
 UPitt, March 4, 2010 Node placement for monitoring

Seminar given at the University of Pittsburgh
Pittsburgh, PA  March 4, 2010

Algorithms for node
placement in path-disjoint
network monitoring

Mauricio G. C. Resende
AT&T Labs Research
Florham Park, New Jersey
 mgcr@research.att.com

 UPitt, March 4, 2010 Node placement for monitoring

Joint work with:
L. Breslau (AT&T Research), I. Diakonikolas (Columbia U.),

N. Duffield (AT&T Research), Y. Gu (NEC Research),
M. Hajiaghayi (AT&T Research), D.S. Johnson (AT&T Research),
H, Karloff (AT&T Research), and S. Sen (AT&T Research)

 “Host Placement for Path-Disjoint Monitoring”

 AT&T Labs Research Technical Report, March 2010.

 UPitt, March 4, 2010 Node placement for monitoring

Summary
• Network monitoring with tomography
• Minimum monitoring set (MMS) problem
• Algorithms for MMS

– Integer programming
– Greedy algorithm
– Genetic algorithm
– Double hitting set heuristic

• Computational experiments
• Concluding remarks

 UPitt, March 4, 2010 Node placement for monitoring

Network monitoring
with tomography

 UPitt, March 4, 2010 Node placement for monitoring

 IP Monitoring
• Internet Service Providers need to monitor the

performance of customer traffic within their
networks.

• More specifically, ISPs want to measure:
– Unidirectional reachability
– Packet loss rate
– Packet delay along the edge-to-edge paths followed

by customer traffic

 UPitt, March 4, 2010 Node placement for monitoring

 IP Monitoring
• Internet Service Providers need to monitor the

performance of customer traffic within their
networks.

• More specifically, ISPs want to measure:
– Unidirectional reachability
– Packet loss rate
– Packet delay along the edge-to-edge paths followed

by customer traffic

 UPitt, March 4, 2010 Node placement for monitoring

 IP Monitoring
• Traffic entails both the links followed by traffic

and the treatment of packets within the routers
that move them from link to to link.

• Flow follows fine-grained paths differentiated
from others by, e.g.
– Class of service
– Application class
– Virtual private network (VPN) ownership

 UPitt, March 4, 2010 Node placement for monitoring

 IP Monitoring
• Tools such as traceroute or

ping suffer from one or
both of the following
limitations:
– They measure roundtrip

performance; want to measure
one-way performance

 UPitt, March 4, 2010 Node placement for monitoring

 IP Monitoring
• Tools such as traceroute or

ping suffer from one or
both of the following
limitations:
– They measure roundtrip

performance; want to measure
one-way performance

measure round-trip:
hard to infer one-way
performance

 UPitt, March 4, 2010 Node placement for monitoring

 IP Monitoring
• Tools such as traceroute or

ping suffer from one or
both of the following
limitations:
– They measure roundtrip

performance;
– Their probes may not follow

the customer paths, either
because they transit different
links, or experience different
router treatment.

customer
path

 UPitt, March 4, 2010 Node placement for monitoring

 IP Monitoring
• Tools such as traceroute or

ping suffer from one or
both of the following
limitations:
– They measure roundtrip

performance;
– Their probes may not follow

the customer paths, either
because they transit different
links, or experience different
router treatment.

customer
path

probe path

 UPitt, March 4, 2010 Node placement for monitoring

 IP Monitoring
• In principle, edge routers

could be equipped to
launch and receive probes
that follow customer
traffic:
– Could impact network

performance
– Very costly to deploy

networkwide
• Expensive equipment
• Expensive to manage

Edge router

 UPitt, March 4, 2010 Node placement for monitoring

 IP Monitoring
• In principle, edge routers

could be equipped to
launch and receive probes
that follow customer
traffic:
– Could impact network

performance
– Very costly to deploy

networkwide
• Expensive equipment
• Expensive to manage

Edge router

Probe
equipment

 UPitt, March 4, 2010 Node placement for monitoring

 IP Monitoring
• In principle, edge routers

could be equipped to
launch and receive probes
that follow customer
traffic:
– Could impact network

performance
– Very costly to deploy

networkwide
• Expensive equipment
• Expensive to manage

Edge router

Probe
equipment

 UPitt, March 4, 2010 Node placement for monitoring

 IP Monitoring
• Breslau et al. (2006) proposed a lightweight

approach to measurement of customer traffic
paths in VPNs.

Customer
site #1 Customer

site #2

Monitor

Edge router
Edge router

 UPitt, March 4, 2010 Node placement for monitoring

 IP Monitoring
• Breslau et al. (2006) proposed a lightweight

approach to measurement of customer traffic
paths in VPNs.

Customer
site #1 Customer

site #2

Monitor

Edge router
Edge router

Want to monitor
performance of path.

 UPitt, March 4, 2010 Node placement for monitoring

 IP Monitoring
• Breslau et al. (2006) proposed a lightweight

approach to measurement of customer traffic
paths in VPNs.

Customer
site #1 Customer

site #2

Monitor

Edge router
Edge router

Want to monitor
performance of path.

Generic Routine Encapsulation
(GRE) tunnels enable steering
packets on path to be
monitored

 UPitt, March 4, 2010 Node placement for monitoring

 IP Monitoring
• Breslau et al. (2006) proposed a lightweight

approach to measurement of customer traffic
paths in VPNs.

Customer
site #1 Customer

site #2

Monitor

Edge router
Edge router

Want to monitor
performance of path.

Circuit performance of (b1,b2)
seen at M is a composition of
the performances of (M,b1),
(b1,b2), and (b2,M).

M

b1

b2

 UPitt, March 4, 2010 Node placement for monitoring

 IP Monitoring
• Breslau et al. (2006) proposed a lightweight

approach to measurement of customer traffic
paths in VPNs.

Customer
site #1 Customer

site #2

Monitor

Edge router
Edge router

Want to monitor
performance of path.

To estimate performance of
(b1,b2) we need to factor out
the one-way performances of
hop-on (M,b1) and hop-off
(b2,M): Same problem as before.

M

b1

b2

 UPitt, March 4, 2010 Node placement for monitoring

 IP Monitoring

Monitor

M

b1

b2

Hop-on
path

Hop-off
path

B = “branch nodes”  V. We want to measure performance
(e.g. loss rate) on some directed paths between vertices in B

branch node

branch node

 UPitt, March 4, 2010 Node placement for monitoring

 IP Monitoring

Monitor

M

b1

b2

Hop-on
path

Hop-off
path

IDEA: Establish a monitoring node M. For some pairs b1, b2 ∈ B,
send packet M to b1 to b2 to M.

branch node

branch node

 UPitt, March 4, 2010 Node placement for monitoring

 IP Monitoring

Monitor

M

b1

b2

Hop-on
path

Hop-off
path

We can measure the “overall” loss rate. Must factor out the hop-on
and hop-off. How?

branch node

branch node

 UPitt, March 4, 2010 Node placement for monitoring

 IP Monitoring

Monitor

M

b1

b2

Hop-on
path

Hop-off
path

Want “disjoint” paths for independence. Must estimate loss rates
for hop-on path and hop-off path to factor them out.

branch node

branch node

 UPitt, March 4, 2010 Node placement for monitoring

 Estimating hop-on path loss

m1

Monitor

M

b

Hop-on
path

Find two “monitoring” nodes m1 and m2 and send packets from M
to b and from b to m1 and m2.

monitoring node

branch node

m2 monitoring node

 UPitt, March 4, 2010 Node placement for monitoring

 Estimating hop-on path loss

m1

Monitor

M

b

Hop-on
path

What fraction of packets arrive at: 1) both m1 and m2? (p11);
 2) m1, but not m2? (p10); 3) m2, but not m1? (p01)

monitoring node

branch node

m2 monitoring node

 UPitt, March 4, 2010 Node placement for monitoring

 Estimating hop-on path loss

M

b

m1

Monitor If the three paths are arc-disjoint,
estimate nonloss rate  on hop-on path
M → b as follows:
p11 =   
p10 =   (1−)
p01 =  (1−) 
p11 + p10 =  
p11 + p01 =  
Therefore:
 = (p11+p10)(p11+p01) / p11

m2



 

nonloss rates
on each path

 UPitt, March 4, 2010 Node placement for monitoring

 Estimating hop-off path loss

M

b

Monitor To estimate loss rate on hop-off path
b → M, send packet M → b → M.
Since we have already loss rate estimate
 for hop-on path M → b, we can
estimate loss rate for b → M from
roundtrip loss rate,

if path M  b
 is arc-disjoint from
 path b  M.



hop-on

hop-off

 UPitt, March 4, 2010 Node placement for monitoring

 Simple lemma

a

LEMMA:
If weight (u,v) = weight (v,u) > 0 for all
u,v ∈ V, then for all nodes a, b, c,
shortest a  b and b c paths are
(directed) arc disjoint.

PROOF (by contradiction):
Suppose shortest paths are
a  P  Q  b and b  P  Q  c
clearly v  y + z
hence z  v  y
and z < v + y because y > 0.
So b  Q  c is shorter than
b  P  Q  c !!!

P Q

c

ba
x y

v

z

u

 UPitt, March 4, 2010 Node placement for monitoring

 Consequence of simple lemma

In practice, all or almost all arc weights
are symmetric. If so, all paths in

M

b1

b2

are arc disjoint.

 UPitt, March 4, 2010 Node placement for monitoring

 Consequence of simple lemma

In practice, all or almost all arc weights
are symmetric. If so, all paths in

are arc disjoint.

M

b

hop-on
hop-off

 UPitt, March 4, 2010 Node placement for monitoring

 Consequence of simple lemma

In
 The M  b and b  m1 paths are

arc disjoint, as are the
M  b and b  m2 paths.

How about b m1 and b  m2
path?

M

b

m1 m2

 UPitt, March 4, 2010 Node placement for monitoring

 Consequence of simple lemma

In
 The M  b and b  m1 paths are

arc disjoint, as are the
M  b and b  m2 paths.

How about b m1 and b  m2
path?

Not disjoint in general.

M

b

m1 m2

 UPitt, March 4, 2010 Node placement for monitoring

Minimum
monitoring set

problem

 UPitt, March 4, 2010 Node placement for monitoring

 Monitor placement
GOAL: Choose a small subset S of
given set M of potential monitoring
nodes such that

for every b ∈ B, there exist
m1, m2 ∈ S (m1≠ m2) such that

every shortest b  m1 path is
vertex-disjoint from every shortest
b  m2 path

 UPitt, March 4, 2010 Node placement for monitoring

 Monitor placement
GOAL: Choose a small subset S of
given set M of potential monitoring
nodes such that

for every b ∈ B, there exist
m1, m2 ∈ S (m1≠ m2) such that

every shortest b  m1 path is
vertex-disjoint from every shortest
b  m2 path

Why every shortest path?

Because OSPF routing
protocol will choose a
shortest path, but we do not
know which one.

 UPitt, March 4, 2010 Node placement for monitoring

 Monitor placement
GOAL: Choose a small subset S of
given set M of potential monitoring
nodes such that

for every b ∈ B, there exist
m1, m2 ∈ S (m1≠ m2) such that

every shortest b  m1 path is
vertex-disjoint from every shortest
b  m2 path

Why every shortest path?

Because OSPF routing
protocol will choose a
shortest path, but we do not
know which one.

Obs: weights need not be
symmetric.

 UPitt, March 4, 2010 Node placement for monitoring

Two monitors and
three GRE tunnels
make up the multicast
overlay topology.

Probe is dispatched
from m1 to b via T1,
multicast routing at b
send copies back to m1
via T2 and to m2 via T3.

IP Monitoring
Gu et al. (2008) propose a technique based on network

tomography to infer unidirectional performance on the hop-
on and hop-off paths.

Monitor

Edge router

m1

b

m2Monitor

GRE tunnel T1

GRE tunnel T2

GRE tunnel T3

 UPitt, March 4, 2010 Node placement for monitoring

It is worth noting that
native multicast support
is by now a standard
router capability.

After a relatively slow
start, multicast services
are now readily available
in provider backbones.

IP Monitoring
Gu et al. (2008) propose a technique based on network

tomography to infer unidirectional performance on the hop-
on and hop-off paths.

Monitor

Edge router

m1

b

m2Monitor

GRE tunnel T1

GRE tunnel T2

GRE tunnel T3

 UPitt, March 4, 2010 Node placement for monitoring

Minimum monitoring set problem
We wish to perform the tomographic

inference of hop-on and hop-off
performance for each provider edge
router:
Deploy a set of N measurement

hosts {M
1
, M

2
, ..., M

N
} such that

for each provider edge router b,
there are two measurement
hosts M

i
 and M

j
 such that the

physical paths (b, M
i
) and (b, M

j
)

are disjoint.
One objective is to minimize N.

paths are given and
are fixed

 UPitt, March 4, 2010 Node placement for monitoring

Minimum monitoring set problem
We wish to perform the tomographic

inference of hop-on and hop-off
performance for each provider edge
router:
Deploy a set of N measurement

hosts {M
1
, M

2
, ..., M

N
} such that

for each provider edge router b,
there are two measurement
hosts M

i
 and M

j
 such that the

physical paths (b, M
i
) and (b, M

j
)

are disjoint.
One objective is to minimize N.

paths are given and
are fixed

 UPitt, March 4, 2010 Node placement for monitoring

Minimum monitoring set problem
We wish to perform the tomographic

inference of hop-on and hop-off
performance for each provider edge
router:
Deploy a set of N measurement

hosts {M
1
, M

2
, ..., M

N
} such that

for each provider edge router b,
there are two measurement
hosts M

i
 and M

j
 such that the

physical paths (b, M
i
) and (b, M

j
)

are disjoint.
One objective is to minimize N.

paths are given and
are fixed

 UPitt, March 4, 2010 Node placement for monitoring

Minimum monitoring set problem
We wish to perform the tomographic

inference of hop-on and hop-off
performance for each provider edge
router:
Deploy a set of N measurement

hosts {M
1
, M

2
, ..., M

N
} such that

for each provider edge router b,
there are two measurement
hosts M

i
 and M

j
 such that the

physical paths (b, M
i
) and (b, M

j
)

are disjoint.
One objective is to minimize N.

paths are given and
are fixed

 UPitt, March 4, 2010 Node placement for monitoring

Minimum monitoring set problem
We wish to perform the tomographic

inference of hop-on and hop-off
performance for each provider edge
router:
Deploy a set of N measurement

hosts {M
1
, M

2
, ..., M

N
} such that

for each provider edge router b,
there are two measurement
hosts M

i
 and M

j
 such that the

physical paths (b, M
i
) and (b, M

j
)

are disjoint.
One objective is to minimize N.

paths are given and
are fixed

 UPitt, March 4, 2010 Node placement for monitoring

Minimum monitoring set problem
We wish to perform the tomographic

inference of hop-on and hop-off
performance for each provider edge
router:
Deploy a set of N measurement

hosts {M
1
, M

2
, ..., M

N
} such that

for each provider edge router b,
there are two measurement
hosts M

i
 and M

j
 such that the

physical paths (b, M
i
) and (b, M

j
)

are disjoint.
One objective is to minimize N.

paths are given and
are fixed

 UPitt, March 4, 2010 Node placement for monitoring

Minimum monitoring set problem
We wish to perform the tomographic

inference of hop-on and hop-off
performance for each provider edge
router:
Deploy a set of N measurement

hosts {M
1
, M

2
, ..., M

N
} such that

for each provider edge router b,
there are two measurement
hosts M

i
 and M

j
 such that the

physical paths (b, M
i
) and (b, M

j
)

are disjoint.
One objective is to minimize N.

paths are given and
are fixed

 UPitt, March 4, 2010 Node placement for monitoring

Minimum monitoring set problem
We wish to perform the tomographic

inference of hop-on and hop-off
performance for each provider edge
router:
Deploy a set of N measurement

hosts {M
1
, M

2
, ..., M

N
} such that

for each provider edge router b,
there are two measurement
hosts M

i
 and M

j
 such that the

physical paths (b, M
i
) and (b, M

j
)

are disjoint.
One objective is to minimize N.

paths are given and
are fixed

 UPitt, March 4, 2010 Node placement for monitoring

Set covering with pairs

• Set covering with pairs (SCP) was introduced by
Hassin & Segev (2005):
– GIVEN a ground set X of elements and a set Y of

cover items, and for each x X a set P
x
of pairs of

items in Y that cover x. A subset Y' ⊆ Y covers X if
for each x X one of the pairs in P

x
 is contained in

Y', FIND a minimum-size covering subset.

• SCP is NP-hard and, unless P = NP, is hard to
approximate.

 UPitt, March 4, 2010 Node placement for monitoring

Minimum monitoring set problem

• The MMS problem is a special case of SCP. We
prove that:
– Let R(w,u) be the set of all routes from w to u
– MMS is at least as hard to approximate as SCP, even if:

• Each set R(w,u) is the set of all shortest paths from w to u;
• Each set R(w,u) contains only one item, and that is a shortest

path from w to u

• However, if we allow arbitrary disjoint paths, then
using dynamic programming, the problem can be
solved in O(|V|+|E|) time.

 UPitt, March 4, 2010 Node placement for monitoring

Another application: Redundant
content distribution

Suppose nodes b
1
, b

2
, ... want some

content (e.g. video).

We want a small set S of servers
such that:

for every b
i
 there exist m

1
, m

2
∈ S

both of which can provide content
to b

i

and all paths m
1
  b are disjoint

with all paths m
2
  b

 UPitt, March 4, 2010 Node placement for monitoring

Another application: Redundant
content distribution

Suppose nodes b
1
, b

2
, ... want some

content (e.g. video).

We want a small set S of servers
such that:

for every b
i
 there exist m

1
, m

2
∈ S

both of which can provide content
to b

i

and all paths m
1
  b are disjoint

with all paths m
2
  b

b

m
1

m
2

store content

consumes content

 UPitt, March 4, 2010 Node placement for monitoring

Algorithms for
minimum

monitoring set
problem

 UPitt, March 4, 2010 Node placement for monitoring

Algorithms for MMS problem

• Exact integer programming model
• Dynamic programming for arbitrary paths variant
• Greedy heuristic
• Genetic algorithm (heuristic)
• Double hitting set heuristic (DHS)
• Lower bound derived from DHS

 UPitt, March 4, 2010 Node placement for monitoring

Algorithms for MMS problem

• Exact integer programming model
• Dynamic programming for arbitrary paths variant
• Greedy heuristic
• Genetic algorithm (heuristic)
• Double hitting set heuristic (DHS)
• Lower bound derived from DHS

 UPitt, March 4, 2010 Node placement for monitoring

Integer programming

 UPitt, March 4, 2010 Node placement for monitoring

Integer programming model

for every potential monitoring
node v ∈ M, M, let binary variable

 x

v
= 1 iff node v is chosen

 UPitt, March 4, 2010 Node placement for monitoring

Integer programming model

for every potential monitoring
node v ∈ M, M, let binary variable

 x

v
= 1 iff node v is chosen

for each pair {u,v} of potential
monitoring nodes (u < v) define
continuous variable y

u,v
 such that

 y
u,v

 x
u

 yy
u,v u,v

 x x
v v

yy
u,vu,v

 00 then x then x
u u
= x= x

v v
= 1= 1

 UPitt, March 4, 2010 Node placement for monitoring

Integer programming model

for every potential monitoring
node v ∈ M, M, let binary variable

 x

v
= 1 iff node v is chosen

for each pair {u,v} of potential
monitoring nodes (u < v) define
continuous variable y

u,v
 such that

 y
u,v

 x
u

 yy
u,v u,v

 x x
v v

yy
u,vu,v

 00 then x then x
u u
= x= x

v v
= 1= 1

for each branch node b that is not for each branch node b that is not
a potential monitoring node:a potential monitoring node:

Σ Σ yy
u,v u,v

 1 (summed over all 1 (summed over all

 pairs {u,v} that cover b (u < v)) pairs {u,v} that cover b (u < v))

 UPitt, March 4, 2010 Node placement for monitoring

Integer programming model
for each branch node b that is not for each branch node b that is not
a potential monitoring node:a potential monitoring node:

Σ Σ yy
u,v u,v

 1 (summed over all 1 (summed over all

 pairs {u,v} that cover b (u < v)) pairs {u,v} that cover b (u < v))

for each branch node b for each branch node b ∈∈ B B  MM

xx
b b
+ + Σ Σ yy

u,v u,v
 1 (summed over all 1 (summed over all

 pairs {u,v} that cover b pairs {u,v} that cover b
 (u < v)) (u < v))

for every potential monitoring
node v ∈ M, M, let binary variable

 x

v
= 1 iff node v is chosen

for each pair {u,v} of potential
monitoring nodes (u < v) define
continuous variable y

u,v
 such that

 y
u,v

 x
u

 yy
u,v u,v

 x x
v v

yy
u,vu,v

 00 then x then x
u u
= x= x

v v
= 1= 1

 UPitt, March 4, 2010 Node placement for monitoring

Integer programming model
for each branch node b that is not for each branch node b that is not
a potential monitoring node:a potential monitoring node:

Σ Σ yy
u,v u,v

 1 (summed over all 1 (summed over all

 pairs {u,v} that cover b (u < v)) pairs {u,v} that cover b (u < v))

for each branch node b for each branch node b ∈∈ B B  MM

xx
b b
+ + Σ Σ yy

u,v u,v
 1 (summed over all 1 (summed over all

 pairs {u,v} that cover b pairs {u,v} that cover b
 (u < v)) (u < v))

for every potential monitoring
node v ∈ M, M, let binary variable

 x

v
= 1 iff node v is chosen

for each pair {u,v} of potential
monitoring nodes (u < v) define
continuous variable y

u,v
 such that

 y
u,v

 x
u

 yy
u,v u,v

 x x
v v

yy
u,vu,v

 00 then x then x
u u
= x= x

v v
= 1= 1

min Σ Σ xx
v v

 UPitt, March 4, 2010 Node placement for monitoring

Greedy algorithm

 UPitt, March 4, 2010 Node placement for monitoring

Greedy algorithm for MMS problem

 UPitt, March 4, 2010 Node placement for monitoring

Greedy algorithm for MMS problem

• initialize partial cover S = { }

 UPitt, March 4, 2010 Node placement for monitoring

Greedy algorithm for MMS problem

• initialize partial cover S = { }
• while S is not a cover do:

 UPitt, March 4, 2010 Node placement for monitoring

Greedy algorithm for MMS problem

• initialize partial cover S = { }
• while S is not a cover do:

– find m  M \ S such that S  {m} covers a maximum
number of additional branch nodes (break ties by vertex
index) and set S = S  {m}

 UPitt, March 4, 2010 Node placement for monitoring

Greedy algorithm for MMS problem

• initialize partial cover S = { }
• while S is not a cover do:

– find m  M \ S such that S  {m} covers a maximum
number of additional branch nodes (break ties by vertex
index) and set S = S  {m}

– if no m  M \ S yields an increase in coverage, then
choose a pair {m

1
,m

2
}

 M \ S that yields a maximum

increase in coverage and set S = S  {m
1
}  {m

2
}

 UPitt, March 4, 2010 Node placement for monitoring

Greedy algorithm for MMS problem

• initialize partial cover S = { }
• while S is not a cover do:

– find m  M \ S such that S  {m} covers a maximum
number of additional branch nodes (break ties by vertex
index) and set S = S  {m}

– if no m  M \ S yields an increase in coverage, then
choose a pair {m

1
,m

2
}

 M \ S that yields a maximum

increase in coverage and set S = S  {m
1
}  {m

2
}

– if no pair exists, then the problem is infeasible

 UPitt, March 4, 2010 Node placement for monitoring

a b

1 2 3

4 5 6

c d

7

8 e 9

Pairs Cover
2, 6 a, b, d
3, 6 b, d
1, 4 a, c
4, 7 c, e
5, 8 c, e
6, 8 e
8, 9 e

11

 UPitt, March 4, 2010 Node placement for monitoring

a b

1 2 3

4 5 6

c d

7

8 e 9

Pairs Cover
2, 6 a, b, d
3, 6 b, d
1, 4 a, c
4, 7 c, e
5, 8 c, e
6, 8 e
8, 9 e

11

Greedy choice: {2, 6}

 UPitt, March 4, 2010 Node placement for monitoring

a b

1 2 3

4 5 6

c d

7

8 e 9

Pairs Cover
2, 6 a, b, d
3, 6 b, d
1, 4 a, c
4, 7 c, e
5, 8 c, e
6, 8 e
8, 9 e

11

Greedy choice: {2, 6}

 UPitt, March 4, 2010 Node placement for monitoring

a b

1 2 3

4 5 6

c d

7

8 e 9

Monitor Add'l cover
1 none
3 none
4 none
5 none
7 none
8 e
9 none

11

Greedy choice: {8}

Pairs Cover
2, 6 a, b, d
3, 6 b, d
1, 4 a, c
4, 7 c, e
5, 8 c, e
6, 8 e
8, 9 e

 UPitt, March 4, 2010 Node placement for monitoring

a b

1 2 3

4 5 6

c d

7

8 e 9

Monitor Add'l cover
1 none
3 none
4 none
5 none
7 none
8 e
9 none

11

Greedy choice: {8}

Pairs Cover
2, 6 a, b, d
3, 6 b, d
1, 4 a, c
4, 7 c, e
5, 8 c, e
6, 8 e
8, 9 e

 UPitt, March 4, 2010 Node placement for monitoring

a b

1 2 3

4 5 6

c d

7

8 e 9

Monitor Add'l cover
1 none
3 none
4 none
5 c
7 none
9 none

11

Pairs Cover
2, 6 a, b, d
3, 6 b, d
1, 4 a, c
4, 7 c, e
5, 8 c, e
6, 8 e
8, 9 e

 UPitt, March 4, 2010 Node placement for monitoring

a b

1 2 3

4 5 6

c d

7

8 e 9

Monitor Add'l cover
1 none
3 none
4 none
5 c
7 none
9 none

11

Greedy choice: {5}

Pairs Cover
2, 6 a, b, d
3, 6 b, d
1, 4 a, c
4, 7 c, e
5, 8 c, e
6, 8 e
8, 9 e

 UPitt, March 4, 2010 Node placement for monitoring

a b

1 2 3

4 5 6

c d

7

8 e 9

Monitor Add'l cover
1 none
3 none
4 none
5 c
7 none
9 none

11

Greedy choice: {5}

Pairs Cover
2, 6 a, b, d
3, 6 b, d
1, 4 a, c
4, 7 c, e
5, 8 c, e
6, 8 e
8, 9 e

 UPitt, March 4, 2010 Node placement for monitoring

a b

1 2 3

4 5 6

c d

7

8 e 9

11

Solution: {2, 5, 6, 8} of size 4

Optimal solution!

Pairs Cover
2, 6 a, b, d
3, 6 b, d
1, 4 a, c
4, 7 c, e
5, 8 c, e
6, 8 e
8, 9 e

 UPitt, March 4, 2010 Node placement for monitoring

Genetic algorithm

 UPitt, March 4, 2010 Node placement for monitoring

Genetic algorithms

Individual: solution

Adaptive methods that are used to solve search
and optimization problems.

Holland (1975)

 UPitt, March 4, 2010 Node placement for monitoring

Genetic algorithms

Individual: solution
Population: set of fixed number of individuals

 UPitt, March 4, 2010 Node placement for monitoring

Genetic algorithms evolve population applying
the principle of survival of the fittest.

A series of generations are produced by
the algorithm. The most fit individual of last
generation is the solution.

Individuals from one generation are combined
to produce offspring that make up next
generation.

Genetic algorithms

 UPitt, March 4, 2010 Node placement for monitoring

Probability of selecting individual to mate
is proportional to its fitness: survival of the
fittest.

a

b

Genetic algorithms

 UPitt, March 4, 2010 Node placement for monitoring

a

b

Parents drawn from
generation K

a

b

Combine
parents

c

c

Child in
generation K+1

Probability of selecting individual to mate
is proportional to its fitness: survival of the
fittest.

Genetic algorithms

 UPitt, March 4, 2010 Node placement for monitoring

Evolution of solutions

 UPitt, March 4, 2010 Node placement for monitoring

Evolution of solutions

 UPitt, March 4, 2010 Node placement for monitoring

Evolution of solutions

 UPitt, March 4, 2010 Node placement for monitoring

Evolution of solutions

 UPitt, March 4, 2010 Node placement for monitoring

Evolution of solutions

 UPitt, March 4, 2010 Node placement for monitoring

Evolution of solutions

 UPitt, March 4, 2010 Node placement for monitoring

Evolution of solutions

 UPitt, March 4, 2010 Node placement for monitoring

Evolution of solutions

 UPitt, March 4, 2010 Node placement for monitoring

Genetic algorithms
with random keys

 UPitt, March 4, 2010 Node placement for monitoring

GAs and random keys

• Introduced by Bean (1994)
for sequencing problems.

 UPitt, March 4, 2010 Node placement for monitoring

GAs and random keys

• Introduced by Bean (1994)
for sequencing problems.

• Individuals are strings of
real-valued numbers
(random keys) in the
interval [0,1].

S = (0.25, 0.19, 0.67, 0.05, 0.89)
 s(1) s(2) s(3) s(4) s(5)

 UPitt, March 4, 2010 Node placement for monitoring

GAs and random keys

• Introduced by Bean (1994)
for sequencing problems.

• Individuals are strings of
real-valued numbers
(random keys) in the
interval [0,1].

• Sorting random keys results
in a sequencing order.

S = (0.25, 0.19, 0.67, 0.05, 0.89)
 s(1) s(2) s(3) s(4) s(5)

S' = (0.05, 0.19, 0.25, 0.67, 0.89)
 s(4) s(2) s(1) s(3) s(5)
Sequence: 4 – 2 – 1 – 3 – 5

 UPitt, March 4, 2010 Node placement for monitoring

GAs and random keys

• Introduced by Bean (1994)
for sequencing problems.

• Mating is done using
parametrized uniform
crossover (Spears & DeJong , 1990)

a = (0.25, 0.19, 0.67, 0.05, 0.89)
b = (0.63, 0.90, 0.76, 0.93, 0.08)

 UPitt, March 4, 2010 Node placement for monitoring

GAs and random keys

• Introduced by Bean (1994)
for sequencing problems.

• Mating is done using
parametrized uniform
crossover (Spears & DeJong , 1990)

• For each gene, flip a biased
coin to choose which
parent passed the allele to
the child.

a = (0.25, 0.19, 0.67, 0.05, 0.89)
b = (0.63, 0.90, 0.76, 0.93, 0.08)

 UPitt, March 4, 2010 Node placement for monitoring

GAs and random keys

a = (0.25, 0.19, 0.67, 0.05, 0.89)
b = (0.63, 0.90, 0.76, 0.93, 0.08)
c = ()

• Introduced by Bean (1994)
for sequencing problems.

• Mating is done using
parametrized uniform
crossover (Spears & DeJong , 1990)

• For each gene, flip a biased
coin to choose which
parent passed the allele to
the child.

 UPitt, March 4, 2010 Node placement for monitoring

GAs and random keys

a = (0.25, 0.19, 0.67, 0.05, 0.89)
b = (0.63, 0.90, 0.76, 0.93, 0.08)
c = (0.25)

• Introduced by Bean (1994)
for sequencing problems.

• Mating is done using
parametrized uniform
crossover (Spears & DeJong , 1990)

• For each gene, flip a biased
coin to choose which
parent passed the allele to
the child.

 UPitt, March 4, 2010 Node placement for monitoring

GAs and random keys

a = (0.25, 0.19, 0.67, 0.05, 0.89)
b = (0.63, 0.90, 0.76, 0.93, 0.08)
c = (0.25, 0.90)

• Introduced by Bean (1994)
for sequencing problems.

• Mating is done using
parametrized uniform
crossover (Spears & DeJong , 1990)

• For each gene, flip a biased
coin to choose which
parent passed the allele to
the child.

 UPitt, March 4, 2010 Node placement for monitoring

GAs and random keys

a = (0.25, 0.19, 0.67, 0.05, 0.89)
b = (0.63, 0.90, 0.76, 0.93, 0.08)
c = (0.25, 0.90, 0.76)

• Introduced by Bean (1994)
for sequencing problems.

• Mating is done using
parametrized uniform
crossover (Spears & DeJong , 1990)

• For each gene, flip a biased
coin to choose which
parent passed the allele to
the child.

 UPitt, March 4, 2010 Node placement for monitoring

GAs and random keys

a = (0.25, 0.19, 0.67, 0.05, 0.89)
b = (0.63, 0.90, 0.76, 0.93, 0.08)
c = (0.25, 0.90, 0.76, 0.05)

• Introduced by Bean (1994)
for sequencing problems.

• Mating is done using
parametrized uniform
crossover (Spears & DeJong , 1990)

• For each gene, flip a biased
coin to choose which
parent passed the allele to
the child.

 UPitt, March 4, 2010 Node placement for monitoring

GAs and random keys

a = (0.25, 0.19, 0.67, 0.05, 0.89)
b = (0.63, 0.90, 0.76, 0.93, 0.08)
c = (0.25, 0.90, 0.76, 0.05, 0.89)

If every random-key array corresponds
to a feasible solution: Mating always
produces feasible offspring.

• Introduced by Bean (1994)
for sequencing problems.

• Mating is done using
parametrized uniform
crossover (Spears & DeJong , 1990)

• For each gene, flip a biased
coin to choose which
parent passed the allele to
the child.

 UPitt, March 4, 2010 Node placement for monitoring

GAs and random keys

• Introduced by Bean (1994)
for sequencing problems.

• Initial population is made
up of P chromosomes, each
with N genes, each having
a value (allele) generated
uniformly at random in the
interval [0,1].

 UPitt, March 4, 2010 Node placement for monitoring

GAs and random keys
• Introduced by Bean (1994)

for sequencing problems.
• At the K-th generation,

compute the cost of each
solution and partition the
solutions into two sets:
elite solutions, non-elite
solutions. Elite set should
be smaller of the two sets
and contain best solutions.

 Elite solutions

Population K

Non-elite
solutions

 UPitt, March 4, 2010 Node placement for monitoring

GAs and random keys
• Introduced by Bean (1994)

for sequencing problems.
• Evolutionary dynamics

Population K Population K+1

 Elite solutions

Non-elite
solutions

 UPitt, March 4, 2010 Node placement for monitoring

GAs and random keys
• Introduced by Bean (1994)

for sequencing problems.
• Evolutionary dynamics

– Copy elite solutions from population
K to population K+1

 Elite solutions

Population K+1Population K

 Elite solutions

Non-elite
solutions

 UPitt, March 4, 2010 Node placement for monitoring

GAs and random keys
• Introduced by Bean (1994)

for sequencing problems.
• Evolutionary dynamics

– Copy elite solutions from population
K to population K+1

– Add R random solutions (mutants)
to population K+1

 Elite solutions

Mutant
solutions

Population K+1Population K

 Elite solutions

Non-elite
solutions

 UPitt, March 4, 2010 Node placement for monitoring

Biased random key GA
• Evolutionary dynamics

– Copy elite solutions from population
K to population K+1

– Add R random solutions (mutants)
to population K+1

– While K+1-th population < P
• BIASED RANDOM KEY GA: Mate

elite solution with non elite to
produce child in population K+1.
Mates are chosen at random.

 Elite solutions

Mutant
solutions

X

Population K+1

Probability
child inherits
allele of elite
parent > 0.5Population K

 Elite solutions

Non-elite
solutions

Mutant
solutions

 UPitt, March 4, 2010 Node placement for monitoring

Compare BRKGA with two variants of
RKGA using time-to-target plots.

Run each heuristic many times
(independently, i.e. with different
random seeds). Stop when optimal is
found.

Plot CDF for each heuristic.

 UPitt, March 4, 2010 Node placement for monitoring

BRKAGA – Biased random-key GA

 UPitt, March 4, 2010 Node placement for monitoring

BRKAGA – Biased random-key GA
RKGA – Bean's random-key GA

 UPitt, March 4, 2010 Node placement for monitoring

BRKAGA – Biased random-key GA
RKGA – Bean's random-key GA
RKGA-ord – Bean's random-key GA
 with probability of child inheriting
 allele of most fit parent > 0.5

220 node example

200 runs
200 runs

84 runs

 UPitt, March 4, 2010 Node placement for monitoring

Decoders
• A decoder is a deterministic algorithm that takes as input a random-key

vector and returns a feasible solution of the optimization problem and
its cost.

• Bean (1994) proposed decoders based on sorting the random-key
vector to produce a sequence.

• A random-key GA searches the solution space indirectly by searching
the space of random keys and using the decoder to evaluate fitness of
the random key.

[0,1]N Solution space
of optimization
problem

decoder

 UPitt, March 4, 2010 Node placement for monitoring

Decoders

[0,1]N Solution space
of optimization
problem

decoder

Search solution
space indirectly

• A decoder is a deterministic algorithm that takes as input a random-key
vector and returns a feasible solution of the optimization problem and
its cost.

• Bean (1994) proposed decoders based on sorting the random-key
vector to produce a sequence.

• A random-key GA searches the solution space indirectly by searching
the space of random keys and using the decoder to evaluate fitness of
the random key.

 UPitt, March 4, 2010 Node placement for monitoring

Decoders
• A decoder is a deterministic algorithm that takes as input a random-key

vector and returns a feasible solution of the optimization problem and
its cost.

• Bean (1994) proposed decoders based on sorting the random-key
vector to produce a sequence.

• A random-key GA searches the solution space indirectly by searching
the space of random keys and using the decoder to evaluate fitness of
the random key.

[0,1]N Solution space
of optimization
problem

decoder

Search solution
space indirectly

 UPitt, March 4, 2010 Node placement for monitoring

Decoders
• A decoder is a deterministic algorithm that takes as input a random-key

vector and returns a feasible solution of the optimization problem and
its cost.

• Bean (1994) proposed decoders based on sorting the random-key
vector to produce a sequence.

• A random-key GA searches the solution space indirectly by searching
the space of random keys and using the decoder to evaluate fitness of
the random key.

[0,1]N Solution space
of optimization
problem

decoder

Search solution
space indirectly

 UPitt, March 4, 2010 Node placement for monitoring

Framework for biased random-key genetic algorithms

Generate P vectors
of random keys

Decode each vector
of random keys

Stopping rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions
to next population

Generate mutants in
next population

Combine elite and
non-elite solutions
and add children to

next population

no

stop

yes

 UPitt, March 4, 2010 Node placement for monitoring

Framework for biased random-key genetic algorithms

Generate P vectors
of random keys

Decode each vector
of random keys

Stopping rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions
to next population

Generate mutants in
next population

Combine elite and
non-elite solutions
and add children to

next population

stop

Problem independent

no yes

 UPitt, March 4, 2010 Node placement for monitoring

Framework for biased random-key genetic algorithms

Generate P vectors
of random keys

Decode each vector
of random keys

Stopping rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions
to next population

Generate mutants in
next population

Combine elite and
non-elite solutions
and add children to

next population

stop

Problem independent

no yes

Problem dependent

 UPitt, March 4, 2010 Node placement for monitoring

BRKGA for the
MMS problem

 UPitt, March 4, 2010 Node placement for monitoring

BRKGA for the MMS problem
• Chromosome:

– A vector X of N random random keys (random numbers in
the interval [0,1]), where N is the number of potential
monitoring nodes. The i-th random key corresponds to the i-
th monitoring node.

• Decoder:
– For i = 1,N: if X(i) ≥ 0.5, add i-th monitoring node to

solution
– If solution is feasible, i.e. all customer nodes are covered:

STOP
– Else, apply greedy algorithm to cover uncovered branch

nodes.

 UPitt, March 4, 2010 Node placement for monitoring

Effect of size of population: 100 node example

 UPitt, March 4, 2010 Node placement for monitoring

Effect of size of mutant set: 100 node example

 UPitt, March 4, 2010 Node placement for monitoring

Effect of size of elite set: 100 node example

 UPitt, March 4, 2010 Node placement for monitoring

Effect of inheritance probability: 100 node example

 UPitt, March 4, 2010 Node placement for monitoring

BRKGA for the MMS problem

• Size of population: N (number of monitoring nodes)
• Size of elite set: 15% of N
• Size of mutant set: 10% of N
• Biased coin probability: 70%
• Stop after N generations without improvement of

best found solution

 UPitt, March 4, 2010 Node placement for monitoring

generations

so lutio n
n100-i2-m100-b100 (opt = 23)

Optimal value

 UPitt, March 4, 2010 Node placement for monitoring

Time (ibm t41 secs)

solution
n100-i2-m100-b100 (opt = 23)

BRKGA solutions Random multi-start solutions

Optimal value

 UPitt, March 4, 2010 Node placement for monitoring

Double hitting set
heuristic

 UPitt, March 4, 2010 Node placement for monitoring

Double hitting-set heuristic

• The above situation should NOT happen too much (especially
if the weights are widely distributed)

• IDEA: Design an algorithm for the case of not much splitting
and hope for the best

mb

3

5

6

4

 UPitt, March 4, 2010 Node placement for monitoring

Double hitting-set heuristic

• DEFINITION: We say m is good for b if all shortest b → m paths depart
b via the same arc.

• DEFINITION: For some fixed parameter t (1  t  |M|), we say b is t-
good if at least t m's are good for b.

• We LIKE t-good nodes, DESPISE t-bad ones.

• IDEA: Set aside t-bad nodes and deal with them later.

mb

 UPitt, March 4, 2010 Node placement for monitoring

Double hitting-set heuristic

• 1a) For every t-good b, let
 X

b
 = { monitoring nodes m which are

 good for b } (|X
b
| ≥ t)

• 1b) Find a small set X ⊆ M such that,
 for all b, X ∩ X

b
 ≠ ∅

(hitting set problem)

monitoring nodes
 1 1 0 0 1 0
 0 1 1 1 0 1
 1 1 1 0 1 0
 0 0 1 0 1 1
 1 1 0 1 0 1

t-good
branch
nodes

← #1's ≥ t

t = 3
here

 UPitt, March 4, 2010 Node placement for monitoring

Double hitting-set heuristic

monitoring nodes
 1 1 0 0 1 0
 0 1 1 1 0 1
 1 1 1 0 1 0
 0 0 1 0 1 1
 1 1 0 1 0 1

t-good
branch
nodes

← #1's ≥ t

t = 3
here

Greedy algorithm

REPEAT:
 1) choose column with most 1's
 2) delete rows with 1 in that column

• 1a) For every t-good b, let
 X

b
 = { monitoring nodes m which are

 good for b } (|X
b
| ≥ t)

• 1b) Find a small set X ⊆ M such that,
 for all b, X ∩ X

b
 ≠ ∅

(hitting set problem)

 UPitt, March 4, 2010 Node placement for monitoring

Double hitting-set heuristic

monitoring nodes
 1 1 0 0 1 0
 0 1 1 1 0 1
 1 1 1 0 1 0
 0 0 1 0 1 1
 1 1 0 1 0 1

t-good
branch
nodes

← #1's ≥ t

t = 3
here

Greedy algorithm

REPEAT:
 1) choose column with most 1's
 2) delete rows with 1 in that column

• 1a) For every t-good b, let
 X

b
 = { monitoring nodes m which are

 good for b } (|X
b
| ≥ t)

• 1b) Find a small set X ⊆ M such that,
 for all b, X ∩ X

b
 ≠ ∅

(hitting set problem)

 UPitt, March 4, 2010 Node placement for monitoring

Double hitting-set heuristic

• 1a) For every t-good b, let
 X

b
 = { monitoring nodes m which are

 good for b } (|X
b
| ≥ t)

• 1b) Find a small set X ⊆ M such that,
 for all b, X ∩ X

b
 ≠ ∅

(hitting set problem)

• 1c) For all t-good b, choose
 m

b
∈ X ∩ X

b
. Let y

b
be such that arc

 (b, y
b
) is on shortest path b → m

b

m
bb y

b

 UPitt, March 4, 2010 Node placement for monitoring

Double hitting-set heuristic

• We now have one monitoring node for
b: m

b
. We need a second monitoring

node m'
b
such that { m

b
, m'

b
} covers b.

• 2a) For every t-good node b, let
Y

b
 = { monitoring nodes m such that all

 b → m shortest paths avoid
 arc (b, y

b
) }

• Find a small set Y such that, for all b,
Y ∩ Y

b
 ≠ ∅ (another hitting-set

problem)

 UPitt, March 4, 2010 Node placement for monitoring

Double hitting-set heuristic

• We now have one monitoring node for
b: m

b
. We need a second monitoring

node m'
b
such that { m

b
, m'

b
} covers b.

• 2a) For every t-good node b, let
Y

b
 = { monitoring nodes m such that all

 b → m shortest paths avoid
 arc (b, y

b
) }

• 2b) Find a small set Y such that, for all
 b, Y ∩ Y

b
 ≠ ∅ (another hitting-set

 problem)

m
bb y

b

y

m'
b

 UPitt, March 4, 2010 Node placement for monitoring

Double hitting-set heuristic

• We now have one monitoring node for
b: m

b
. We need a second monitoring

node m'
b
such that { m

b
, m'

b
} covers b.

• 2a) For every t-good node b, let
Y

b
 = { monitoring nodes m such that all

 b → m shortest paths avoid
 arc (b, y

b
) }

• 2b) Find a small set Y such that, for all
 b, Y ∩ Y

b
 ≠ ∅ (another hitting-set

 problem)

m
bb y

b

y

m'
b

CLAIM: paths b → m

b
 and

b → m'
b
 are disjoint:

 { m
b
, m'

b
} covers b

 UPitt, March 4, 2010 Node placement for monitoring

Double hitting-set heuristic

• We now have covered all the t-good
nodes. We must now cover the t-bad
nodes (hopefully only a handful for
them)

• 3a) Cover the t-bad nodes with the
 greedy algorithm.

• 4a) Remove redundant monitoring
 nodes (“minimalize”)

 UPitt, March 4, 2010 Node placement for monitoring

Double hitting-set heuristic

• We now have covered all the t-good
nodes. We must now cover the t-bad
nodes (hopefully only a handful for
them)

• 3a) Cover the t-bad nodes with the
 greedy algorithm.

• 4a) Remove redundant monitoring
 nodes (“minimalize”)

What should be the value of
parameter t?

If t is large, then first hitting
set has small solution

If t is small, then there are
more t-good nodes, fewer
t-bad nodes

IDEA: try t = floor(|M|/2) and
t = 1 and take better solution.

 UPitt, March 4, 2010 Node placement for monitoring

Double hitting-set heuristic

• We now have covered all the t-good
nodes. We must now cover the t-bad
nodes (hopefully only a handful for
them)

• 3a) Cover the t-bad nodes with the
 greedy algorithm.

• 4a) Remove redundant monitoring
 nodes (“minimalize”)

What should be the value of
parameter t?

If t is large, then first hitting
set has small solution

If t is small, then there are
more t-good nodes, fewer
t-bad nodes

IDEA: try t = floor(|M|/2) and
t = 1 and take better solution.

Performance in theory: If t = floor(|M|/2), the
cover of the n t-good nodes has size
 (1+ log n) times OPT.

 UPitt, March 4, 2010 Node placement for monitoring

Lower bound

 UPitt, March 4, 2010 Node placement for monitoring

Lower bound on OPT

• OPT for monitor placement ≥ OPT for the 2nd
hitting set problem

• We can solve the 2nd hitting set instance
optimally using CPLEX

• On our test instances, bounds are quite tight

 UPitt, March 4, 2010 Node placement for monitoring

Experimental results

 UPitt, March 4, 2010 Node placement for monitoring

Experimental results

• 560 synthetic instances, with 25, 50, 100, 190, 220, 250, 300,
and 558 nodes and varying sizes of potential monitoring nodes
and branch nodes.
– Largest 2-connected component in any of the synthetic instances

contained 34% of the nodes and the largest instance had only 10%
of the nodes.

• 65 real-world instances derived from five large scale Tier 1 ISP
backbone networks and using real OSPF weights. These
networks ranged in size from a little more than 100 routers to
nearly 1000 routers.
– Largest 2-connected component had at least 84% of the nodes.

 UPitt, March 4, 2010 Node placement for monitoring

 UPitt, March 4, 2010 Node placement for monitoring

Experimental results

• Integer program (CPLEX) could only solve instances with up
to 100 nodes. This is in contrast to “classical” set covering
where much larger instance are solved easily.

• On the other hand, the 2nd hitting set problem could be
easily solved to optimality using CPLEX. Lower bounds
were produced for all test instances.

• DHS and GREEDY are both much faster than GA. On some
of the largest instances (about 1000 routers) DHS and
GREEDY took one hour while GA took 10 days. GA can be
sped up with trivial parallel implementation.

 UPitt, March 4, 2010 Node placement for monitoring

Synthetic networks

• CPLEX solved 324 of 560 instances to OPT
• Heuristics found optimal solutions for some of

those instances:
– Greedy algorithm: 59/324 = 18.2%
– Double hitting set algorithm: 65/324 = 20.0%
– Genetic algorithm: 318/324 = 98.1%

 UPitt, March 4, 2010 Node placement for monitoring

Synthetic networks

• CPLEX computed lower bounds for all 560
instances

• Heuristics matched the lower bound for some of
those instances:
– Greedy algorithm: 236/560 = 42.1%
– Double hitting set algorithm: 363/560 = 64.8 %
– Genetic algorithm: 394/560 = 70.4%

 UPitt, March 4, 2010 Node placement for monitoring

Synthetic networks: comparing
heuristic solutions

• Double hitting set (DHS) vs Greedy
– DHS better than Greedy: 456/560 = 81.4%

– DHS equal to Greedy: 90/560 = 16.1%

– Greedy better than DHS: 14/560 = 2.5%

• Genetic algorithm (GA) vs DHS
– GA better than DHS: 68/560 = 12.1%

– GA equal to DHS: 482/560 = 86.1%

– DHS better than GA: 10/560 = 1.8%

• GA vs Greedy
– GA better than Greedy: 487/560 = 87.0%

– GA equal to Greedy: 73/560 = 13.0%

– Greedy better than GA: 0/560 = 0%

 UPitt, March 4, 2010 Node placement for monitoring

Synthetic networks

• CPLEX found optimal solutions for instances with
fewer than 100 routers

• Only 20-30% of branch nodes need to be
monitoring nodes.

• Greedy algorithm did not perform well.

 UPitt, March 4, 2010 Node placement for monitoring

26:7:7 50:25:25 100:100:100 558:70:70220:110:110

 UPitt, March 4, 2010 Node placement for monitoring

26:7:7 50:50:25 100:100:13 558:70:70250:125:125

 UPitt, March 4, 2010 Node placement for monitoring

26:7:7 50:50:25 100:100:13 558:70:70

 UPitt, March 4, 2010 Node placement for monitoring

26:4:4 50:50:25 190:190:190 300:300:300 558:558:558

 UPitt, March 4, 2010 Node placement for monitoring

26:7:7 100:100:25 220:220:25 300:300:300 558:558:558

 UPitt, March 4, 2010 Node placement for monitoring

Real networks

• CPLEX could not solve any instance to optimality.
• Lower bounds were computed for all 65 instances.
• Heuristics matched lower bounds for some of the

instances:
– Greedy: 27/65 = 41.5%
– GA: 48/65 = 73.8%
– DHS: 54/65 = 83.%

 UPitt, March 4, 2010 Node placement for monitoring

Real networks: comparing heuristic
solutions

• Double hitting set (DHS) vs Greedy
– DHS better than Greedy: 9/65 = 13.9%

– DHS equal to Greedy: 54/65 = 83.1%

– Greedy better than DHS: 2/65 = 3.1%

• Genetic algorithm (GA) vs DHS
– GA better than DHS: 6/65 = 9.2%

– GA equal to DHS: 54/65 = 83.1%

– DHS better than GA: 5/65 = 7.7%

• GA vs Greedy
– GA better than Greedy: 12/65 = 18.5%

– GA equal to Greedy: 48/65 = 73.8%

– Greedy better than GA: 5/65 = 7.7%

 UPitt, March 4, 2010 Node placement for monitoring

Real networks

• Too large for CPLEX

• Only 15-20% of branch nodes need to be monitoring nodes.

• Greedy algorithm did perform well. It found a solution equal to LB in
27 of the 65 instances. Matched HH on 54 instances and GA on 48.

 UPitt, March 4, 2010 Node placement for monitoring

Concluding
remarks

 UPitt, March 4, 2010 Node placement for monitoring

Concluding remarks
• We constructed a number of network test instances to

capture the topology and routing of large internetworks;

• We demonstrated algorithms that provide a feasible
combination of accuracy and execution times;

• We showed that solutions derived from our methods provide
a useful saving in the number of measurement nodes
compared with the naive approach of using each branch
point as a measurement node: Networks having a large
number of branch nodes need only 10-30% of branch points
to be measurement nodes.

 UPitt, March 4, 2010 Node placement for monitoring

The End
These slides and all of my papers cited in this talk

can be downloaded from my homepage:
http://www.research.att.com/~mgcr

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161

