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Summary
• Random-key genetic algorithm of Bean (1994)

• Biased random-key genetic algorithms (BRKGA)

– Encoding / Decoding

– Initial population

– Evolutionary mechanisms

– Problem independent / problem dependent components

– Multi-start strategy

– Specifying a BRKGA

– Application programming interface (API) for BRKGA

• Applications

– BRKGA for 2-dim and 3-dim packing

– BRKGA for 3-dim bin packing

– BRKGA for unequal area facility layout

• Concluding remarks
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Encoding solutions
with random keys
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Encoding with random keys

• A random key is a real random number in the 
continuous interval [0,1).
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Encoding with random keys

• A random key is a real random number in the 
continuous interval [0,1).

• A vector X of random keys, or simply random 
keys, is an array of n random keys.
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Encoding with random keys

• A random key is a real random number in the 
continuous interval [0,1).

• A vector X of random keys, or simply random 
keys, is an array of n random keys.

• Solutions of optimization problems can be 
encoded by random keys.
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Encoding with random keys

• A random key is a real random number in the 
continuous interval [0,1).

• A vector X of random keys, or simply random 
keys, is an array of n random keys.

• Solutions of optimization problems can be 
encoded by random keys.

• A decoder is a deterministic algorithm that takes 
a vector of random keys as input and outputs a 
feasible solution of the optimization problem.
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Encoding with random keys: Sequencing

Encoding
        [        1,         2,        3,        4,         5 ] 

  X = [ 0.099, 0.216, 0.802, 0.368, 0.658 ]
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Encoding with random keys: Sequencing

Encoding
        [        1,         2,        3,        4,         5 ] 

  X = [ 0.099, 0.216, 0.802, 0.368, 0.658 ]

Decode by sorting vector of random keys

        [        1,         2,        4,        5,         3 ] 

  X = [ 0.099, 0.216, 0.368, 0.658, 0.802 ]



 MIC'2015 – Agadir, Morocco ✤ Jun. 8, 2015 BRKGA 

Encoding with random keys: Sequencing

Encoding
        [        1,         2,        3,        4,         5 ] 

  X = [ 0.099, 0.216, 0.802, 0.368, 0.658 ]

Decode by sorting

        [        1,         2,        4,        5,         3 ] 

  X = [ 0.099, 0.216, 0.368, 0.658, 0.802 ]

Therefore, the vector of random keys:

X = [ 0.099, 0.216, 0.802, 0.368, 0.658 ]

encodes the sequence: 1– 2 – 4 – 5 – 3
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Encoding with random keys: Subset 
selection (select 3 of 5 elements)

Encoding
        [        1,         2,        3,        4,         5 ] 

  X = [ 0.099, 0.216, 0.802, 0.368, 0.658 ]

Decode by sorting vector of random keys
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Encoding with random keys: Subset 
selection (select 3 of 5 elements)

Encoding
        [        1,         2,        3,        4,         5 ] 

  X = [ 0.099, 0.216, 0.802, 0.368, 0.658 ]

Decode by sorting vector of random keys

        [        1,         2,        4,        5,         3 ] 

  X = [ 0.099, 0.216, 0.368, 0.658, 0.802 ]Encoding
  

Decode by sorting vector of random keys
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Encoding with random keys: Subset 
selection (select 3 of 5 elements)

Encoding
        [        1,         2,        3,        4,         5 ] 

  X = [ 0.099, 0.216, 0.802, 0.368, 0.658 ]

Decode by sorting vector of random keys

        [        1,         2,        4,        5,         3 ] 

  X = [ 0.099, 0.216, 0.368, 0.658, 0.802 ]Encoding
Therefore, the vector of random keys:

X = [ 0.099, 0.216, 0.802, 0.368, 0.658 ]

encodes the subset: {1, 2, 4 }
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Encoding with random keys: Assigning integer 
weights  [0,10] to a subset of 3 of 5 elements

Encoding
        [        1,        2,        3,        4,        5 |          1,          2,          3,          4,           5 ] 

  X = [ 0.099, 0.216, 0.802, 0.368, 0.658 | 0.4634, 0.5611, 0.2752, 0.4874, 0.0348 ]
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Encoding with random keys: Assigning integer 
weights  [0,10] to a subset of 3 of 5 elements

Encoding
        [        1,        2,        3,        4,        5 |          1,          2,          3,          4,           5 ] 

  X = [ 0.099, 0.216, 0.802, 0.368, 0.658 | 0.4634, 0.5611, 0.2752, 0.4874, 0.0348 ]

Decode by sorting the first 5 keys and assign as the weight the value 
W

i
 =   floor [ 10 X

5+i
 ] + 1 to the 3 elements with smallest keys X

i
, for  

     i =1,...,5.
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Encoding with random keys: Assigning integer 
weights  [0,10] to a subset of 3 of 5 elements

Encoding
        [        1,        2,        3,        4,        5 |          1,          2,          3,          4,           5 ] 

  X = [ 0.099, 0.216, 0.802, 0.368, 0.658 | 0.4634, 0.5611, 0.2752, 0.4874, 0.0348 ]

Decode by setting sorting the first 5 keys and assign

the element weight to W
i
 =   floor [ 11 X

5+i
 ] to the 3 elements with 

smallest keys X
i
, for i =1,...,5.

Therefore, the vector of random keys:

X = [ 0.099, 0.216, 0.802, 0.368, 0.658 | 0.4634, 0.5611, 0.2752, 0.4874, 0.0348 ]      

encodes the weight vector W = (5,6,–,5,–)
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Genetic algorithms 
and random keys
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GAs and random keys

• Introduced by Bean (1994) 
for sequencing problems.
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GAs and random keys

• Introduced by Bean (1994) 
for sequencing problems.

• Individuals are strings of 
real-valued numbers 
(random keys) in the 
interval [0,1).

S = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
          s(1)   s(2)   s(3)   s(4)    s(5)
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GAs and random keys

• Introduced by Bean (1994) 
for sequencing problems.

• Individuals are strings of 
real-valued numbers 
(random keys) in the 
interval [0,1).

• Sorting random keys results 
in a sequencing order.

S = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
          s(1)   s(2)   s(3)   s(4)    s(5)

S' = ( 0.05, 0.19, 0.25, 0.67, 0.89 )
          s(4)   s(2)   s(1)   s(3)    s(5)
Sequence: 4 – 2 – 1 – 3 – 5 
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GAs and random keys

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele 
(key, or value of gene) to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = (                                              )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele 
(key, or value of gene) to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25                                      )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele 
(key, or value of gene) to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90                             )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele 
(key, or value of gene) to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90, 0.76                    )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele 
(key, or value of gene) to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90, 0.76, 0.05          )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele 
(key, or value of gene) to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90, 0.76, 0.05, 0.89 )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele 
(key, or value of gene) to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90, 0.76, 0.05, 0.89 )

If every random-key array corresponds
to a feasible solution: Mating always
produces feasible offspring.

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele 
(key, or value of gene) to 
the child.
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GAs and random keys

Initial population is made up of P 
random-key vectors, each with N 
keys, each having a value 
generated uniformly at random in 
the interval [0,1).



 MIC'2015 – Agadir, Morocco ✤ Jun. 8, 2015 BRKGA 

GAs and random keys
At the K-th generation, 
compute the cost of each 
solution ...  Elite solutions

Population K

Non-elite
solutions
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GAs and random keys
At the K-th generation, 
compute the cost of each 
solution and partition the 
solutions into two sets: 

 Elite solutions

Population K

Non-elite
solutions
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GAs and random keys
At the K-th generation, 
compute the cost of each 
solution and partition the 
solutions into two sets: elite 
solutions and non-elite 
solutions. 

 Elite solutions

Population K

Non-elite
solutions
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GAs and random keys
At the K-th generation, 
compute the cost of each 
solution and partition the 
solutions into two sets: elite 
solutions and non-elite 
solutions. Elite set should 
be smaller of the two sets 
and contain best solutions.

 Elite solutions

Population K

Non-elite
solutions
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GAs and random keys
Evolutionary dynamics

Population K Population K+1

 Elite solutions

Non-elite
solutions
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GAs and random keys
Evolutionary dynamics
– Copy elite solutions from population 

K to population K+1  Elite solutions

Population K+1Population K

 Elite solutions

Non-elite
solutions
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GAs and random keys
Evolutionary dynamics
– Copy elite solutions from population 

K to population K+1

– Add R random solutions (mutants) 
to population K+1

 Elite solutions

Mutant
solutions

Population K+1Population K

 Elite solutions

Non-elite
solutions
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GAs and random keys
Evolutionary dynamics
– Copy elite solutions from population 

K to population K+1

– Add R random solutions (mutants) 
to population K+1

– While K+1-th population < P
• RANDOM-KEY GA: Use any two 

solutions in population K to produce 
child in population K+1. Mates are 
chosen at random.

 Elite solutions

Mutant
solutions

X

Population K+1Population K

 Elite solutions

Non-elite
solutions

Mutant
solutions
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Biased random key genetic algorithm

• A biased random key genetic algorithm (BRKGA) 
is a random key genetic algorithm (RKGA).
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Biased random key genetic algorithm

• A biased random key genetic algorithm (BRKGA) 
is a random key genetic algorithm (RKGA).

• BRKGA and RKGA differ in how mates are 
chosen for crossover and how parametrized 
uniform crossover is applied.
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How RKGA & BRKGA differ

RKGA
both parents chosen at 
random from entire 
population

BRKGA



 MIC'2015 – Agadir, Morocco ✤ Jun. 8, 2015 BRKGA 

How RKGA & BRKGA differ

RKGA
both parents chosen at 
random from entire 
population

BRKGA
both parents chosen at 
random but one parent 
chosen from population 
of elite solutions



 MIC'2015 – Agadir, Morocco ✤ Jun. 8, 2015 BRKGA 

How RKGA & BRKGA differ

RKGA
both parents chosen at 
random from entire 
population

either parent can be 
parent A in parametrized 
uniform crossover

BRKGA
both parents chosen at 
random but one parent 
chosen from population 
of elite solutions
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How RKGA & BRKGA differ

RKGA
both parents chosen at 
random from entire 
population

either parent can be 
parent A in parametrized 
uniform crossover

BRKGA
both parents chosen at 
random but one parent 
chosen from population 
of elite solutions

best fit parent is parent A 
in parametrized uniform 
crossover 
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Biased random key GA
Evolutionary dynamics
– Copy elite solutions from population 

K to population K+1

– Add R random solutions (mutants) 
to population K+1

– While K+1-th population < P
• RANDOM-KEY GA: Use any two 

solutions in population K to produce 
child in population K+1. Mates are 
chosen at random.

• BIASED RANDOM-KEY GA: Mate elite 
solution with other solution  of 
population K to produce child in 
population K+1. Mates are chosen at 
random.

 Elite solutions

Mutant
solutions

X

Population K+1

BRKGA: Probability
child inherits
key of elite 
parent > 0.5Population K

 Elite solutions

Non-elite
solutions

Mutant
solutions
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Paper comparing BRKGA and Bean's 
Method

Gonçalves, R., and Toso, 

“An experimental comparison of 
biased and unbiased random-key 
genetic algorithms”, 

Pesquisa Operacional, vol. 34, pp. 143-164, 
2014.



 MIC'2015 – Agadir, Morocco ✤ Jun. 8, 2015 BRKGA 

set covering
problem: scp41
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set covering
problem: scp41

Pr(t
BRKGA

 ≤ t
RKGA

) = 0.740 

Probability computed with method 
of Ribeiro et al. (2012)
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set covering
problem: scp51
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set covering
problem: scp51

Pr(t
BRKGA

 ≤ t
RKGA

) = 0.999 
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set k-covering
problem: scp48-7
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set k-covering
problem: scp48-7

Pr(t
BRKGA

 ≤ t
RKGA

) = 0.847
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Observations
• Random method: keys are randomly generated so 

solutions are always vectors of random keys
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Observations
• Random method: keys are randomly generated so 

solutions are always vectors of random keys

• Elitist strategy:  best solutions are passed without change 
from one generation to the next (incumbent is kept)
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Observations
• Random method: keys are randomly generated so 

solutions are always vectors of random keys

• Elitist strategy:  best solutions are passed without change 
from one generation to the next (incumbent is kept)

• Child inherits more characteristics of elite parent: 
one parent is always selected (with replacement) from the 
small elite set and probability that child inherits key of elite 
parent > 0.5   Not so in the RKGA of Bean. 
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Observations
• Random method: keys are randomly generated so 

solutions are always vectors of random keys

• Elitist strategy:  best solutions are passed without change 
from one generation to the next (incumbent is kept)

• Child inherits more characteristics of elite parent: 
one parent is always selected (with replacement) from the 
small elite set and probability that child inherits key of elite 
parent > 0.5   Not so in the RKGA of Bean. 

• No mutation in crossover: mutants are used instead 
(they play same role as mutation in GAs … help escape local 
optima) 
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Framework for biased random-key genetic algorithms

Generate P vectors 
of random keys 

Decode each vector 
of random keys 

Stopping rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions 
to next population

Generate mutants in 
next population

Combine elite and
non-elite solutions
and add children to

next population

no

stop

yes
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Framework for biased random-key genetic algorithms

Generate P vectors 
of random keys 

Decode each vector 
of random keys 

Stopping rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions 
to next population

Generate mutants in 
next population

Combine elite and
non-elite solutions
and add children to

next population

stop

Problem independent

no yes



 MIC'2015 – Agadir, Morocco ✤ Jun. 8, 2015 BRKGA 

Framework for biased random-key genetic algorithms

Generate P vectors 
of random keys 

Decode each vector 
of random keys 

Stopping rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions 
to next population

Generate mutants in 
next population

Combine elite and
non-elite solutions
and add children to

next population

stop

Problem independent

no yes

Problem dependent
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Decoding of random key vectors can be done in parallel

Generate P vectors 
of random keys 

Decode each vector 
of random keys 

Stopping rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions 
to next population

Generate mutants in 
next population

Combine elite and
non-elite solutions
and add children to

next population

stop

no yes
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Is a BRKGA any different from applying 
the decoder to random keys?

• Simulate a random multi-start decoding method 
with a BRKGA by setting size of elite partition to 
1 and number of mutants to P–1

• Each iteration, best solution is maintained in elite 
set and P–1random key vectors are generated as 
mutants … no mating is done since population 
already has P individuals
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solution
Network monitor location problem (opt = 23)

Time (ibm t41 secs)

BRKGA solutions Random multi-start solutions

Optimal value

best random solution
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BRKGA in multi-start strategy

   Generate P vectors 

of random keys 
Decode each vector 

of random keys 

Restart rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions 
to next population

Generate mutants in 
next population

Combine elite and
non-elite solutions
and add children to

next population

no
yes

begin

if incumbent
improved, update

incumbent

stopping
rule

satisfied ?

output
incumbent stop

yes

no
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Randomized heuristic iteration 
count distribution: constructed 
by independently running the 
algorithm a number of times, each 
time stopping when the algorithm 
finds a solution at least as good as a 
given target.  
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In most of the independent runs, the algorithm finds the target solution in 
relatively few iterations: 
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In most of the independent runs, the algorithm finds the target solution in 
relatively few iterations: 25% of the runs take fewer than 101 iterations
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In most of the independent runs, the algorithm finds the target solution in 
relatively few iterations: 50% of the runs take fewer than 192 iterations
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In most of the independent runs, the algorithm finds the target solution in 
relatively few iterations: 75% of the runs take fewer than 345 iterations
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However, some runs take much longer: 10% of the runs take over 1000 
iterations
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However, some runs take much longer:  5% of the runs take over 2000 
iterations
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However, some runs take much longer:  2% of the runs take over 9715 
iterations
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However, some runs take much longer:  the longest run took 11607 
iterations
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Probability that algorithm will take 
over 345 iterations: 25% = 1/4
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Probability that algorithm will take 
over 345 iterations: 25% = 1/4

By restarting algorithm after 345 
iterations, probability that new run  
will take over 690 iterations: 25% = 
1/4

Probability that algorithm with 
restart will take over 690 iterations: 
probability of taking over 345  X  
probability of taking over 690 
iterations given it took over 345 = 
¼ x ¼ = 1/42
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Probability that algorithm will still be 
running after K periods of 345 
iterations:  1/4K
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Probability that algorithm will still be 
running after K periods of 345 
iterations:  1/4K

For example, probability that 
algorithm with restart will still be 
running after 1725 iterations (5 
periods of 345 iterations):  1/45   
0.0977%

This is much less than the 5% 
probability that the algorithm 
without restart will take over 2000 
iterations. 
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Probability that algorithm will still be 
running after K periods of 345 
iterations:  1/4K

For example, probability that 
algorithm with restart will still be 
running after 1725 iterations (5 
periods of 345 iterations):  1/45   
0.0977%

This is much less than the 5% 
probability that the algorithm 
without restart will take over 2000 
iterations. 
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Restart strategies

• First proposed by Luby et al. (1993)
• They define a restart strategy as a finite sequence 

of time intervals  S = {
1
, 

2
, 

3
, … } which define 

epochs  
1
,   

1
+

2
,   

1
+

2
+

3
,  … when the 

algorithm is restarted from scratch.
• Luby et al. (1993) prove that the optimal restart 

strategy uses 
1
= 

2
= 

3
= … = *, where * is a 

constant.
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Restart strategy for BRKGA

• Recall the restart strategy of Luby et al. where equal time 
intervals 

1
= 

2
= 

3
= … = * pass between restarts.

• Strategy requires * as input.

• Since we have no prior information as to the runtime 
distribution of the heuristic, we run the risk of:
– choosing * too small:  restart variant may take long to 

converge

– choosing * too big:  restart variant may become like no-
restart variant



 MIC'2015 – Agadir, Morocco ✤ Jun. 8, 2015 BRKGA 

Restart strategy for BRKGA

• We conjecture that number of iterations between 
improvement of the incumbent (best so far) solution 
varies less w.r.t. heuristic/ instance/ target than run 
times.

• We propose the following restart strategy: Keep track of 
the last generation when the incumbent improved and 
restart BRKGA if K generations have gone by without 
improvement.

• We call this strategy restart(K)  
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Example of restart strategy for BRKGA: Telecom application

restart strategy: 
               restart(2000) no restart
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Specifying a BRKGA
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• Encoding is always done the same way, i.e. with a vector of 
N random-keys (parameter N must be specified)

Specifying a biased random-key GA
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• Encoding is always done the same way, i.e. with a vector of 
N random-keys (parameter N must be specified)

• Decoder that takes as input a vector of N random-keys and 
outputs the corresponding solution of the combinatorial 
optimization problem and its cost (this is usually a heuristic)

Specifying a biased random-key GA
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• Encoding is always done the same way, i.e. with a vector of 
N random-keys (parameter N must be specified)

• Decoder that takes as input a vector of N random-keys and 
outputs the corresponding solution of the combinatorial 
optimization problem and its cost (this is usually a heuristic)

• Parameters

Specifying a biased random-key GA
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Specifying a biased random-key GA

Parameters:
– Size of population

– Size of elite partition

– Size of mutant set

– Child inheritance probability

– Restart strategy parameter

– Stopping criterion
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Specifying a biased random-key GA

Parameters:
– Size of population:  a function of N, say N or 2N

– Size of elite partition

– Size of mutant set

– Child inheritance probability

– Restart strategy parameter

– Stopping criterion
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Specifying a biased random-key GA

Parameters:
– Size of population:  a function of N, say N or 2N

– Size of elite partition: 15-25% of population

– Size of mutant set

– Child inheritance probability

– Restart strategy parameter

– Stopping criterion
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Specifying a biased random-key GA

Parameters:
– Size of population:  a function of N, say N or 2N

– Size of elite partition: 15-25% of population

– Size of mutant set: 5-15% of population

– Child inheritance probability

– Restart strategy parameter

– Stopping criterion
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Specifying a biased random-key GA

Parameters:
– Size of population:  a function of N, say N or 2N

– Size of elite partition: 15-25% of population

– Size of mutant set: 5-15% of population

– Child inheritance probability: > 0.5, say 0.7

– Restart strategy parameter

– Stopping criterion
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Specifying a biased random-key GA

Parameters:
– Size of population:  a function of N, say N or 2N

– Size of elite partition: 15-25% of population

– Size of mutant set: 5-15% of population

– Child inheritance probability: > 0.5, say 0.7

– Restart strategy parameter: a function of N, say 2N or 10N

– Stopping criterion
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Specifying a biased random-key GA

Parameters:
– Size of population:  a function of N, say N or 2N

– Size of elite partition: 15-25% of population

– Size of mutant set: 5-15% of population

– Child inheritance probability: > 0.5, say 0.7

– Restart strategy parameter: a function of N, say 2N or 10N

– Stopping criterion: e.g. time, # generations, solution quality,              
# generations without improvement
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brkgaAPI: A C++ API for BRKGA

• Efficient and easy-to-use object oriented application 
programming interface (API) for the algorithmic framework 
of BRKGA.
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brkgaAPI: A C++ API for BRKGA

• Efficient and easy-to-use object oriented application 
programming interface (API) for the algorithmic framework 
of BRKGA.

• Cross-platform library handles large portion of problem 
independent modules that make up the framework, e.g.
– population management
– evolutionary dynamics
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brkgaAPI: A C++ API for BRKGA

• Efficient and easy-to-use object oriented application 
programming interface (API) for the algorithmic framework 
of BRKGA.

• Cross-platform library handles large portion of problem 
independent modules that make up the framework, e.g.
– population management
– evolutionary dynamics

• Implemented in C++ and may benefit from shared-memory 
parallelism if available.
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brkgaAPI: A C++ API for BRKGA

• Efficient and easy-to-use object oriented application 
programming interface (API) for the algorithmic framework 
of BRKGA.

• Cross-platform library handles large portion of problem 
independent modules that make up the framework, e.g.
– population management
– evolutionary dynamics

• Implemented in C++ and may benefit from shared-memory 
parallelism if available.

• User only needs to implement problem-dependent decoder.
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brkgaAPI: A C++ API for BRKGA

Paper: Rodrigo F. Toso and M.G.C.R.,                                         

“A C++ Application Programming Interface  
for Biased Random-Key Genetic Algorithms,”    
Optimization Methods & Software, vol. 30, pp. 81-93, 2015.

Software: http://mauricio.resende.info/src/brkgaAPI
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An example BRKGA:
Packing weighted 

rectangles
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Reference

J.F. Gonçalves and R., “A parallel multi-
population genetic algorithm for a 
constrained two-dimensional orthogonal 
packing problem,” Journal of Combinatorial 
Optimization, vol. 22, pp. 180-201, 2011.

Tech report:
http://mauricio.resende.info/doc/pack2d.pdf
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Constrained orthogonal packing

• Given a large planar stock rectangle (W, H) of width 
W and height H;
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Constrained orthogonal packing

• Given a large planar stock rectangle (W, H) of width 
W and height H;

W

H
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Constrained orthogonal packing

• Given a large planar stock rectangle (W, H) of width 
W and height H;

• Given N smaller rectangle types (w[i], h[i]),               
i = 1,...,N, each of width w[i], height h[i], and value 
v[i];

W

H
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Constrained orthogonal packing

• Given a large planar stock rectangle (W, H) of width 
W and height H;

• Given N smaller rectangle types (w[i], h[i]),               
i = 1,...,N, each of width w[i], height h[i], and value 
v[i];

W

H

1

2
3

4
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Constrained orthogonal packing

• r[i] rectangles of type i = 1, ..., N are to be packed in the 
large rectangle without overlap and such that their edges 
are parallel to the edges of the large rectangle;

W

H
2

1

34

2

1

1

3
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Constrained orthogonal packing

• r[i] rectangles of type i = 1, ..., N are to be packed in the 
large rectangle without overlap and such that their edges 
are parallel to the edges of the large rectangle;

• For i = 1, ..., N, we require that:                                           
                                                 0 ≤P[i]≤ r[i] ≤ Q[i]

W

H
2

1

34

2

1

1

3
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Constrained orthogonal packing

• r[i] rectangles of type i = 1, ..., N are to be packed in the 
large rectangle without overlap and such that their edges 
are parallel to the edges of the large rectangle;

• For i = 1, ..., N, we require that:                                           
                                                 0 ≤P[i]≤ r[i] ≤ Q[i]

W

H
2

1

34

2

1

1

3
Suppose 5≤ r[1] ≤ 12
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Constrained orthogonal packing

• r[i] rectangles of type i = 1, ..., N are to be packed in the 
large rectangle without overlap and such that their edges 
are parallel to the edges of the large rectangle;

• For i = 1, ..., N, we require that:                                           
                                                 0 ≤P[i]≤ r[i] ≤ Q[i]

W

H
2

1

34

2

1

1

Suppose 5≤ r[1] ≤ 12
1

1
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Objective

Among the many feasible packings, we want to find one that 
maximizes total value of packed rectangles:                              
                             v[1] r[1] + v[2] r[2] + ⋅⋅⋅+v[N] r[N]  

W

H
2

1
4

2

1

1

1

1

2

1

W

H
2

1

3
4

2

1

1

1

1
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Objective

Among the many feasible packings, we want to find one that 
maximizes total value of packed rectangles:                              
                             v[1] r[1] + v[2] r[2] + ⋅⋅⋅+v[N] r[N]  

W

H
2

1
4
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1

1

1

2

1



 MIC'2015 – Agadir, Morocco ✤ Jun. 8, 2015 BRKGA 

Objective

Among the many feasible packings, we want to find one that 
maximizes total value of packed rectangles:                              
                             v[1] r[1] + v[2] r[2] + ⋅⋅⋅+v[N] r[N]  

W

H

1

4

2

1

1

1

1

2

1
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Objective

Among the many feasible packings, we want to find one that 
maximizes total value of packed rectangles:                              
                             v[1] r[1] + v[2] r[2] + ⋅⋅⋅+v[N] r[N]  

W

H

1

4

1

1

1

2

1

4 4
33
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Applications

Problem arises in several production processes, e.g.
– Textile
– Glass
– Wood
– Paper

where rectangular figures are cut from large 
rectangular sheets of materials.
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Hopper & Turton, 2001
Instance 4-1 60 x 60
Value: 3576

Previous best: 3580 by a
Tabu Search heuristic 
(Alvarez-Valdes et al., 2007)
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Hopper & Turton, 2001
Instance 4-2 60 x 60
Value: 3585

Previous best: 3580 by a
Tabu Search heuristic 
(Alvarez-Valdes et al., 2007)
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Hopper & Turton, 2001
Instance 4-2 60 x 60
Value: 3586

Previous best: 3580 by a
Tabu Search heuristic 
(Alvarez-Valdes et al., 2007)
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Hopper & Turton, 2001
Instance 4-2 60 x 60
Value: 3591

Previous best: 3580 by a
Tabu Search heuristic 
(Alvarez-Valdes et al., 2007)
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Hopper & Turton, 2001
Instance 4-2 60 x 60
Value: 3591
New best known solution!
Previous best: 3580 by a
Tabu Search heuristic 
(Alvarez-Valdes et al., 2007)



 MIC'2015 – Agadir, Morocco ✤ Jun. 8, 2015 BRKGA 

BRKGA for 
constrained 2-dim 
orthogonal packing



 MIC'2015 – Agadir, Morocco ✤ Jun. 8, 2015 BRKGA 

Encoding

• Solutions are encoded as vectors X of                   
           2N' = 2 { Q[1] + Q[2] +  + Q[N] }          
random keys, where Q[i] is the maximum number 
of rectangles of type i (for i = 1, ..., N) that can be 
packed.

• X = ( X[1], ..., X[N'],        X[N'+1], ..., X[2N'] )
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Encoding

• Solutions are encoded as vectors X of                   
           2N' = 2 { Q[1] + Q[2] +  + Q[N] }          
random keys, where Q[i] is the maximum number 
of rectangles of type i (for i = 1, ..., N) that can be 
packed.

• X = ( X[1], ..., X[N'],        X[N'+1], ..., X[2N'] )

Rectangle type
packing sequence
(RTPS)
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Encoding

• Solutions are encoded as vectors X of                   
           2N' = 2 { Q[1] + Q[2] +  + Q[N] }          
random keys, where Q[i] is the maximum number 
of rectangles of type i (for i = 1, ..., N) that can be 
packed.

• X = ( X[1], ..., X[N'],        X[N'+1], ..., X[2N'] )

Rectangle type
packing sequence
(RTPS)

Vector of placement
procedures (VPP)
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Decoding 

• Simple heuristic to pack rectangles:
– Make Q[i] copies of rectangle i, for i = 1, ..., N.
– Order the N' = Q[1] + Q[2] +  + Q[N] rectangles in 

some way. 
– Process the rectangles in the above order.  Place the 

rectangle in the stock rectangle according to one of 
the following heuristics:  bottom-left (BL) or left-
bottom (LB).  If rectangle cannot be positioned, 
discard it and go on to the next rectangle in the 
order.
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Decoding 

• Simple heuristic to pack rectangles:
– Make Q[i] copies of rectangle i, for i = 1, ..., N.
– Order the N' = Q[1] + Q[2] +  + Q[N] rectangles in 

some way. Sort first N' keys of X to obtain order.
– Process the rectangles in the above order.  Place the 

rectangle in the stock rectangle according to one of 
the following heuristics:  bottom-left (BL) or left-
bottom (LB).  If rectangle cannot be positioned, 
discard it and go on to the next rectangle in the 
order.
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Decoding 

• Simple heuristic to pack rectangles:
– Make Q[i] copies of rectangle i, for i = 1, ..., N.
– Order the N' = Q[1] + Q[2] +  + Q[N] rectangles in 

some way. Sort first N' keys of X to obtain order.
– Process the rectangles in the above order.  Place the 

rectangle in the stock rectangle according to one of 
the following heuristics:  bottom-left (BL) or left-
bottom (LB).  If rectangle cannot be positioned, 
discard it and go on to the next rectangle in the 
order.  Use the last N' keys of X to determine which 
heuristic to use. If k[N'+i] > 0.5 use LB, else use BL. 



 MIC'2015 – Agadir, Morocco ✤ Jun. 8, 2015 BRKGA 

Decoding 

• A maximal empty rectangular space (ERS) is an empty 
rectangular space not contained in any other ERS.

• ERSs are generated and updated using the Difference 
Process of Lai and Chan (1997).

• When placing a rectangle, we limit ourselves only to 
maximal ERSs.  We order all the maximal ERSs and place 
the rectangle in the first maximal ERS in which it fits.

• Let (x[i], y[i]) be the coordinates of the bottom left 
corner of the i-th ERS.
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Decoding 

• A maximal empty rectangular space (ERS) is an empty 
rectangular space not contained in any other ERS.

• ERSs are generated and updated using the Difference 
Process of Lai and Chan (1997).

• When placing a rectangle, we limit ourselves only to 
maximal ERSs.  We order all the maximal ERSs and place 
the rectangle in the first maximal ERS in which it fits.

• Let (x[i], y[i]) be the coordinates of the bottom left 
corner of the i-th ERS.

i-th 
ERS

(x[i], y[i])
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Decoding 

• If BL is used, ERSs are ordered such that      
ERS[i] < ERS[j] if y[i] < y[j] or y[i] = y[j] and          
x[i] < x[j].

ERS[i]

ERS[j]

ERS[i]
ERS[j]

ERS[i] < ERS[j]
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1

3
2 4

BL can run into problems even
on small instances (Liu & Teng, 1999).

Consider this instance with 4 
rectangles.

BL cannot find the optimal 
solution for any RTPS.
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1

3
2 4

We show 6 rectangle type
packing sequences (RTPS's) 
where we fix rectangle 1 in 
the first position.
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1

3

2

4

1

3

2

4

1

32

4 1

3 2

41

2

4

1

2

41
3

2

4

1
3

24

RTPS: 1-2-4-3

RTPS: 1-4-2-3

RTPS: 1-3-2-4

RTPS: 1-2-3-4

RTPS: 1-4-3-2

RTPS: 1-2-3-4

RTPS: 1-3-4-2
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1

3

2

4

1

3

2

4

1

32

4 1

3 2

41

2

4

1

2

41
3

2

4

1
3

24

RTPS: 1-2-4-3

RTPS: 1-4-2-3

RTPS: 1-3-2-4

RTPS: 1-2-3-4

RTPS: 1-4-3-2

RTPS: 1-2-3-4

RTPS: 1-3-4-2

Similar infeasibilities
are observed if 2, 3,
or 4 is the first 
rectangle in the 
RTPS.
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Decoding 

• If LB is used, ERSs are ordered such that      
ERS[i] < ERS[j] if x[i] < x[j] or x[i] = x[j] and          
y[i] < y[j].

ERS[i]

ERS[j]

ERS[i]

ERS[j]

ERS[i] < ERS[j]
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1
BL

3
LB2

BL
4

BL
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1
BL

3
LB2

BL
4

BL

ERS[1]
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LB2

BL
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BL

ERS[2]
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1
BL

3
LB

2
BL

4
BL

ERS[1]

4 does not fit
in ERS[1].
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1
BL

3
LB

2
BL

4
BL

ERS[2]

4 does fit
in ERS[2].
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1
BL

3
LB

2
BL

4
BL Optimal solution!
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Experimental results
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Design
• We compare solution values obtained by the 

parallel multi-population BRKGA with solutions 
obtained by the heuristics that produced the best 
computational results to date:
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computational results to date:
– PH:  population-based heuristic of Beasley (2004)
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Design
• We compare solution values obtained by the 
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– GA: genetic algorithm of Hadjiconsantinou & Iori 

(2007)
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obtained by the heuristics that produced the best 
computational results to date:
– PH:  population-based heuristic of Beasley (2004)
– GA: genetic algorithm of Hadjiconsantinou & Iori 

(2007)
– GRASP: greedy randomized adaptive search 

procedure of Alvarez-Valdes et al. (2005)
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Design
• We compare solution values obtained by the 

parallel multi-population BRKGA with solutions 
obtained by the heuristics that produced the best 
computational results to date:
– PH:  population-based heuristic of Beasley (2004)
– GA: genetic algorithm of Hadjiconsantinou & Iori 

(2007)
– GRASP: greedy randomized adaptive search 

procedure of Alvarez-Valdes et al. (2005)
– TABU: tabu search of Alvarez-Valdes et al. (2007)
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Number of best solutions / total instances

Problem PH GA GRASP TABU BRKGA         
BL-LB-L-4NR

From 
literature 
(optimal)

13/21 21/21 18/21 21/21 21/21

Large 
random*

0/21 0/21 5/21 8/21 20/21

Zero-waste 5/31 17/31 30/31

Doubly 
constrained

11/21 12/21 17/21 19/21

* For large random: number of best average solutions / total instance classes
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Minimum, average, and maximum solution        
times (secs) for BRKGA (BL-LB-L-4NR)

Problem Min solution 
time     (secs)

Avg solution 
time     (secs)

Max solution 
time   (secs)

From literature 
(optimal)

0.00 0.05 0.55

Large random 1.78 23.85 72.70

Zero-waste 0.01 82.21 808.03

Doubly 
constrained

0.00 1.16 16.87
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New BKS
for a 100 x100
doubly 
constrained 
instance of 
Fekete &
Schepers (1997)
of value 20678.
Previous best
was 19657 by
tabu search of
Alvarez-Valdes et
al., (2007).
 

30 types
30 rectangles
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New BKS for a 100 
x 100 doubly 
constrained 
instance Fekete & 
Schepers (1997) of 
value 22140.

Previous BKS was 
22011 by tabu 
search of Alvarez-
Valdes et al. (2007).

29 types
97 rectangles
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Some remarks
We have extended this to 3D packing:                                                   
J.F. Gonçalves and M.G.C.R., “A parallel multi-population biased 
random-key genetic algorithm for a container loading 
problem,” Computers & Operations Research, vol. 29, pp. 179-190, 
2012.

Tech report: http://mauricio.resende.info/doc/brkga-pack3d.pdf
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3D bin packing
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J.F. Gonçalves and R., “A biased random-key 
genetic algorithm for 2D and 3D bin 
packing problems,” International J. of 
Production Economics, vol. 15, pp. 500–510, 2013.

http://mauricio.resende.info/doc/brkga-binpacking.pdf
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3D bin packing problem
Container (bin) of
fixed dimension

Boxes of different dimensions

Minimize number of containers 
(bins) needed to pack all boxes
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3D bin packing constraints

• Each box is placed completely within container
• Boxes do not overlap with each other
• Each box is placed parallel to the side walls of bin
• In some instances, only certain box orientations 

are allowed (there are at most six possible 
orientations)



 MIC'2015 – Agadir, Morocco ✤ Jun. 8, 2015 BRKGA 

Six possible orientations for each box
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Difference process - DP 
(Lai & Chan, 1997)

When box is placed in container …
         use DP to keep track of maximal free spaces 
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Encoding

Solutions are encoded as vectors of 3n random keys, 
where n is the number of boxed to be packed.

X = ( x
1
 , x

2
 , …, x

n
 , x

n+1
, x

n+2
, …, x

2n
, x

2n+1
, x

2n+2
, …, x

3n
) 

Box packing sequence Box orientation

X = ( x
1
 , x

2
 , …, x

n
 , x

n+1
, x

n+2
, …, x

2n
, x

2n+1
, x

2n+2
, …, x

3n
) X = ( x

1
 , x

2
 , …, x

n
 , x

n+1
, x

n+2
, …, x

2n
, x

2n+1
, x

2n+2
, …, x

3n
) 

Placement heuristic
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Decoding
1) Sort first n keys of X to produce sequence boxes will be packed; 

2) Use second n keys of X to determine which placement heuristic to 
use (back-bottom-left or back-left-bottom):
• if x

n+i
 < ½ then use back-bottom-left to pack i-th box

• if x
n+i

 ≥ ½ then use back-left-bottom to pack i-th box

3) Use third n keys of X  to determine which of six orientations to 
use when packing box: 
• x

2n+i
  [0,1/6): orientation 1;     

• x
2n+i

  [1/6,2/6): orientation 2; … 

• x
2n+i

  [5/6,1]: orientation 6.
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Decoding

For each box
– scan containers in order they were opened
– use placement heuristic to place box in first container in 

which box fits with its specified orientation
– if box does not fit in any open container, open new 

container and place box using placement heuristic with its 
specified orientation
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Fitness function

Instead of using as fitness measure the number of bins (NB)
– use adjusted fitness: aNB 
– aNB = NB + ( LeastLoad / BinVolume ), where

✗ LeastLoad is load on least loaded bin
✗ BinVolume is volume of bin: H x W x L
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Experiment

• Parameters:
– population size: p = 30n

– size of elite partition: p
e
 = .10p

– number of of mutans: p
m
 = .15p

– crossover probability: 0.7
– stopping criterion: 300 generations
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Experiment

• Instances:
– 320 instances of Martello et al. (2000)
– generator is available at http://www.diku.dk/~pisinger/codes/html

– 8 classes
– 40 instances per class
– 10 instances for each value of n ∈ {50, 100, 150, 

200)

http://www.diku.dk/~pisinger/codes/html
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Experiment

• We compare BRKGA with:
– TS3, the tabu search of Lodi et al. (2002)
– GLS, the guided local search of Faroe et al. (2003)
– TS2PACK, the tabu search of Crainic et al. (2009)
– GRASP, the greedy randomized adaptive search 

procedure of Parreno et al. (2010)
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Summary

Class Bin size BRKGA GRASP TS3 TS2PACK GLS

1 1003 127.3 127.3 127.9 128.2 128.3

2 1003 125.5 125.8 126.8

3 1003 126.5 126.9 127.5

4 1003 294.0 294.0 294.0 293.9 294.2

5 1003 70.4 70.5 71.4 71.0 70.8

6 103 95.0 95.4 96.1 95.8 96.0

7 403 58.2 59.4 60.0 59.0 59.0

8 1003 80.9 82.0 82.6 81.9 81.9

Sum(rows 1, 4-8): 725.8 728.6 732.0 729.8 730.2

Sum(rows 1-8): 977.8 981.3 986.3
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The unequal area 
facility layout 

problem
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J.F. Gonçalves & R., “A biased 
random-key genetic algorithm for 
the unequal area facility layout 
problem,” European J. of Operational 
Research, published online 24 April 2015 
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Unequal area facility layout

Given N rectangular 
facilities, i = 1, 2, …, N, each 
having given area Ai = wi × hi 

all of maximum aspect ratio 
(between longest & shortest 
dimensions) R 

A
1
, R

A
2
, R

A
3
, R

w1

w2

w3

h1

h2

h3
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Unequal area facility layout

Given N rectangular 
facilities, i = 1, 2, …, N, each 
having given area Ai = wi × hi 

all of maximum aspect ratio 
(between longest & shortest 
dimensions) R (Note that wi 
and hi are not given, only Ai 
and R are)

A
1
, R

A
2
, R

A
3
, R

w1

w2

w3

h1

h2

h3

A1 = w1 × h1

w1  h1 ≤ R

A2 = w2 × h2

h2  w2 ≤ R

A3 = w3 × h3

w3  h3 ≤ R
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Unequal area facility layout

Layout the facilities, without 
overlap or rotation, on a 
rectangular floor of area W × H 
with centroids at coordinates 
(x1,y1), (x2,y2), …, (xN,yN) and 
dimensions w1 × h1, w2 × h2, …, 
wN × hN.

(x
1
, y

1
)

(x
3
, y

3
)

(x
2
, y

2
)

W

 H
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Unequal area facility layout

We consider two types of problems
• In the constrained type, we are given the 

rectangular floor dimensions  W × H.
• In the unconstrained type, we assume the floor 

space can include all the facilities laid out 
horizontally or vertically at their maximum 
horizontal or vertical dimensions, i.e.

 (W, H) = ( ∑ ( Ai × R  )
1/2, ∑ ( Ai

 × R  )
1/2 )

i=1 i=1

N N
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Unequal area facility layout

Of all feasible layouts, find one that minimizes

∑ ∑  fi,j  × ci,j × di,j 

where
• fi,j  is the flow between facilities i and j ( fi,i= 0 ) 

• ci,j is the cost per unit distance between i and j

• di,j = |xi − xj|  |yi − yj| is the rectilinear distance 
between (xi,yi) and (xj,yj) 

i=1 j=1

N N
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Unequal area facility layout

Of all feasible layouts, find one that minimizes

∑ ∑  fi,j  × ci,j × di,j 

where
• fi,j  is the flow between facilities i and j ( fi,i= 0 ) 

• ci,j is the cost per unit distance between i and j

• di,j = |xi − xj|  |yi − yj| is the rectilinear distance 
between (xi,yi) and (xj,yj) 

i=1 j=1

N N quadratic assignment 
problem (QAP)
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Unequal area facility layout

Of all feasible layouts, find one that minimizes

∑ ∑  fi,j  × ci,j × di,j 

where
• fi,j  is the flow between facilities i and j ( fi,i= 0 ) 

• ci,j is the cost per unit distance between i and j

• di,j = |xi − xj|  |yi − yj| is the rectilinear distance 
between (xi,yi) and (xj,yj) 

i=1 j=1

N N Besides rectilinear (R) distance metric,
we also deal with Euclidean (E), and 
Squared Euclidean (SE) in paper.
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Dunker62

New best known
solution: 3.68E6
Previous best known
solution: 3.81E6
TS-BST (McKendall Jr. & 
Hajobyan, 2010)
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L125B

New best known
solution: 9.43E5
Previous best known
solution: 1.01E6
TS-BST (McKendall Jr. & 
Hajobyan, 2010)
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BRKGA for the
unequal area facility 

layout problem
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Encoding

Solutions are encoded with a vector of random keys 
of length 2N+2

X = (  X1, …, XN,  XN+1, …, X2N,  X2N+1, X2N+2 )
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Encoding

Solutions are encoded with a vector of random keys 
of length 2N+2

X = (  X1, …, XN,  XN+1, …, X2N,  X2N+1, X2N+2 )

Facility placement sequence
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Encoding

Solutions are encoded with a vector of random keys 
of length 2N+2

X = (  X1, …, XN,  XN+1, …, X2N,  X2N+1, X2N+2 )

Facility placement sequence

Facility aspect ratios
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Encoding

Solutions are encoded with a vector of random keys 
of length 2N+2

X = (  X1, …, XN,  XN+1, …, X2N,  X2N+1, X2N+2 )

Facility placement sequence

Facility aspect ratios

( x, y ) coordinates of the
first facility to be placed
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Decoding

1. Use X1, …, XN to determine the sequence in which the 
facilities are placed on the floor space

2. Use XN+1, …, X2N to determine the aspect ratio of each 
facility

3. Use X2N+1, X2N+2 to determine the ( x, y ) coordinates of 
the first facility to be placed on the floor space

4. Use results of (1)-(3) with placement heuristic to place all 
the facilities on the floor space

5. Evaluate fitness of solution
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Decoder: Step 1

Use X1, …, XN to determine the sequence in which the 
facilities are placed on the floor space:

Simply sort the key values X1, …, XN to determine the 
indices of the permutation of the facilities.
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Decoder: Step 2

Use XN+1, …, X2N to determine the aspect ratio of each 
facility:

Aspect ratio of facility i is                                                   
FARi = ( 1/R ) + XN+i  ( R −(1/R) ),                      
where R is the given maximum facility aspect ratio.
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Decoder: Step 2

Use XN+1, …, X2N to determine the aspect ratio of each 
facility:

Aspect ratio of facility i is                                                   
FARi = ( 1/R ) + XN+i  ( R −(1/R) ),                      
where R is the given maximum facility aspect ratio.

wi = (Ai × FARi)
1/2  and  

hi = Ai/wi 
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Decoder: Step 3

Use X2N+1, X2N+2 to determine the ( x, y ) coordinates of the 
first facility to be placed on the floor space.

                 x = ( wi/2 ) + X2N+1  ( W − wi )

                 y = ( hi/2 ) + X2N+2  ( H − hi )
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Decoder: Step 4 Makes use of empty maximal-spaces (EMS)
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Decoder: Step 4 When placing a facility we only consider 
EMSs where the facility fits. This way we avoid overlapping.



 MIC'2015 – Agadir, Morocco ✤ Jun. 8, 2015 BRKGA 

Decoder: Step 4 EMSs are generated and kept track of with 
the Difference Process (DP) of Lai and Chan (1997).
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Decoder: Step 4  Recall that in the unconstrained case the 
floor space can include all facilities laid out horizontally or vertically.



 MIC'2015 – Agadir, Morocco ✤ Jun. 8, 2015 BRKGA 

Decoder: Step 4  For each EMS in which the facility fits, we 
compute the incremental cost associated with placing the facility in that 
EMS and then place it in the least-cost EMS.

EMS

(xL, yL)

(xU, yU)

min  ∑ ci,k × fi,k  × di,k 

subject to:
xL + wi/2 ≤ xi ≤ xU – wi/2

yL + hi/2 ≤ yi ≤ yU – hi/2

kK

Compute positions that minimize cost of placing 
facility i in each available EMS {(xL, yL), (xU, yU) } 
w.r.t. all already-placed facilities K: 
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Decoder: Step 4  For each EMS in which the facility fits, we 
compute the incremental cost associated with placing the facility in that 
EMS and then place it in the least-cost EMS.

EMS

(xL, yL)

(xU, yU)

kK

Compute positions that minimize cost of placing 
facility i in each available EMS {(xL, yL), (xU, yU) } 
w.r.t. all already-placed facilities K: 

Instead of solving this
directly with a NLP solver
we propose a different
approach.

min  ∑ ci,k × fi,k  × di,k 

subject to:
xL + wi/2 ≤ xi ≤ xU – wi/2

yL + hi/2 ≤ yi ≤ yU – hi/2
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Decoder: Step 4  For each EMS in which the facility fits, we 
compute the incremental cost associated with placing the facility in that 
EMS and then place it in the least-cost EMS.

EMS

(xL, yL)

(xU, yU)

min  ∑ ci,k × fi,k  × di,k 
kK

Find the unconstrained optimum (UO) using
a method described in Heragu (1997):

If there is no flow between facility i and the
already laid-out facilities, then UO is 
assumed to be geometric center of all laid-
out facilities.

Tentatively place facility i in the geometric 
center of each EMS in which it fits.
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Decoder: Step 4  For each EMS in which the facility 
fits, we place the facility in the center of the EMS and move it as 
close as possible to the UO and compute the objective.
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Experimental results – Unconstrained

We compare our BRKGA with eight algorithms: 
1) Hierarchical approach with clusters (HA-C) of Tam 

and Li (1991)
2) GA with slicing tree structure (GA-STS) of Kado 

(1996)
3) Genetic programming algorithm (GP-STS) of Garces-

Perez et al. (1996)
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Experimental results – Unconstrained

We compare our BRKGA with eight algorithms:
4) GA with tree-structured genotype representation 

(GA-TSG) of Schnecke and Vornberger (1997)
5) Tabu search with slicing tree (TSaST) of Scholtz et al. 

(2009) 
6) Commercial solver from Engineering Optimization 

Software (VIP-PLANOPT) based on algorithms of Mir 
and Imam (1996, 2001) and Imam and Mir (1998)
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Experimental results – Unconstrained

We compare our BRKGA with eight algorithms:
7) Tabu search with boundary search technique (TS-

BST) of McKendall Jr. and Hakobyan (2010)
8) The MIP solver from Gurobi Optimization (Gurobi) 

version 5.5.
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Experimental results – Unconstrained

Benchmark instances:
– Seven L instances of Imam and Mir (1993, 1998), Mir 

and Imam (1996, 2001), and VIP-PLANOPT (2006, 2010) 
with 20 to 125 facilities

– Dunker62 instance of Dunker et al. (2003) with 62 
facilities

– Eight TL instances of Tam and Li (1991) with 5 to 30 
instances

– 100 random (RND) instances with known optimal with 
10 to 100 facilities of Gonçalves & R. (2014)
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Experimental results – Unconstrained
Computational setup:

– BRKGA coded in C++
– Experiments run on a computer with an Intel Xeon E5-

2630 processor at 2.30 GHz and 16 GB of RAM running 
Linux O.S. (Fedora, release 18)

– BRKGA parameters
• Population size: p = 100 × N
• Elite population: min ( 0.25 × p, 50 )
• Mutation population: 0.25 × p
• Inheritance probability: 0.70
• Stopping rule: 50 generations
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Experimental results – Unconstrained

VIP-PLANOPT TSaST TS-BST BRKGA

Dataset Cost Time Cost Time Cost Time Cost Time %Impr

L20 1.13E3 0.3 - - 1.15E3 10351.9 1.13E3 0.5 1.86
L28 6.45E3 1.5 - - - - 6.01E3 1.0 6.72
L50 7.82E4 7.0 - - 7.13E4 7626.5 6.94E4 6.3 2.65
L75 3.44E4 13.0 - - - - 3.15E4 11.6 8.47
L100 5.38E5 14.0 - - 4.97E5 11397.2 4.79E5 57.0 3.60
L125A 2.89E5 110.0 - - - - 2.57E5 83.6 11.05
L125B 1.08E6 70.0 - - 1.01E6 9250.3 9.43E5 118.7 6.51

Dunker62 3.94E6 4996.0 3.87E6 252.0 3.81E6 7304.1 3.69E6 9.1 3.35

Times are in seconds
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Experimental results – Unconstrained

Times are in seconds

HA-C GA-STS GP-STS GA-TSG TSaST BRKGA

Dataset Cost Cost Cost Cost Cost Time Cost Time %Impr

TL05 247 228 226 214 213.5 2.3 210.1 0.035 1.60

TL06 514 361 384 327 348.8 3.0 345.0 0.049 (5.51)

TL07 559 596 568 629 562.9 2.5 549.7 0.060 1.67

TL08 839 878 878 833 810.4 4.7 799.1 0.080 1.40

TL12 3162 3283 3220 3164 3054.2 12.5 2920.5 0.162 4.38

TL15 5862 7384 7510 6813 6615.8 17.0 6395.4 0.251 (9.10)

TL20 - 16393 14033 13190 13198.4 50.0 9892.4 0.443 25.00

TL30 - 41095 39018 25358 33721.5 95.4 31454.2 1.132 6.72
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Experimental results – Unconstrained

Each dataset consists of 10 instances, each with known optimum. 

Times are in seconds

Gurobi BRKGA
Dataset Time Avg % Dev Max % Dev Time Avg % Dev Max % Dev

RND10 3600 0.21 1.66 1.76 0.00 0.00

RND20 3600 0.01 0.12 6.13 0.00 0.00

RND30 3600 0.32 2.14 15.00 0.00 0.00

RND40 3600 2.37 7.10 28.67 0.00 0.00

RND50 3600 3.99 9.30 48.30 0.11 1.12

RND60 3600 16.65 29.73 72.86 0.02 0.15

RND70 3600 12.21 22.70 102.90 1.44 5.29

RND80 3600 22.31 50.97 143.37 3.31 7.10

RND90 3600 36.11 52.99 186.87 6.00 9.09
RND100 3600 101.78 235.31 235.84 7.36 10.97

(% deviation from optimum)
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RND instance

%
 d

e v
ia

t io
n 

fro
m

 o
p t

im
a l

1-hour run for Gurobi
50-generation run for BRKGA-FLP
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L050

New best known
Solution: 6.94E4

Previous best known
Solution: 7.13E4
TS-BST (McKendall Jr. & 
Hajobyan, 2010)
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1st generation: 530404.76 50th generation: 478910.09

L100
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1st generation: 530404.76 50th generation: 478910.09

L100
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1st generation: 530404.76 50th generation: 478910.09

L100
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1st generation: 530404.76 50th generation: 478910.09

L100
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L100

New best known
Solution: 4.79E5

Previous best known
Solution: 4.97E5
TS-BST (McKendall Jr. & 
Hajobyan, 2010)
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L125A

New best known
Solution: 2.57E5

Previous best known
Solution: 2.89E5
VIP-PLANOPT (2010)
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TL07

New best known
Solution: 549.7

Previous best known
Solution: 559.0
HA-C (Tam and Li, 1991)
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TL12

New best known
Solution: 2920.5

Previous best known
Solution: 3054.2
TSaST (Scholtz et al., 2009)
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TL20

New best known
Solution: 9892.4

Previous best known
Solution: 13190.0
GA-TSG (Schnecke and 
Vornberger, 1997)
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TL30

New best known
Solution: 31454.2

Previous best known
Solution: 33721.5
TSaST (Scholtz et al., 2009)
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Other applications of BRKGA
Telecommunications

– Weight setting in OSPF routing (Ericsson et al., 2002; Buriol 
et al., 2005; Reis et al., 2011)

– Survivable network design (Andrade et al., 2006; Buriol et al., 
2007; Ruiz et al., 2015; Andrade et al., 2015)

– Facility location (Breslau et al., 2011; Morán-Mirabal et al., 2013; 
Duarte et al., 2014; Stefanello et al., 2015)

– Routing & wavelength assignment (Noronha et al., 2011)

– Assignment of virtual machines to datacenters   (Stefanello 
et al., 2015)

– Design of wireless backhaul network (Andrade et al., 2015)

– Cloud resource management (Heilig et al., 2015)

–
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Other applications of BRKGA

Scheduling
– Job-shop scheduling (Gonçalves et al., 2005; Gonçalves & R., 

2014 )

– Project scheduling (Gonçalves et al., 2008; 2009; 2011)

– Survey of project scheduling (Gonçalves et al., 2014)

– Field technician scheduling (Damm et al., 2015)

– Scheduling divisible loads (Brandão et al., 2015)

– Scheduling Earth observations with agile satellite 
(Tangpattanakul et al., 2013)

– Multi-user Earth observation scheduling (Tangpattanakul et 
al., 2015)
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Other applications of BRKGA

Manufacturing and facility layout
– Assembly line balancing (Gonçalves & Almeida, 2002, )

– Manufacturing cell formation (Gonçalves & R., 2004)

– Assembly line worker assignment and balancing (Moreira et 
al., 2012)

– Minimization of open stacks (Gonçalves et al., 2014)

– Minimization of tool switches (Chaves et al., 2014)

– Unequal area facility layout (Gonçalves & R., 2015)
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Other applications of BRKGA

Algorithm engineering
– Automatic tuning of parameters (Festa et al., 2010; Morán-

Mirabal et al., 2013)

– Benchmarking (Gonçalves et al., 2014)

– Extensions of BRKGA (Lucena et al., 2014)

– Application programming interface (Toso et al., 2015)
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Other applications of BRKGA

Clustering, covering, and packing
– 2D/3D orthogonal packing (Gonçalves & R., 2011; 2012)

– 2D/3D bin packing (Gonçalves and R., 2013)

– Multi-objective 3D container loading (Zheng et al., 2014)

– Steiner triple covering (R. et al., 2014)

– Overlapping correlation clustering (Andrade et al., 2014)

– Winner determination in combinatorial auctions (Andrade 
et al., 2014)
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Other applications of BRKGA

Routing
– Capacitated arc routing (Martinez et al., 2011)

– K-interconnected multi-depot multi-TSP (Andrade et al., 
2013)

– Family TSP (Morán-Mirabal et al., 2014)

– Capacitated VRP for blood sample collection (Grasas et al., 
2014)



 MIC'2015 – Agadir, Morocco ✤ Jun. 8, 2015 BRKGA 

Other applications of BRKGA

Graphs and Trees
– Stochastic Steiner tree (Hokama et al., 2014)

– Capacitated minimum spanning tree (Ruiz et al., 2015)

– Maximum cardinality quasi-clique (Pinto et al., 2015)
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Other applications of BRKGA

Toll setting in road networks
– Road congestion minimization (Buriol et al., 2009; 2010; 

Stefanello et al., 2015)
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Other applications of BRKGA

Continuous global optimization
– Bound-constrained GO (Silva et al., 2012)

– Nonlinearly-constrained GO (Silva et al., 2013)

– Python/C++ library for bound-constained GO (Silva et al., 
2013)

– Finding multiple roots of system of nonlinear equations 
(Silva et al., 2014)
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Thanks!
These slides and all of the papers cited in this 
lecture can be downloaded from my homepage:

http://mauricio.resende.info
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