Biased random-key genetic algorithm for wireless backhaul network design

Mauricio G. C. Resende Amazon.com, Seattle, WA – USA resendem@amazon.com

MIC 2015, Agadir, Morocco, June 8, 2015

C.E. Andrade, M.G.C. Resende, W. Zhang, R.K. Sinha, K.C. Reichmann, R.D. Doverspike, and F.K. Miyazawa, *A biased random-key genetic algorithm for wireless backhaul network design*, Applied Soft Computing, vol. 33, pp. 150-169, 2015.

This research was done while the speaker was employed at AT&T Labs Research in Middletown, New Jersey.

Agenda

- Mobile wireless data usage growth
- Description of the problem
- Biased random-key genetic algorithm
- Some results
- Final remarks

Mobile wireless data usage growth

Agenda

- Mobile wireless data usage growth
- 2 Description of the problem
- Biased random-key genetic algorithm
- Some results
- 5 Final remarks

Growth of wireless data usage

- Surge in popularity of mobile devices (smart-phones and tablets) for Internet access
 - ► 50% of Internet traffic in the U.S. is due to mobile devices (O'Toole, 2014)
 - ► 50% of YouTube usage (Wojcicki, 2014)
 - Predicted 57% annual growth rate, resulting in an 10-fold increase from 2014 to 2019 (Cisco VNI Global IP Traffic Forcast, 2015)
- Service providers need to keep up with this growth by providing better coverage and higher data rates to customers

Mobile wireless data usage growth

Growth of wireless data usage

- An approach to provide coverage is to distribute (geographically)
 Wi-Fi and LTE equipment for data access by customers and backhaul data to core network
- A naive backhaul solution is to run fiber to access points and backhaul traffic to core network
- High cost of fiber makes this approach prohibitive
- Judiciously use existing fiber and macro-cell infra-structure together with optimaly placed wireless backhaul equipment to backhaul traffic

Agenda

- Mobile wireless data usage growth
- Description of the problem
- Biased random-key genetic algorithm
- Some results
- 5 Final remarks

Some constraints

- Coverage: Max distance between demand and location of access equipment (Wi-Fi, LTE, and macrocells) for coverage
- Wireless backhaul links:
 - Max distance between antennas
 - Required line of sight between antennas
- Interference with LTE equipment: Required min distance between
 - LTE smallcells
 - LTE smallcells and macrocells
- Topology of backhaul network:
 - Max in-degree
 - Max number of hops
 - Max length of optical fiber (soft constraint)

Biased random-key genetic algorithm for wireless backhaul network design Description of the problem Description – Instance Demand block 3

4

2

0

- Demand block
- Utility pole
- Wi-Fi Traffic Aggregator
- LTE Traffic Aggregator

- Demand block
- Utility pole
- Wi-Fi Traffic Aggregator
- LTE Traffic Aggregator
- Macrocell/Backhaul Traffic Aggregator

- Demand block
- Utility pole
- Wi-Fi Traffic Aggregator
- LTE Traffic Aggregator
- Macrocell/Backhaul
 Traffic Aggregator
- LTE action radius
- Wi-Fi action radius

- Demand block
- Utility pole
- Wi-Fi Traffic Aggregator
 - LTE Traffic Aggregator
- Macrocell/Backhaul Traffic Aggregator
- LTE action radius
- Wi-Fi action radius
- ··· Access link

- Demand block
- Utility pole
- Wi-Fi Traffic Aggregator
- LTE Traffic Aggregator
- Macrocell/Backhaul
 Traffic Aggregator
- LTE action radius
- Wi-Fi action radius
- ··· Access link
- Backhaul link

- Demand block
- Utility pole
- Wi-Fi Traffic Aggregator
- LTE Traffic Aggregator
- Macrocell/Backhaul
 Traffic Aggregator
- LTE action radius
- Wi-Fi action radius
- ··· Access link
- Backhaul link

- Demand block
- Utility pole
- Wi-Fi Traffic Aggregator
 - LTE Traffic Aggregator
- Macrocell/Backhaul
 Traffic Aggregator
- LTE action radius
- Wi-Fi action radius
- ···· Access link
- Backhaul link

Description — valid solution

Backhaul Forest

Description — valid solution

Direct Acyclic Graph

Description — valid solution

Objective

Maximize revenue(maximum flow) – deployment and oper. cost

- deployment and oper. cos

Direct Acyclic Graph

Flow constraints

- F_a^i : sum of the access traffic
- F_bⁱ: sum of the incoming backhaul traffic
- F_b^o : outgoing backhaul traffic

Flow conservation: $F_a^i + F_b^i = F_b^o$

Flow constraints

- F_a^i : sum of the access traffic
- ullet F_b^i : sum of the incoming backhaul traffic
- ullet F_b^o : outgoing backhaul traffic

Flow conservation: $F_a^i + F_b^i = F_b^o$

Maximum wireless backhaul flow:

$$F_b^i + F_b^o \le C$$

Forest levels

Arcs are in the level from where they depart.

Biased random-key genetic algorithm

Agenda

- Mobile wireless data usage growth
- 2 Description of the problem
- Biased random-key genetic algorithm
- Some results
- 5 Final remarks

Biased random-key genetic algorithm

Biased Random-Key Genetic Algorithm – BRKGA

- Populational method → pool of solutions
- Solution space represented by the unit hypercube \rightarrow chromosome is a vector $\mathbf{v} \in [0,1]^p$
- Exploitation by mating and exploration by the intro. of mutants

Biased random-key genetic algorithm

Solution representation

- BRKGA: learns the best network layout and equipment placement
- A solution is represented by a vector $v \in [0,1]^{5n}$, where n = number of poles

Biased random-key genetic algorithm

Maximum flow

Flow conservation:
$$F_a^i + F_b^i = F_b^o$$

Maximum wireless backhaul flow: $F_b^i + F_b^o \leq C$

- Optimal maximum flow via linear programming: Too slow to apply in decoder!
- ullet Heuristic: Limiting the backhaul capacity to C/2 allows the use of fast combinatorial algorithms

Biased random-key genetic algorithm

Maximum flow

Lemma 1

If vertex v is in level 1 or above, then all arcs above v admit at most C/2 of flow.

Biased random-key genetic algorithm

Flow constraints

Agenda

- Mobile wireless data usage growth
- 2 Description of the problem
- Biased random-key genetic algorithm
- Some results
- 5 Final remarks

Instances

• 30 regions of the metropolitan area of a large city in the U.S.

Type	Poles	VRADs	Macros	Blocks	Demand (Mbps)	Area (km²)
Small	718	63	10	3907	8210.70	35.92
Medium	2281	86	14	17306	36348.00	72.14
Large	6396	243	22	25566	53601.00	132.87

Profit vs maximum flow

Dispersion of profit – 1h experiment

Evolution of revenue, cost, profit, and coverage

Final remarks

Agenda

- Mobile wireless data usage growth
- 2 Description of the problem
- Biased random-key genetic algorithm
- Some results
- Final remarks

Final remarks

Final remarks

- Modified version of this BRKGA is used at a large Tier 1 carrier to design wireless backhaul networks
- Future research:
 - Introduce local search procedures in decoder
 - Develop a fast, exact, combinatorial algorithm to compute the maximum flow

Final remarks

Thank you!

Tech report & slides are available at http://mauricio.resende.info

Paper is available at http://bit.ly/1H1oZd4