
 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

Talk given at INFORMS Annual Meeting
Philadelphia, PA ✤ November 1, 2015

Work done while speaker was employed at
AT&T Labs Research.

A biased random-key genetic
algorithm for the capacitated
minimum spanning tree problem

Mauricio G. C. Resende
Amazon.com
Seattle, Washington

resendem AT amazon DOT com

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

Summary
• Biased random-key genetic algorithms (BRKGA)

– Evolutionary dynamics
– Problem independent / problem dependent components
– Application Programming Interface (API) for BRKGA

• The capacitated minimum spanning tree problem
• BRKGA for the capacitated minimum spanning tree

problem
– Encoding, decoding, and parameters
– Experimental results

• Concluding remarks

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

Joint work with Efrain Ruiz, Maria Albareda-Sambola, and
Elena Fernández (U. Politècnica de Catalunya, Barcelona, Spain)

E. Ruiz, M. Albareda-Sambola, E. Fernández, and M.G.C.R.,
“A biased random-key genetic algorithm for the capacitated
minimum spanning tree problem,” Computers & Operations
Research, vol. 57, pp. 95-108, 2015.

Download from http://mauricio.resende.info

This research is partially funded by the
Spanish Ministry of Economy and
Competitiveness though grants MTM2012-
36163-C06-05 and the European Regional
Development Fund.

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

Genetic algorithms
and random keys

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

GAs and random keys

• Introduced by Bean (1994)
for sequencing problems.

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

GAs and random keys

• Introduced by Bean (1994)
for sequencing problems.

• Individuals are strings of
real-valued numbers
(random keys) in the
interval [0,1).

S = (0.25, 0.19, 0.67, 0.05, 0.89)
 s(1) s(2) s(3) s(4) s(5)

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

GAs and random keys

• Introduced by Bean (1994)
for sequencing problems.

• Individuals are strings of
real-valued numbers
(random keys) in the
interval [0,1).

• Sorting random keys results
in a sequencing order.

S = (0.25, 0.19, 0.67, 0.05, 0.89)
 s(1) s(2) s(3) s(4) s(5)

S' = (0.05, 0.19, 0.25, 0.67, 0.89)
 s(4) s(2) s(1) s(3) s(5)
Sequence: 4 – 2 – 1 – 3 – 5

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

GAs and random keys

• Mating is done using
parametrized uniform
crossover (Spears & DeJong , 1990)

a = (0.25, 0.19, 0.67, 0.05, 0.89)
b = (0.63, 0.90, 0.76, 0.93, 0.08)

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

GAs and random keys

a = (0.25, 0.19, 0.67, 0.05, 0.89)
b = (0.63, 0.90, 0.76, 0.93, 0.08)

• Mating is done using
parametrized uniform
crossover (Spears & DeJong , 1990)

• For each gene, flip a biased
coin to choose which
parent passes the allele
(key, or value of gene) to
the child.

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

GAs and random keys

a = (0.25, 0.19, 0.67, 0.05, 0.89)
b = (0.63, 0.90, 0.76, 0.93, 0.08)
c = ()

• Mating is done using
parametrized uniform
crossover (Spears & DeJong , 1990)

• For each gene, flip a biased
coin to choose which
parent passes the allele
(key, or value of gene) to
the child.

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

GAs and random keys

a = (0.25, 0.19, 0.67, 0.05, 0.89)
b = (0.63, 0.90, 0.76, 0.93, 0.08)
c = (0.25)

• Mating is done using
parametrized uniform
crossover (Spears & DeJong , 1990)

• For each gene, flip a biased
coin to choose which
parent passes the allele
(key, or value of gene) to
the child.

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

GAs and random keys

a = (0.25, 0.19, 0.67, 0.05, 0.89)
b = (0.63, 0.90, 0.76, 0.93, 0.08)
c = (0.25, 0.90)

• Mating is done using
parametrized uniform
crossover (Spears & DeJong , 1990)

• For each gene, flip a biased
coin to choose which
parent passes the allele
(key, or value of gene) to
the child.

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

GAs and random keys

a = (0.25, 0.19, 0.67, 0.05, 0.89)
b = (0.63, 0.90, 0.76, 0.93, 0.08)
c = (0.25, 0.90, 0.76)

• Mating is done using
parametrized uniform
crossover (Spears & DeJong , 1990)

• For each gene, flip a biased
coin to choose which
parent passes the allele
(key, or value of gene) to
the child.

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

GAs and random keys

a = (0.25, 0.19, 0.67, 0.05, 0.89)
b = (0.63, 0.90, 0.76, 0.93, 0.08)
c = (0.25, 0.90, 0.76, 0.05)

• Mating is done using
parametrized uniform
crossover (Spears & DeJong , 1990)

• For each gene, flip a biased
coin to choose which
parent passes the allele
(key, or value of gene) to
the child.

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

GAs and random keys

a = (0.25, 0.19, 0.67, 0.05, 0.89)
b = (0.63, 0.90, 0.76, 0.93, 0.08)
c = (0.25, 0.90, 0.76, 0.05, 0.89)

• Mating is done using
parametrized uniform
crossover (Spears & DeJong , 1990)

• For each gene, flip a biased
coin to choose which
parent passes the allele
(key, or value of gene) to
the child.

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

GAs and random keys

a = (0.25, 0.19, 0.67, 0.05, 0.89)
b = (0.63, 0.90, 0.76, 0.93, 0.08)
c = (0.25, 0.90, 0.76, 0.05, 0.89)

If every random-key array corresponds
to a feasible solution: Mating always
produces feasible offspring.

• Mating is done using
parametrized uniform
crossover (Spears & DeJong , 1990)

• For each gene, flip a biased
coin to choose which
parent passes the allele
(key, or value of gene) to
the child.

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

Framework for biased random-key genetic algorithms

Generate P vectors
of random keys

Decode each vector
of random keys

Stopping rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions
to next population

Generate mutants in
next population

Combine elite and
non-elite solutions
and add children to

next population

no

stop

yes

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

Framework for biased random-key genetic algorithms

Generate P vectors
of random keys

Decode each vector
of random keys

Stopping rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions
to next population

Generate mutants in
next population

Combine elite and
non-elite solutions
and add children to

next population

stop

Problem independent

no yes

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

Framework for biased random-key genetic algorithms

Generate P vectors
of random keys

Decode each vector
of random keys

Stopping rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions
to next population

Generate mutants in
next population

Combine elite and
non-elite solutions
and add children to

next population

stop

Problem independent

no yes

Problem dependent

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

Decoding of random key vectors can be done in parallel

Generate P vectors
of random keys

Decode each vector
of random keys

Stopping rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions
to next population

Generate mutants in
next population

Combine elite and
non-elite solutions
and add children to

next population

stop

no yes

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

Biased random-key genetic algorithms

Tech report version:

 http://mauricio.resende.info/doc/srkga.pdf

J.F. Gonçalves and M.G.C.R., “Biased random-key
genetic algorithms for combinatorial optimization,”
J. of Heuristics, vol.17, pp. 487-525, 2011.

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

Specifying a BRKGA

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

• Encoding is always done the same way, i.e. with a vector of
N random-keys (parameter N must be specified)

Specifying a biased random-key GA

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

• Encoding is always done the same way, i.e. with a vector of
N random-keys (parameter N must be specified)

• Decoder that takes as input a vector of N random-keys and
outputs the corresponding solution of the combinatorial
optimization problem and its cost (this is usually a heuristic)

Specifying a biased random-key GA

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

• Encoding is always done the same way, i.e. with a vector of
N random-keys (parameter N must be specified)

• Decoder that takes as input a vector of N random-keys and
outputs the corresponding solution of the combinatorial
optimization problem and its cost (this is usually a heuristic)

• Parameters

Specifying a biased random-key GA

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

Specifying a biased random-key GA

Parameters:
– Size of population

– Size of elite partition

– Size of mutant set

– Child inheritance probability

– Stopping criterion

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

Specifying a biased random-key GA

Parameters:
– Size of population: a function of N, say N or 2N

– Size of elite partition

– Size of mutant set

– Child inheritance probability

– Stopping criterion

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

Specifying a biased random-key GA

Parameters:
– Size of population: a function of N, say N or 2N

– Size of elite partition: 15-25% of population

– Size of mutant set

– Child inheritance probability

– Stopping criterion

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

Specifying a biased random-key GA

Parameters:
– Size of population: a function of N, say N or 2N

– Size of elite partition: 15-25% of population

– Size of mutant set: 5-15% of population

– Child inheritance probability

– Stopping criterion

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

Specifying a biased random-key GA

Parameters:
– Size of population: a function of N, say N or 2N

– Size of elite partition: 15-25% of population

– Size of mutant set: 5-15% of population

– Child inheritance probability: > 0.5, say 0.7

– Stopping criterion

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

Specifying a biased random-key GA

Parameters:
– Size of population: a function of N, say N or 2N

– Size of elite partition: 15-25% of population

– Size of mutant set: 5-15% of population

– Child inheritance probability: > 0.5, say 0.7

– Stopping criterion: e.g. time, # generations, solution quality,
generations without improvement

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

brkgaAPI: A C++ API for BRKGA

Paper: Rodrigo F. Toso and M.G.C.R.,

“A C++ Application Programming Interface
for Biased Random-Key Genetic Algorithms,”
Optimization Methods & Software, vol. 30, pp. 81-93, 2015.

Software: http://mauricio.resende.info/src/brkgaAPI

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

The capacitated
minimum spanning

tree problem

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

Notation

• G = (V,E) is a compete graph G = (V,E)

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

Notation

• G = (V,E) is a complete graph

• V = { 0, 1, 2, …, n } where
node 0 is central processor
and V+ = { 1, 2, …, n } are
terminals

0

1 2

3 4

5

G = (V,E)

central processor

terminals

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

Notation

• G = (V,E) is a complete graph

• V = { 0, 1, 2, …, n } where
node 0 is central processor
and V+ = { 1, 2, …, n } are
terminals

• Each edge (i, j) ∈ E has an
associated cost c

ij
 0

0

1 2

3 4

5

G = (V,E)

central processor

terminals

c
01

 5 c
02

 9

c
12

 15

c
13

 5 c
24

 7

c
35

 5 c
45

 8

c
14

 20

c
34

 18

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

Notation

• G = (V,E) is a complete graph

• V = { 0, 1, 2, …, n } where
node 0 is central processor
and V+ = { 1, 2, …, n } are
terminals

• Each edge (i, j) ∈ E has an
associated cost c

ij
 0

• Each terminal i ∈ V+ has an
associated demand w

i
 0

0

1 2

3 4

5

G = (V,E)

central processor

terminals

c
01

 5 c
02

 9

c
12

 15

c
13

 5 c
24

 7

c
35

 5 c
45

 8

c
14

 20

c
34

 18

w
1
 10

w
2
 30

w
3
 40

w
4
 10

w
5
 50

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

Notation

• Given a tree T E rooted
at 0

0

1 2

3 4

5

G = (V,E)

central processor

terminals

c
01

 5 c
02

 9

c
12

 15

c
13

 5 c
24

 7

c
35

 5 c
45

 8

c
14

 20

c
34

 18

w
1
 10

w
2
 30

w
3
 40

w
4
 10

w
5
 50

tree T

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

Notation

• Given a tree T E rooted
at 0

• The cost of the tree is
C(T) = sum { c

ij
 | (i, j) ∈ T }

0

1 2

3 4

5

G = (V,E)

central processor

terminals

c
01

 5

c
12

 15

c
45

 8

c
14

 20

c
34

 18

w
1
 10

w
2
 30

w
3
 40

w
4
 10

w
5
 50

tree T

C(T) = c
01

 + c
12

 + c
14

 + c
34

 + c
45

 =

 5 + 15 + 20 + 18 + 8 = 66

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

Notation

• The subroot of T E is any
vertex directly connected to
the root vertex 0

0

1 2

3 4

5

G = (V,E)

central processor

terminals

tree T

subroot of T E

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

Notation

• A subtree of T
i
 ⊆ T where

i is a subroot of T is called
an s-tree.

0

1 2

3 4

5

G = (V,E)

central processor

terminals

tree T

 s-tree

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

Notation

• A subtree of T
i
 ⊆ T where

i is a subroot of T is called
an s-tree.

• Let V(T
i
) V denote the

set of terminals that are
part of T

i

0

1 2

3 4

5

G = (V,E)

central processor

terminals

tree T

 s-tree

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

Notation

• A subtree of T
i
 ⊆ T where

i is a subroot of T is called
an s-tree.

• Let V(T
i
) V denote the

set of terminals that are
part of T

i

• The demand w(T
i
) of subtree

T
i
 is

w(T
i
) = sum { w

j
 | j ∈ V(T

i
) }

0

1 2

3 4

5

G = (V,E)

central processor

terminals

tree T

 s-tree

w
1
 10

w
3
 40 w

4
 10

w
5
 50

w
2
 30

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

Notation

• A subtree of T
i
 ⊆ T where

i is a subroot of T is called
an s-tree.

• Let V(T
i
) V denote the

set of terminals that are
part of T

i

• The demand w(T
i
) of subtree

T
i
 is

w(T
i
) = sum { w

j
 | j ∈ V(T

i
) }

0

1 2

3 4

5

G = (V,E)

central processor

terminals

tree T

 s-tree

w
1
 10

w
3
 40 w

4
 10

w
5
 50w(T

1
) = 10 + 30 +40 + 10 + 50 = 140

w
2
 30

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

Capacitated MST problem

• Suppose the capacity Q = 100 0

1 2

3 4

5

G = (V,E)

central processor

terminals

c
01

 5 c
02

 9

c
12

 15

c
13

 5 c
24

 7

c
35

 5 c
45

 8

c
14

 20

c
34

 18

w
1
 10

w
2
 30

w
3
 40

w
4
 10

w
5
 50

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

Capacitated MST problem

• Suppose the capacity Q = 100

• Some MSTs containing both (0,1)
and (0,2) are infeasible

• Example 1 (infeasible)
– Demand of the 1-tree is 110

> 100 (INFEASIBLE)

– Demand of the 2-tree is 30 ✓

0

1 2

3 4

5

G = (V,E)

central processor

terminals

c
01

 5 c
02

 9

c
12

 15

c
13

 5 c
24

 7

c
35

 5 c
45

 8

c
14

 20

c
34

 18

w
1
 10

w
2
 30

w
3
 40

w
4
 10

w
5
 50

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

Capacitated MST problem

• Suppose the capacity Q = 100

• Some MSTs containing both (0,1)
and (0,2) are feasible

• Example 2 (feasible)

– Demand of the 1-tree is 50 ✓

– Demand of the 2-tree is 90 ✓

– Cost is 34

0

1 2

3 4

5

G = (V,E)

central processor

terminals

c
01

 5 c
02

 9

c
12

 15

c
13

 5 c
24

 7

c
35

 5 c
45

 8

c
14

 20

c
34

 18

w
1
 10

w
2
 30

w
3
 40

w
4
 10

w
5
 50

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

Capacitated MST problem

• Suppose the capacity Q = 100

• Some MSTs containing both (0,1)
and (0,2) are feasible

• Example 3 (optimal)

– Demand of the 1-tree is 100 ✓

– Demand of the 2-tree is 40 ✓

– Cost is 31 (OPTIMAL)

0

1 2

3 4

5

G = (V,E)

central processor

terminals

c
01

 5 c
02

 9

c
12

 15

c
13

 5 c
24

 7

c
35

 5 c
45

 8

c
14

 20

c
34

 18

w
1
 10

w
2
 30

w
3
 40

w
4
 10

w
5
 50

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

BRKGA for the
capacitated

minimum spanning
tree problem

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

Specifying a BRKGA

• Encoding
• Decoding
• Parameters

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

Encoding

Solutions are encoded by a vector
 X = (X

1
, X

2
, …, X

n
)

of n = |V+| random keys.

The i-th key corresponds to the i-th terminal node.

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

Decoding

Phase 1: Extract
tree from vector of

random keys

Phase 2: Variable
Neighborhood Descent

local search on tree

Phase 3: MSTs of
graphs induced by

nodes of each s-tree

X

Feasible
CMST

Locally optimal
CMST

Final
CMST

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

Decoder Phase 1: Subroot assignment

• Returns an n-dimensional
assignment vector a, where
ai = k indicates vertex i V+ is
assigned to the s-tree s-Tk
rooted at vertex k.

0

1 2

3 4

5

central processor

terminals

a1 = 1

a3 = 1 a4 = 1

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

• Returns an n-dimensional
assignment vector a, where
ai = k indicates vertex i V+ is
assigned to the s-tree s-Tk
rooted at vertex k.

• Therefore, ak = k implies
vertex k V+ is a subroot

0

1 2

3 4

5

central processor

terminals

a1 = 1

a3 = 1 a4 = 1

subroot

Decoder Phase 1: Subroot assignment

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

• Returns an n-dimensional
assignment vector a, where
ai = k indicates vertex i V+ is
assigned to the s-tree s-Tk
rooted at vertex k.

• Therefore, ak = k implies
vertex k V+ is a subroot

• Keeps track of residual
capacities: sk = q indicates s-
tree s-Tk can accommodate
another q units before its
capacity of Q is used up.

0

1 2

3 4

5

central processor

terminals

a1 = 1

a3 = 1 a4 = 1
w

3
 40

w
4
 10

 S1 = 100 – 40 – 10 =
 50

Q = 100

subroot

Decoder Phase 1: Subroot assignment

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

• Suppose X = (.5, .2, .1, .6, .3) 0

1 2

3 4

5

central processor

terminals Q = 100

Decoder Phase 1: Subroot assignment

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

• Suppose X = (.5, .2, .1, .6, .3)

• Sort X to get π = (3, 2, 5, 1, 4)
0

1 2

3 4

5

central processor

terminals Q = 100

Decoder Phase 1: Subroot assignment

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

• Suppose X = (.5, .2, .1, .6, .3)

• Sort X to get π = (3, 2, 5, 1, 4)

• Scan vertices according to π

0

1 2

3 4

5

central processor

terminals Q = 100

Decoder Phase 1: Subroot assignment

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

• Suppose X = (.5, .2, .1, .6, .3)

• Sort X to get π = (3, 2, 5, 1, 4)

• Scan vertices according to π

• Make 3 a subroot

0

1 2

3 4

5

central processor

terminals Q = 100

s3 = 60

Decoder Phase 1: Subroot assignment

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

• Suppose X = (.5, .2, .1, .6, .3)

• Sort X to get π = (3, 2, 5, 1, 4)

• Scan vertices according to π

• Next node is 2.

• Since s3 – 30 = 30 0, add node 2
to s-T3.

0

1 2

3 4

5

central processor

terminals Q = 100

S3 = 60

Decoder Phase 1: Subroot assignment

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

• Suppose X = (.5, .2, .1, .6, .3)

• Sort X to get π = (3, 2, 5, 1, 4)

• Scan vertices according to π

• Next node is 2.

• Since s3 – 30 = 30 0, add node 2

to s-T3. Update s3 = 60 – 30 = 30

0

1 2

3 4

5

central processor

terminals Q = 100

S3 = 30

Decoder Phase 1: Subroot assignment

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

• Suppose X = (.5, .2, .1, .6, .3)

• Sort X to get π = (3, 2, 5, 1, 4)

• Scan vertices according to π

• Next node is 5.

• Since s3 – 50 = –20 < 0, make node
5 a subroot.

0

1 2

3 4

5

central processor

terminals Q = 100

S3 = 30

Decoder Phase 1: Subroot assignment

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

• Suppose X = (.5, .2, .1, .6, .3)

• Sort X to get π = (3, 2, 5, 1, 4)

• Scan vertices according to π

• Next node is 5.

• Since s3 – 50 = –20 < 0, make node

5 a subroot. Update s5 = 50

0

1 2

3 4

5

central processor

terminals Q = 100

S3 = 30

S5 = 50

Decoder Phase 1: Subroot assignment

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

• Suppose X = (.5, .2, .1, .6, .3)

• Sort X to get π = (3, 2, 5, 1, 4)

• Scan vertices according to π

• Next node is 1.

• Since 1 is closer to 3 than to 5 and
s3 – 10 = 20 0, add node 1 to

s-T3. Update s3 = 30 – 10 = 20

0

1 2

3 4

5

central processor

terminals Q = 100

S3 = 20

S5 = 50

Decoder Phase 1: Subroot assignment

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

• Suppose X = (.5, .2, .1, .6, .3)

• Sort X to get π = (3, 2, 5, 1, 4)

• Scan vertices according to π

• Next node is 4.

• Since 4 is closer to 2 than to 5 and
s3 – 10 = 10 0, ...

0

1 2

3 4

5

central processor

terminals Q = 100

S3 = 20

S5 = 50

Decoder Phase 1: Subroot assignment

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

• Suppose X = (.5, .2, .1, .6, .3)

• Sort X to get π = (3, 2, 5, 1, 4)

• Scan vertices according to π

• Next node is 4.

• Since 4 is closer to 2 than to 5 and
s3 – 10 = 10 0, add node 4 to

s-T3 via node 2. Update s3 = 20 – 10
= 10

0

1 2

3 4

5

central processor

terminals Q = 100

S3 = 10

S5 = 50

Decoder Phase 1: Subroot assignment

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

Other Phase 1 decoders

• In paper, we describe another phase 1decoder
component: Predecessor assignment

• In Efraín Ruiz (Ph.D thesis, 2013), other decoders
are described

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

• Once Phase 1 has produced a feasible
solution T0, we apply a local search in
Phase 2 of the decoder.

Decoder Phase 2: Local search

Explore N1

Input: T0

Output: T* (local min)

Explore N2

Input: T0

Output: T* (local min)

Explore N3

Input: T0

Output: T* (local min)

Explore N4

Input: T0

Output: T* (local min)

T0 = T*

T0 = T*

T0 = T*

T* local
min of all
 4 nbrh?

T0 = T*

no

end

yes

start

T0

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

• Once Phase 1 has produced a feasible
solution T0, we apply a local search in
Phase 2 of the decoder.

• The local search is a variable
neighborhood descent (VND) with
four neighborhoods: N1, N2, N3, and
N4.

Decoder Phase 2: Local search

Explore N1

Input: T0

Output: T* (local min)

Explore N2

Input: T0

Output: T* (local min)

Explore N3

Input: T0

Output: T* (local min)

Explore N4

Input: T0

Output: T* (local min)

T0 = T*

T0 = T*

T0 = T*

T* local
min of all
 4 nbrh?

T0 = T*

no

end

yes

start

T0

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

• Once Phase 1 has produced a feasible
solution T0, we apply a local search in
Phase 2 of the decoder.

• The local search is a variable
neighborhood descent (VND) with
four neighborhoods: N1, N2, N3, and
N4.

• Moves are only allowed if feasibility is
maintained.

Decoder Phase 2: Local search

Explore N1

Input: T0

Output: T* (local min)

Explore N2

Input: T0

Output: T* (local min)

Explore N3

Input: T0

Output: T* (local min)

Explore N4

Input: T0

Output: T* (local min)

T0 = T*

T0 = T*

T0 = T*

T* local
min of all
 4 nbrh?

T0 = T*

no

end

yes

start

T0

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

• Once Phase 1 has produced a feasible
solution T0, we apply a local search in
Phase 2 of the decoder.

• The local search is a variable
neighborhood descent (VND) with
four neighborhoods: N1, N2, N3, and
N4.

• Moves are only allowed if feasibility is
maintained.

• Neighborhoods are explored using a
first-improvement policy.

Decoder Phase 2: Local search

Explore N1

Input: T0

Output: T* (local min)

Explore N2

Input: T0

Output: T* (local min)

Explore N3

Input: T0

Output: T* (local min)

Explore N4

Input: T0

Output: T* (local min)

T0 = T*

T0 = T*

T0 = T*

T* local
min of all
 4 nbrh?

T0 = T*

no

end

yes

start

T0

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

Local search neighborhood N1: Swap two vertices in different s-trees

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

Local search neighborhood N2: Move vertex from one s-tree to
 another s-tree

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

Local search neighborhood N3: Move subtree from one s-tree to
 another s-tree

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

Local search neighborhood N4: Merge two s-trees into a single s-tree

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

• Once each Phase 2 local search in N1,
N2, and N3 has produced a locally
optimal solution T* with respect to its
neighborhood, any s-tree s-Tk in T*
can be reoptimized.

Decoder Phase 3: MST
Explore N1

Input: T0

Output: T* (local min)

Explore N2

Input: T0

Output: T* (local min)

Explore N3

Input: T0

Output: T* (local min)

Explore N4

Input: T0

Output: T* (local min)

T0 = MST(T*)

T* local
min of all
 4 nbrh?

T0 = T*

no

end

yes

start

T0 = MST(T*)

T0 = MST(T*)

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

• Once each Phase 2 local search in N1,
N2, and N3 has produced a locally
optimal solution T* with respect to its
neighborhood, any s-tree s-Tk in T*
can be reoptimized.

• Reoptimization of s-Tk is done by
computing a minimum spanning tree
in the graph induced by V(s-Tk) {0}
since w(V(s-Tk)) ≤ Q for all s-trees
s-Tk in T*

Decoder Phase 3: MST
Explore N1

Input: T0

Output: T* (local min)

Explore N2

Input: T0

Output: T* (local min)

Explore N3

Input: T0

Output: T* (local min)

Explore N4

Input: T0

Output: T* (local min)

T0 = MST(T*)

T* local
min of all
 4 nbrh?

T0 = T*

no

end

yes

start

T0 = MST(T*)

T0 = MST(T*)

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

• Once each Phase 2 local search in N1,
N2, and N3 has produced a locally
optimal solution T* with respect to its
neighborhood, any s-tree s-Tk in T*
can be reoptimized.

• Reoptimization of s-Tk is done by
computing a minimum spanning tree
in the graph induced by V(s-Tk) {0}
since w(V(s-Tk)) ≤ Q for all s-trees
s-Tk in T*

• Use Kruskal's algorithm to solve each
minimum spanning tree problem.

Decoder Phase 3: MST
Explore N1

Input: T0

Output: T* (local min)

Explore N2

Input: T0

Output: T* (local min)

Explore N3

Input: T0

Output: T* (local min)

Explore N4

Input: T0

Output: T* (local min)

T0 = MST(T*)

T* local
min of all
 4 nbrh?

T0 = T*

no

end

yes

start

T0 = MST(T*)

T0 = MST(T*)

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

Parameters

• Implemented in C++ using the API for BRKGA of Toso and R.
(2015)

• Size of population: p = 100

• Size of elite partition: pe = floor (0.25 p) = 25

• Size of mutant partition: pm = floor (0.10 p) = 10

• Probability of inheriting key of elite parent: ρe= 0.65

• Stopping criterion: Number of iterations without improvement
 (n – 20) / Q, for instances with unitary demands (UD)
 45 Q / (Q – 100), for instances with non-UD demands

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

Computational
experiments

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

Instances

• Benchmark instances (126) available at:
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/capmstinfo.html

• Two main classes of instances:
 With unitary demands: tc, te, td (Euclidean distances) with

Q ∈ { 5, 10, 20 }

• tc and te have number of terminals n ∈ { 80, 160, 180 }

• td has n = 80 terminals
 With non-unitary demands: cm (non-Euclidean distances) with

Q ∈ { 200, 400, 800 }

• number of terminals n ∈ { 49, 99, 199 }

• cost of edges ∈ { 1, 2, …, 100 }

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/capmstinfo.html

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

Comparing the performance of BRKGA with
other state-of-the-art heuristics

• Very Large Neighborhood Search – VLNS (Ahuja
et al., 2003)

• Ant Colony Optimization – ACO (Reimann &
Laumanns, 2006)

• Enhanced Second-Order Algorithm – ESO
(Martins, 2007)

• RAMP heuristic – RAMP (Rego et al., 2010)

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

Comparing the performance of BRKGA with
other state-of-the-art heuristics

Group Instances VLNS ACO ESO RAMP BRKGA

tc80 15 100% 53% 73% 87% 100%

te80 15 100% 66% 47% 40% 100%

td80 15 NA NA 33% NA 100%

tc120 15 33% 13% 47% NA 100%

te120 15 20% 7% 7% NA 73%

tc160 3 0% 0% 0% NA 100%

te160 3 0% 0% 0% NA 100%

cm50 15 93% NA NA 73% 100%

cm100 15 60% NA NA 20% 73%

cm200 15 33% NA NA NA 47%

Percentage of instances for which best known solution was found

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

Concluding remarks

• Reviewed BRKGA framework
• Applied framework to capacitated minimum spanning tree

(CMST) problem
• All decoders were simple heuristics
• BRKGA “learned” how to “operate” the heuristics
• BRKGA was more robust than four state-of-the-art heuristics

for the CMST
• Seven new best known solutions were produced for well-

studied instances of the CMST problem

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

Concluding remarks

Instance Q Previous UB New UB % improvement

tc160-1 10 1319 1318 0.08

tc120-4 20 773 771 0.26

cm200-2 400 476 475 0.21

cm200-3 400 559 557 0.36

cm200-4 400 389 388 0.26

cm200-2 800 294 293 0.34

cm200-3 800 361 360 0.28

New upper bounds (best known solutions) found by BRKGA

 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

Thanks!
These slides and all of the papers cited in this talk
can be downloaded from my homepage:

http://mauricio.resende.info

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86

