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Summary
• Network monitoring with tomography 
• Minimum monitoring set (MMS) problem
• Algorithms for MMS

– Integer programming
– Greedy algorithm
– Genetic algorithm
– Double hitting set heuristic

• Computational experiments
• Concluding remarks
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Network monitoring 
with tomography



 UPitt, March 4, 2010 Node placement for monitoring

 IP Monitoring
• Internet Service Providers need to monitor the 

performance of customer traffic within their 
networks.

• More specifically, ISPs want to measure:
– Unidirectional reachability
– Packet loss rate
– Packet delay along the edge-to-edge paths followed 

by customer traffic



 UPitt, March 4, 2010 Node placement for monitoring

 IP Monitoring
• Internet Service Providers need to monitor the 

performance of customer traffic within their 
networks.

• More specifically, ISPs want to measure:
– Unidirectional reachability
– Packet loss rate
– Packet delay along the edge-to-edge paths followed 

by customer traffic



 UPitt, March 4, 2010 Node placement for monitoring

 IP Monitoring
• Traffic entails both the links followed by traffic 

and the treatment of packets within the routers 
that move them from link to to link.  

• Flow follows fine-grained paths differentiated 
from others by, e.g.
– Class of service
– Application class
– Virtual private network (VPN) ownership
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 IP Monitoring
• Tools such as traceroute or 

ping suffer from one or 
both of the following 
limitations:
– They measure roundtrip 

performance; want to measure
one-way performance
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 IP Monitoring
• Tools such as traceroute or 

ping suffer from one or 
both of the following 
limitations:
– They measure roundtrip 

performance; want to measure
one-way performance

measure round-trip:
hard to infer one-way 
performance
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 IP Monitoring
• Tools such as traceroute or 

ping suffer from one or 
both of the following 
limitations:
– They measure roundtrip 

performance;
– Their probes may not follow 

the customer paths, either 
because they transit different 
links, or experience different 
router treatment.

customer
path
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 IP Monitoring
• Tools such as traceroute or 

ping suffer from one or 
both of the following 
limitations:
– They measure roundtrip 

performance;
– Their probes may not follow 

the customer paths, either 
because they transit different 
links, or experience different 
router treatment.
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path
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 IP Monitoring
• In principle, edge routers 

could be equipped to 
launch and receive probes 
that follow customer 
traffic:
– Could impact network 

performance
– Very costly to deploy 

networkwide
• Expensive equipment
• Expensive to manage

Edge router
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 IP Monitoring
• Breslau et al. (2006) proposed a lightweight 

approach to measurement of customer traffic 
paths in VPNs.

Customer
site #1 Customer

site #2

Monitor

Edge router
Edge router
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 IP Monitoring
• Breslau et al. (2006) proposed a lightweight 

approach to measurement of customer traffic 
paths in VPNs.

Customer
site #1 Customer

site #2

Monitor

Edge router
Edge router

Want to monitor 
performance of path.

Generic Routine Encapsulation 
(GRE) tunnels  enable steering 
packets on path to be 
monitored



 UPitt, March 4, 2010 Node placement for monitoring

 IP Monitoring
• Breslau et al. (2006) proposed a lightweight 

approach to measurement of customer traffic 
paths in VPNs.

Customer
site #1 Customer

site #2

Monitor

Edge router
Edge router

Want to monitor 
performance of path.

Circuit performance of (b1,b2)
seen at M is a composition of 
the performances of (M,b1),       
(b1,b2), and (b2,M).  

M

b1

b2
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 IP Monitoring
• Breslau et al. (2006) proposed a lightweight 

approach to measurement of customer traffic 
paths in VPNs.

Customer
site #1 Customer

site #2

Monitor

Edge router
Edge router

Want to monitor 
performance of path.

To estimate performance of     
(b1,b2) we need to factor out 
the one-way performances of 
hop-on (M,b1) and hop-off 
(b2,M): Same problem as before.

M

b1

b2
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 IP Monitoring

Monitor

M

b1

b2

Hop-on 
path

Hop-off 
path

B = “branch nodes”   V.   We want to measure performance 
(e.g. loss rate) on some directed paths between vertices in B

branch node

branch node
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 IP Monitoring

Monitor

M

b1

b2

Hop-on 
path

Hop-off 
path

IDEA:  Establish a monitoring node M.  For some pairs b1, b2 ∈ B, 
send packet M to b1 to b2 to M. 

branch node

branch node



 UPitt, March 4, 2010 Node placement for monitoring

 IP Monitoring

Monitor

M

b1

b2

Hop-on 
path

Hop-off 
path

We can measure the “overall” loss rate.  Must factor out the hop-on 
and hop-off.  How?

branch node

branch node
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 IP Monitoring

Monitor

M

b1

b2

Hop-on 
path

Hop-off 
path

Want “disjoint” paths for independence.  Must estimate loss rates 
for hop-on path and hop-off path to factor them out.

branch node

branch node
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 Estimating hop-on path loss

m1

Monitor

M

b

Hop-on 
path

Find two “monitoring” nodes m1 and m2 and send packets from M 
to b and from b to m1 and m2. 

monitoring node

branch node

m2 monitoring node
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 Estimating hop-on path loss

m1

Monitor

M

b

Hop-on 
path

What fraction of packets arrive at: 1) both m1 and m2? (p11);           
 2) m1, but not m2? (p10);            3) m2, but not m1? (p01)

monitoring node

branch node

m2 monitoring node
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 Estimating hop-on path loss

M

b

m1

Monitor If the three paths are arc-disjoint, 
estimate nonloss rate  on hop-on path 
M → b as follows:
p11 =   
p10 =   (1−)
p01 =  (1−) 
p11 + p10 =  
p11 + p01 =  
Therefore:
 = (p11+p10)(p11+p01) / p11

m2



 

nonloss rates
on each path
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 Estimating hop-off path loss

M

b

Monitor To estimate loss rate on hop-off path     
b → M, send packet M → b → M.
Since we have already loss rate estimate 
 for hop-on path M → b, we can 
estimate loss rate for b → M from 
roundtrip loss rate,

if path M  b                                
           is arc-disjoint from              
                               path b  M.



hop-on

hop-off
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 Simple lemma

a

LEMMA: 
If weight (u,v) = weight (v,u) > 0 for all 
u,v ∈ V, then for all nodes a, b, c, 
shortest a  b and b c  paths are 
(directed) arc disjoint.

PROOF (by contradiction):
Suppose shortest paths are 
a  P  Q  b and b  P  Q  c
clearly  v  y + z
hence   z  v  y
and       z < v + y   because y > 0.
So  b  Q  c is shorter than             
b  P  Q  c     !!!
 

P Q

c

ba
x y

v

z

u
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 Consequence of simple lemma

In practice, all or almost all arc weights 
are symmetric.  If so, all paths in 
 

M

b1

b2

are arc disjoint.
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In practice, all or almost all arc weights 
are symmetric.  If so, all paths in 
 

are arc disjoint.

M

b

hop-on
hop-off
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 Consequence of simple lemma

In 
 The M  b and b  m1 paths are 

arc disjoint, as are the                     
M  b and b  m2 paths.

How about b m1 and  b  m2 
path?

M

b

m1 m2
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 Consequence of simple lemma

In 
 The M  b and b  m1 paths are 

arc disjoint, as are the                     
M  b and b  m2 paths.

How about b m1 and  b  m2 
path?

Not disjoint in general. 

M

b

m1 m2
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Minimum 
monitoring set 

problem
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 Monitor placement
GOAL:  Choose a small subset S of 
given set M of potential monitoring 
nodes such that

for every b ∈ B, there exist          
m1, m2 ∈ S ( m1≠ m2 ) such that

every shortest b  m1 path is 
vertex-disjoint from every shortest   
b  m2 path
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every shortest b  m1 path is 
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b  m2 path

Why every shortest path?

Because OSPF routing 
protocol will choose a 
shortest path, but we do not 
know which one.
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 Monitor placement
GOAL:  Choose a small subset S of 
given set M of potential monitoring 
nodes such that

for every b ∈ B, there exist          
m1, m2 ∈ S ( m1≠ m2 ) such that

every shortest b  m1 path is 
vertex-disjoint from every shortest   
b  m2 path

Why every shortest path?

Because OSPF routing 
protocol will choose a 
shortest path, but we do not 
know which one.

Obs: weights need not be 
symmetric.
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Two monitors and 
three GRE tunnels
make up the multicast
overlay topology.

Probe is dispatched 
from m1 to b via T1,
multicast routing at b
send copies back to m1
via T2 and to m2 via T3.

IP Monitoring
Gu et al. (2008) propose a technique based on network 

tomography to infer unidirectional performance on the hop-
on and hop-off paths.

Monitor

Edge router

m1

b

m2Monitor

GRE tunnel T1

GRE tunnel T2

GRE tunnel T3
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It is worth noting that
native multicast support
is by now a standard 
router capability.

After a relatively slow 
start, multicast services 
are now readily available
in provider backbones.

IP Monitoring
Gu et al. (2008) propose a technique based on network 

tomography to infer unidirectional performance on the hop-
on and hop-off paths.

Monitor

Edge router

m1

b

m2Monitor

GRE tunnel T1

GRE tunnel T2

GRE tunnel T3
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Minimum monitoring set problem
We wish to perform the tomographic 

inference of hop-on and hop-off 
performance for each provider edge 
router:
Deploy a set of N measurement 

hosts {M
1
, M

2
, ..., M

N
} such that 

for each provider edge router b, 
there are two measurement 
hosts M

i
 and M

j
 such that the 

physical paths (b, M
i
) and  (b, M

j
) 

are disjoint.
One objective is to minimize N.

paths are given and
are fixed
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Set covering with pairs

• Set covering with pairs (SCP) was introduced by 
Hassin & Segev (2005):
– GIVEN a ground set X of elements and a set Y of 

cover items, and for each x X a set P
x 
of pairs of 

items in Y that cover x.  A subset Y' ⊆ Y covers X if 
for each     x X one of the pairs in P

x 
 is contained in 

Y', FIND a minimum-size covering subset.

• SCP is NP-hard and, unless P = NP, is hard to 
approximate.
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Minimum monitoring set problem

• The MMS problem is a special case of SCP.  We 
prove that:
– Let R(w,u) be the set of all routes from w to u
– MMS is at least as hard to approximate as SCP, even if:

• Each set R(w,u) is the set of all shortest paths from w to u;
• Each set R(w,u) contains only one item, and that is a shortest 

path from w to u

• However, if we allow arbitrary disjoint paths, then 
using dynamic programming, the problem can be 
solved in O( |V|+|E|) time.



 UPitt, March 4, 2010 Node placement for monitoring

Another application: Redundant 
content distribution

Suppose nodes b
1
, b

2
, ... want some 

content (e.g. video).

We want a small set S of servers 
such that:

for every b
i 
 there exist m

1
, m

2 
∈ S 

both of which can provide content 
to b

i

and all paths m
1
  b are disjoint 

with all paths m
2
  b  
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Another application: Redundant 
content distribution

Suppose nodes b
1
, b

2
, ... want some 

content (e.g. video).

We want a small set S of servers 
such that:

for every b
i 
 there exist m

1
, m

2 
∈ S 

both of which can provide content 
to b

i

and all paths m
1
  b are disjoint 

with all paths m
2
  b  

b

m
1

m
2

store content

consumes content
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Algorithms for 
minimum 

monitoring set 
problem
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Algorithms for MMS problem

• Exact integer programming model
• Dynamic programming for arbitrary paths variant
• Greedy heuristic
• Genetic algorithm (heuristic)
• Double hitting set heuristic (DHS)
• Lower bound derived from DHS
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Integer  programming
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Integer programming model

for every potential monitoring 
node v ∈ M, M, let binary variable       
               
               x

v 
= 1 iff node v is chosen
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Greedy algorithm
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Greedy algorithm for MMS problem

• initialize partial cover S = { }
• while S is not a cover do:

– find m  M \ S such that S  {m} covers a maximum 
number of additional branch nodes (break ties by vertex 
index) and set S = S  {m}



 UPitt, March 4, 2010 Node placement for monitoring

Greedy algorithm for MMS problem

• initialize partial cover S = { }
• while S is not a cover do:

– find m  M \ S such that S  {m} covers a maximum 
number of additional branch nodes (break ties by vertex 
index) and set S = S  {m}

– if no m  M \ S yields an increase in coverage, then 
choose a pair {m

1
,m

2
}

 
 M \ S that yields a maximum 

increase in coverage and set S = S  {m
1
}  {m

2
}
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Greedy algorithm for MMS problem

• initialize partial cover S = { }
• while S is not a cover do:

– find m  M \ S such that S  {m} covers a maximum 
number of additional branch nodes (break ties by vertex 
index) and set S = S  {m}

– if no m  M \ S yields an increase in coverage, then 
choose a pair {m

1
,m

2
}

 
 M \ S that yields a maximum 

increase in coverage and set S = S  {m
1
}  {m

2
}

– if no pair exists, then the problem is infeasible
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a b

1 2 3

4 5 6

c d

7

8 e 9

Pairs Cover
2, 6 a, b, d
3, 6 b, d
1, 4 a, c
4, 7 c, e
5, 8 c, e
6, 8 e
8, 9 e

11
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6, 8 e
8, 9 e
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Greedy choice: {2, 6}
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a b

1 2 3

4 5 6

c d

7

8 e 9

Monitor Add'l cover
1 none
3 none
4 none
5 none
7 none
8 e
9 none

11

Greedy choice: {8}

Pairs Cover
2, 6 a, b, d
3, 6 b, d
1, 4 a, c
4, 7 c, e
5, 8 c, e
6, 8 e
8, 9 e
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a b

1 2 3

4 5 6

c d

7

8 e 9

Monitor Add'l cover
1 none
3 none
4 none
5 none
7 none
8 e
9 none

11

Greedy choice: {8}

Pairs Cover
2, 6 a, b, d
3, 6 b, d
1, 4 a, c
4, 7 c, e
5, 8 c, e
6, 8 e
8, 9 e
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a b

1 2 3

4 5 6

c d

7

8 e 9

Monitor Add'l cover
1 none
3 none
4 none
5 c
7 none
9 none

11

Pairs Cover
2, 6 a, b, d
3, 6 b, d
1, 4 a, c
4, 7 c, e
5, 8 c, e
6, 8 e
8, 9 e
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a b

1 2 3

4 5 6

c d

7

8 e 9

Monitor Add'l cover
1 none
3 none
4 none
5 c
7 none
9 none

11

Greedy choice: {5}

Pairs Cover
2, 6 a, b, d
3, 6 b, d
1, 4 a, c
4, 7 c, e
5, 8 c, e
6, 8 e
8, 9 e
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a b

1 2 3

4 5 6

c d

7

8 e 9

Monitor Add'l cover
1 none
3 none
4 none
5 c
7 none
9 none

11

Greedy choice: {5}

Pairs Cover
2, 6 a, b, d
3, 6 b, d
1, 4 a, c
4, 7 c, e
5, 8 c, e
6, 8 e
8, 9 e
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a b

1 2 3

4 5 6

c d

7

8 e 9

11

Solution: {2, 5, 6, 8} of size 4

Optimal solution!

Pairs Cover
2, 6 a, b, d
3, 6 b, d
1, 4 a, c
4, 7 c, e
5, 8 c, e
6, 8 e
8, 9 e
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Genetic algorithm
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Genetic algorithms

Individual: solution

Adaptive methods that are used to solve search
and optimization problems.

Holland (1975)
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Genetic algorithms

Individual: solution
Population: set of fixed number of individuals
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Genetic algorithms evolve population applying
the principle of survival of the fittest.

A series of generations are produced by 
the algorithm. The most fit individual of last
generation is the solution. 

Individuals from one generation are combined
to produce offspring that make up next 
generation.

Genetic algorithms
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Probability of selecting individual to mate
is proportional to its fitness: survival of the 
fittest.

a

b

Genetic algorithms
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a

b

Parents drawn from 
generation K

a

b

Combine
parents

c

c

Child in 
generation K+1

Probability of selecting individual to mate
is proportional to its fitness: survival of the 
fittest.

Genetic algorithms
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Evolution of solutions
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Evolution of solutions



 UPitt, March 4, 2010 Node placement for monitoring

Evolution of solutions
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Evolution of solutions
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Evolution of solutions
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Evolution of solutions
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Evolution of solutions
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Evolution of solutions
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Genetic algorithms
with random keys
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GAs and random keys

• Introduced by Bean (1994) 
for sequencing problems.
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GAs and random keys

• Introduced by Bean (1994) 
for sequencing problems.

• Individuals are strings of 
real-valued numbers 
(random keys) in the 
interval [0,1].

S = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
          s(1)   s(2)   s(3)   s(4)    s(5)
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GAs and random keys

• Introduced by Bean (1994) 
for sequencing problems.

• Individuals are strings of 
real-valued numbers 
(random keys) in the 
interval [0,1].

• Sorting random keys results 
in a sequencing order.

S = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
          s(1)   s(2)   s(3)   s(4)    s(5)

S' = ( 0.05, 0.19, 0.25, 0.67, 0.89 )
          s(4)   s(2)   s(1)   s(3)    s(5)
Sequence: 4 – 2 – 1 – 3 – 5 
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GAs and random keys

• Introduced by Bean (1994) 
for sequencing problems.

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
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GAs and random keys

• Introduced by Bean (1994) 
for sequencing problems.

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passed the allele to 
the child.

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = (                                              )

• Introduced by Bean (1994) 
for sequencing problems.

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passed the allele to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25                                      )

• Introduced by Bean (1994) 
for sequencing problems.

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passed the allele to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90                             )

• Introduced by Bean (1994) 
for sequencing problems.

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passed the allele to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90, 0.76                    )

• Introduced by Bean (1994) 
for sequencing problems.

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passed the allele to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90, 0.76, 0.05          )

• Introduced by Bean (1994) 
for sequencing problems.

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passed the allele to 
the child.



 UPitt, March 4, 2010 Node placement for monitoring

GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90, 0.76, 0.05, 0.89 )

If every random-key array corresponds
to a feasible solution: Mating always
produces feasible offspring.

• Introduced by Bean (1994) 
for sequencing problems.

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passed the allele to 
the child.
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GAs and random keys

• Introduced by Bean (1994) 
for sequencing problems.

• Initial population is made 
up of P chromosomes, each 
with N genes, each having 
a value (allele) generated 
uniformly at random in the 
interval [0,1].
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GAs and random keys
• Introduced by Bean (1994) 

for sequencing problems.
• At the K-th generation, 

compute the cost of each 
solution and partition the 
solutions into two sets: 
elite solutions, non-elite 
solutions. Elite set should 
be smaller of the two sets 
and contain best solutions.

 Elite solutions

Population K

Non-elite
solutions
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GAs and random keys
• Introduced by Bean (1994) 

for sequencing problems.
• Evolutionary dynamics

Population K Population K+1

 Elite solutions

Non-elite
solutions
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GAs and random keys
• Introduced by Bean (1994) 

for sequencing problems.
• Evolutionary dynamics

– Copy elite solutions from population 
K to population K+1

 Elite solutions

Population K+1Population K

 Elite solutions

Non-elite
solutions
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GAs and random keys
• Introduced by Bean (1994) 

for sequencing problems.
• Evolutionary dynamics

– Copy elite solutions from population 
K to population K+1

– Add R random solutions (mutants) 
to population K+1

 Elite solutions

Mutant
solutions

Population K+1Population K

 Elite solutions

Non-elite
solutions
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Biased random key GA
• Evolutionary dynamics

– Copy elite solutions from population 
K to population K+1

– Add R random solutions (mutants) 
to population K+1

– While K+1-th population < P
• BIASED RANDOM KEY GA: Mate 

elite solution with non elite to 
produce child in population K+1. 
Mates are chosen at random.

 Elite solutions

Mutant
solutions

X

Population K+1

Probability
child inherits
allele of elite 
parent > 0.5Population K

 Elite solutions

Non-elite
solutions

Mutant
solutions
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Compare BRKGA with two variants of
RKGA using time-to-target plots.

Run each heuristic many times 
(independently, i.e. with different 
random seeds). Stop when optimal is
found.

Plot CDF for each heuristic.
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BRKAGA – Biased random-key GA
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BRKAGA – Biased random-key GA
RKGA – Bean's random-key GA
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BRKAGA – Biased random-key GA
RKGA – Bean's random-key GA
RKGA-ord – Bean's random-key GA 
    with probability of child inheriting 
    allele of most fit parent > 0.5 

220 node example

200 runs
200 runs

84 runs
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Decoders
• A decoder is a deterministic algorithm that takes as input a random-key 

vector and returns a feasible solution of the optimization problem and 
its cost.

• Bean (1994) proposed decoders based on sorting the random-key 
vector to produce a sequence.

• A random-key GA searches the solution space indirectly by searching 
the space of random keys and using the decoder to evaluate fitness of 
the random key.

[0,1]N Solution space
of optimization
problem

decoder
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Decoders

[0,1]N Solution space
of optimization
problem

decoder

Search solution
space indirectly

• A decoder is a deterministic algorithm that takes as input a random-key 
vector and returns a feasible solution of the optimization problem and 
its cost.

• Bean (1994) proposed decoders based on sorting the random-key 
vector to produce a sequence.

• A random-key GA searches the solution space indirectly by searching 
the space of random keys and using the decoder to evaluate fitness of 
the random key.
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Decoders
• A decoder is a deterministic algorithm that takes as input a random-key 

vector and returns a feasible solution of the optimization problem and 
its cost.

• Bean (1994) proposed decoders based on sorting the random-key 
vector to produce a sequence.

• A random-key GA searches the solution space indirectly by searching 
the space of random keys and using the decoder to evaluate fitness of 
the random key.

[0,1]N Solution space
of optimization
problem

decoder
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space indirectly
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Decoders
• A decoder is a deterministic algorithm that takes as input a random-key 

vector and returns a feasible solution of the optimization problem and 
its cost.

• Bean (1994) proposed decoders based on sorting the random-key 
vector to produce a sequence.

• A random-key GA searches the solution space indirectly by searching 
the space of random keys and using the decoder to evaluate fitness of 
the random key.

[0,1]N Solution space
of optimization
problem

decoder

Search solution
space indirectly
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Framework for biased random-key genetic algorithms

Generate P vectors 
of random keys 

Decode each vector 
of random keys 

Stopping rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions 
to next population

Generate mutants in 
next population

Combine elite and
non-elite solutions
and add children to

next population

no

stop

yes
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Framework for biased random-key genetic algorithms

Generate P vectors 
of random keys 

Decode each vector 
of random keys 

Stopping rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions 
to next population

Generate mutants in 
next population

Combine elite and
non-elite solutions
and add children to

next population

stop

Problem independent

no yes
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Framework for biased random-key genetic algorithms

Generate P vectors 
of random keys 

Decode each vector 
of random keys 

Stopping rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions 
to next population

Generate mutants in 
next population

Combine elite and
non-elite solutions
and add children to

next population

stop

Problem independent

no yes

Problem dependent
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BRKGA for the 
MMS problem
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BRKGA for the MMS problem
• Chromosome: 

– A vector X of N random random keys (random numbers in 
the interval [0,1]), where N is the number of potential 
monitoring nodes. The i-th random key corresponds to the i-
th monitoring node.

• Decoder: 
– For i = 1,N:  if X(i) ≥ 0.5, add i-th monitoring node to 

solution
– If solution is feasible, i.e. all customer nodes are covered: 

STOP
– Else, apply greedy algorithm to cover uncovered branch 

nodes.
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Effect of size of population: 100 node example
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Effect of size of mutant set: 100 node example
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Effect of size of elite set: 100 node example
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Effect of inheritance probability: 100 node example
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BRKGA for the MMS problem

• Size of population: N (number of monitoring nodes)
• Size of elite set: 15% of N
• Size of mutant set: 10% of N
• Biased coin probability: 70%
• Stop after N generations without improvement of 

best found solution
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generations

so lutio n
n100-i2-m100-b100 (opt = 23)

Optimal value
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Time (ibm t41 secs)

solution
n100-i2-m100-b100 (opt = 23)

BRKGA solutions Random multi-start solutions

Optimal value
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Double hitting set
heuristic
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Double hitting-set heuristic

• The above situation should NOT happen too much (especially 
if the weights are widely distributed)

• IDEA: Design an algorithm for the case of not much splitting 
and hope for the best

mb

3

5

6

4
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Double hitting-set heuristic

• DEFINITION:  We say m is good for b if all shortest b → m paths depart 
b via the same arc.

• DEFINITION: For some fixed parameter t ( 1   t   |M| ), we say b is t-
good if at least t m's are good for b.

• We LIKE t-good nodes, DESPISE t-bad ones.

• IDEA: Set aside t-bad nodes and deal with them later.

mb
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Double hitting-set heuristic

• 1a) For every t-good b, let                    
  X

b
 = { monitoring nodes m which are 

  good for b }    (|X
b
| ≥ t )

• 1b) Find a small set X ⊆ M such that,   
  for all b, X ∩ X

b
 ≠ ∅                        

(hitting set problem)

monitoring nodes 
    1 1 0 0 1 0
    0 1 1 1 0 1
    1 1 1 0 1 0
    0 0 1 0 1 1
    1 1 0 1 0 1

t-good
branch
nodes

← #1's ≥ t 

t = 3
here
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Double hitting-set heuristic

monitoring nodes 
    1 1 0 0 1 0
    0 1 1 1 0 1
    1 1 1 0 1 0
    0 0 1 0 1 1
    1 1 0 1 0 1

t-good
branch
nodes

← #1's ≥ t 

t = 3
here

Greedy algorithm

REPEAT:
  1) choose column with most 1's
  2) delete rows with 1 in that column

• 1a) For every t-good b, let                    
  X

b
 = { monitoring nodes m which are 

  good for b }    (|X
b
| ≥ t )

• 1b) Find a small set X ⊆ M such that,   
  for all b, X ∩ X

b
 ≠ ∅                        

(hitting set problem)
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Double hitting-set heuristic

monitoring nodes 
    1 1 0 0 1 0
    0 1 1 1 0 1
    1 1 1 0 1 0
    0 0 1 0 1 1
    1 1 0 1 0 1

t-good
branch
nodes

← #1's ≥ t 

t = 3
here

Greedy algorithm

REPEAT:
  1) choose column with most 1's
  2) delete rows with 1 in that column

• 1a) For every t-good b, let                    
  X

b
 = { monitoring nodes m which are 

  good for b }    (|X
b
| ≥ t )

• 1b) Find a small set X ⊆ M such that,   
  for all b, X ∩ X

b
 ≠ ∅                        

(hitting set problem)
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Double hitting-set heuristic

• 1a) For every t-good b, let                    
  X

b
 = { monitoring nodes m which are 

  good for b }    (|X
b
| ≥ t )

• 1b) Find a small set X ⊆ M such that,   
  for all b, X ∩ X

b
 ≠ ∅                        

(hitting set problem)

• 1c) For all t-good b, choose                 
  m

b 
∈ X ∩ X

b 
.  Let y

b 
be such that arc 

  (b, y
b 
) is on shortest path b → m

b

m
bb y

b
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Double hitting-set heuristic

• We now have one monitoring node for 
b: m

b
.  We need a second monitoring 

node m'
b 
such that { m

b
, m'

b 
} covers b.

• 2a) For every t-good node b, let           
Y

b
 = { monitoring nodes m such that all   

       b → m shortest paths avoid             
       arc (b, y

b 
) }

• Find a small set Y such that, for all b,    
Y ∩ Y

b
 ≠ ∅  (another hitting-set 

problem)
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Double hitting-set heuristic

• We now have one monitoring node for 
b: m

b
.  We need a second monitoring 

node m'
b 
such that { m

b
, m'

b 
} covers b.

• 2a) For every t-good node b, let           
Y

b
 = { monitoring nodes m such that all   

       b → m shortest paths avoid             
       arc (b, y

b 
) }

• 2b) Find a small set Y such that, for all    
  b,  Y ∩ Y

b
 ≠ ∅  (another hitting-set      

  problem)

m
bb y

b

y

m'
b
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Double hitting-set heuristic

• We now have one monitoring node for 
b: m

b
.  We need a second monitoring 

node m'
b 
such that { m

b
, m'

b 
} covers b.

• 2a) For every t-good node b, let           
Y

b
 = { monitoring nodes m such that all   

       b → m shortest paths avoid             
       arc (b, y

b 
) }

• 2b) Find a small set Y such that, for all    
  b,  Y ∩ Y

b
 ≠ ∅  (another hitting-set      

  problem)

m
bb y

b

y

m'
b

 
CLAIM: paths b → m

b
 and       

b → m'
b
 are disjoint: 

                  { m
b
, m'

b 
} covers b
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Double hitting-set heuristic

• We now have covered all the t-good 
nodes.  We must now cover the t-bad 
nodes (hopefully only a handful for 
them)

• 3a) Cover the t-bad nodes with the         
  greedy algorithm.

• 4a) Remove redundant monitoring          
  nodes (“minimalize”)
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Double hitting-set heuristic

• We now have covered all the t-good 
nodes.  We must now cover the t-bad 
nodes (hopefully only a handful for 
them)

• 3a) Cover the t-bad nodes with the         
  greedy algorithm.

• 4a) Remove redundant monitoring          
  nodes (“minimalize”)

What should be the value of
parameter t?

If t is large, then first hitting
set has small solution

If t is small, then there are 
more t-good nodes, fewer
t-bad nodes

IDEA:  try t = floor(|M|/2) and
t = 1 and take better solution.
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Double hitting-set heuristic

• We now have covered all the t-good 
nodes.  We must now cover the t-bad 
nodes (hopefully only a handful for 
them)

• 3a) Cover the t-bad nodes with the         
  greedy algorithm.

• 4a) Remove redundant monitoring          
  nodes (“minimalize”)

What should be the value of
parameter t?

If t is large, then first hitting
set has small solution

If t is small, then there are 
more t-good nodes, fewer
t-bad nodes

IDEA:  try t = floor(|M|/2) and
t = 1 and take better solution.

Performance in theory:  If t = floor(|M|/2), the
cover of the n t-good nodes has size  
                                              (1+ log n) times OPT. 
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Lower bound
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Lower bound on OPT

• OPT for monitor placement ≥ OPT for the 2nd 
hitting set problem

• We can solve the 2nd hitting set instance 
optimally using CPLEX  

• On our test instances, bounds are quite tight
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Experimental results
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Experimental results

• 560 synthetic instances, with 25, 50, 100, 190, 220, 250, 300, 
and 558 nodes and varying sizes of potential monitoring nodes 
and branch nodes.
– Largest 2-connected component in any of the synthetic instances 

contained 34% of the nodes and the largest instance had only 10% 
of the nodes.

• 65 real-world instances derived from five large scale Tier 1 ISP 
backbone  networks and using real OSPF weights.  These 
networks ranged in size from a little more than 100 routers to 
nearly 1000 routers.
– Largest 2-connected component had at least 84% of the nodes.
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Experimental results

• Integer program (CPLEX) could only solve instances with up 
to 100 nodes.  This is in contrast to “classical” set covering 
where much larger instance are solved easily.

• On the other hand, the 2nd hitting set problem could be 
easily solved to optimality using CPLEX.  Lower bounds 
were produced for all test instances.

• DHS and GREEDY are both much faster than GA.  On some 
of the largest instances (about 1000 routers) DHS and 
GREEDY took one hour while GA took 10 days. GA can be 
sped up with trivial parallel implementation.
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Synthetic networks

• CPLEX solved 324 of 560 instances to OPT
• Heuristics found optimal solutions for some of 

those instances:
– Greedy algorithm: 59/324 = 18.2%
– Double hitting set algorithm: 65/324 = 20.0%
– Genetic algorithm: 318/324 = 98.1%
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Synthetic networks

• CPLEX computed lower bounds for all 560 
instances

• Heuristics matched the lower bound for some of 
those instances:
– Greedy algorithm: 236/560 = 42.1%
– Double hitting set algorithm: 363/560 = 64.8 %
– Genetic algorithm: 394/560 = 70.4%



 UPitt, March 4, 2010 Node placement for monitoring

Synthetic networks: comparing 
heuristic solutions

• Double hitting set (DHS) vs Greedy
– DHS better than Greedy:  456/560 = 81.4%

– DHS equal to Greedy: 90/560 = 16.1%

– Greedy better than DHS: 14/560 = 2.5%

• Genetic algorithm (GA) vs DHS
– GA better than DHS: 68/560 = 12.1%

– GA equal to DHS: 482/560 = 86.1%

– DHS better than GA: 10/560 = 1.8%

• GA vs Greedy
– GA better than Greedy: 487/560 = 87.0%

– GA equal to Greedy: 73/560 = 13.0%

– Greedy better than GA: 0/560 = 0%
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Synthetic networks

• CPLEX found optimal solutions for instances with 
fewer than 100 routers

• Only 20-30% of branch nodes need to be 
monitoring nodes.

•  Greedy algorithm did not perform well.  
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26:7:7 50:25:25 100:100:100 558:70:70220:110:110
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26:7:7 50:50:25 100:100:13 558:70:70250:125:125
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26:7:7 50:50:25 100:100:13 558:70:70
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26:4:4 50:50:25 190:190:190 300:300:300 558:558:558
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26:7:7 100:100:25 220:220:25 300:300:300 558:558:558
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Real networks

• CPLEX could not solve any instance to optimality.  
• Lower bounds were computed for all 65 instances.
• Heuristics matched lower bounds for some of the 

instances:
– Greedy: 27/65 = 41.5%
– GA: 48/65 = 73.8%
– DHS: 54/65 = 83.%
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Real networks: comparing heuristic 
solutions

• Double hitting set (DHS) vs Greedy
– DHS better than Greedy:  9/65 = 13.9%

– DHS equal to Greedy: 54/65 = 83.1%

– Greedy better than DHS: 2/65 = 3.1%

• Genetic algorithm (GA) vs DHS
– GA better than DHS: 6/65 = 9.2%

– GA equal to DHS: 54/65 = 83.1%

– DHS better than GA: 5/65 = 7.7%

• GA vs Greedy
– GA better than Greedy: 12/65 = 18.5%

– GA equal to Greedy: 48/65 = 73.8%

– Greedy better than GA: 5/65 = 7.7%



 UPitt, March 4, 2010 Node placement for monitoring

Real networks

• Too large for CPLEX

• Only 15-20% of branch nodes need to be monitoring nodes.

• Greedy algorithm did perform well.  It found a solution equal to LB in 
27 of the 65 instances. Matched HH on 54 instances and GA on 48.
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Concluding 
remarks
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Concluding remarks
• We constructed a number of network test instances to 

capture the topology and routing of large internetworks;

• We demonstrated algorithms that provide a feasible 
combination of accuracy and execution times;

• We showed that solutions derived from our methods provide 
a useful saving in the number of measurement nodes 
compared with the naive approach of using each branch 
point as a measurement node:  Networks having a large 
number of branch nodes need only 10-30% of branch points 
to be measurement nodes.
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The End
These slides and all of my papers cited in this talk 

can be downloaded from my homepage:
http://www.research.att.com/~mgcr
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