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Summary
• Biased random-key genetic algorithms (BRKGA)

– Evolutionary dynamics
– Problem independent / problem dependent components
– Application Programming Interface (API) for BRKGA

• The capacitated minimum spanning tree problem
• BRKGA for the capacitated minimum spanning tree 

problem
– Encoding, decoding, and parameters
– Experimental results

• Concluding remarks
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Genetic algorithms 
and random keys
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GAs and random keys

• Introduced by Bean (1994) 
for sequencing problems.
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GAs and random keys

• Introduced by Bean (1994) 
for sequencing problems.

• Individuals are strings of 
real-valued numbers 
(random keys) in the 
interval [0,1).

S = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
          s(1)   s(2)   s(3)   s(4)    s(5)
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GAs and random keys

• Introduced by Bean (1994) 
for sequencing problems.

• Individuals are strings of 
real-valued numbers 
(random keys) in the 
interval [0,1).

• Sorting random keys results 
in a sequencing order.

S = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
          s(1)   s(2)   s(3)   s(4)    s(5)

S' = ( 0.05, 0.19, 0.25, 0.67, 0.89 )
          s(4)   s(2)   s(1)   s(3)    s(5)
Sequence: 4 – 2 – 1 – 3 – 5 
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GAs and random keys

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele 
(key, or value of gene) to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = (                                              )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele 
(key, or value of gene) to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25                                      )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele 
(key, or value of gene) to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90                             )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele 
(key, or value of gene) to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90, 0.76                    )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele 
(key, or value of gene) to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90, 0.76, 0.05          )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele 
(key, or value of gene) to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90, 0.76, 0.05, 0.89 )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele 
(key, or value of gene) to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90, 0.76, 0.05, 0.89 )

If every random-key array corresponds
to a feasible solution: Mating always
produces feasible offspring.

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele 
(key, or value of gene) to 
the child.
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Framework for biased random-key genetic algorithms

Generate P vectors 
of random keys 

Decode each vector 
of random keys 

Stopping rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions 
to next population

Generate mutants in 
next population

Combine elite and
non-elite solutions
and add children to

next population

no

stop

yes



 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

Framework for biased random-key genetic algorithms

Generate P vectors 
of random keys 

Decode each vector 
of random keys 
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Framework for biased random-key genetic algorithms

Generate P vectors 
of random keys 

Decode each vector 
of random keys 

Stopping rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions 
to next population

Generate mutants in 
next population

Combine elite and
non-elite solutions
and add children to

next population

stop

Problem independent

no yes

Problem dependent
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Decoding of random key vectors can be done in parallel

Generate P vectors 
of random keys 

Decode each vector 
of random keys 

Stopping rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions 
to next population

Generate mutants in 
next population

Combine elite and
non-elite solutions
and add children to

next population

stop

no yes
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Biased random-key genetic algorithms

Tech report version:

        

         http://mauricio.resende.info/doc/srkga.pdf

J.F. Gonçalves and M.G.C.R., “Biased random-key 
genetic algorithms for combinatorial optimization,” 
J. of Heuristics, vol.17, pp. 487-525, 2011.
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Specifying a BRKGA
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• Encoding is always done the same way, i.e. with a vector of 
N random-keys (parameter N must be specified)

Specifying a biased random-key GA
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• Encoding is always done the same way, i.e. with a vector of 
N random-keys (parameter N must be specified)

• Decoder that takes as input a vector of N random-keys and 
outputs the corresponding solution of the combinatorial 
optimization problem and its cost (this is usually a heuristic)

Specifying a biased random-key GA
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• Encoding is always done the same way, i.e. with a vector of 
N random-keys (parameter N must be specified)

• Decoder that takes as input a vector of N random-keys and 
outputs the corresponding solution of the combinatorial 
optimization problem and its cost (this is usually a heuristic)

• Parameters

Specifying a biased random-key GA
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Specifying a biased random-key GA

Parameters:
– Size of population

– Size of elite partition

– Size of mutant set

– Child inheritance probability

– Stopping criterion
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Specifying a biased random-key GA

Parameters:
– Size of population:  a function of N, say N or 2N

– Size of elite partition

– Size of mutant set

– Child inheritance probability

– Stopping criterion
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Specifying a biased random-key GA

Parameters:
– Size of population:  a function of N, say N or 2N

– Size of elite partition: 15-25% of population

– Size of mutant set

– Child inheritance probability

– Stopping criterion
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Specifying a biased random-key GA

Parameters:
– Size of population:  a function of N, say N or 2N

– Size of elite partition: 15-25% of population

– Size of mutant set: 5-15% of population

– Child inheritance probability

– Stopping criterion
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Specifying a biased random-key GA

Parameters:
– Size of population:  a function of N, say N or 2N

– Size of elite partition: 15-25% of population

– Size of mutant set: 5-15% of population

– Child inheritance probability: > 0.5, say 0.7

– Stopping criterion
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Specifying a biased random-key GA

Parameters:
– Size of population:  a function of N, say N or 2N

– Size of elite partition: 15-25% of population

– Size of mutant set: 5-15% of population

– Child inheritance probability: > 0.5, say 0.7

– Stopping criterion: e.g. time, # generations, solution quality,              
# generations without improvement
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brkgaAPI: A C++ API for BRKGA

Paper: Rodrigo F. Toso and M.G.C.R.,                                         

“A C++ Application Programming Interface  
for Biased Random-Key Genetic Algorithms,”    
Optimization Methods & Software, vol. 30, pp. 81-93, 2015.

Software: http://mauricio.resende.info/src/brkgaAPI
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The capacitated 
minimum spanning 

tree problem
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Notation

• G = (V,E) is a compete graph G = (V,E)
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Notation

• G = (V,E) is a complete graph

• V = { 0, 1, 2, …, n } where 
node 0 is central processor 
and V+ = { 1, 2, …, n } are 
terminals

0

1 2

3 4

5

G = (V,E)

central processor

terminals
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Notation

• G = (V,E) is a complete graph

• V = { 0, 1, 2, …, n } where 
node 0 is central processor 
and V+ = { 1, 2, …, n } are 
terminals

• Each edge ( i, j ) ∈ E has an 
associated cost c

ij
  0

0

1 2

3 4

5

G = (V,E)

central processor

terminals
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Notation

• G = (V,E) is a complete graph

• V = { 0, 1, 2, …, n } where 
node 0 is central processor 
and V+ = { 1, 2, …, n } are 
terminals

• Each edge ( i, j ) ∈ E has an 
associated cost c

ij
  0

• Each terminal i ∈ V+ has an 
associated demand w

i
  0
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Notation

• Given a tree T  E rooted 
at 0
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Notation

• Given a tree T  E rooted 
at 0

• The cost of the tree is       
C(T) = sum { c

ij
 | ( i, j ) ∈ T }

0

1 2

3 4

5

G = (V,E)

central processor

terminals
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  5
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C(T) = c
01

 + c
12

 + c
14

 + c
34

 + c
45

 =

               5 + 15 + 20 + 18 + 8 = 66 
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Notation

• The subroot of T  E is any 
vertex directly connected to 
the root vertex 0

0

1 2

3 4

5

G = (V,E)

central processor

terminals

tree T

subroot of T  E
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Notation

• A subtree of T
i
  ⊆ T where  

i is a subroot of T is called 
an s-tree.

0

1 2

3 4

5

G = (V,E)

central processor

terminals

tree T

 s-tree 
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Notation

• A subtree of T
i
  ⊆ T where  

i is a subroot of T is called 
an s-tree.

• Let V(T
i
)  V denote the 

set of terminals that are   
part of T

i
  

0

1 2

3 4

5

G = (V,E)

central processor

terminals

tree T

 s-tree 
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Notation

• A subtree of T
i
  ⊆ T where  

i is a subroot of T is called 
an s-tree.

• Let V(T
i
)  V denote the 

set of terminals that are   
part of T

i
  

• The demand w(T
i
) of subtree 

T
i
  is                                

w( T
i 
) = sum { w

j
 | j ∈ V(T

i
) }
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Notation

• A subtree of T
i
  ⊆ T where  

i is a subroot of T is called 
an s-tree.

• Let V(T
i
)  V denote the 

set of terminals that are   
part of T

i
  

• The demand w(T
i
) of subtree 

T
i
  is                                

w( T
i 
) = sum { w

j
 | j ∈ V(T

i
) }

0
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3 4
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G = (V,E)

central processor

terminals

tree T

 s-tree 
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Capacitated MST problem

• Suppose the capacity Q = 100 0
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Capacitated MST problem

• Suppose the capacity Q = 100

• Some MSTs containing both ( 0,1) 
and ( 0,2) are infeasible

• Example 1 (infeasible)
–  Demand of the 1-tree is 110 

> 100  (INFEASIBLE)

– Demand of the 2-tree is 30  ✓ 
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Capacitated MST problem

• Suppose the capacity Q = 100

• Some MSTs containing both ( 0,1) 
and ( 0,2) are feasible

• Example 2 (feasible)

– Demand of the 1-tree is 50  ✓ 

– Demand of the 2-tree is 90  ✓ 

– Cost is 34 
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Capacitated MST problem

• Suppose the capacity Q = 100

• Some MSTs containing both ( 0,1) 
and ( 0,2) are feasible

• Example 3 (optimal)

– Demand of the 1-tree is 100  ✓

– Demand of the 2-tree is 40    ✓ 

– Cost is 31 ( OPTIMAL ) 
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BRKGA for the 
capacitated 

minimum spanning 
tree problem
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Specifying  a BRKGA

• Encoding
• Decoding
• Parameters
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Encoding

Solutions are encoded by a vector
               X = ( X

1
, X

2
, …, X

n 
) 

of n = |V+| random keys.

The i-th key corresponds to the i-th terminal node.
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Decoding

Phase 1: Extract
tree from vector of

random keys

Phase 2: Variable
Neighborhood Descent

local search on tree

Phase 3:  MSTs of
graphs induced by 

nodes of each s-tree

X

Feasible
CMST

Locally optimal
CMST

Final
CMST
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Decoder Phase 1: Subroot assignment 

• Returns an n-dimensional 
assignment vector a, where    
ai = k indicates vertex i  V+ is 
assigned to the s-tree s-Tk 
rooted at vertex k.

0

1 2

3 4

5

central processor

terminals

a1 = 1

a3 = 1 a4 = 1
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• Returns an n-dimensional 
assignment vector a, where    
ai = k indicates vertex i  V+ is 
assigned to the s-tree s-Tk 
rooted at vertex k.

• Therefore, ak = k implies 
vertex k  V+ is a subroot

0

1 2

3 4

5

central processor

terminals

a1 = 1

a3 = 1 a4 = 1

subroot

Decoder Phase 1: Subroot assignment 
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• Returns an n-dimensional 
assignment vector a, where    
ai = k indicates vertex i  V+ is 
assigned to the s-tree s-Tk 
rooted at vertex k.

• Therefore, ak = k implies 
vertex k  V+ is a subroot

• Keeps track of residual 
capacities: sk = q indicates s-
tree s-Tk can accommodate 
another q units before its 
capacity of Q is used up. 

0
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3 4

5

central processor

terminals

a1 = 1

a3 = 1 a4 = 1
w

3
  40

w
4
  10

 S1 = 100 – 40 – 10 =
                  50

Q = 100

subroot

Decoder Phase 1: Subroot assignment 
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• Suppose X = ( .5, .2, .1, .6, .3 ) 0

1 2

3 4

5

central processor

terminals Q = 100

Decoder Phase 1: Subroot assignment 
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• Suppose X = ( .5, .2, .1, .6, .3 )

• Sort X to get π = ( 3, 2, 5, 1, 4 ) 
0

1 2

3 4

5

central processor

terminals Q = 100

Decoder Phase 1: Subroot assignment 
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• Suppose X = ( .5, .2, .1, .6, .3 )

• Sort X to get π = ( 3, 2, 5, 1, 4 ) 

• Scan vertices according to π

0

1 2

3 4

5

central processor

terminals Q = 100

Decoder Phase 1: Subroot assignment 
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• Suppose X = ( .5, .2, .1, .6, .3 )

• Sort X to get π = ( 3, 2, 5, 1, 4 )

• Scan vertices according to π

• Make 3 a subroot

0
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5

central processor

terminals Q = 100

s3 = 60

Decoder Phase 1: Subroot assignment 
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• Suppose X = ( .5, .2, .1, .6, .3 )

• Sort X to get π = ( 3, 2, 5, 1, 4 ) 

• Scan vertices according to π

• Next node is 2.  

• Since s3 – 30 = 30  0, add node 2 
to s-T3.

0

1 2

3 4

5

central processor

terminals Q = 100

S3 = 60

Decoder Phase 1: Subroot assignment 
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• Suppose X = ( .5, .2, .1, .6, .3 )

• Sort X to get π = ( 3, 2, 5, 1, 4 ) 

• Scan vertices according to π

• Next node is 2.  

• Since s3 – 30 = 30  0, add node 2 

to s-T3.  Update s3 = 60 – 30 = 30

0

1 2

3 4

5

central processor

terminals Q = 100

S3 = 30

Decoder Phase 1: Subroot assignment 
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• Suppose X = ( .5, .2, .1, .6, .3 )

• Sort X to get π = ( 3, 2, 5, 1, 4 )

• Scan vertices according to π

• Next node is 5.  

• Since s3 – 50 = –20 < 0, make node 
5 a subroot.  

0

1 2

3 4

5

central processor

terminals Q = 100

S3 = 30

Decoder Phase 1: Subroot assignment 
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• Suppose X = ( .5, .2, .1, .6, .3 )

• Sort X to get π = ( 3, 2, 5, 1, 4 ) 

• Scan vertices according to π

• Next node is 5.  

• Since s3 – 50 = –20 < 0, make node 

5 a subroot.  Update s5 = 50 

0

1 2

3 4

5

central processor

terminals Q = 100

S3 = 30

S5 = 50

Decoder Phase 1: Subroot assignment 
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• Suppose X = ( .5, .2, .1, .6, .3 )

• Sort X to get π = ( 3, 2, 5, 1, 4 )

• Scan vertices according to π

• Next node is 1.  

• Since 1 is closer to 3 than to 5 and  
s3 – 10 = 20  0, add node 1 to    

s-T3.  Update s3 = 30 – 10 = 20

0

1 2

3 4

5

central processor

terminals Q = 100

S3 = 20

S5 = 50

Decoder Phase 1: Subroot assignment 
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• Suppose X = ( .5, .2, .1, .6, .3 )

• Sort X to get π = ( 3, 2, 5, 1, 4 ) 

• Scan vertices according to π

• Next node is 4.  

• Since 4 is closer to 2 than to 5 and  
s3 – 10 = 10  0, ...

0

1 2

3 4

5

central processor

terminals Q = 100

S3 = 20

S5 = 50

Decoder Phase 1: Subroot assignment 



 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

• Suppose X = ( .5, .2, .1, .6, .3 )

• Sort X to get π = ( 3, 2, 5, 1, 4 ) 

• Scan vertices according to π

• Next node is 4.  

• Since 4 is closer to 2 than to 5 and  
s3 – 10 = 10  0, add node 4 to    

s-T3 via node 2. Update s3 = 20 – 10 
= 10

0

1 2

3 4

5

central processor

terminals Q = 100

S3 = 10

S5 = 50

Decoder Phase 1: Subroot assignment 
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Other Phase 1 decoders

• In paper, we describe another phase 1decoder 
component: Predecessor assignment 

• In Efraín Ruiz (Ph.D thesis, 2013), other decoders 
are described
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• Once Phase 1 has produced a feasible 
solution T0, we apply a local search in 
Phase 2 of the decoder.

Decoder Phase 2: Local search 

Explore N1

Input: T0

Output: T* (local min)

Explore N2

Input: T0

Output: T* (local min)

Explore N3

Input: T0

Output: T* (local min)

Explore N4

Input: T0

Output: T* (local min)

T0 = T*  

T0 = T*

T0 = T*

T* local
min of all
 4 nbrh?

T0 = T*

no

end

yes

start

T0
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• Once Phase 1 has produced a feasible 
solution T0, we apply a local search in 
Phase 2 of the decoder.

• The local search is a variable 
neighborhood descent (VND) with 
four neighborhoods: N1, N2, N3, and 
N4.

Decoder Phase 2: Local search 

Explore N1

Input: T0

Output: T* (local min)

Explore N2

Input: T0

Output: T* (local min)

Explore N3

Input: T0

Output: T* (local min)

Explore N4

Input: T0

Output: T* (local min)

T0 = T*  

T0 = T*

T0 = T*

T* local
min of all
 4 nbrh?

T0 = T*

no

end

yes

start

T0
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• Once Phase 1 has produced a feasible 
solution T0, we apply a local search in 
Phase 2 of the decoder.

• The local search is a variable 
neighborhood descent (VND) with 
four neighborhoods: N1, N2, N3, and 
N4.

• Moves are only allowed if feasibility is 
maintained.

Decoder Phase 2: Local search 

Explore N1

Input: T0

Output: T* (local min)

Explore N2

Input: T0

Output: T* (local min)

Explore N3

Input: T0

Output: T* (local min)

Explore N4

Input: T0

Output: T* (local min)

T0 = T*  

T0 = T*

T0 = T*

T* local
min of all
 4 nbrh?

T0 = T*

no

end

yes

start

T0
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• Once Phase 1 has produced a feasible 
solution T0, we apply a local search in 
Phase 2 of the decoder.

• The local search is a variable 
neighborhood descent (VND) with 
four neighborhoods: N1, N2, N3, and 
N4.

• Moves are only allowed if feasibility is 
maintained.

• Neighborhoods are explored using a 
first-improvement policy.

Decoder Phase 2: Local search 

Explore N1

Input: T0

Output: T* (local min)

Explore N2

Input: T0

Output: T* (local min)

Explore N3

Input: T0

Output: T* (local min)

Explore N4

Input: T0

Output: T* (local min)

T0 = T*  

T0 = T*

T0 = T*

T* local
min of all
 4 nbrh?

T0 = T*

no

end

yes

start

T0
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Local search neighborhood N1: Swap two vertices in different s-trees
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Local search neighborhood N2:  Move vertex from one s-tree to          
                                                   another s-tree
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Local search neighborhood N3:  Move subtree from one s-tree to      
                                                  another s-tree
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Local search neighborhood N4:  Merge two s-trees into a single s-tree
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• Once each Phase 2 local search in N1, 
N2, and N3 has produced a locally 
optimal solution T* with respect to its 
neighborhood, any s-tree s-Tk in T* 
can be reoptimized.

Decoder Phase 3: MST 
Explore N1

Input: T0

Output: T* (local min)

Explore N2

Input: T0

Output: T* (local min)

Explore N3

Input: T0

Output: T* (local min)

Explore N4

Input: T0

Output: T* (local min)

T0 = MST(T*)

T* local
min of all
 4 nbrh?

T0 = T*

no

end

yes

start

T0 = MST(T*)

T0 = MST(T*)
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• Once each Phase 2 local search in N1, 
N2, and N3 has produced a locally 
optimal solution T* with respect to its 
neighborhood, any s-tree s-Tk in T* 
can be reoptimized.

• Reoptimization of s-Tk is done by 
computing a minimum spanning tree 
in the graph induced by V(s-Tk )  {0} 
since w(V(s-Tk )) ≤ Q for all s-trees    
s-Tk  in T*

Decoder Phase 3: MST 
Explore N1

Input: T0

Output: T* (local min)

Explore N2

Input: T0

Output: T* (local min)

Explore N3

Input: T0

Output: T* (local min)

Explore N4

Input: T0

Output: T* (local min)

T0 = MST(T*)

T* local
min of all
 4 nbrh?

T0 = T*

no

end

yes

start

T0 = MST(T*)

T0 = MST(T*)
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• Once each Phase 2 local search in N1, 
N2, and N3 has produced a locally 
optimal solution T* with respect to its 
neighborhood, any s-tree s-Tk in T* 
can be reoptimized.

• Reoptimization of s-Tk is done by 
computing a minimum spanning tree 
in the graph induced by V(s-Tk )  {0} 
since w(V(s-Tk )) ≤ Q for all s-trees    
s-Tk  in T*

• Use Kruskal's algorithm to solve each 
minimum spanning tree problem.

Decoder Phase 3: MST 
Explore N1

Input: T0

Output: T* (local min)

Explore N2

Input: T0

Output: T* (local min)

Explore N3

Input: T0

Output: T* (local min)

Explore N4

Input: T0

Output: T* (local min)

T0 = MST(T*)

T* local
min of all
 4 nbrh?

T0 = T*

no

end

yes

start

T0 = MST(T*)

T0 = MST(T*)
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Parameters

• Implemented in C++ using the API for BRKGA of Toso and R. 
(2015)

• Size of population: p = 100

• Size of elite partition: pe = floor ( 0.25 p ) = 25

• Size of mutant partition: pm = floor ( 0.10 p ) = 10

• Probability of inheriting key of elite parent: ρe= 0.65

• Stopping criterion: Number of iterations without improvement
 ( n – 20 ) / Q, for instances with unitary demands (UD)
 45 Q / ( Q  – 100 ), for instances with non-UD demands
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Computational 
experiments
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Instances

• Benchmark instances (126) available at: 
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/capmstinfo.html

• Two main classes of instances:
 With unitary demands: tc, te, td (Euclidean distances) with     

Q ∈ { 5, 10, 20 }

• tc and te have number of terminals n ∈ { 80, 160, 180 }

• td has n = 80 terminals
 With non-unitary demands: cm (non-Euclidean distances) with 

Q ∈ { 200, 400, 800 }

• number of terminals n ∈ { 49, 99, 199 }

• cost of edges ∈ { 1, 2, …, 100 }

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/capmstinfo.html
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Comparing the performance of BRKGA with 
other state-of-the-art heuristics

• Very Large Neighborhood Search – VLNS (Ahuja 
et al., 2003)

• Ant Colony Optimization – ACO (Reimann & 
Laumanns, 2006)

• Enhanced Second-Order Algorithm – ESO 
(Martins, 2007)

• RAMP heuristic – RAMP (Rego et al., 2010)
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Comparing the performance of BRKGA with 
other state-of-the-art heuristics

Group Instances VLNS ACO ESO RAMP BRKGA

tc80 15 100% 53% 73% 87% 100%

te80 15 100% 66% 47% 40% 100%

td80 15 NA NA 33% NA 100%

tc120 15 33% 13% 47% NA 100%

te120 15 20% 7% 7% NA 73%

tc160 3 0% 0% 0% NA 100%

te160 3 0% 0% 0% NA 100%

cm50 15 93% NA NA 73% 100%

cm100 15 60% NA NA 20% 73%

cm200 15 33% NA NA NA 47%

Percentage of instances for which best known solution was found 



 INFORMS 2015, Philadelphia, PA ✤ Nov. 1, 2015 BRKGA for CMST

Concluding remarks

• Reviewed BRKGA framework
• Applied framework to capacitated minimum spanning tree 

(CMST) problem
• All decoders were simple heuristics
• BRKGA “learned” how to “operate” the heuristics
• BRKGA was more robust than four state-of-the-art heuristics 

for the CMST
• Seven new best known solutions were produced for well-

studied instances of the CMST problem
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Concluding remarks

Instance Q Previous UB New UB % improvement

tc160-1 10 1319 1318 0.08

tc120-4 20 773 771 0.26

cm200-2 400 476 475 0.21

cm200-3 400 559 557 0.36

cm200-4 400 389 388 0.26

cm200-2 800 294 293 0.34

cm200-3 800 361 360 0.28

New upper bounds (best known solutions) found by BRKGA 
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Thanks!
These slides and all of the papers cited in this talk 
can be downloaded from my homepage:

http://mauricio.resende.info
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