGP distances).

Idea is to send traffic along to
next AS as soon as possible.

Destination prefix

We believe hot potato is:

 a) Too restrictive: dictates a
 policy rather than support
 performance objectives.

 b) Too disruptive: small
 changes in IGP distances
 can lead to large shifts in
 traffic.

 c) Too convoluted: administrators
 are forced to select IGP metrics
 that make BGP sense.

Hot potato sensitivity to failures

AS 0

AS 2 AS 3

BA

D E

C

P

AS 1

1 5

5

41

Hot potato sensitivity to failures

AS 0

AS 2 AS 3

BA

D E

C

P

AS 1

1 5

5

41

Traffic from C to P can
exit AS 1 at either A
or B.

Hot potato sensitivity to failures

AS 0

AS 2 AS 3

BA

D E

C

P

AS 1

1 5

5

41

Traffic from C to P can
exit AS 1 at either A
or B.

Distance C to A is 2 &
C to B is 9.

Hot potato selects
egress point A.

Hot potato sensitivity to failures

AS 0

AS 2 AS 3

BA

D E

C

P

AS 1

1 5

5

41

Traffic from C to P can
exit AS 1 at either A
or B.

Distance C to A is 2 &
C to B is 9.

Hot potato selects
egress point A.

Hot potato sensitivity to failures

AS 0

AS 2 AS 3

BA

D E

C

P

AS 1

1 5

5

41

Suppose link C to D
fails.

Now, distance C to A
is 10 & C to B is 9.

Hot potato selects
egress point B.

Hot potato sensitivity to failures

AS 0

AS 2 AS 3

BA

D E

C

P

AS 1

1 5

5

41

Suppose link C to D
fails.

Now, distance C to A
is 10 & C to B is 9.

Hot potato selects
egress point B.

Small topology changes
can lead to performance
disruptions:

a) large shifts in traffic

b) changes in downstream
 paths

c) BGP update messages
 for neighboring domains

Teixeira, Griffin, Resende, & Rexford, “TIE Breaking: Tunable
Interdomain Egress Selection,” IEEE/ACM Transactions on
Networking, to appear (2006).

● Propose a method to solve the sensitivity problem.
● Ranking metric: router i has a metric m(i,p,e) across all

prefixes p and egress points e.
● For each prefix p, router i selects egress point e that has

the smallest value m(i,p,e).
● m(i,p,e) = (i,p,e) · d(G,i,e) + (i,p,e), where d(G,i,e) is

the shortest IGP distance from ingress router i to
egress router e in AS G and (i,p,e) and (i,p,e) are
computed.

TIE metric

A

CB

P

6
4

12
5

Initial topology:
4  

B
+

B
< 5  

C
+

C

Failure mode of link with
weight 4:
6  

B
+

B
< 5  

C
+

C

Failure mode of links with
weights 4 and 6:
12  

B
+

B
 > 5  

C
+

C
For all situations where propagation delay
does not increase by a more than a factor
of 2, we require that traffic from A to P go
through B.

Constraint generation phase

For each (i,p) pair, do:

 1) Identify closest egress point in original graph: b = argmin{d(G,i,e) | e E(p)}
 2) For each e E(p) \ {b}, generate constraint:
 (i,p,b)·d(G,i,b) + (i,p,b) < (i,p,e)·d(G,i,e) + (i,p,e)

For each network topology change G, do:

 1) Identify preferred egress point b':
 if d((G),i,b)  T·d(G,i,b), then b'=b
 else b' = argmin{d((G),i,e) | e E(p)}
 2) For each e E(p) \ {b'}, generate constraint:
 (i,p,b')·d((G),i,b') + (i,p,b') < (i,p,e)·d((G),i,e) + (i,p,e)

E(p) : egress set for prefix p
G: set of topology changes
(G): topology after change

Constraint generation phase

For each (i,p) pair, do:

 1) Identify closest egress point in original graph: b = argmin{d(G,i,e) | e E(p)}
 2) For each e E(p) \ {b}, generate constraint:
 (i,p,b)·d(G,i,b) + (i,p,b) < (i,p,e)·d(G,i,e) + (i,p,e)

For each network topology change G, do:

 1) Identify preferred egress point b':
 if d((G),i,b)  T·d(G,i,b), then b'=b
 else b' = argmin{d((G),i,e) | e E(p)}
 2) For each e E(p) \ {b'}, generate constraint:
 (i,p,b')·d((G),i,b') + (i,p,b') < (i,p,e)·d((G),i,e) + (i,p,e)

E(p) : egress set for prefix p
G: set of topology changes
(G): topology after change

 Algorithm produces
 (|G|1)·(|E(p)|1) constraints
 for each pair (i,p).

 Size of E(p) is usually 1, 2, or 3
 and at most 10.

Constraint generation phase

For each (i,p) pair, do:

 1) Identify closest egress point in original graph: b = argmin{d(G,i,e) | e E(p)}
 2) For each e E(p) \ {b}, generate constraint:
 (i,p,b)·d(G,i,b) + (i,p,b) < (i,p,e)·d(G,i,e) + (i,p,e)

For each network topology change G, do:

 1) Identify preferred egress point b':
 if d((G),i,b)  T·d(G,i,b), then b'=b
 else b' = argmin{d((G),i,e) | e E(p)}
 2) For each e E(p) \ {b'}, generate constraint:
 (i,p,b')·d((G),i,b') + (i,p,b') < (i,p,e)·d((G),i,e) + (i,p,e)

E(p) : egress set for prefix p
G: set of topology changes
(G): topology after change

Any prefixes that have the same
egress set produce the same
constraints and the same  and
 values.

Constraint generation phase

For each (i,p) pair, do:

 1) Identify closest egress point in original graph: b = argmin{d(G,i,e) | e E(p)}
 2) For each e E(p) \ {b}, generate constraint:
 (i,p,b)·d(G,i,b) + (i,p,b) < (i,p,e)·d(G,i,e) + (i,p,e)

For each network topology change G, do:

 1) Identify preferred egress point b':
 if d((G),i,b)  T·d(G,i,b), then b'=b
 else b' = argmin{d((G),i,e) | e E(p)}
 2) For each e E(p) \ {b'}, generate constraint:
 (i,p,b')·d((G),i,b') + (i,p,b') < (i,p,e)·d((G),i,e) + (i,p,e)

E(p) : egress set for prefix p
G: set of topology changes
(G): topology after change

Number of unique egress sets is
typically orders of magnitude
smaller than number of prefixes.

Optimization phase

● Finite-precision parameter values: the  and  values
should have finite precision to be configured on the
routers and are therefore required to be integer:
(i,p,b)·d(G,i,b) + (i,p,b)  (i,p,e)·d(G,i,e) + (i,p,e) + 1

● Robustness to unplanned events: to avoid having router i
be unable to adapt to a change in IGP distance, we require
(i,p,e)  1, for all i, p, and e.

● Limiting the number of number of unique parameter values:
to reduce overhead of configuring and storing the  and 
values, we minimize  (i,p,e) + (i,p,e) thus favoring
solutions with (i,p,e) = 1 and (i,p,e) = 0.

An experiment with TIE
● Abilene network (April 2003):

– Backbone of US research network
– 11 PoPs with one router each
– 7500 prefixes
– 23 distinct egress sets
– link weights are geographic distance to approximate

propagation
● TIE optimized for single-node failures but evaluated with

single-link failures
● delay threshold T=2

An experiment with TIE

● Used AMPL/CPLEX to determine  and  values
● Simulation phase took 0.5 s on Sun Fire 15000
● Optimization phase took 37 s on SGI Challenge
●  = 1 for 93% of (i,p,e) tuples and had only four

distinct values  {1,2,3,4}
●  = 0 for 90% of (i,p,e) tuples and had only three

distinct values  {0,1,3251}

An experiment with TIE

● Compare TIE with Hot Potato ( = 1 and  = 0) and
Fixed Ranking ( = 0 and  = d(G,i,b(G,i,p)) routing

● We make comparisons with two metrics
– Delay ratio: For each (i,p,) we compute the delay for i to

reach the best egress point for p after the topology change
 and divide it by the delay to reach the best egress in the
original topology.

– Routing sensitivity: For each (i,) we compute the fraction
of prefixes at i that change egress point after a topology
change .

An experiment with TIE

● Compare TIE with Hot Potato ( = 1 and  = 0) and
Fixed Ranking ( = 0 and  = d(G,i,b(G,i,p)) routing

● We make comparisons with two metrics
– Delay ratio: For each (i,p,) we compute the delay for i to

reach the best egress point for p after the topology change
 and divide it by the delay to reach the best egress in the
original topology. Cannot do better than Hot Potato.

– Routing sensitivity: For each (i,) we compute the fraction
of prefixes at i that change egress point after a topology
change .

An experiment with TIE

● Compare TIE with Hot Potato ( = 1 and  = 0) and
Fixed Ranking ( = 0 and  = d(G,i,b(G,i,p)) routing

● We make comparisons with two metrics
– Delay ratio: For each (i,p,) we compute the delay for i to

reach the best egress point for p after the topology change
 and divide it by the delay to reach the best egress in the
original topology. Cannot do better than Hot Potato.

– Routing sensitivity: For each (i,) we compute the fraction
of prefixes at i that change egress point after a topology
change .

An experiment with TIE

● Compare TIE with Hot Potato ( = 1 and  = 0) and
Fixed Ranking ( = 0 and  = d(G,i,b(G,i,p)) routing

● We make comparisons with two metrics
– Delay ratio: For each (i,p,) we compute the delay for i to

reach the best egress point for p after the topology change
 and divide it by the delay to reach the best egress in the
original topology. Cannot do better than Hot Potato.

– Routing sensitivity: For each (i,) we compute the fraction
of prefixes at i that change egress point after a topology
change . Cannot do better than Fixed Ranking.

Since weights are geographic distances,
the delay ratio achieved by Hot Potato is
the smallest feasible delay ratio.

TIE was optimized for single-link failures
but was evaluated for single-node failures.
Similar parameters were obtained for TIE
when optimizing for single-node failures.

TIE behaves according to original goal.
It exceeds the delay threshold of 2 for
only 20% of (i,p,) triples. Hot Potato
also exceeds the threshold for these
triples.

Fixed ranking delay ratios are higher
than those of TIE for the majority of
(i,p,) triples.

This plot shows sensitivity
values for all (i,) pairs.

Fixed ranking has lowest
sensitivity. It has non-zero
sensitivity only when the best
egress node fails, forcing it to
go the the second-closest
node.

TIE follows fixed ranking for
most (i,) pairs. TIE only
changes egress points when
this in unavoidable.

The gap between the Hot Potato curve
and the TIE curve (around 15% of
(i,) pairs) represents the scenarios
 for which egress selection disruptions
could be avoided without violating the
delay threshold.

Conclusion

● We have just had a glimpse of a few examples of
optimization problems that arise in IP networks.

● Interesting optimization problems arise in many fields
of telecommunications.

Published by Springer in
April 2006

1134 pages
37 chapters in five parts:

Optimization algorithms
Planning and design
Routing
Wireless
The web and beyond

Collaborators

Diogo Andrade
Rutgers University

Luciana Buriol
Federal University of
Rio Grande do Sul
Porto Alegre, BrazilMikkel Thorup

AT&T Labs Research

Tim Griffin
University of Cambridge
Cambridge, U.K.

Jennifer Rexford
Princeton University

Renata Teixeira
Univ. Pierre et Marie Curie
Paris, France

Panos Pardalos
University of Florida

Celso Ribeiro
Federal Fluminense
University
Niterói , Brazil

The End
These slides and all papers cited in this talk
can be downloaded from my homepage:
http://www.research.att.com/~mgcr

google.com search key: Mauricio

