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Summary

e Specifying a biased random-key genetic algorithm

e Applications in telecommunications
— Routing in IP networks
— Design of survivable IP networks with composite links
— Redundant server location for content distribution
— Regenerator location

— Routing & wavelength assignment in optical networks

e Concluding remarks

=
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Framework for biased random-key genetic algorithms

Decode each vector
of random keys

Generate P vectors

of random keys

Problem independent

Classify solutions as Sort solutions by Stopping rule
elite or non-elite their costs satisfied?

Combine elite and

Copy elite solutions Generate mutants in non-elite solutions

to next population next population and add children to
next population

-------------‘
e T N ]
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Specifying a biased random-key GA

e Encoding is always done the same way, i.e. with a vector of
N random-keys (parameter N must be specified)

e Decoder that takes as input a vector of N random-keys and
outputs the corresponding solution of the combinatorial
optimization problem and its cost (this is usually a heuristic)

e Parameters:
— Size of population
— Size of elite partition
— Size of mutant set
— Child inheritance probability

— Stopping criterion

=
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Specifying a biased random-key GA

e Encoding is always done the same way, i.e. with a vector of
N random-keys (parameter N must be specified)

e Decoder that takes as input a vector of N random-keys and
outputs the corresponding solution of the combinatorial
optimization problem and its cost (this is usually a heuristic)

e Parameters:
— Size of population: a function of N, say N or 2N
— Size of elite partition
— Size of mutant set
— Child inheritance probability

— Stopping criterion
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Specifying a biased random-key GA

e Encoding is always done the same way, i.e. with a vector of
N random-keys (parameter N must be specified)

e Decoder that takes as input a vector of N random-keys and
outputs the corresponding solution of the combinatorial
optimization problem and its cost (this is usually a heuristic)

e Parameters:
— Size of population: a function of N, say N or 2N
— Size of elite partition: 15-25% of population
— Size of mutant set
— Child inheritance probability

— Stopping criterion

=
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Specifying a biased random-key GA

e Encoding is always done the same way, i.e. with a vector of
N random-keys (parameter N must be specified)

e Decoder that takes as input a vector of N random-keys and
outputs the corresponding solution of the combinatorial
optimization problem and its cost (this is usually a heuristic)

e Parameters:
— Size of population: a function of N, say N or 2N
— Size of elite partition: 15-25% of population
— Size of mutant set: 5-15% of population
— Child inheritance probability

— Stopping criterion

=
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Specifying a biased random-key GA

e Encoding is always done the same way, i.e. with a vector of
N random-keys (parameter N must be specified)

e Decoder that takes as input a vector of N random-keys and
outputs the corresponding solution of the combinatorial
optimization problem and its cost (this is usually a heuristic)

e Parameters:
— Size of population: a function of N, say N or 2N
— Size of elite partition: 15-25% of population
— Size of mutant set: 5-15% of population
— Child inheritance probability: > 0.5, say 0.7

— Stopping criterion

=
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Specifying a biased random-key GA

e Encoding is always done the same way, i.e. with a vector of
N random-keys (parameter N must be specified)

e Decoder that takes as input a vector of N random-keys and
outputs the corresponding solution of the combinatorial
optimization problem and its cost (this is usually a heuristic)

e Parameters:
— Size of population: a function of N, say N or 2N
— Size of elite partition: 15-25% of population
— Size of mutant set: 5-15% of population
— Child inheritance probability: > 0.5, say 0.7

— Stopping criterion: e.g. time, # generations, solution quality,
# generations without improvement @
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Applications in
telecommunications
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Applications in telecommunications

e Routing in IP networks

e Design of survivable [P networks

e Redundant server location for content distribution
e Regenerator location

e Routing and wavelength assignment in optical networks

Summer School in O.R. & Appl. — May 14, 2014 BRKGA with applications in telecom atat

Youer world, Deliverad.



OSPF routing in I[P
networks
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The Internet

e The Internet is composed of
many (inter-connected)
autonomous systems (AS).

e An AS is a network controlled
by a single entity, e.g. ISP,
university, corporation,
country, ...

=
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Routing

e A packet is sent from a origination router S to a
destination router T.
e Sand T may be in

— same AS;
— different ASes:
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Routing

e A packet is sent from a origination router S to a
destination router T.
e Sand T may be in

— same AS: IGP routing
— different ASes:
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Routing

e A packet is sent from a origination router S to a
destination router T.

e Sand T may be in

— same AS: IGP routing
— different ASes: BGP routing

=
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[GP Routing

e [GP (interior gateway
/ protocol) routing iIs
concerned with
routing within an AS.

AS

=
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[GP Routing

e [GP (interior gateway
/ protocol) routing iIs
concerned with
routing within an AS.

AS
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[GP Routing

e [GP (interior gateway
/ protocol) routing iIs
concerned with
routing within an AS.

AS
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[GP Routing

e [GP (interior gateway
/ protocol) routing iIs
concerned with
routing within an AS.

AS
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[GP Routing

e [GP (interior gateway
/ protocol) routing iIs
concerned with
routing within an AS.

AS
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[GP Routing

e [GP (interior gateway
/ protocol) routing iIs
concerned with
routing within an AS.

AS
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[GP Routing

e

e [GP (interior gateway
protocol) routing iIs
concerned with
routing within an AS.

e Routing decisions are
made by AS operator.
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BGP Routing

e BGP (border gateway
protocol) routing deals
with routing between
different ASes.

=
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BGP Routing

e BGP (border gateway
protocol) routing deals
with routing between
different ASes.

Peering points

Peering points

=
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BGP Routing

e BGP (border gateway
protocol) routing deals
with routing between
different ASes.

Peering points

Peering points
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BGP Routing

e BGP (border gateway
protocol) routing deals
with routing between
different ASes.

Peering points

Peering points
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BGP Routing

Peering points

Ingress point

Peering points

Summer School in O.R. & Appl. — May 14, 2014

e BGP (border gateway
protocol) routing deals
with routing between
different ASes.
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BGP Routing

e BGP (border gateway
protocol) routing deals
with routing between
different ASes.

Peering points

Ingress point

Egress point

Peering points
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BGP Routing

e BGP (border gateway
protocol) routing deals
with routing between
different ASes.

Peering points

Ingress point

Egress point

Peering points
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BGP Routing

e BGP (border gateway
protocol) routing deals
with routing between
different ASes.

Peering points

Ingress point

Egress point

Peering points

=
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[GP Routing

=
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OSPF routing

e Given a network G = (N,A), where N is the set of
routers and A is the set of links.
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OSPF routing

e Given a network G = (N,A), where N is the set of
routers and A is the set of links.

e The OSPF (open shortest path first) routing
protocol assumes each link a has a weight w(a)
assigned to it so that a packet from a source
router s to a destination router t is routed on a
shortest weight path from s to t.
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OSPF routing

e Given a network G = (N,A), where N is the set of
routers and A is the set of links.

e The OSPF (open shortest path first) routing
protocol assumes each link a has a weight w(a)
assigned to it so that a packet from a source
router s to a destination router t is routed on a
shortest weight path from s to t.
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OSPF routing

e Given a network G = (N,A), where N is the set of
routers and A is the set of links.

e The OSPF (open shortest path first) routing
protocol assumes each link a has a weight w(a)
assigned to it so that a packet from a source
router s to a destination router t is routed on a
shortest weight path from s to t.
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OSPF routing

e Given a network G = (N,A), where N is the set of
routers and A is the set of links.

e The OSPF (open shortest path first) routing
protocol assumes each link a has a weight w(a)
assigned to it so that a packet from a source
router s to a destination router t is routed on a
shortest weight path from s to t.

S

Traffic splitting
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OSPF routing

e By setting OSPF weights appropriately, one can do traffic
endineering, I.e. route traffic so as to optimize some
objective (e.g. minimize congestion, maximize
throughput, etc.).
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OSPF routing

e Some recent papers on this topic:
— Fortz & Thorup (2000, 2004)
— Ramakrishnan & Rodrigues (2001)
— Sridharan, Guérin, & Diot (2002)
— Fortz, Rexford, & Thorup (2002)
— Ericsson, Resende, & Pardalos (2002)
— Buriol, Resende, Ribeiro, & Thorup (2002, 2005)
— Reis, Ritt, Buriol & Resende (2011) @
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Packet routing

_ Packet's final
When packet arrives at router, destination.

router must decide where to
send it next.

router router

Routing consists in finding a
link-path from source to

Routing table destination. @
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OSPF routing

e Assign an integer weight O [1, w__ | to each link

in AS. In general, w__ = 65535=2" -1,

e Each router computes tree of shortest weight
paths to all other routers in the AS, with itself as
the root, using Dijkstra's algorithm.
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OSPF routing

_ Routing table is filled
Routing table with first hop routers
for each possible destination.

First hop routers.

Destination routers @
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OSPF routing

_ Routing table is filled
Routing table with first hop routers
for each possible destination.

First hop routers.

Destination routers @
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OSPF routing

_ Routing table is filled
Routing table with first hop routers
for each possible destination.

First hop routers.

Destination routers @
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OSPF routing

_ Routing table is filled
Routing table with first hop routers
for each possible destination.

First hop routers.

Destination routers @
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OSPF routing

Routing table is filled
Routing table with first hop routers
for each possible destination.
In case of multiple shortest
paths, flow is evenly split.

First hop routers.

Destination routers @
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OSPF weight setting

e (OSPF weights are assigned by network operator.

— CISCO assigns, by default, a weight proportional to the
inverse of the link bandwidth (Inv Cap).

— [f all weights are unit, the weight of a path is the number of
hops in the path.

e \We propose two BRKGA to find good OSPF weights.

=
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Minimization of congestion

e Consider the directed capacitated network G = (N, A,¢),
where N are routers, A are links, and c, is the capacity

of link a [7 A.

e \We use the measure of Fortz & Thorup (2000) to
compute congestion:

D=0 (/) + D) +..+ D, ()
where [ is the load on link a [7 A,

® (/) is piecewise linear and convex,
® (0)=0, forall a JA.
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Piecewise linear and convex @ (/)
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OSPF weight setting problem

e Given a directed network G= (N, A) with link
capacities ¢, 7 A and demand matrix D = (d,)
specifying a demand to be sent from node s to
node t:

— Assign weights w, [7[1, w__ ] to each link a [J A,

such that the objective function @ is minimized
when demand is routed according to the OSPF
protocol.

=
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BRKGA for OSPF routing in IP networks

wwa M. Ericsson, M.G.C.R., & P.M. Pardalos, “A genetic
4 1 algorithm for the weight setting problem in OSPF
routing,” J. of Combinatorial Optimization, vol. 6, pp.
299-333, 2002.

Tech report version:

http://www?2.research.att.com/” mgcr/doc/gaospf.pdf
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BRKGA for OSPF routing in [P networks
Ericsson, R., & Pardalos (J. Comb. Opt., 2002)

e Encoding:

— A vector X of N random keys, where N is the number of links. The
i-th random key corresponds to the i-th link weight.

=
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BRKGA for OSPF routing in [P networks
Ericsson, R., & Pardalos (J. Comb. Opt., 2002)

e Encoding:

— A vector X of N random keys, where N is the number of links. The
i-th random key corresponds to the i-th link weight.

e Decoding:
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BRKGA for OSPF routing in [P networks
Ericsson, R., & Pardalos (J. Comb. Opt., 2002)

e Encoding:

— A vector X of N random keys, where N is the number of links. The
i-th random key corresponds to the i-th link weight.

e Decoding:

— Fori=1, ..., N: set w(i) = ceil ( X(i) X W )

X

=
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BRKGA for OSPF routing in [P networks
Ericsson, R., & Pardalos (J. Comb. Opt., 2002)

e Encoding:

— A vector X of N random keys, where N is the number of links. The
i-th random key corresponds to the i-th link weight.

e Decoding:

— Fori=1, ..., N: set w(i) = ceil ( X(i) X W )

X

— Compute shortest paths and route traffic according to OSPF.

=
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BRKGA for OSPF routing in IP networks
Ericsson, R., & Pardalos (J. Comb. Opt., 2002)

e Encoding:

— A vector X of N random keys, where N is the number of links. The
i-th random key corresponds to the i-th link weight.

e Decoding:

— Fori=1, ..., N: set w(i) = ceil ( X(i) X W )

X

— Compute shortest paths and route traffic according to OSPF.

— Compute load on each link, compute link congestion, add up all
link congestions to compute network congestion.

=
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Tier-1 ISP backbone network (90 routers, 274 links)

Weight setting with GA
permits a 50% increase in
traffic volume w.r.t. weight
setting with the Inverse
Capacity rule.

=
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Tier-1 ISP backbone network (90 routers, 274 links)

, Weight setting with GA
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Improved BRKGA for OSPF routing in IP networks

L.S. Buriol, M.G.C.R., C.C. Ribeiro, and M. Thorup, “A
hybrid genetic algorithm for the weight setting problem
in OSPF/IS-IS routing,” Networks, vol. 46, pp. 36—56,

Tech report version:

http://www2.research.att.com/~ mgcr/doc/hgaospf.pdf
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Improved BRKGA for OSPF routing in IP networks
Buriol, R., Ribeiro, and Thorup (Networks, 2005)

e Encoding:

— A vector X of N random keys, where N is the number of links.
The i-th random key corresponds to the i-th link weight.

=
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Improved BRKGA for OSPF routing in IP networks
Buriol, R., Ribeiro, and Thorup (Networks, 2005)

e Encoding:

— A vector X of N random keys, where N is the number of links.
The i-th random key corresponds to the i-th link weight.

e Decoder;

—Fori=1, ..., N: setw(i) = ceil ( X(i) X W )

X

— Compute shortest paths and route traffic according to OSPF.

— Compute load on each link, compute link congestion, add up
all link congestions to compute network congestion.

=
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Improved BRKGA for OSPF routing in IP networks
Buriol, R., Ribeiro, and Thorup (Networks, 2005)

e Encoding:

— A vector X of N random keys, where N is the number of links.
The i-th random key corresponds to the i-th link weight.

e Decoder;

—Fori=1, ..., N: setw(i) = ceil ( X(i) X W )

X

— Compute shortest paths and route traffic according to OSPF.

— Compute load on each link, compute link congestion, add up
all link congestions to compute network congestion.

— Apply fast local search to improve weights.

=
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Decoder has a local search phase  ropustion s

Population K

Elite solutions

Elite solutions

Biased coin flip crossover ‘
Mutant

solutions
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Fast |ocal search

e Let A* be the set of five arcs ad0 A having
largest @_values.
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Fast |ocal search

e Let A* be the set of five arcs ad0 A having
largest @_values.

e Scan arcs ad A* from largest to smallest @
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Fast |ocal search

e Let A* be the set of five arcs all A having
largest @, values.

e Scan arcs ad A* from largest to smallest @

® |ncrease arc weight, one unit at a time, in the range

[w,,w, +0Ow__ —w,)/40]

max
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Fast |ocal search

e Let A* be the set of five arcs all A having
largest @, values.

e Scan arcs ad A* from largest to smallest @

® |ncrease arc weight, one unit at a time, in the range
—w,)/ 40

" [f total cost @ is reduced, restart local search.

[w,, w_+ Ow

max

=
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Effect of decoder with fast local search

cost

1000 |

- Improved: Buriol, R.,
 Ribeiro, and Thorup
(2005
i Original: Ericsson,
R., and Pardalos
(2002)
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Effect of decoder with fast local search

cost

1000 r
- Improved: Buriol, R., Improved BRKGA: ?
' Ribeiro, and Thorup ]
(2005 Finds solutions faster 7
{ Original; Ericsson,

R., and Pardalos
(2002)

100

Finds better solutions

LP lower bound
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Survivable [P
network design
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Survivable IP network design

L.S. Buriol, M.G.C.R., and M. Thorup, “Survivable IP
network design with OSPF routing,” Networks, vol. 49,
pp. 51—-64, 2007/.

Tech report version:

http://www2.research.att.com/™~ mgcr/doc/gamult.pdf
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Survivable IP network design
Buriol, R., & Thorup (Networks, 2007)

* Given
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Survivable IP network design
Buriol, R., & Thorup (Networks, 2007)

* Given

— directed graph G = (N,A), where
N is the set of routers, A is the
set of potential arcs where
capacity can be installed,
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Survivable IP network design
Buriol, R., & Thorup (Networks, 2007)

* Given

— directed graph G = (N,A), where
N is the set of routers, A is the
set of potential arcs where
capacity can be installed,

— a demand matrix D that for
each pair (s,t) L1 NxN, specifies
the demand D(s,t) between s
and t,
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Survivable IP network design
Buriol, R., & Thorup (Networks, 2007)

* Given

— directed graph G = (N,A), where
N is the set of routers, A is the
set of potential arcs where
capacity can be installed,

— a demand matrix D that for
each pair (s,t) L1 NxN, specifies
the demand D(s,t) between s
and t,

— a cost K(a) to lay fiber on arc a
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Survivable IP network design
Buriol, R., & Thorup (Networks, 2007)

* Given

— directed graph G = (N,A), where
N is the set of routers, A is the
set of potential arcs where
capacity can be installed,

— a demand matrix D that for
each pair (s,t) L1 NxN, specifies
the demand D(s,t) between s
and t,

— a cost K(a) to lay fiber on arc a

— a capacity increment C for the
fiber.
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Survivable IP network design
Buriol, R., & Thorup (Networks, 2007)

* Given * Determine

— directed graph G = (N,A), where
N is the set of routers, A is the
set of potential arcs where
capacity can be installed,

— a demand matrix D that for
each pair (s,t) L1 NxN, specifies
the demand D(s,t) between s
and t,

— a cost K(a) to lay fiber on arc a

— a capacity increment C for the
fiber.
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Survivable IP network design
Buriol, R., & Thorup (Networks, 2007)

* (Given * Determine
— directed graph G =(N,A), where — OSPF weight w(a) to assign to each
N is the set of routers, A is the arca 1A,

set of potential arcs where
capacity can be installed,

— a demand matrix D that for
each pair (s,t) L1 NxN, specifies
the demand D(s,t) between s
and t,

— a cost K(a) to lay fiber on arc a

— a capacity increment C for the
fiber.
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Survivable IP network design
Buriol, R., & Thorup (Networks, 2007)

* (Given * Determine
— directed graph G =(N,A), where — OSPF weight w(a) to assign to each
N is the set of routers, A is the arca 1A,

set of potential arcs where
capacity can be installed,

— which arcs should be used to deploy
fiber and how many units

— a demand matrix D that for (multiplicities) M(a) of capacity C
each pair (s,t) L] NxN, specifies should be installed on each arc
the demand D(s,t) between s allA,
and t,

— a cost K(a) to lay fiber on arc a

— a capacity increment C for the
fiber.
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Survivable IP network design
Buriol, R., & Thorup (Networks, 2007)

Given

directed graph G = (N,A), where
N is the set of routers, A is the
set of potential arcs where
capacity can be installed,

a demand matrix D that for
each pair (s,t) L1 NxXN, specifies
the demand D(s,t) between s
and t,

a cost K(a) to lay fiber on arc a

a capacity increment C for the
fiber.

Summer School in O.R. & Appl. — May 14, 2014

Determine

— OSPF weight w(a) to assign to each
arca [ A,

— which arcs should be used to deploy
fiber and how many units
(multiplicities) M(a) of capacity C
should be installed on each arc
allA,

such that all the demand can be routed
on the network even when any single
arc fails.
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Survivable IP network design
Buriol, R., & Thorup (Networks, 2007)

Given

directed graph G = (N,A), where
N is the set of routers, A is the
set of potential arcs where
capacity can be installed,

a demand matrix D that for
each pair (s,t) L1 NxXN, specifies
the demand D(s,t) between s
and t,

a cost K(a) to lay fiber on arc a

a capacity increment C for the
fiber.

Summer School in O.R. & Appl. — May 14, 2014

Determine

— OSPF weight w(a) to assign to each
arca [ A,

— which arcs should be used to deploy
fiber and how many units
(multiplicities) M(a) of capacity C
should be installed on each arc
allA,

such that all the demand can be routed
on the network even when any single
arc fails.

Min total design cost=3 _ M(a)xK(a).

=
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Survivable [P network design

e Encoding:

— A vector X of N random keys, where N is the number of links. The
I-th random key corresponds to the i-th link weight.

=
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Survivable [P network design

e Encoding:

— A vector X of N random keys, where N is the number of links. The
I-th random key corresponds to the i-th link weight.

e Decoder;
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Survivable [P network design

e Encoding:

— A vector X of N random keys, where N is the number of links. The
I-th random key corresponds to the i-th link weight.

e Decoder;

— Fori=1, ..., N: setw(i)=ceil ( X(i) X w )

X
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Survivable [P network design

e Encoding:

— A vector X of N random keys, where N is the number of links. The
I-th random key corresponds to the i-th link weight.

e Decoder;

— Fori=1, ..., N: setw(i)=ceil ( X(i) X w )

X

— For each failure mode: route demand according to OSPF and for
each arc alJA determine the load on arc a.
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Survivable [P network design

e Encoding:

— A vector X of N random keys, where N is the number of links. The
I-th random key corresponds to the i-th link weight.

e Decoder;

— Fori=1, ..., N: setw(i)=ceil ( X(i) X w )

X

— For each failure mode: route demand according to OSPF and for
each arc alJA determine the load on arc a.

— For each arc alJA, determine the multiplicity M(a) using the
maximum load for that arc over all failure modes.
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Survivable [P network design

e Encoding:

— A vector X of N random keys, where N is the number of links. The
I-th random key corresponds to the i-th link weight.

e Decoder;

— Fori=1, ..., N: setw(i)=ceil ( X(i) X w )

X

— For each failure mode: route demand according to OSPF and for
each arc alJA determine the load on arc a.

— For each arc alJA, determine the multiplicity M(a) using the
maximum load for that arc over all failure modes.

— Network design cost =3 _ M(a) x K(a)

=
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For each arc a A, set Computing the “fitness” of a solution
M(a) = 1; maxL(a) = —o0 (single link failure case)

Route all demand Determine load L(a) For each arc a L1A,
. on shortest e —— ®»  setmaxL(a)= [
on each arc a [A.
path graph max{L(a),maxL(a)}
L For each arc e LA, Compute shortest Route all demand
remove arce from - ®» pathgraphon | on shortest —
network G. G\ {e} path graph
For each arc a [JA, set Determine load L(a)
v maxL(a) = max{L(a), maxL(a)} on each arc a [JA.

For each arc e LA,
compute M(a)

no, then stop @
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Composite-link design

e |n Buriol, R., and Thorup (2006)

— links were all of the same type,

— only the link multiplicity had to be determined.

=
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Composite-link design

e Now consider composite links. Given a load L(a) on arc a, we
can compose several different link types that sum up to the

needed capacity c(a) = L(a):
—cla=) M(t) X y(t), where

— M(t) is the multiplicity of link type t

t used in arc a

— W(t) is the capacity of link type t

=
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Composite-link design

D.V. Andrade, L.S. Buriol, M.G.C.R., and M. Thorup,
“Survivable composite-link IP network design with OSPF
routing,” The Eighth INFORMS Telecommunications
Conference, Dallas, Texas, April 2006.

Tech report:

http://www?2.research.att.com/” mgcr/doc/composite.pdf

Summer School in O.R. & Appl. — May 14, 2014 BRKGA with applications in telecom atat

Youer world, Deliverad.



Composite-link design

e Linktypes={1,2,.. T}
e Capacities ={ c(1), c(2), ..., c(T) } : c(i) < c(i+1)
e Prices / unit length = { p(1), p(2), ..., p(T) }: p(i) < p(i+1)

=
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Composite-link design

e Linktypes={1,2,..T)}
e Capacities={c(1), c(2), ..., c(T) } : c(i) < c(i+1)
e Prices / unitlength ={p(1), p(2), ..., p(T) }: p(i) < p(i+1)

e Assumptions:

— [p(M)/cM] < [p(T-1)/c(T—1)] < - <[p(1)/c(1)], i.e. price
per unit of capacity is smaller for links with greater capacity

—c(i)=a xc(i—1), fora LIN, a > 1, i.e. capacities are
multiples of each other by powers of O

=
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Composite-link design

e Linktypes={1,2,.. T}
e (Capacities ={c(1), c(2), ..., c(T) } : c(i) < c(i+1)
e Prices / unit length ={ p(1), p(2), ..., p(T) }: p(i) < p(i+1)

e Assumptions:

— [p(M)/c(M] < [p(T=1)/c(T=1)] < - < [p(1)/c(1)]: economies of
scale

—c(i)=a xc(i—1), fora LIN,a>1, eq.
c(0C192) =4 x c(0CA48); c(0C48) =4 x c(OC12);
c(OC12)=4 x c(0C3);

OC3 0OCl12 0C48 OC192
155 Mb/s 622 Mb/s 2.5 Gb/s | 10 Gb/s [HeRaRA; @
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Survivable composite link IP network design

e Encoding:

— A vector X of N random keys, where N is the number of links. The
I-th random key corresponds to the i-th link weight.
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Survivable composite link IP network design

e Encoding:

— A vector X of N random keys, where N is the number of links. The
I-th random key corresponds to the i-th link weight.

e Decoder;
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Survivable composite link IP network design

e Encoding:

— A vector X of N random keys, where N is the number of links. The
I-th random key corresponds to the i-th link weight.

e Decoder;

— Fori=1, ..., N: setw(i)=ceil ( X(i) X w )

X
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Survivable composite link IP network design

e Encoding:

— A vector X of N random keys, where N is the number of links. The
I-th random key corresponds to the i-th link weight.

e Decoder;

— Fori=1, ..., N: setw(i)=ceil ( X(i) X w )

X

— For each failure mode: route demand according to OSPF and for
each arc iLlA determine the load on arc |.
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Survivable composite link IP network design

e Encoding:
— A vector X of N random keys, where N is the number of links. The
I-th random key corresponds to the i-th link weight.

e Decoder;

— Fori=1, ..., N: setw(i)=ceil ( X(i) X w )

X

— For each failure mode: route demand according to OSPF and for
each arc iLlA determine the load on arc |.

— For each arc iLJA, determine the multiplicity M(t,i) for each link
type t using the maximum load for that arc over all failure modes.

=
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Survivable composite link IP network design

e Encoding:
— A vector X of N random keys, where N is the number of links. The
I-th random key corresponds to the i-th link weight.

e Decoder;

— Fori=1, ..., N: setw(i)=ceil ( X(i) X w )

X

— For each failure mode: route demand according to OSPF and for
each arc iLlA determine the load on arc |.

— For each arc iLJA, determine the multiplicity M(t,i) for each link
type t using the maximum load for that arc over all failure modes.

— Network design cost=5 > M(t,i) x p(t)

iJA tusedinarci

=
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Computing the “fitness” of a solution
(single link failure case)

. Release links of types
Let k*= k
Setk=T © argmin { Tk) —» k*-1,.., 1and use

[L/c(k*)Uof type k* links

¢ yes

Use as many as
possible ( [IL/c(k)[]) of no
type k links without
exceeding the load L

Con'wpu-te cost T[(k) of Update load:
satisfying remaining -~ » - » Setk=k-—1
load with link type k L=1 - Welol

=
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Redundant content
distribution

BRKGA with applications in telecom atat

Youer world, Deliverad.



Reference:
L. Breslau, I. Diakonikolas, N. Duffield,

ALENEXT] . :

T Y. Gu, M. Hajiaghayi, D.S. Johnson,
Algorithm Engineering & Experiments H K&I"Off M G C R and S Sen

January 22, 201 ’ ' E ’ J

dimpei i e i “Disjoint-path facility location: Theory and

practice,” Proceedings of the Thirteenth

Workshop on Algorithm Engineering and
Experiments (ALENEX11), SIAM, San

Francisco, pp. 60—74, January 22,
2011

Tech report version:

http://www2.research.att.com/~ mgcr/doc/monitoring-alenex.pdf @
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Redundant content distribution (RCD)

e Suppose a humber of users located at nodes in a
network demand content.
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Redundant content distribution

e Suppose a humber of users located at nodes in a
network demand content.

e Copies of content are stored throughout the
network in data warehouses.

=

Summer School in O.R. & Appl. — May 14, 2014 BRKGA with applications in telecom atat



Redundant content distribution

e Suppose a number of users located at nodes in a
network demand content.

e Copies of content are stored throughout the
network in data warehouses.

e Content is sent from data warehouse to user on
routes determined by OSPF.
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Redundant content distribution

e Suppose a number of users located at nodes in a
network demand content.

e Copies of content are stored throughout the
network in data warehouses.

e Content is sent from data warehouse to user on
routes determined by OSPF.

e Problem: Locate minimum number of
warehouses in network such all users get their
content even in presence of edge failures. @
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Redundant content distribution

©

Traffic from node s to node t flows on paths defined by OSPF.
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Redundant content distribution

©

We don't know on which path a particular packet will flow.
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Redundant content distribution

©

We say traffic from node s to node t is interrupted if any edge
in one of the paths from s to t fails. @
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We say traffic from source nodes S and S, to

node t is interrupted if any common edge
in one of the paths from S to t and S, to t fails.
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If all paths from source node S to node t are
disjoint from all paths from node S, to t, then

traffic to t will never be interrupted for any single O
edge failure.

=
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Redundant content distribution

Suppose nodes b], bz, ... want some

content (e.g. video). . f m.
We want the smallest set S of b2 ’
servers such that; b
' b
3

for every bi there exist m., m (1S

b m
both of which can provide content 4
tob

4

and all paths m — b are disjoint
1
with all paths m, — b @
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Redundant content distribution

Suppose nodes b], bz, ... want some

content (e.g. video).

We want the smallest set S of
servers such that;

for every bi there exist m., m (1S

both of which can provide content
tob

and all paths m — b are disjoint
1
with all paths m, — b @
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Redundant content distribution

Suppose nodes b], bz, ... want some

content (e.g. video).

We want the smallest set S of
servers such that;

for every bi there exist m., m (1S

both of which can provide content
tob

and all paths m — b are disjoint
1
with all paths m, — b @
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Redundant content distribution

Suppose nodes b], bz, ... want some

content (e.g. video). m3 f
We want the smallest set S of b

servers such that; |

b /
1 é
. \\
for every bi there exist m., m (1S b @
both of which can provide content 4
tob
! —{

and all paths m — b are disjoint
1
with all paths m, — b @
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Redundant content distribution

Suppose nodes b], bz, ... want some

content (e.g. video).

We want the smallest set S of
servers such that;

for every bi there exist m., m (1S

both of which can provide content
tob

and all paths m — b are disjoint
1
with all paths m, — b @
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Redundant content distribution

e Given:
— A directed network G = (V, E):

— A set of nodes B € E where content-demanding
users are |ocated;

— A set of nodes M € E where content warehouses can
be located:

— The set of all OSPF paths from m to b, for m& M and
b € B.
&
=

Summer School in O.R. & Appl. — May 14, 2014 BRKGA with applications in telecom atat



Redundant content distribution

e Compute:
— The set of triples {m , m_, b}, i=1,2,.., T, such
that all paths from m, to b and from m, to b are

disjoint, where m, m & M and b € B.

— Note that if BNM # 4, then some triples will be of
the type { b, b, b }, where beBNM, i.e. a data
warehouse that is co-located with a user can provide
content to the user by itself.

=
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Redundant content distribution

e Solve the covering by pairs problem:

— Find a smallest-cardinality set M*< M such that for all
b € B, there exists a triple { m,m,b } in the set of

triples such that m,m & M*,

=
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Greedy algorithm for covering by pairs

e initialize partial cover M* ={}
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Greedy algorithm for covering by pairs

e initialize partial cover M* ={}

e while M* is not a cover do:

Summer School in O.R. & Appl. — May 14, 2014 BRKGA with applications in telecom atat

Youer world, Deliverad.



Greedy algorithm for covering by pairs

e initialize partial cover M* ={}

e while M* is not a cover do:

— find m € M\ M* such that M* U {m} covers a maximum
number of additional user nodes (break ties by vertex
index) and set M* = M* U {m}

=
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Greedy algorithm for covering by pairs

e initialize partial cover M* ={}

e while M* is not a cover do:

— find m € M\ M* such that M* U {m} covers a maximum
number of additional user nodes (break ties by vertex
index) and set M* = M* U {m}

— if nom € M \ M* yields an increase in coverage, then
choose a pair {m],mz} € M\ M* that yields a maximum

increase in coverage and set M*=M* U {m } U {m_}

=

Summer School in O.R. & Appl. — May 14, 2014 BRKGA with applications in telecom _at&t



Greedy algorithm for covering by pairs

e initialize partial cover M* ={}

e while M* is not a cover do:

— find m € M\ M* such that M* U {m} covers a maximum
number of additional user nodes (break ties by vertex
index) and set M* = M* U {m}

— if nom € M \ M* yields an increase in coverage, then
choose a pair {m],mz} € M\ M* that yields a maximum

increase in coverage and set M*=M* U {m } U {m_}
— if no pair exists, then the problem is infeasible

=
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BRKGA for
redundant content

distribution

Youer world, Deliverad.



BRKGA for the RCD problem

e Encoding:

— A vector X of N keys randomly generated in the real
interval (O,1], where N = | M| is the number of potential
data warehouse nodes. The i-th random key corresponds
to the i-th potential data warehouse node.

=
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BRKGA for the RCD problem

e Encoding:

— A vector X of N keys randomly generated in the real
interval (O,1], where N = | M| is the number of potential
data warehouse nodes. The i-th random key corresponds
to the i-th potential data warehouse node.

e Decoder:

=
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BRKGA for the RCD problem

e Encoding:

— A vector X of N keys randomly generated in the real
interval (O,1], where N = | M| is the number of potential
data warehouse nodes. The i-th random key corresponds
to the i-th potential data warehouse node.

e Decoder:

—Fori=1, ..., N: if X(i) > V2, add i-th data warehouse
node to solution

=
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BRKGA for the RCD problem

e Encoding:

— A vector X of N keys randomly generated in the real
interval (O,1], where N = | M| is the number of potential
data warehouse nodes. The i-th random key corresponds
to the i-th potential data warehouse node.

e Decoder:

—Fori=1, ..., N: if X(i) > V2, add i-th data warehouse
node to solution

— [f solution is feasible, i.e. all users are covered: STOP

=
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BRKGA for the RCD problem

e Encoding:

— A vector X of N keys randomly generated in the real
interval (O,1], where N = | M| is the number of potential
data warehouse nodes. The i-th random key corresponds
to the i-th potential data warehouse node.

e Decoder:

—Fori=1, ..., N: if X(i) > V2, add i-th data warehouse
node to solution

— [f solution is feasible, i.e. all users are covered: STOP

— Else, apply greedy algorithm to cover uncovered user
nodes.

=
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BRKGA for the RCD problem

e Size of population: N (number of monitoring nodes)
e Size of elite set: 15% of N

e Size of mutant set: 10% of N

e Biased coin probability: 70%

e Stop after N generations without improvement of
best found solution

=
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Another application: Host placement
for end-to-end monitoring

e Internet service provider (ISP) delivers virtual private
network (VPN) service to customers.
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Another application: Host placement
for end-to-end monitoring

e Internet service provider (ISP) delivers virtual private
network (VPN) service to customers.

e The [SP agrees to send traffic between locations specified
by the customer and promises to provide certain level of
service on the connections.
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Another application: Host placement
for end-to-end monitoring

e Internet service provider (ISP) delivers virtual private
network (VPN) service to customers.

e The [SP agrees to send traffic between locations specified
by the customer and promises to provide certain level of
service on the connections.

e A key service quality metric is packet loss rate.

Summer School in O.R. & Appl. — May 14, 2014 BRKGA with applications in telecom atat

Youer world, Deliverad.



Another application: Host placement
for end-to-end monitoring

e Internet service provider (ISP) delivers virtual private
network (VPN) service to customers.

e The [SP agrees to send traffic between locations specified
by the customer and promises to provide certain level of
service on the connections.

e A key service quality metric is packet loss rate.

e \We want to minimize the number of monitoring equipment
placed in the network to measure packet loss rate: This is a
type of covering by pairs problem.
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n100-i2-m100-b100 (opt = 23)
solution

nl808-i2-nli88-bi00;

GA and randon multi-ztart iterates
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: : GA +
rand nulti-=start :
BO |- R R REREREEEEEEE R RREEREREEEEE .
: BRKG_A solutions Random_- multi-$_ta_rt s__ol_u’gipps
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=
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Optimal value:
og =
8.1 1
Time (ibm t41 secs) é
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Size of cover

R1000
500

450

400

350 |

300 - " Best of 400 GREEDY solutions = 318 _

250 f

200 r

150 ¢

100 ¢

Best known solution = 20

5[] 1 1 1 1 1 1
0] 10 20 30 40 50 &0
lteration of BEKGA

70 80 90 100

Real-world instance derived from a proprietary Tier-1
Internet Service Provider (ISP) backbone network using

OSPF for routing.
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Size of cover

R1000
500

450 r

400 r

350 r

300 i Best of 400 GREEDY solutions = 318

250 r

200 r

150 r

100 |

Best known solution = 30

0 10 20 30 40 50 &0
lteration of BRKGA

70 80 90 100

Size of network: about 1000 nodes, where almost all can
store content and about 90% have content-demanding users.

Over 45 million triples.
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Regenerator location
problem

BRKGA with applications in telecom atat
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Reference

A. Duarte, R. Marti, M.G.C.R., and R.M.A. Silva, “Improved
heuristics for the regenerator location problem,"” International
Transactions in Operational Research, to appear in 2014.

Tech report version:

http://www.research.att.com/~mgcr/doc/gpr-regenloc.pdf

=
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Signal regeneration

e Telecommunication systems use optical signals to
transmit information
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Signal regeneration

e Telecommunication systems use optical signals to
transmit information

e Strength of signal deteriorates and loses power as it gets
farther from source

=
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Signal regeneration

e Telecommunication systems use optical signals to
transmit information

e Strength of signal deteriorates and loses power as it gets
farther from source

e Signal must be regenerated periodically to reach
destination: Regenerators

=
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Signal regeneration

e Telecommunication systems use optical signals to
transmit information

e Strength of signal deteriorates and loses power as it gets
farther from source

e Signal must be regenerated periodically to reach
destination: Regenerators

e Regenerators are expensive: minimize the number of
regenerators in the network

=
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Regenerator location problem (RLP)

o Given:

— Graph G=(V,E), where V are vertices, E are edges,
where edde (i,j) has a real-valued length d(i,j) > O

— D is the maximum length that a signal can travel
before it must regenerated

=
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Regenerator location problem (RLP)

e Find:
— Paths that connect all pairs of nodes in \VxV/

— Nodes where it is necessary to locate single
regenerators

e Minimize number of deployed regenerators
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Regenerator location problem (RLP)

e Path between {s,t} L1 E

—{ (s,v[1]), (v[1],v[2]), ...,(v[K],}) } is formed by one or
more path segments

e Path segment is sequence of consecutive edges
— { (V[il,v[i+1]), (v[i+1]v[i+2]), ...,(v[g-1],v[q]) } in the
path satlsfylng the condition
d(v[i]vli+1]) + d(v[i+1]v[i+2])+ ~+ (v[q-1],v[q]) <D
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Regenerator location problem (RLP)

e [f total length of path is no more than D, then
path consists of a single path segment

e (Otherwise, it consists of one or more segments

— Regenerators will be located in the internal nodes of
the path

=
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Regenerator location problem (RLP)

/-node graph with D = 100

=
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Regenerator location problem (RLP)

(1) Note that;
—D(1,5)=150>100=D

— Edge (1,5) cannot be part of
any path

=
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Regenerator location problem (RLP)

Summer School in O.R. & Appl. — May 14, 2014

(2) Note that:

— Shortest path from 1 to 3 is
{(1,2), (2,3) } with total
length

60+70=130>100=D

— Must be decomposed into two
path segments { (1,2) } and
{(2,3)} with aregenerator in
node 2

=
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Regenerator location problem (RLP)

(3) Note that:

— Shortest feasible path from 1
to5is{(1,2),(2,3),(3,5)}
with total length
60+70+90=220>

100=D

— Must be decomposed into
three path segments { (1,2) },
{(2,3)}, and { (3,5) } with
regenerators in nodes 2
and 3 @

Summer School in O.R. & Appl. — May 14, 2014 BRKGA with applications in telecom atat




Regenerator location problem (RLP)

(4) Note that:

— Shortest feasible path from 5
to 7 is { (5,6), (6,7) } with total
length 40 + 40 =80 <

100=D

— No regenerator is needed to
connect nodes 5 and /

=
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Regenerator location problem (RLP)

(5) Note that:

— Placing regenerator in
nodes 2 and 7 allows for
communication between all
pairs of nodes in the graph

=
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Communication graph (chen et al.. 2010)

e Given weighted graph G

— Delete all edges having
length greater than D

— For all non-adjacent nodes,
add an edge between them
of length equal to the
corresponding shortest path
in G if it is less than D

— Disregard all length info

=
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CommunicatiOn gl’aph (Chen et al., 2010)

= M=(V,E)

=
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Communicaticn gl’aph (Chen et al., 2010)

e [f M is complete, then
there is no need for
regenerators

M=(V,E)

=
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Communicaticn gl’aph (Chen et al., 2010)

e [f M is complete, then
there is no need for
regenerators

e [f M is not connected,
then the problem is
infeasible

M=(V,E)

=
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Communicaticn gl’aph (Chen et al., 2010)

e [f M is complete, then
there is no need for
regenerators

e [f M is not connected,
then the problem is
infeasible

e (Otherwise, one or
more regenerators are
nheeded

M=(V,E)

=
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Greedy algorithm (chen et al., 2010

e \Works on communication graph M

M=(V,E)

=
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Greedy algorithm (chen et al., 2010

e \Works on communication graph M

e Input: set of nodes not directly

connected (NDC) in M and builds a set
R of regenerator nodes

M=(V,E)

=
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Greedy algorithm (chen et al., 2010

M=(V,E)

Summer School in O.R. & Appl. — May 14, 2014

Works on communication graph M

Input: set of nodes not directly
connected (NDC) in M and builds a set
R of regenerator nodes

At each step the procedure determines a
node u* whose inclusion in R enables
the connection of the largest number
g(u®) of yet unconnected pairs X(u*)

in M

=
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Greedy algorithm (chen et al., 2010

e \Works on communication graph M

e Input: set of nodes not directly
connected (NDC) in M and builds a set
R of regenerator nodes

e At each step the procedure determines a
node u* whose inclusion in R enables
the connection of the largest number
g(u®) of yet unconnected pairs X(u*)
in M

M = (V.E") e Node u* is added to R and M is updated

=
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Greedy algorithm (Chen et al., 2010)

1 O 0
2 {(1,3),(14),(1.7)(37), 5
(4,7) }
3 {(49).(29)} Z
4 {(26),(36)} 2
5  {(3,7).(36)} 2
6 {(4,7).(4.9)} 2
7 {(2,6).(2,9)} 2
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Gl’eedy algorithm (Chen et al., 2010)

N

{(1,3),(14,0.7,37), 5
(4.7))

{(45).(2,5))
{(26).(3.6))
(37).(36))
(4.7).(4.5))
(2.6).(2.5))

M=(V,E)

N O O b W
N N N N DN

{
{
Add regenerator to node 2 {
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Gl’eedy algorithm (Chen et al., 2010)

1 0O 0
2 {(1,3),(1,4),(1,7),(3,7), 5
(4.7) }

3 {(4,5),2,5)} 2

4 {(2,6),(3,6)} 2

° {(3,7),(36)} 2

= (V,E) 6 {(47),4.)9)} 2

Update M to account for regenerator {(2,6),(2,5) } 2

in node 2
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Greedy algorithm (Chen et al., 2010)

T O 0

{(1,5),(2,5),(4,9) }

3 3
4 {(1,6),(2,6),(3,6) } 3
5 {G6)} 1
6 1
/ 6

{(4.9)}
{(1,5),(1,6).(2,5),(2,6),(3,6),(4.5) }

M=(V,E)

=
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Greedy algorithm (Chen et al., 2010)

1 ] 0
3 {(15).(25),4)5)} 3
4 {(1,6),(2,6),(3,6)} 3
5 {06} 1
6 {495} 1
M= (V.E") 7  {(1,5),(1,6),(2,5),(2,6),(3,6),(4,5) } 6
Add regenerator to node 7
=
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Greedy algorithm (Chen et al., 2010)

T O 0
3 {(1,59).2,5).(4.,5)} 3
4 {(1,6),(2,6),(3.6)} 3
5 {66)} 1
6 {49} 1
M= (V,E') 7  {(1,5),(1,6),(2,5),(2,6),(3,6),(4,5) } 6

=
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Greedy algorithm (chen et al., 2010

M=(V,E)

Since M is complete, all pairs can
communicate and solution R = {2,7} @
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BRKGA for the
regenerator location

problem

Youer world, Deliverad.



Encoding

Solutions are encoded as vectors Y of n= |V | random
keys, each in the real interval [O,1)

Random key Y[i] corresponds to node i [1V
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Decoding

Takes as input a communication graph M = (V,E')
and a vector of random keys Y

Outputs a set of regenerator nodes R [1V
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Decoding

Takes as input a communication graph M = (V,E')
and a vector of random keys Y

Outputs a set of regenerator nodes R [1V

Sorting Y implies an ordering of \/
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Decoding

M=(V,E")

Summer School in O.R. & Appl. — May 14, 2014

Scan V in order implied by Y

while come pair in V X \/ cannot
communicate (M = (V, E') is not
complete):

Add next vertex v in order into R

Compute set X of pairs that do
not communicate that would if

v becomes a regenerator

Add X to E'
end while
return R @
BRKGA with applications in telecom atat



Decoding

X=(0.1,0.2,0.3,04,0.5,0.6,0.7)
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Scan V in order implied by Y

while come pair in V X \/ cannot
communicate (M = (V, E') is not
complete):

Add next vertex v in order into R

Compute set X of pairs that do
not communicate that would if

v becomes a regenerator

Add X to E'
end while
return R @
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Decoding

X=(0.1,0.2,0.3,04,0.5,0.6,0.7)

1

=1
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Scan V in order implied by Y

while come pair in V X \/ cannot
communicate (M = (V, E') is not
complete):

Add next vertex v in order into R

Compute set X of pairs that do
not communicate that would if

v becomes a regenerator

Add X to E'
end while
return R @
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Decoding

X=(0.1,0.2,0.3,04,0.5,0.6,0.7)

1

| = 2
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Scan V in order implied by Y

while come pair in V X \/ cannot
communicate (M = (V, E') is not
complete):

Add next vertex v in order into R

Compute set X of pairs that do
not communicate that would if

v becomes a regenerator

Add X to E'
end while
return R @
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Decoding

X=(0.1,0.2,0.3,04,0.5,0.6,0.7)

1
i =3
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Scan V in order implied by Y

while come pair in V X \/ cannot
communicate (M = (V, E') is not
complete):

Add next vertex v in order into R

Compute set X of pairs that do
not communicate that would if

v becomes a regenerator

Add X to E'
end while
return R @
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Decoding

X=(0.1,0.2,0.3,0.4,0.5,0.6,0.7)

1

| = 4
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Scan V in order implied by Y

while come pair in V X \/ cannot
communicate (M = (V, E') is not
complete):

Add next vertex v in order into R

Compute set X of pairs that do
not communicate that would if

v becomes a regenerator

Add X to E'
end while
return R @
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Decoding

M is complete!

R={1,2234}
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Scan V in order implied by Y

while come pair in V X \/ cannot
communicate (M = (V, E') is not
complete):

Add next vertex v in order into R

Compute set X of pairs that do
not communicate that would if

v becomes a regenerator

Add X to E'
end while
return R @
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Decoding

M is complete!

R={1,2234}

Summer School in O.R. & Appl. — May 14, 2014

Scan V in order implied by Y

while come pair in V X \/ cannot
communicate (M = (V, E') is not
complete):

Add next vertex v in order into R

Compute set X of pairs that do
not communicate that would if

v becomes a regenerator

Add X to E'

end while
4= |ocal search

return R @
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Routing and
wavelength assignment
In optical networks

Youer world, Deliverad.



Routing and wavelength assignment (RWA)

e (Objective: Route a set of connections (called lightpaths) and
assign a wavelength to each of them.
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Routing and wavelength assignment (RWA)

e (Objective: Route a set of connections (called lightpaths) and
assign a wavelength to each of them.

e Two lightpaths may use the same wavelength, provided they
do not share any common link.
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Routing and wavelength assignment (RWA)

e (Objective: Route a set of connections (called lightpaths) and
assign a wavelength to each of them.

e Two lightpaths may use the same wavelength, provided they
do not share any common link.

e (Connections whose paths share a common link in the network
are assigned to different wavelengths (wavelength clash
constraint).
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Routing and wavelength assignment (RWA)

e (bjective: Route a set of connections (called lightpaths) and
assign a wavelength to each of them.

e Two lightpaths may use the same wavelength, provided they
do not share any common link.

e (Connections whose paths share a common link in the network
are assigned to different wavelengths (wavelength clash
constraint).

e [f no wavelength converters are available, the same
wavelength must be assigned along the entire route
(wavelength continuity constraint). @

Youer world, Deliverad.



Routing and wavelength assignment (RWA)

e \/ariants of RWA are characterized by different optimization criteria,
traffic patterns, and whether wavelength conversion is available or
hot.
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Routing and wavelength assignment (RWA)

e \/ariants of RWA are characterized by different optimization criteria,
traffic patterns, and whether wavelength conversion is available or
hot.

* We consider the min-RWA offline variant:
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Routing and wavelength assignment (RWA)

e \ariants of RWA are characterized by different optimization criteria,
traffic patterns, and whether wavelength conversion is available or
not.

* We consider the min-RWA offline variant:

— Connection requirements are known beforehand.
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Routing and wavelength assignment (RWA)

e \ariants of RWA are characterized by different optimization criteria,
traffic patterns, and whether wavelength conversion is available or
not.

e \We consider the min-RWA offline variant:
— Connection requirements are known beforehand.

— No wavelength conversion is possible.
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Routing and wavelength assignment (RWA)

e \ariants of RWA are characterized by different optimization criteria,
traffic patterns, and whether wavelength conversion is available or
not.

e \We consider the min-RWA offline variant:
— Connection requirements are known beforehand.
— No wavelength conversion is possible.

— Obijective is to minimize the number of wavelengths used for routing all
connections.
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Routing and wavelength assignment (RWA)

e \ariants of RWA are characterized by different optimization criteria,
traffic patterns, and whether wavelength conversion is available or
not.

e \We consider the min-RWA offline variant:
— Connection requirements are known beforehand.
— No wavelength conversion is possible.

— Obijective is to minimize the number of wavelengths used for routing all
connections.

— Asymmetric traffic matrices and bidirectional links.
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Routing and wavelength assignment (RWA)

e \ariants of RWA are characterized by different optimization criteria,
traffic patterns, and whether wavelength conversion is available or
not.

e \We consider the min-RWA offline variant:
— Connection requirements are known beforehand.
— No wavelength conversion is possible.

— Obijective is to minimize the number of wavelengths used for routing all
connections.

— Asymmetric traffic matrices and bidirectional links.
— NP-hard (Erlebach and Jansen, 2001)
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Routing and wavelength assignment (RWA)

Connections

deo b

e < h

a & €
b o f

atat



Routing and wavelength assignment (RWA)

Connections: (a & e) (b « f) (d & b)(e - h)

wavelength 1 wavelength 2




Heuristic of N. Skorin-Kapov (EJOR, 2007)

e Associates the min-RWA with the bin packing problem.
— Wavelengths are associated with bins.
— The capacity of a bin is defined as its number of arcs.

— The size of a connection is defined as the humber of arcs in its
shortest path.
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Heuristic of N. Skorin-Kapov (EJOR, 2007)

e Associates the min-RWA with the bin packing problem.
— Wavelengths are associated with bins.
— The capacity of a bin is defined as its number of arcs.

— The size of a connection is defined as the humber of arcs in its
shortest path.

e Developed RWA heuristics based on the following classical bin
packing heuristics:
— First Fit (FF)
— Best Fit (BF)
— First Fit Decreasing (FFD)
— Best Fit Decreasing (BFD)
=
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Heuristic of N. Skorin-Kapov (EJOR, 2007)

e Associates the min-RWA with the bin packing problem.
— Wavelengths are associated with bins.
— The capacity of a bin is defined as its number of arcs.

— The size of a connection is defined as the humber of arcs in its
shortest path.

e Developed RWA heuristics based on the following classical bin
packing heuristics:
— First Fit (FF)
— Best Fit (BF)
— First Fit Decreasing (FFD)
— Best Fit Decreasing (BFD): state of the art heuristic for RWA @
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Efficient implementation of BFD-RWA

T.F. Noronha, M.G.C.R., and C.C. Ribeiro,

LNCS “Efficient implementations of heuristics for routing and

- wavelength assignment,” in "Experimental Algorithms,"

/7th International Workshop (WEA 2008), C.C. McGeoch
Tech report version:

(Ed.), LNCS, vol. 5038, pp. 169-180, Springer, 2008.

http://www.research.att.com/~mgcr/doc/impl_rwa_heur.pdf @
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BFD-RWA

N. Skorin-Kapov (2007); Noronha, R., and Ribeiro (2008)

e [nput;
e A directed graph G representing the network topology.
e AsetT of connection requests.

e The value d of of the maximum number of arcs in each route. It is set to be the
maximum of the square root of the number of links in the network and the
diameter of G.

o Starts with only one copy of G (called G1).

e Connections are selected according to non-increasing order of the lengths of their
shortest paths in Gi. Ties are broken at random.

e [he connection is assigned wavelength 7, and the arcs along path are deleted from Gi.

e [f no existing bin can accommodate the connection with fewer than d arcs, a new bin is

created.

BRKGA with applications in telecom atat
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BRKGA for RWA: GA-RWA

wma — 1.F.Noronha, M.G.C.R., and C.C. Ribeiro, “A biased
. random-key genetic algorithm for routing and
E "I wavelength assignment,” J. of Global Optimization,

vol. 50, pp. 503—-518, 201 1.

Tech report version:

http://www.research.att.com/~mgcr/doc/garwa-full.pdf
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BRKGA for RWA: GA-RWA

Noronha, R., and Ribeiro (2011)

e Encoding of solution: A vector X of |T| random keys in the
range [0,1), where T is the set of connection request node
pairs.
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e Encoding of solution: A vector X of |T| random keys in the
range [0O,1), where T is the set of connection request node
pairs.

e Decoding:

— 1) Sort the connection in set T in non-increasing order of
c(i) = SP(i) x10 + X[i], for each connectioni [ T.

— 2) Apply BFD-RWA in the order determined in step 1.
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BRKGA for RWA: GA-RWA

Noronha, R., and Ribeiro (2011)

e Encoding of solution: A vector X of |T| random keys in the
range [0, 1), where T is the set of connection request node
pairs.

e Decoding:

— 1) Sort the connection in set T in non-increasing order of
c(i) = SP(i) x10 + X[i], for each connection i [1T.
— 2) Apply BFD-RWA in the order determined in step 1.

Since there are many ties connection pairs with
The same SP(i) value, in the original algorithm of

((((Q

Skorin-Kapov, ties are broken at random. In the
BRKGA, the algorithm “learns” how to break ties.

‘o
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Experiments

e Compare multi-start version of Skorin-Kapov's
heuristic (MS-RWA) with GA-RWA.

e Make 200 independent runs of each heuristic of
each heuristic on five instances, stopping when
target solution was found (target was set to be
best solution found by MS-RWA after 10,000
multi-start iterations.

e Plot CDF (runtime distribution) for each heuristic.

=
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Concluding
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Concluding remarks

e A small modification of Bean's RKGA results in a BRKGA.
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Concluding remarks

e A small modification of Bean's RKGA results in a BRKGA.

e Though small, this modification, leads to significant
performance improvements.
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Concluding remarks

e A small modification of Bean's RKGA results in a BRKGA.

e Though small, this modification, leads to significant
performance improvements.

e BRKGA are true metaheuristics: they coordinate simple
heuristics and produce better solutions than the simple
heuristics alone.
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Concluding remarks

e A small modification of Bean's RKGA results in a BRKGA.

e Though small, this modification, leads to significant
performance improvements.

BRKGA are true metaheuristics: they coordinate simple
heuristics and produce better solutions than the simple
heuristics alone.

e Problem independent module of a BRKGA needs to be
Implemented once and can be reused for a wide range of
problems. User can focus on problem dependent module.
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Concluding remarks

e A small modification of Bean's RKGA results in a BRKGA.

e Though small, this modification, leads to significant
performance improvements.

BRKGA are true metaheuristics: they coordinate simple
heuristics and produce better solutions than the simple
heuristics alone.

e Problem independent module of a BRKGA needs to be
Implemented once and can be reused for a wide range of
problems. User can focus on problem dependent module.

BRKGA heuristics are highly parallelizable. Calls to decoder
are independent.

=
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Concluding remarks

e BRKGA have been applied in a wide range of application
areas, including scheduling, packing, cutting, tollbooth
assignment, ...
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Concluding remarks

e BRKGA have been applied in a wide range of application
areas, including scheduling, packing, cutting, tollbooth
assignment, ...

* We have had only a small glimpse at BRKGA applications to
problems arising in telecommunications.
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Concluding remarks

e BRKGA have been applied in a wide range of application
areas, including scheduling, packing, cutting, tollbooth
assignment, ...

* We have had only a small glimpse at BRKGA applications to
problems arising in telecommunications.

e The BRKGAs described in this talk are all state-of-the-art
heuristics for these applications
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Concluding remarks

e BRKGA have been applied in a wide range of application
areas, including scheduling, packing, cutting, tollbooth
assignment, ...

* \We have had only a small glimpse at BRKGA applications to
problems arising in telecommunications.

The BRKGAs described in this talk are all state-of-the-art
heuristics for these applications

e \We are currently working on a number of other applications
In telecommunications, including the degree-constrained
and the capacitated spanning tree problems and a
metropolitan network design problem.
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D LibreOffice

The Document Foundation

Thanks!

These slides and all of the papers cited in this talk
can be downloaded from my homepage:

http://www.research.att.com/”mgcr

=
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