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Summary

• Minimum monitoring set (MMS) problem
• Algorithms for MMS
• Greedy algorithm
• Genetic algorithm
• Computational experiments
• Concluding remarks
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Minimum monitoring set problem
We wish to perform the tomographic 

inference of hop-on and hop-off 
performance for each provider edge 
router:
Deploy a set of N measurement 

hosts {M
1
, M

2
, ..., M

N
} such that 

for each provider edge router A, 
there are two measurement 
hosts M

i
 and M

j
 such that the 

physical paths (A, M
i
) and  (A, M

j
) 

are disjoint.
One objective is to minimize N.

paths are given and
are fixed
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Set covering with pairs

• Set covering with pairs (SCP) was introduced by 
Hassin & Segev (2005):
– GIVEN a ground set X of elements and a set Y of 

cover items, and for each x X a set P
x 
of pairs of 

items in Y that cover x.  A subset Y' ⊆ Y covers X if 
for each     x X one of the pairs in P

x 
 is contained in 

Y', FIND a minimum-size covering subset.

• SCP is NP-hard and, unless P = NP, is hard to 
approximate.
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Minimum monitoring set problem

• The MMS problem is a special case of SCP.  We 
prove that:
– Let R(w,u) be the set of all routes from w to u
– MMS is at least as hard to approximate as SCP, even if:

• Each set R(w,u) is the set of all shortest paths from w to u;
• Each set R(w,u) contains only one item, and that is a shortest 

path from w to u

• However, if we allow arbitrary disjoint paths, then 
using dynamic programming, the problem can be 
solved in O( |V|+|E|) time.
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Algorithms for MMS problem

• Exact integer programming model
• Dynamic programming for arbitrary paths variant
• Greedy heuristic
• Genetic algorithm (heuristic)
• Double hitting set heuristic (HH)
• Lower bound derived from HH
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Greedy algorithm for MMS problem

• initialize partial cover S = { }
• while S is not a cover do:

– find m  M \ S such that S  {m} covers a maximum 
number of additional branch nodes (break ties by vertex 
index) and set S = S  {m}

– if no m  M \ S yields an increase in coverage, then 
choose a pair {m

1
,m

2
}

 
 M \ S that yields a maximum 

increase in coverage and set S = S  {m
1
}  {m

2
}

– if no pair exists, then the problem is infeasible
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Genetic algorithms
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Genetic algorithms

Individual: solution

Adaptive methods that are used to solve search
and optimization problems.

Holland (1975)
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Genetic algorithms

Individual: solution
Population: set of fixed number of individuals
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Genetic algorithms

Genetic algorithms evolve population applying
the principle of survival of the fittest.

A series of generations are produced by 
the algorithm. The most fit individual of last
generation is the solution. 

Individuals from one generation are combined
to produce offspring that make up next 
generation.
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Genetic algorithms
Probability of selecting individual to mate
is proportional to its fitness: survival of the 
fittest.

a

b
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Genetic algorithms

a

b

Parents drawn from 
generation K

a

b

Combine
parents

c'

Perturb
child

c

Child in 
generation K+1

Probability of selecting individual to mate
is proportional to its fitness: survival of the 
fittest.
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Genetic algorithms

a

b

Mutation

a

b

Combine
parents

c'

Perturb
child

c

Child in 
generation K+1

Crossover

Parents drawn from 
generation K

Probability of selecting individual to mate
is proportional to its fitness: survival of the 
fittest.
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Evolution of solutions
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Evolution of solutions
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GA lingo

• Population: set of individuals (solutions)
• Chromosome: string (encodes a solution)
• Gene: feature, character, detector (chromosomes are strings of 

genes)
• Allele: feature value
• Crossover: combination (mating) of two “parent” solutions to 

produce a “child” solution
• Mutation: perturbation of “child” solution
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A drawback of 
genetic algorithms

a

b

Crossover c'

Mutation cParents drawn from 
generation K

Child in 
generation K+1

Given (feasible) parents “a” and “b” in generation K, 
problem-dependent crossover and mutation operators 
are needed to guarantee that child “c” in generation 
K+1 is also feasible.

Therefore, there is a need for specialized representations
as well as crossover and mutation operators for each
problem variation.
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A drawback of 
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Given (feasible) parents “a” and “b” in generation K, 
problem-dependent crossover and mutation operators 
are needed to guarantee that child “c” in generation 
K+1 is also feasible.

Therefore, there is a need for specialized representations
as well as crossover and mutation operators for each
problem variation.

A genetic algorithm with
problem independent
crossover and mutation
operators could be more
appealing.

a

b

Crossover c'

Mutation cParents drawn from 
generation K

Child in 
generation K+1



 DIMACS, May 15, 2008 Node placement for monitoring

Genetic algorithms
with random keys
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GAs and random keys

• Introduced by Bean (1994) 
for sequencing problems.
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• Individuals are strings of 
real-valued numbers 
(random keys) in the 
interval [0,1].

S = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
          s(1)   s(2)   s(3)   s(4)    s(5)
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GAs and random keys

• Introduced by Bean (1994) 
for sequencing problems.

• Individuals are strings of 
real-valued numbers 
(random keys) in the 
interval [0,1].

• Sorting random keys results 
in a sequencing order.

S = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
          s(1)   s(2)   s(3)   s(4)    s(5)

S' = ( 0.05, 0.19, 0.25, 0.67, 0.89 )
          s(4)   s(2)   s(1)   s(3)    s(5)
Sequence: 4 – 2 – 1 – 3 – 5 
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GAs and random keys

• Introduced by Bean (1994) 
for sequencing problems.

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = (                                              )

• Introduced by Bean (1994) 
for sequencing problems.

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passed the allele to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25                                      )

• Introduced by Bean (1994) 
for sequencing problems.

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passed the allele to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90                             )

• Introduced by Bean (1994) 
for sequencing problems.

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passed the allele to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90, 0.76                    )

• Introduced by Bean (1994) 
for sequencing problems.

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passed the allele to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90, 0.76, 0.05          )

• Introduced by Bean (1994) 
for sequencing problems.

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passed the allele to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90, 0.76, 0.05, 0.89 )

Every random-key array corresponds
to a feasible solution: Mating always
produces feasible offspring.

• Introduced by Bean (1994) 
for sequencing problems.

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passed the allele to 
the child.
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GAs and random keys

• Introduced by Bean (1994) 
for sequencing problems.

• Initial population is made 
up of P chromosomes, each 
with N genes, each having 
a value (allele) generated 
uniformly at random in the 
interval [0,1].
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GAs and random keys
• Introduced by Bean (1994) 

for sequencing problems.
• At the K-th generation, 

compute the cost of each 
solution and partition the 
solutions into two sets: 
elite solutions, non-elite 
solutions. Elite set should 
be smaller of the two sets 
and contain best solutions.

 Elite solutions

Population K

Non-elite
solutions
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GAs and random keys
• Introduced by Bean (1994) 

for sequencing problems.
• Evolutionary dynamics

Population K Population K+1

 Elite solutions

Non-elite
solutions
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– Copy elite solutions from population 
K to population K+1

 Elite solutions

Population K+1Population K

 Elite solutions

Non-elite
solutions
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GAs and random keys
• Introduced by Bean (1994) 

for sequencing problems.
• Evolutionary dynamics

– Copy elite solutions from population 
K to population K+1

– Add R random solutions (mutants) 
to population K+1

 Elite solutions

Mutant
solutions

Population K+1Population K

 Elite solutions

Non-elite
solutions
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GAs and random keys
• Introduced by Bean (1994) 

for sequencing problems.
• Evolutionary dynamics

– Copy elite solutions from population 
K to population K+1

– Add R random solutions (mutants) 
to population K+1

– While K+1-th population < P
• Mate elite solution with non elite to 

produce child in population K+1. 
Mates are chosen at random.

 Elite solutions

Mutant
solutions

X

Population K+1

Probability
child inherits
allele of elite 
parent > 0.5Population K

 Elite solutions

Non-elite
solutions

Mutant
solutions
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Decoders
• A decoder is a deterministic algorithm that takes as input a random-key 

vector and returns a feasible solution of the optimization problem and 
its cost.

• Bean (1994) proposed decoders based on sorting the random-key 
vector to produce a sequence.

• A random-key GA searches the solution space indirectly by searching 
the space of random keys and using the decoder to evaluate fitness of 
the random key.

[0,1]N Solution space
of optimization
problem

decoder
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Framework for random-key genetic algorithms

Generate P vectors 
of random keys 

Decode each vector 
of random keys 

Stopping rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions 
to next population

Generate mutants in 
next population

Combine elite and
non-elite solutions
and add children to

next population

no

stop

yes
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Framework for random-key genetic algorithms

Generate P vectors 
of random keys 

Decode each vector 
of random keys 

Stopping rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions 
to next population

Generate mutants in 
next population

Combine elite and
non-elite solutions
and add children to

next population

no

stop

yes

Problem independent

Problem dependent
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GA for the MMS 
problem
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GA for the MMS problem
• Chromosome: 

– A vector X of N random 0-1values (random keys), where 
N is the number of potential monitoring nodes. The i-th 
random key corresponds to the i-th monitoring node.

• Decoder: 
– For i = 1,N:  if X(i) = 1, add i-th monitoring node to 

solution
– If solution is feasible, i.e. all customer nodes are covered: 

STOP
– Else, apply greedy algorithm to cover uncovered branch 

nodes.
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GA for the MMS problem

• Size of population: N (number of monitoring nodes)
• Size of elite set: 15% of N
• Size of mutant set: 10% of N
• Biased coin probability: 70%
• Stop after N generations without improvement of 

best found solution
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generations

solution
n100-i2-m100-b100 (opt = 23)
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Time (ibm t41 secs)

solution
n100-i2-m100-b100 (opt = 23)

GA solutions Random multi-start solutions

Optimal value
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n100-i2-m100-b100 (opt = 23)

Effect of population size on 
convergence of random-key

genetic algorithm
(number of generations)
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n100-i2-m100-b100 (opt = 23)

Effect of population size on 
convergence of random-key

genetic algorithm (solution time)
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n100-i2-m100-b100 (opt = 23)

Effect of mutant population
 size on convergence of 

random-key genetic algorithm
(solution time)
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Time to optimal cover for 
100 independent  runs of GA 
with MUTSIZE = 1% of 
POPSIZE and MUTSIZE = 
10% of  POPSIZE.
 

n100-i2-m100-b100 (opt = 23)



 DIMACS, May 15, 2008 Node placement for monitoring

Experimental results

• 560 instances, with 25, 50, 100, 190, 220, 250, 
300, and 558 nodes.

• 324 of these 560 were solved optimally with 
CPLEX.  Running GA a single time, we found optimal 
solutions in 318 of these instances.

• Of the 236 that CPLEX could not solve, GA matched 
a lower bound in 166.

• In all, the GA found optimal solutions for 484 of the 
560 instances (86.4%)
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Experimental results

• The paper describes the double hitting set heuristic (HH).  
This heuristic makes use of the OSPF paths and is very fast 
and effective.

• In 482 of the 560 instances (86.1%) the GA and HH found 
solutions with the same cost.

• In 68 instances (12.1%) GA found a better solution than 
HH.

• In 10 instances (2%) HH found a better solution than GA.
• In only 12 instances (2.1%) was the solution found by GA 

not minimal.
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Concluding 
remarks
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Concluding remarks
• We constructed a number of network test instances to 

capture the topology and routing of large internetworks;

• We demonstrated algorithms that provide a feasible 
combination of accuracy and execution times;

• We showed that solutions derived from our methods provide 
a useful saving in the number of measurement nodes 
compared with the naive approach of using each branch 
point as a measurement node:  Networks having a large 
number of branch nodes need only 20-30% of branch points 
to be measurement nodes.
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The End
These slides and all of my papers cited in this talk 

can be downloaded from my homepage:
http://mauricioresende.com


