
 DIMACS, May 15, 2008 Node placement for monitoring

A genetic algorithm with
random-keys for node placement
in path-disjoint network
monitoring

Mauricio G. C. Resende
AT&T Labs Research
Florham Park, New Jersey

mgcr@research.att.com

DIMACS/DyDAn Workshop on Internet Tomography
DIMACS ~ Rutgers University
May 14-16, 2008.

 DIMACS, May 15, 2008 Node placement for monitoring

Joint work with:

L. Breslau, I. Diakonikolas, N. Duffield, Y. Gu, M.
Hajiaghayi, D.S. Johnson, H, Karloff, M.G.C.R.,
S. Sen, and D. Towsley, “Optimal Node
Placement for Path Disjoint Network
Monitoring,” AT&T Labs Research Technical
Report, November 18, 2007.

 DIMACS, May 15, 2008 Node placement for monitoring

Summary

• Minimum monitoring set (MMS) problem
• Algorithms for MMS
• Greedy algorithm
• Genetic algorithm
• Computational experiments
• Concluding remarks

 DIMACS, May 15, 2008 Node placement for monitoring

Minimum monitoring set problem
We wish to perform the tomographic

inference of hop-on and hop-off
performance for each provider edge
router:
Deploy a set of N measurement

hosts {M
1
, M

2
, ..., M

N
} such that

for each provider edge router A,
there are two measurement
hosts M

i
 and M

j
 such that the

physical paths (A, M
i
) and (A, M

j
)

are disjoint.
One objective is to minimize N.

paths are given and
are fixed

 DIMACS, May 15, 2008 Node placement for monitoring

Minimum monitoring set problem
We wish to perform the tomographic

inference of hop-on and hop-off
performance for each provider edge
router:
Deploy a set of N measurement

hosts {M
1
, M

2
, ..., M

N
} such that

for each provider edge router A,
there are two measurement
hosts M

i
 and M

j
 such that the

physical paths (A, M
i
) and (A, M

j
)

are disjoint.
One objective is to minimize N.

paths are given and
are fixed

 DIMACS, May 15, 2008 Node placement for monitoring

Minimum monitoring set problem
We wish to perform the tomographic

inference of hop-on and hop-off
performance for each provider edge
router:
Deploy a set of N measurement

hosts {M
1
, M

2
, ..., M

N
} such that

for each provider edge router A,
there are two measurement
hosts M

i
 and M

j
 such that the

physical paths (A, M
i
) and (A, M

j
)

are disjoint.
One objective is to minimize N.

paths are given and
are fixed

 DIMACS, May 15, 2008 Node placement for monitoring

Minimum monitoring set problem
We wish to perform the tomographic

inference of hop-on and hop-off
performance for each provider edge
router:
Deploy a set of N measurement

hosts {M
1
, M

2
, ..., M

N
} such that

for each provider edge router A,
there are two measurement
hosts M

i
 and M

j
 such that the

physical paths (A, M
i
) and (A, M

j
)

are disjoint.
One objective is to minimize N.

paths are given and
are fixed

 DIMACS, May 15, 2008 Node placement for monitoring

Minimum monitoring set problem
We wish to perform the tomographic

inference of hop-on and hop-off
performance for each provider edge
router:
Deploy a set of N measurement

hosts {M
1
, M

2
, ..., M

N
} such that

for each provider edge router A,
there are two measurement
hosts M

i
 and M

j
 such that the

physical paths (A, M
i
) and (A, M

j
)

are disjoint.
One objective is to minimize N.

paths are given and
are fixed

 DIMACS, May 15, 2008 Node placement for monitoring

Minimum monitoring set problem
We wish to perform the tomographic

inference of hop-on and hop-off
performance for each provider edge
router:
Deploy a set of N measurement

hosts {M
1
, M

2
, ..., M

N
} such that

for each provider edge router A,
there are two measurement
hosts M

i
 and M

j
 such that the

physical paths (A, M
i
) and (A, M

j
)

are disjoint.
One objective is to minimize N.

paths are given and
are fixed

 DIMACS, May 15, 2008 Node placement for monitoring

Minimum monitoring set problem
We wish to perform the tomographic

inference of hop-on and hop-off
performance for each provider edge
router:
Deploy a set of N measurement

hosts {M
1
, M

2
, ..., M

N
} such that

for each provider edge router A,
there are two measurement
hosts M

i
 and M

j
 such that the

physical paths (A, M
i
) and (A, M

j
)

are disjoint.
One objective is to minimize N.

paths are given and
are fixed

 DIMACS, May 15, 2008 Node placement for monitoring

Minimum monitoring set problem
We wish to perform the tomographic

inference of hop-on and hop-off
performance for each provider edge
router:
Deploy a set of N measurement

hosts {M
1
, M

2
, ..., M

N
} such that

for each provider edge router A,
there are two measurement
hosts M

i
 and M

j
 such that the

physical paths (A, M
i
) and (A, M

j
)

are disjoint.
One objective is to minimize N.

paths are given and
are fixed

 DIMACS, May 15, 2008 Node placement for monitoring

Set covering with pairs

• Set covering with pairs (SCP) was introduced by
Hassin & Segev (2005):
– GIVEN a ground set X of elements and a set Y of

cover items, and for each x X a set P
x
of pairs of

items in Y that cover x. A subset Y' ⊆ Y covers X if
for each x X one of the pairs in P

x
 is contained in

Y', FIND a minimum-size covering subset.

• SCP is NP-hard and, unless P = NP, is hard to
approximate.

 DIMACS, May 15, 2008 Node placement for monitoring

Minimum monitoring set problem

• The MMS problem is a special case of SCP. We
prove that:
– Let R(w,u) be the set of all routes from w to u
– MMS is at least as hard to approximate as SCP, even if:

• Each set R(w,u) is the set of all shortest paths from w to u;
• Each set R(w,u) contains only one item, and that is a shortest

path from w to u

• However, if we allow arbitrary disjoint paths, then
using dynamic programming, the problem can be
solved in O(|V|+|E|) time.

 DIMACS, May 15, 2008 Node placement for monitoring

Algorithms for MMS problem

• Exact integer programming model
• Dynamic programming for arbitrary paths variant
• Greedy heuristic
• Genetic algorithm (heuristic)
• Double hitting set heuristic (HH)
• Lower bound derived from HH

 DIMACS, May 15, 2008 Node placement for monitoring

Algorithms for MMS problem

• Exact integer programming model
• Dynamic programming for arbitrary paths variant
• Greedy heuristic
• Genetic algorithm (heuristic)
• Double hitting set heuristic (HH)
• Lower bound derived from HH

 DIMACS, May 15, 2008 Node placement for monitoring

Greedy algorithm for MMS problem

• initialize partial cover S = { }
• while S is not a cover do:

– find m  M \ S such that S  {m} covers a maximum
number of additional branch nodes (break ties by vertex
index) and set S = S  {m}

– if no m  M \ S yields an increase in coverage, then
choose a pair {m

1
,m

2
}

 M \ S that yields a maximum

increase in coverage and set S = S  {m
1
}  {m

2
}

– if no pair exists, then the problem is infeasible

 DIMACS, May 15, 2008 Node placement for monitoring

Genetic algorithms

 DIMACS, May 15, 2008 Node placement for monitoring

Genetic algorithms

Individual: solution

Adaptive methods that are used to solve search
and optimization problems.

Holland (1975)

 DIMACS, May 15, 2008 Node placement for monitoring

Genetic algorithms

Individual: solution
Population: set of fixed number of individuals

 DIMACS, May 15, 2008 Node placement for monitoring

Genetic algorithms

Genetic algorithms evolve population applying
the principle of survival of the fittest.

A series of generations are produced by
the algorithm. The most fit individual of last
generation is the solution.

Individuals from one generation are combined
to produce offspring that make up next
generation.

 DIMACS, May 15, 2008 Node placement for monitoring

Genetic algorithms
Probability of selecting individual to mate
is proportional to its fitness: survival of the
fittest.

a

b

 DIMACS, May 15, 2008 Node placement for monitoring

Genetic algorithms

a

b

Parents drawn from
generation K

a

b

Combine
parents

c'

Perturb
child

c

Child in
generation K+1

Probability of selecting individual to mate
is proportional to its fitness: survival of the
fittest.

 DIMACS, May 15, 2008 Node placement for monitoring

Genetic algorithms

a

b

Mutation

a

b

Combine
parents

c'

Perturb
child

c

Child in
generation K+1

Crossover

Parents drawn from
generation K

Probability of selecting individual to mate
is proportional to its fitness: survival of the
fittest.

 DIMACS, May 15, 2008 Node placement for monitoring

Evolution of solutions

 DIMACS, May 15, 2008 Node placement for monitoring

Evolution of solutions

 DIMACS, May 15, 2008 Node placement for monitoring

Evolution of solutions

 DIMACS, May 15, 2008 Node placement for monitoring

Evolution of solutions

 DIMACS, May 15, 2008 Node placement for monitoring

Evolution of solutions

 DIMACS, May 15, 2008 Node placement for monitoring

Evolution of solutions

 DIMACS, May 15, 2008 Node placement for monitoring

Evolution of solutions

 DIMACS, May 15, 2008 Node placement for monitoring

Evolution of solutions

 DIMACS, May 15, 2008 Node placement for monitoring

GA lingo

• Population: set of individuals (solutions)
• Chromosome: string (encodes a solution)
• Gene: feature, character, detector (chromosomes are strings of

genes)
• Allele: feature value
• Crossover: combination (mating) of two “parent” solutions to

produce a “child” solution
• Mutation: perturbation of “child” solution

 DIMACS, May 15, 2008 Node placement for monitoring

A drawback of
genetic algorithms

a

b

Crossover c'

Mutation cParents drawn from
generation K

Child in
generation K+1

Given (feasible) parents “a” and “b” in generation K,
problem-dependent crossover and mutation operators
are needed to guarantee that child “c” in generation
K+1 is also feasible.

Therefore, there is a need for specialized representations
as well as crossover and mutation operators for each
problem variation.

 DIMACS, May 15, 2008 Node placement for monitoring

A drawback of
genetic algorithms

Given (feasible) parents “a” and “b” in generation K,
problem-dependent crossover and mutation operators
are needed to guarantee that child “c” in generation
K+1 is also feasible.

Therefore, there is a need for specialized representations
as well as crossover and mutation operators for each
problem variation.

A genetic algorithm with
problem independent
crossover and mutation
operators could be more
appealing.

a

b

Crossover c'

Mutation cParents drawn from
generation K

Child in
generation K+1

 DIMACS, May 15, 2008 Node placement for monitoring

Genetic algorithms
with random keys

 DIMACS, May 15, 2008 Node placement for monitoring

GAs and random keys

• Introduced by Bean (1994)
for sequencing problems.

 DIMACS, May 15, 2008 Node placement for monitoring

GAs and random keys

• Introduced by Bean (1994)
for sequencing problems.

• Individuals are strings of
real-valued numbers
(random keys) in the
interval [0,1].

S = (0.25, 0.19, 0.67, 0.05, 0.89)
 s(1) s(2) s(3) s(4) s(5)

 DIMACS, May 15, 2008 Node placement for monitoring

GAs and random keys

• Introduced by Bean (1994)
for sequencing problems.

• Individuals are strings of
real-valued numbers
(random keys) in the
interval [0,1].

• Sorting random keys results
in a sequencing order.

S = (0.25, 0.19, 0.67, 0.05, 0.89)
 s(1) s(2) s(3) s(4) s(5)

S' = (0.05, 0.19, 0.25, 0.67, 0.89)
 s(4) s(2) s(1) s(3) s(5)
Sequence: 4 – 2 – 1 – 3 – 5

 DIMACS, May 15, 2008 Node placement for monitoring

GAs and random keys

• Introduced by Bean (1994)
for sequencing problems.

• Mating is done using
parametrized uniform
crossover (Spears & DeJong , 1990)

a = (0.25, 0.19, 0.67, 0.05, 0.89)
b = (0.63, 0.90, 0.76, 0.93, 0.08)

 DIMACS, May 15, 2008 Node placement for monitoring

GAs and random keys

• Introduced by Bean (1994)
for sequencing problems.

• Mating is done using
parametrized uniform
crossover (Spears & DeJong , 1990)

• For each gene, flip a biased
coin to choose which
parent passed the allele to
the child.

a = (0.25, 0.19, 0.67, 0.05, 0.89)
b = (0.63, 0.90, 0.76, 0.93, 0.08)

 DIMACS, May 15, 2008 Node placement for monitoring

GAs and random keys

a = (0.25, 0.19, 0.67, 0.05, 0.89)
b = (0.63, 0.90, 0.76, 0.93, 0.08)
c = ()

• Introduced by Bean (1994)
for sequencing problems.

• Mating is done using
parametrized uniform
crossover (Spears & DeJong , 1990)

• For each gene, flip a biased
coin to choose which
parent passed the allele to
the child.

 DIMACS, May 15, 2008 Node placement for monitoring

GAs and random keys

a = (0.25, 0.19, 0.67, 0.05, 0.89)
b = (0.63, 0.90, 0.76, 0.93, 0.08)
c = (0.25)

• Introduced by Bean (1994)
for sequencing problems.

• Mating is done using
parametrized uniform
crossover (Spears & DeJong , 1990)

• For each gene, flip a biased
coin to choose which
parent passed the allele to
the child.

 DIMACS, May 15, 2008 Node placement for monitoring

GAs and random keys

a = (0.25, 0.19, 0.67, 0.05, 0.89)
b = (0.63, 0.90, 0.76, 0.93, 0.08)
c = (0.25, 0.90)

• Introduced by Bean (1994)
for sequencing problems.

• Mating is done using
parametrized uniform
crossover (Spears & DeJong , 1990)

• For each gene, flip a biased
coin to choose which
parent passed the allele to
the child.

 DIMACS, May 15, 2008 Node placement for monitoring

GAs and random keys

a = (0.25, 0.19, 0.67, 0.05, 0.89)
b = (0.63, 0.90, 0.76, 0.93, 0.08)
c = (0.25, 0.90, 0.76)

• Introduced by Bean (1994)
for sequencing problems.

• Mating is done using
parametrized uniform
crossover (Spears & DeJong , 1990)

• For each gene, flip a biased
coin to choose which
parent passed the allele to
the child.

 DIMACS, May 15, 2008 Node placement for monitoring

GAs and random keys

a = (0.25, 0.19, 0.67, 0.05, 0.89)
b = (0.63, 0.90, 0.76, 0.93, 0.08)
c = (0.25, 0.90, 0.76, 0.05)

• Introduced by Bean (1994)
for sequencing problems.

• Mating is done using
parametrized uniform
crossover (Spears & DeJong , 1990)

• For each gene, flip a biased
coin to choose which
parent passed the allele to
the child.

 DIMACS, May 15, 2008 Node placement for monitoring

GAs and random keys

a = (0.25, 0.19, 0.67, 0.05, 0.89)
b = (0.63, 0.90, 0.76, 0.93, 0.08)
c = (0.25, 0.90, 0.76, 0.05, 0.89)

Every random-key array corresponds
to a feasible solution: Mating always
produces feasible offspring.

• Introduced by Bean (1994)
for sequencing problems.

• Mating is done using
parametrized uniform
crossover (Spears & DeJong , 1990)

• For each gene, flip a biased
coin to choose which
parent passed the allele to
the child.

 DIMACS, May 15, 2008 Node placement for monitoring

GAs and random keys

• Introduced by Bean (1994)
for sequencing problems.

• Initial population is made
up of P chromosomes, each
with N genes, each having
a value (allele) generated
uniformly at random in the
interval [0,1].

 DIMACS, May 15, 2008 Node placement for monitoring

GAs and random keys
• Introduced by Bean (1994)

for sequencing problems.
• At the K-th generation,

compute the cost of each
solution and partition the
solutions into two sets:
elite solutions, non-elite
solutions. Elite set should
be smaller of the two sets
and contain best solutions.

 Elite solutions

Population K

Non-elite
solutions

 DIMACS, May 15, 2008 Node placement for monitoring

GAs and random keys
• Introduced by Bean (1994)

for sequencing problems.
• Evolutionary dynamics

Population K Population K+1

 Elite solutions

Non-elite
solutions

 DIMACS, May 15, 2008 Node placement for monitoring

GAs and random keys
• Introduced by Bean (1994)

for sequencing problems.
• Evolutionary dynamics

– Copy elite solutions from population
K to population K+1

 Elite solutions

Population K+1Population K

 Elite solutions

Non-elite
solutions

 DIMACS, May 15, 2008 Node placement for monitoring

GAs and random keys
• Introduced by Bean (1994)

for sequencing problems.
• Evolutionary dynamics

– Copy elite solutions from population
K to population K+1

– Add R random solutions (mutants)
to population K+1

 Elite solutions

Mutant
solutions

Population K+1Population K

 Elite solutions

Non-elite
solutions

 DIMACS, May 15, 2008 Node placement for monitoring

GAs and random keys
• Introduced by Bean (1994)

for sequencing problems.
• Evolutionary dynamics

– Copy elite solutions from population
K to population K+1

– Add R random solutions (mutants)
to population K+1

– While K+1-th population < P
• Mate elite solution with non elite to

produce child in population K+1.
Mates are chosen at random.

 Elite solutions

Mutant
solutions

X

Population K+1

Probability
child inherits
allele of elite
parent > 0.5Population K

 Elite solutions

Non-elite
solutions

Mutant
solutions

 DIMACS, May 15, 2008 Node placement for monitoring

Decoders
• A decoder is a deterministic algorithm that takes as input a random-key

vector and returns a feasible solution of the optimization problem and
its cost.

• Bean (1994) proposed decoders based on sorting the random-key
vector to produce a sequence.

• A random-key GA searches the solution space indirectly by searching
the space of random keys and using the decoder to evaluate fitness of
the random key.

[0,1]N Solution space
of optimization
problem

decoder

 DIMACS, May 15, 2008 Node placement for monitoring

Decoders

[0,1]N Solution space
of optimization
problem

decoder

Search solution
space indirectly

• A decoder is a deterministic algorithm that takes as input a random-key
vector and returns a feasible solution of the optimization problem and
its cost.

• Bean (1994) proposed decoders based on sorting the random-key
vector to produce a sequence.

• A random-key GA searches the solution space indirectly by searching
the space of random keys and using the decoder to evaluate fitness of
the random key.

 DIMACS, May 15, 2008 Node placement for monitoring

Decoders
• A decoder is a deterministic algorithm that takes as input a random-key

vector and returns a feasible solution of the optimization problem and
its cost.

• Bean (1994) proposed decoders based on sorting the random-key
vector to produce a sequence.

• A random-key GA searches the solution space indirectly by searching
the space of random keys and using the decoder to evaluate fitness of
the random key.

[0,1]N Solution space
of optimization
problem

decoder

Search solution
space indirectly

 DIMACS, May 15, 2008 Node placement for monitoring

Decoders
• A decoder is a deterministic algorithm that takes as input a random-key

vector and returns a feasible solution of the optimization problem and
its cost.

• Bean (1994) proposed decoders based on sorting the random-key
vector to produce a sequence.

• A random-key GA searches the solution space indirectly by searching
the space of random keys and using the decoder to evaluate fitness of
the random key.

[0,1]N Solution space
of optimization
problem

decoder

Search solution
space indirectly

 DIMACS, May 15, 2008 Node placement for monitoring

Framework for random-key genetic algorithms

Generate P vectors
of random keys

Decode each vector
of random keys

Stopping rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions
to next population

Generate mutants in
next population

Combine elite and
non-elite solutions
and add children to

next population

no

stop

yes

 DIMACS, May 15, 2008 Node placement for monitoring

Framework for random-key genetic algorithms

Generate P vectors
of random keys

Decode each vector
of random keys

Stopping rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions
to next population

Generate mutants in
next population

Combine elite and
non-elite solutions
and add children to

next population

no

stop

yes

Problem independent

 DIMACS, May 15, 2008 Node placement for monitoring

Framework for random-key genetic algorithms

Generate P vectors
of random keys

Decode each vector
of random keys

Stopping rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions
to next population

Generate mutants in
next population

Combine elite and
non-elite solutions
and add children to

next population

no

stop

yes

Problem independent

Problem dependent

 DIMACS, May 15, 2008 Node placement for monitoring

GA for the MMS
problem

 DIMACS, May 15, 2008 Node placement for monitoring

GA for the MMS problem
• Chromosome:

– A vector X of N random 0-1values (random keys), where
N is the number of potential monitoring nodes. The i-th
random key corresponds to the i-th monitoring node.

• Decoder:
– For i = 1,N: if X(i) = 1, add i-th monitoring node to

solution
– If solution is feasible, i.e. all customer nodes are covered:

STOP
– Else, apply greedy algorithm to cover uncovered branch

nodes.

 DIMACS, May 15, 2008 Node placement for monitoring

GA for the MMS problem

• Size of population: N (number of monitoring nodes)
• Size of elite set: 15% of N
• Size of mutant set: 10% of N
• Biased coin probability: 70%
• Stop after N generations without improvement of

best found solution

 DIMACS, May 15, 2008 Node placement for monitoring

generations

solution
n100-i2-m100-b100 (opt = 23)

 DIMACS, May 15, 2008 Node placement for monitoring

Time (ibm t41 secs)

solution
n100-i2-m100-b100 (opt = 23)

GA solutions Random multi-start solutions

Optimal value

 DIMACS, May 15, 2008 Node placement for monitoring

n100-i2-m100-b100 (opt = 23)

Effect of population size on
convergence of random-key

genetic algorithm
(number of generations)

 DIMACS, May 15, 2008 Node placement for monitoring

n100-i2-m100-b100 (opt = 23)

Effect of population size on
convergence of random-key

genetic algorithm (solution time)

 DIMACS, May 15, 2008 Node placement for monitoring

n100-i2-m100-b100 (opt = 23)

Effect of mutant population
 size on convergence of

random-key genetic algorithm
(solution time)

 DIMACS, May 15, 2008 Node placement for monitoring

Time to optimal cover for
100 independent runs of GA
with MUTSIZE = 1% of
POPSIZE and MUTSIZE =
10% of POPSIZE.

n100-i2-m100-b100 (opt = 23)

 DIMACS, May 15, 2008 Node placement for monitoring

Experimental results

• 560 instances, with 25, 50, 100, 190, 220, 250,
300, and 558 nodes.

• 324 of these 560 were solved optimally with
CPLEX. Running GA a single time, we found optimal
solutions in 318 of these instances.

• Of the 236 that CPLEX could not solve, GA matched
a lower bound in 166.

• In all, the GA found optimal solutions for 484 of the
560 instances (86.4%)

 DIMACS, May 15, 2008 Node placement for monitoring

Experimental results

• The paper describes the double hitting set heuristic (HH).
This heuristic makes use of the OSPF paths and is very fast
and effective.

• In 482 of the 560 instances (86.1%) the GA and HH found
solutions with the same cost.

• In 68 instances (12.1%) GA found a better solution than
HH.

• In 10 instances (2%) HH found a better solution than GA.
• In only 12 instances (2.1%) was the solution found by GA

not minimal.

 DIMACS, May 15, 2008 Node placement for monitoring

Concluding
remarks

 DIMACS, May 15, 2008 Node placement for monitoring

Concluding remarks
• We constructed a number of network test instances to

capture the topology and routing of large internetworks;

• We demonstrated algorithms that provide a feasible
combination of accuracy and execution times;

• We showed that solutions derived from our methods provide
a useful saving in the number of measurement nodes
compared with the naive approach of using each branch
point as a measurement node: Networks having a large
number of branch nodes need only 20-30% of branch points
to be measurement nodes.

 DIMACS, May 15, 2008 Node placement for monitoring

The End
These slides and all of my papers cited in this talk

can be downloaded from my homepage:
http://mauricioresende.com

