GRASP heuristics
for discrete and
continuous global
optimization

Mauricio G. C. Resende
ATET Labs Research
Talk given at Amazon.com, Inc. Middletown, New Jersey

ttle, il1,2014
Seattle, WA + April 11, 201 mgcr@research.att.com



GRASP: The beginning

® overntione | 1-A. Feo & R.,"A probabilistic heuristic for a

' Operations
Research

= computationally difficult set covering problem,”
Oper. Res. Letters (1989)

wma T A Feo & R.,"Greedy randomized adaptive

Optimization

search procedures,” J. of Global Opt. (1995)

Amazon.com — April 11, 2014 GRASP heuristics



Google Scholar Search:  "greedy randomized adaptive search"
(http://scholar.google.com)

6000

o Cumulative GRASP paper count 5410
£ 5000 | _
-
)
[
& 4000 |
E 3290
S 3000 | _
4K
A
=
)
o 2000 F |
w
8 1240
£ 1000 | _
. 355

5 ] 55

1990 1995 2000 2005 2010 2014 (to Jan. 17)

Wear

Amazon.com — April 11, 2014 GRASP heuristics



Annotated bibliographies of GRASP

P. Festa and R., GRASP: An annotated bibliography, Essays and
Surveys on Metaheuristics, C.C. Ribeiro and P. Hansen, Eds.,
Kluwer Academic Publishers, pp. 325-367, 2002

P. Festa and R., An annotated bibliography of GRASP—Part I:
Algorithms, International Transactions in Operational
Research, vol. 16, pp. 1-24, 2009.

—. P.FestaandR., An annotated bibliography of GRASP—Part II:
“— Applications, International Transactions in Operational
Research, vol. 16, pp. 131-172, 20009.
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Summary

Combinatorial optimization and a review of GRASP

Neighborhoods, local search, greedy randomized construction and
diversification

Hybrid construction

Other greedy randomized constructions, reactive GRASP, long-term
memory in construction, biased sampling, cost perturbation
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Summary

Hybridization with path-relinking

Elite sets, forward, backward, back and forward, mixed, greedy
randomized adaptive path-relinking, evolutionary path-relinking

Some important developments not covered in talk
A recent real-world application of GRASP

Concluding remarks
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Combinatorial Optimization

Combinatorial optimization: process of finding the
best, or optimal, solution for problems with a discrete set

of feasible solutions.

Applications: e.g. routing, scheduling, packing, inventory

and production management, location, logic, and
assignment of resources.

Economic |mpact: e.d. transportation (airlines, trucking,
rail, and shipping), forestry, manufacturing, logistics,
aerospace, energy (electrical power, petroleum, and natural
gas), agriculture, biotechnology, financial services, and
telecommunications.
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Combinatorial Optimization

Given:
discrete set of solutions X

objective function f(x): x L1 X —» R

Objective (minimization):
find x LI X: f(x) <f(y), Oy X
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Combinatorial Optimization

Much progress in recent years on finding
exact (provably optimal) solutions: dynamic
programming, cutting planes, branch and
cut, ...

Many hard combinatorial optimization
problems are still not solved exactly and
require good solution methods.
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Combinatorial Optimization

Approximation algorithms are guaranteed to
find in polynomial-time a solution within a
given factor of the optimal.
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Combinatorial Optimization

Approximation algorithms are guaranteed to
find in polynomial-time a solution within a
given factor of the optimal.

Sometimes the factor is too big, i.e. guaranteed
solutions are far from optimal

Some optimization problems (e.g. max clique,
covering by pairs) cannot have approximation
schemes unless P=NP
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Combinatorial Optimization

Aim of heuristic methods for combinatorial
optimization is to quickly produce

good-quality solutions, without necessarily
providing any guarantee of solution quality.
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Metaheuristics

Metaheuristics are heuristics to devise heuristics.

Examples: simulated annealing, genetic algorithms,
tabu search, scatter search, ant colony
optimization, variable neighborhood search, and
GRASP.
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Metaheuristics

Metaheuristics are high level procedures that
coordinate simple heuristics, such as local search,

to find solutions that are of better quality than
those found by the simple heuristics alone.
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Metaheuristics

Metaheuristics are high level procedures that
coordinate simple heuristics, such as local search,
to find solutions that are of better quality than
those found by the simple heuristics alone.

Examples: simulated annealing, genetic algorithms,
tabu search, scatter search, ant colony

optimization, variable neighborhood search, and
GRASP.
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Review of GRASP:
| ocal Search



Local Search

To define local search, one needs to specify a local
neighborhood structure.

Given a solution x , the elements of the
neighborhood N(x) of x are those solutions y that
can be obtained by applying an elementary
modification (often called a move) to x.
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Local Search Neighborhoods

Consider x=(0,1,0) and the 1-flip neighborhood of a 0/ 1

array.
/X= (0,1,0)

7 | x
(1,1,0) (0,0,0) (0,1,1)

N(x)
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Local Search Neighborhoods

Consider x=(2,1,3,4) and the 2-swap neighborhood of a
permutation array.

x=(2,1,3,4)
/o
/ /o l
(1.2.3.4) (3,1,2,4) (2,1,4,3) (4,1.3.2)

(2,3,1,4) (2,4,3,1)
N(x)=C4,2) =6

Amazon.com — April 11, 2014 GRASP heuristics




Local Search

Given an initial solution x,, a neighborhood N(x), and

function f(x) to be minimized:
check for better solution in

X=Xy ) _——" neighborhood of x
while ( Oy O N(x) | f(y) <f(x) ) {

X=Yy; “ move to better
' solution y Time complexity of local search
} can be exponential.

At the end, x is a local minimum of f(x) .
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Local Search

(ideal situation)

f000)=3  ——0
>~ £(0,0,1)= 0 global
A

| Y\ / Wimum

f(0,1,00=4
A / > £(0,1,1)=1

// ~f(1,0,1)= 2
|

f(1,1,0)=6

f(1,0,0) =5

~f(1.1.1)=3

With any starting solution Local Search finds the global optimum.
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Local Search

(more realistic situation)

f000)=3—u
~ £(00,1)= 0 dlobal

\ A "wlmum
S

f(O10)
local f(0,1,1)=3

mlnlma

f<‘00>‘1‘/ f(1,0,1)= 3

local
f(1,1,0
)\ minimum

f(l]l)—

But some starting solutions lead Local Search to a local minimum.
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Local Search

Effectiveness of local search depends on several

factors:
neighborhood structure

| o Y>usually pre-
function to be minimized < determined

usually easier to
starting solution control
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Combinatorial optimization: Find solution with min cost
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Combinatorial optimization: Find needle in haystack
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Solutions that differ slightly (in structure) are said to be

in each other's neighborhood
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Solutions that differ slightly (in structure) are said to be

in each other's neighborhood I

high low
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Two solutions is same neighborhood can be reached

from one another my means of a move I

high low

Amazon.com — April 11, 2014 GRASP heuristics



Since solutions have costs, cost-improving moves can lowe

be defined | oS

e
AT
N,
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Multi-start method
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Random multi-start
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Example: probability of finding opt by random selection

Suppose x =(0/1,0/1,0/1,0/1, 0/1) and let the unique
optimum be x*=(1,0,0,1,1).

The prob of finding the opt at random is 1/32 =.031 and
the prob of not finding it is 31/32.

After k trials, the probability of not finding the opt is
(31/32)"and hence the prob of find it at least once is
1—(31/32)"

Fork=5,p=.146; fork=10, p=.272; for k=20,
p=.470; for k=50, p=.796; for k=100, p =.958; for
k=200, p=.998
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Example: Probability of finding opt with K samplings
on a 0—1 vector of size N

K:

10

100
1000
10000
100000
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Greedy algorithm
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The greedy algorithm

repeat until done

Constructs a solution, one element at a time:
Defines candidate elements.

Applies a greedy function to each candidate element.
Ranks elements according to greedy function value.

Add best ranked element to solution.
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The greedy algorithm

An example: minimum weight spanning tree
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The greedy algorithm

An example: minimum weight spanning tree
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The greedy algorithm

An example: minimum weight spanning tree
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The greedy algorithm

An example: minimum weight spanning tree
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The greedy algorithm

An example: minimum weight spanning tree
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The greedy algorithm

An example: minimum weight spanning tree
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The greedy algorithm

An example: minimum weight spanning tree
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The greedy algorithm

An example: minimum weight spanning tree
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The greedy algorithm

An example: minimum weight spanning tree

Global minimum
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The greedy algorithm

Another example: Maximum clique

Given graph G = (V, E), find largest subgraph of G
such that all vertices are mutually adjacent.

greedy algorithm builds solution, one element (vertex) at a
time

candidate set: unselected vertices adjacent to all selected
vertices

greedy function: vertex degree with respect to other
candidate set vertices.
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The greedy algorithm

Another example: Maximum clique
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The greedy algorithm

Another example: Maximum clique
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The greedy algorithm

Another example: Maximum clique
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The greedy algorithm

Another example: Maximum clique
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The greedy algorithm

Another example: Maximum clique
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The greedy algorithm

Another example: Maximum clique
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The greedy algorithm

Another example: Maximum clique

global maximum
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The greedy algorithm

Another example: Maximum clique

Amazon.com — April 11, 2014 GRASP heuristics



The greedy algorithm

Another example: Maximum clique
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The greedy algorithm

Another example: Maximum clique
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The greedy algorithm

Another example: Maximum clique
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The greedy algorithm

Another example: Maximum clique
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The greedy algorithm

Another example: Maximum clique

sub-optimal
clique
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Semi-greedy heuristic

repeat until done

A semi-greedy heuristic tries to get around
convergence to non-global local minima.

repeat until solution is constructed

For each candidate element

apply a greedy function to element
Rank all elements according to their greedy function values
Place well-ranked elements in a restricted candidate list (RCL)

Select an element from the RCL at random & add it to the solution
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Semi-greedy heuristic

Hart & Shogan (1987) propose two mechanisms for
building the RCL:

Cardinality based: place k best candidates in RCL

Value based: place all candidates having greedy values better than
o [Best_value in RCL, where o [1[O,1].

Feo & R. (1989) proposed semi-greedy construction as a
basic component of GRASP.

Amazon.com — April 11, 2014 GRASP heuristics



Hart-Shogan Algorithm
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The semi-greedy algorithm
Maximum clique example
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The semi-greedy algorithm
Maximum clique example

Build clique, one node at a
time.

Candidates: nodes adjacent
to clique.

Greedy function: degree
with respect to candidate
nodes.

RCL=
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The semi-greedy algorithm
Maximum clique example

Build clique, one node at a
time.

Candidates: nodes adjacent
to clique.

Greedy function: degree

with respect to candidate
Choose at random nodes.

RCL = _
Semi-greedy

iteration 1
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The semi-greedy algorithm
Maximum clique example

Build clique, one node at a
' time.

Candidates: nodes adjacent
to clique.

Greedy function: degree

with respect to candidate
Choose at random nodes.

RCL = _
Semi-greedy

iteration 1
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The semi-greedy algorithm
Maximum clique example

Build clique, one node at a
' time.

Candidates: nodes adjacent
to clique.

Greedy function: degree
with respect to candidate

‘ﬁ Choose at random nodes.

Semi-greedy
iteration 1

RCL=
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The semi-greedy algorithm
Maximum clique example

Build clique, one node at a

o o time.
Clique of size 2 Candidates: nodes adjacent
to clique.

Greedy function: degree
with respect to candidate

‘ﬁ Choose at random nodes.

Semi-greedy
iteration 1

RCL=
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The semi-greedy algorithm
Maximum clique example

Build clique, one node at a
' time.

Candidates: nodes adjacent
to clique.

Greedy function: degree

with respect to candidate
Instead, choose at nodes.

random

RCL = _
Semi-greedy

iteration 2
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The semi-greedy algorithm
Maximum clique example

Build clique, one node at a
time.

Candidates: nodes adjacent
to clique.

Greedy function: degree

with respect to candidate
Instead, choose at nodes.

random

RCL = _
Semi-greedy

iteration 2
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The semi-greedy algorithm
Maximum clique example

Build clique, one node at a
time.

Candidates: nodes adjacent
to clique.

Greedy function: degree

with respect to candidate
Then, choose at nodes.

random

RCL = _
Semi-greedy

iteration 2
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The semi-greedy algorithm
Maximum clique example

Build clique, one node at a
time.

Candidates: nodes adjacent
to clique.

Optimal clique of

size 3
Greedy function: degree

with respect to candidate
Then, choose at nodes.

random

RCL = _
Semi-greedy

iteration 2
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GRASP
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Local search: Start somewhere, improve, ...

ok
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Local search: Start somewhere, improve, ...

ok
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Local search: Start somewhere, improve, ...

ok
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Local search: Start somewhere, improve, ...

ok
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Local search: Start somewhere, improve, ...

.

high low

- .
@ '\O" Local minimum

/@ (non-global)
0
O
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Local search: Start somewhere, improve, ...

If instead, we took
a different route
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Local search: Start somewhere, improve, ...

If instead, we took
a different route
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Local search: Start somewhere, improve, ...
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Local search: Start somewhere, improve, ...
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If instead, we took
a different route
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Local search: Start somewhere, improve, ...

SCRAY
e
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high low
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If instead, we took
a different route
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Local search: Start somewhere, improve, ...

.
, '
{ ® C
‘ £3 N, S
@
If instead, we started
at a different solution ...
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Local search: Start somewhere, improve, ...

at a different solution ... no path leads to global min
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GRASP (Feo & R., 1989): Systematic procedure to generate
good starting solutions ... i.e. that can lead to global optimum

.

high low
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GRASP (Feo & R., 1989): Systematic procedure to generate

lowe
good starting solutions ... i.e. that can lead to glo

bal optimum CoS

‘ ;3 K

ah\

A

GRASP blends greediness with randomness
to generate starting solutions for local search
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GRASP:; Basic algorithm

Semi-greediness

IS more general
in GRASP

if f(x) < c* then
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GRASP: Basic algorithm

Construction phase: greediness + randomization

Builds a feasible solution combining greediness and
randomization

Local search: search in the current neighborhood
until a local optimum is found

Solutions generated by the construction procedure are not
necessarily optimal:

Effectiveness of local search depends on: neighborhood structure, search
strategy, and fast evaluation of neighbors, but also on the construction
procedure itself.
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GRASP Construction
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Construction phase: RCL based

>~ restricted candidate list

Determine set C of candidate elements

Repeat while
there are
candidate

elements
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Construction phase: RCL based

Minimization problem

Basic construction procedure:

Greedy function c(e): incremental cost associated with the
incorporation of element e into the current partial solution
under construction

c™n (resp. c™®): smallest (resp. largest) incremental cost

RCL made up by the elements with the smallest incremental
costs.

Amazon.com — April 11, 2014 GRASP heuristics



Construction phase

Cardinality-based construction:

p elements with the smallest incremental costs
Quality-based construction:;

Parameter O defines the quality of the elements in RCL.

RCL contains elements with incremental cost
Cmin S C(e) S Cmin_|_ a (Cmax _Cmin)

a =0 : pure greedy construction

a =1 : pure randomized construction

Select at random from RCL using uniform probability
distribution
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[llustrative results: RCL parameter
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weighted MAX-SAT instance, 1000 GRASP iterations
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[llustrative results: RCL parameter
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[llustrative results: RCL parameter

time (seconds) for 1000 iterations

0]

best soluti

>

x\ .
~
~

e time

weighted MAX-SAT instance: 100 variables and
850 clauses

e & & & ®» ®» o o

random
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[llustrative results: RCL parameter
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GRASP: Basic algorithm

Tl local search

phase 2 soly —
phase 1 soln -
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Hybrid construction
schemes

on.com — April 11, 2014 GRASP heuristics



Construction phase: sampled greedy
[R. & Werneck, 2004]

Sample a small set C from the set of
candidate elements

Repeat while
there are
candidate
elements
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Construction phase: random+greedy
[R. & Werneck, 2004]

Determine set C of candidate elements
Repeat while
solution has
fewer than K
clements

Determine set C of candidate elements

Repeat while
there are
candidate
elements
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Construction with cost perturbation
Canuto, R., & Ribeiro (2001)

Perturb with costs
Increasing from
top to bottom.

W) <W()<W@) <W@)
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Construction with cost perturbation
Canuto, R., & Ribeiro (2001)

Perturb with costs
Increasing from
bottom to top.
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Perturb with costs
Increasing from
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Construction with cost perturbation
Canuto, R., & Ribeiro (2001)

Greedy heuristic
denerates two
different spanning
trees.

W) <W()<W@) <W@)

) N D
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Reactive GRASP

Prais & Ribeiro (2000)
When building RCL, what a to use?

Fixasomevalue 0<a <1
Choose a at random (uniformly) at each GRASP iteration.

Another approach reacts to search ...

At each GRASP iteration, a value of the RCL parameter O is
chosen from a discrete set of values [0, O, ..., O_].

The probability that , is selected is p,.

Reactive GRASP: adaptively changes the probabilities [p,, p,, ...,
p. | to favor values of O that produce good solutions.
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Reactive GRASP Prais & Ribeiro (2000)

Reactive GRASP for minimization ...

[nitially p,= 1/m, for k=1,....m. (QO's are selected
uniformly at random)

Define

F(S*) be the best solution so far

A be the average value of the solutions obtained with a,
Every Nu GRASP iterations, compute
q = F(S*)/Ak, fork=1,...m

p.=q/sum(q|i=1,.,m)
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Reactive GRASP Prais & Ribeiro (2000)

Reactive GRASP for minimization ...

[nitially p,= 1/m, for k=1,....m. (QO's are selected
uniformly at random)

Define

F(S*) be the best solution so far

A be the average value of the solutions obtained with a

The more suitable is
a. the larger is q, and

Every Nu GRASP iterations, compute

consequently P, making

qk = F(S¥) / Ak ,fork=1,..m o, more likely to chosen.

p.=q/sum(q|i=1,.,m)
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Path-relinking (PR)
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Path-relinking

Intensification strategy exploring trajectories
connecting elite solutions (Glover, 1996)

Originally proposed in the context of tabu search
and scatter search.

Paths in the solution space leading to other elite
solutions are explored in the search for better
solutions.
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Path relinking: Explores path connecting two
good-quality solutions
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Path relinking: Explores path connecting two lowe
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Path-relinking

Exploration of trajectories that connect high
quality (elite) solutions:

initial path in the neighborhood of solutions guiding
solution .\.\‘/./. solution
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Path-relinking

Path is generated by selecting moves that
introduce in the initial solution attributes of the
guiding solution.

At each step, all moves that incorporate attributes
of the guiding solution are evaluated and the best
move is selected:

guiding
solution

initial O O

solution
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starting solution PR example guiding solution
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starting solution x PR example guiding solution y

IAx,y)| =5
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starting solution PR example guiding solution
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starting solution PR example guiding solution
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starting solution PR example guiding solution
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starting solution PR example guiding solution
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starting solution PR example guiding solution

00000000000

Amazon.com — April 11, 2014 GRASP heuristics



starting solution PR example guiding solution
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starting solution PR example guiding solution
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starting solution PR example guiding solution
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starting solution PR example guiding solution
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starting solution PR example guiding solution
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starting solution PR example guiding solution
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starting solution PR example guiding solution
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starting solution PR example guiding solution
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starting solution PR example guiding solution
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starting solution PR example guiding solution
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starting solution PR example guiding solution
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starting solution PR example guiding solution
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starting solution PR example guiding solution
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starting solution PR example guiding solution
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starting solution PR example guiding solution

Can improve

endpoint solutions

-

> 00000000000
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Forward path-relinking

Variants: trade-offs between computation time and
solution quality

Forward PR adopts as initial solution the worse of the two
input solutions and uses the better solution as the guide.

guiding
solution

worse QO »Q
solution

forward
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Backward path-relinking

Variants: trade-offs between computation time and
solution quality

Backward PR usually does better: Better to start from the
best of the two input solutions, neighborhood of the initial
solution is explored more than of the guide!

b ® 0 guiding
ette'r solution
solution

backward
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Back and forth path-relinking

Variants: trade-offs between computation time and
solution quality

Explore both trajectories: twice as much time, often with only
marginal improvements!
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Truncated path-relinking

Variants: trade-offs between computation time and
solution quality

Truncate the search, do not follow the full trajectory.

i
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Variants: trade-offs between computation time and
solution quality

Truncate the search, do not follow the full trajectory.

i
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Mixed path-relinking

Variants: trade-offs between computation time and
solution quality

Mixed path-relinking (Glover, 1997/; Rosseti, 2003)
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Mixed path-relinking

Variants: trade-offs between computation time and
solution quality

Mixed path-relinking (Glover, 1997; Rosseti, 2003)
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Mixed path-relinking
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Mixed path-relinking

Variants: trade-offs between computation time and
solution quality

Mixed path-relinking (Glover, 1997; Rosseti, 2003)

Advantage: explore around
neighborhoods of both input

solutions.
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Truncated mixed path-relinking

Variants: trade-offs between computation time and
solution quality

Truncated mixed path-relinking

L 1

Truncate search here
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Greedy randomized adaptive path-relinking

Faria, Binato, R., & Falcao (2001, 2005)

Incorporates semi-greediness into PR.

Standard PR selects moves greedily: samples one of
exponentially many paths

guiding
initial 0 solution
solution
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Greedy randomized adaptive path-relinking

Faria, Binato, R., & Falcao (2001, 2005)

Incorporates semi-greediness into PR.

graPR creates RCL with best moves: samples several
paths

guiding
solution

initial O »O
solution
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Greedy randomized adaptive path-relinking

Faria, Binato, R., & Falcao (2001, 2005)

Incorporates semi-greediness into PR.

graPR creates RCL with best moves: samples several
paths

. guiding
initial solution
solution
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] When applied to a given pair of
TrU ncated m|Xed gra PR solutions truncated mixed PR
explores one of exponentially
many path segments each time
It is executed.
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] With high probability, truncated
Truncated mixed dgra PR mixed graPR explores different
path segments each time it is
executed between the same pair
of solutions.
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] With high probability, truncated
Truncated mixed dgra PR mixed graPR explores different
path segments each time it is
executed between the same pair
of solutions.
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GRASP with path-relinking
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GRASP with path-relinking

First proposed by Laguna and Marti (1999).

Maintains a set of elite solutions found during GRASP
iterations.

After each GRASP iteration (construction and local
search):

Use GRASP solution as initial solution.
Select an elite solution uniformly at random: guiding solution.
Perform path-relinking between these two solutions.
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GRASP with path-relinking

Since 1999, there has been a lot of activity in
hybridizing GRASP with path-relinking.

Surveys by R. & Ribeiro (2005), R., Ribeiro, Glover
& Marti (2010) & Ribeiro & R. (2012).

Main observation from experimental studies:

GRASP with path-relinking outperforms pure
GRASP.
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MAX-SAT (Festa, Pardalos, Pitsoulis, and R., 2006)

Jnh3a6 {lookd=444692}
1 T o T T T T T T

cunulative probabiblity

GEASF —+—
Il:iRFISF‘+F‘RI ——

a ] ] ] 1
a 288 488 G608 888 1888 1288 1488 1688 1588 2888

tine to target solution {seconds}
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3-index assignment (Aiex, R., Pardalos, & Toraldo, 2005)

Balas & Saltzman 26.1
1 T P T T T T

probability
o
[ ]
tn
1

8.3 i
8.2 i
8.1 i
GRASF —+—
: GRASP+PR ——
B =] 1 1 1 1 1 1
o 260 468 608 goe 18608 1288 1468 1688

tine {=seconds}
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QAP (Oliveira, Pardalos, and R., 2004)

prob: tho3f

1 T T T T T T P —

cunulative probability
=
*
i
1
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Bandwidth packing (R. and Ribeiro, 2003)

prob: 758
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Job shop scheduling (Aiex, Binato, & R., 2003)

cunulative probability
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GRASP with path-relinking:

Pool management

P is a set (pool) of elite solutions.
Ideally, pool has a set of good diverse solutions.

Mechanisms are needed to guarantee that pool is
made up of those kinds of solutions.
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GRASP with path-relinking:

Pool management

Each iteration of first |P| GRASP iterations adds
one solution to P (if different from others).

After that: solution x is promoted to P if:

x is better than best solution in P.

X is not better than best solution in P, but is better than
worst and is sufficiently different from all solutions in P.
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GRASP with path-relinking:

Pool management

GRASP with PR works best when paths in PR are
long, 1.e. when the symmetric difference between
the initial and guiding solutions is large.

Given a solution to relink with an elite solution,
which elite solution to choose?

Choose at random with probability proportional to the
symmetric difference.
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GRASP with path-relinking:

Pool management

Solution quality and diversity are two goals of pool
design.

Given a solution X to insert into the pool, which elite
solution do we choose to remove?

Of all solutions in the pool with worse solution than X, select
to remove the pool solution most similar to X, i.e. with the
smallest symmetric difference from X.
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GRASP with path-relinking

1) Construct randomized greedy X

2) Y = local search to improve X

3) Path-relinking between Y and
pool solution Z

4) Update pool
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Evolutionary
path-relinking
(EvPR)
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Evolutionary path-relinking

( R. & Werneck, 2004, 2006 )

Evolutionary path-relinking “evolves” the pool, i.e.
transforms it into a pool of diverse elements whose
solution values are better than those of the original

pool.
Evolutionary path-relinking can be used

as an intensification procedure at certain points of the
solution process;

as a post-optimization procedure at the end of the solution
process.
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Evolutionary path-relinking (EvPR)

Population P(0)

Each “population” of EvPR starts with a
pool of elite solutions of size |P]|.

Population P(0) is the current elite set.
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Evolutionary path-relinking (EvPR)

Amazon.com — April 11, 2014

All pairs of elite solutions (x,y) in K-th
population P(K) are path-relinked and the
resulting z=PR(x,y) is a candidate for
inclusion in population P(K+1).

Rules for inclusion into P(K+1) are the same
used for inclusion into any pool.
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Evolutionary path-relinking (EvPR)

Population P(K)

If best solution in population P(K+1) has same
objective function value as best solution in
population P(K), process stops.

Else K=K+1 and repeat.

Population P(K+1)
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GRASP with evolutionary path-relinking

As post-optimization During GRASP + PR

1) Construct greedy 1) Construct greedy
randomized Repeat Repeat randomized

2) Local search outer inner 2) Local search

3) Path-relinking loop  loop 3) Path-relinking

4) Update pool 4) Update pool

Evolutionary-PR Evolutionary-PR

( Resende & Werneck, 2004, 2006 )
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Weights uniformly distributed in interval [1,100]: min sum cuts Network migration scheduling
gd96b; target = 53968

1 T
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fraction of runs

Network migration scheduling
gd96a ninmnax 1f=1118: G+PR vz G+evPR

1 T T T s e
} —

Each heuristic was run
200 times and time to
target solution recorded.

G+evPE ——
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8 16888 2888 3000 4888 5888 Geea

tine to target solution {(seconds}
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fraction of solutions

Network migration scheduling
pd96d: lookd = 112 min naxcut

Each heuristic was run
200 times and time to
target solution recorded.

GEASF + evwPE ——
GRASF + IF‘R ——

5 1 1 1 1 1
a ) 188 158 2008 258 300 358 4808

tine to target solution (seconds}
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fraction of solutions

ednat2: target = 18916580008 Network migration scheduling

GRASP + evPR ¥
RASP +PR J
i Easier target: GRASP
manages to find target
I solution. ‘
8.1 | — 1 B | I:II.EI | | lllﬂﬂ | | I:I.HEIH | | :Il.EIHHEI

tine to target (seconds}
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fraction of solutions

ednat2: target = 18916560008 Network migration scheduling

GRASP + evPR :
RASP +PR J
Each heuristic was run‘
| 200 times and time to
i target solution was
recorded.
8.1 | — 1 o | | I:II.EI | | lllﬂﬂ | | I:I.HEIH | | :Il.EIHHEI

tine to target (seconds}
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fraction of solutions
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ednat2; target = 18916880080 Network migration scheduling
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fraction of solutions

ednat?: target = 1891680000 Network migration scheduling

* T GRASP+evPR —+—
- : GRASP+PR ——

GRASP + evPR ¥

# GRASP + PR

Runs in which GRASP+evPR
found target solution during
first call to evPR.

Easier target: Comparing GRASP
with path-relinking and GRASP with

evolutionary path-relinking over 200
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fraction of solutions

8.9

8.8
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a.1

ednat2: target = 1891556800

Network migration scheduling

tine to target {seconds})
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Other topics not covered today

Runtime distribution of GRASP

Parallel GRASP & parallel GRASP with path-relinking
Restart strategies for GRASP with path-relinking
Continuous GRASP

Automatic configuration of algorithm components and
tuning of parameters

LaGRASP: Lagrangian GRASP
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Runtime distribution of GRASP

Cumulative probability

A —
e aad

B f
&
&
&
&

Solution time to a sub-optimal target value fits a
two-parameter exponential distribution. Hence, it
IS possible to achieve linear speed-up by
implementing GRASP in parallel.

555555555

5 5

R.M. Aiex, R., and C.C. Ribeiro, “Probability distribution of
solution time in GRASP: An experimental investigation,”
J. of Heuristics, vol. 8, pp. 343-373, 2002.
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Parallel GRASP & GRASP with PR

Possible to achieve linear speed-up by
implementing GRASP in parallel and super-linear
speed-up with GRASP with PR.

T.A. Feo, R., and S.H. Smith, “A greedy randomized
adaptive search procedure for maximum independent set,
Operations Research, vol. 42, pp. 860-878, 1994,

n

Tl R.M. Aiex, S. Binato, and R., “Parallel GRASP with
path-relinking for job shop scheduling,” Parallel
Computing, vol. 29, pp. 393-430, 2003
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Restart strategies for GRASP with PR

Amazon.com — April 11, 2014

With restart, it is possible to reduce
maximum, averadge, and standard deviation of
iteration count (running time) when
compared with no restart

R. and C.C. Ribeiro, “Restart strategies for GRASP
with path-relinking heuristics,” Optimization Letters,
vol. 5, pp. 467-478, 2011.

GRASP heuristics



cumulative probability

pver: att (target: 124625)

1 . . . . .
0.9 F -
0.8 F -
0.7 F -
0.6 F -
0.5 F -
0.4 H -
0.3 -
0.2 no restat ——— A
restart{(1000) ———
0.1 restart(500) —— -
5 | | | Irestart{l[][]l] —_—
0 2000 4000 e000 2000 10000 12000

Amazon.com — April 11, 2014

iterations to target solution

GRASP heuristics



Continuous GRASP

C-GRASP is an extension of GRASP for
multi-modal box-constrained continuous
global optimization

M.J. Hirsch, C.N. Meneses, P.M. Pardalos, and R., “Global
optimization by continuous GRASP,” Optimization Letters,
vol. 1, pp. 201-212, 2007.

SEEEE ML, Hirsch, P.M. Pardalos, and R., “Speeding up continuous
w4 GRASP," European J. of Operational Research, vol. 205,
pp. 507-521, 2010.
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Automatic configuration of algorithm
components and tuning of parameters

Components of GRASP can be automatically
configured, parameters automatically tuned, resulting

In significant speedups when compared to manually
configured and tuned GRASP.

I o e

* Experimen P. Festa, J.F. Goncalves, R., and R.M.A. Silva, “Automatic tuning of GRASP

— with path-relinking heuristics with a biased random-key genetic algorithm,”
in “Experimental Algorithms,” P. Festa (Ed.), Lecture Notes in Computer

Science, vol. 6049, pp. 338-349, 2010.

L.F. Moran-Mirabal, J.L. Gonzalez-Velarde, and R., “Automatic tuning of
GRASP with evolutionary path-relinking,” in “Hybrid Metaheuristics 2013
(HM 2013)," M.J. Blesa et al., (Eds.), Lecture Notes in Computer Science,
vol. 7919, pp. 62-77, 2013.
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LaGRASP: Lagrangian GRASP

LaGRASP makes use of dual information,
using reduced costs in place of original costs,
leading to faster convergence and improved
solutions.

L.S. Pessoa, R., and C.C. Ribeiro, "A hybrid Lagrangean

COMPpULEY

Sl heuristic with GRASP and path relinking for set k-covering,”

s Bl |

Computers and Operations Research, vol. 40, pp. 3132-3146,
2013
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Some applications
of GRASP



Some applications of GRASP and

GRASP+PR at AT&T

Worldnet PoP placement

Caller cluster detection in call detail graph

Unsplittable multi-commodity flow

PBX telephone migration scheduling

Handover minimization

Amazon.com — April 11, 2014
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Some applications of GRASP and

GRASP+PR at AT&T

Worldnet PoP placement

Caller cluster detection in call detail graph

Unsplittable multi-commodity flow

PBX telephone migration scheduling

Handover minimization
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Handover minimization

GRASP heuristics
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HEURISTICS

L.F. Moran-Mirabal, J.L. Gonzalez-Velarde, R., and
R.M.A. Silva, "Randomized heuristics for

handover minimization in mobility

networks”, J. of Heuristics, vol. 19, pp. 845-880,
2013

Tech report available here:
http://www.research.att.com/”mgcr/doc/randh-mhp.pdf
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~ Radio network controller (RNC)

— DI
- >>>I<<< I

Base station

User equipment (UE)
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handover
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handover
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RNC
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Each base station has associated with it
an amount of traffic.

Each base station is connected to a
Radio Network Controller (RNC).

Each RNC can have one or more base
stations connected to it.

Each RNC can handle a given amount
of traffic ... this limits the subsets of
base stations that can be connected to
it.

An RNC controls the base stations
connected to it.

GRASP heuristics



RNC

RNC

e Handovers can occur between base stations
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RNC

RNC

e Handovers can occur between base stations

— connected to the same RNC
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RNC

RNC

e Handovers can occur between base stations

— connected to the same RNC
— connected to different RNCs
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RNC RNC RNC

e Handovers between base stations connected to different RNCs
tend to fail more often than handovers between base stations

connected to the same RNC.

e Handover failure results in dropped call!
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RNC RNC RNC

e [f we minimize the number of handovers between towers
connected to different RNCs we may be able to reduce the
number of dropped calls.
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RNC RNC RNC

e HANDOVER MINIMIZATION: Assign base stations to RNCs
such that RNC capacity is not violated and number of
handovers between base stations assigned to different RNCs is
minimized.
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RNC RNC RNC

e HANDOVER MINIMIZATION: Assign base stations to RNCs
such that RNC capacity is not violated and number of
handovers between base stations assigned to different RNCs is
minimized.

Node-capacitated graph partitioning problem

Amazon.com — April 11, 2014 GRASP heuristics



I »I« Example
\ )N ) Bame

RNC RNC

e 4BSs:t(1)=25:t(2)=15:t(3)=35:t(4)=25
e 2RNCs: c(1)=50:c(2) =60

e Handover matrix:

100 10 0
0 200 50
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RNC RNC

e 4BSs:t(1)=25:t(2)=15:t3)=35:1t4)=25
e 2RNCs: c(1)=50; c(2)=60

e Given this traffic profile and RNC capacities the feasible
configurations are:

—RNC(1): { 1,2}, RNC(2): {3, 4 }
—RNC(1): {2,3}, RNC(2):{ 1,4}
—RNC(1):{2,4};RNC(2):{ 1,3}
—RNC(1):{1,4};RNC(2): {2, 3 }
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RNC RNC

e Total handover for each configuration:
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RNC RNC

0 100 10
100 0 200
10 200 0
0 50 500

e

e Total handover for each configuration:

— RNC(1):{1,2}; RNC(2): { 3,4 }: h(1,3) + h(1,4) +
h(2,3)+h(2,4)=10+0+ 200 + 50 = 260

Amazon.com — April 11, 2014
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o 100
NG NG 2 100 0 200 50
10 200 0 500

BEFY 0 50 500 0

e Total handover for each configuration:

— RNC(1):{1,2}; RNC(2): { 3,4 }: h(1,3) + h(1,4) +
h(2,3)+h(2,4)=10+0+ 200 + 50 = 260

—RNC(1):{2,3};RNC(2): { 1,4 }: h(2,1)+h(2,4) +
h(3,1) + h(3,4) = 100 + 50 + 10 + 500 = 660
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L DL (G (G ))) (« -
1 o 100
100 0 200
RNC RNC — ;
BEFY 0 50 500

e Total handover for each configuration:
—RNC(1): {1,2};RNC(2): { 3,4 }: h(1,3) + h(1,4) +
h(2,3)+h(2,4)=10+0+ 200+ 50 =260
—RNC(1):{2,3};RNC(2): { 1,4 }: h(2,1)+h(2,4) +
h(3,1)+h(3,4)=100+50+ 10+ 500 = 660

—RNC(1): {2, 4 }: RNCQ2): { 1,3 }: h2,1) + h(2,3) +
h(4,1) + h(4,3) =100 + 200 + O + 500 = 800

Amazon.com — April 11, 2014 GRASP heuristics
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o 100
NG NG 2 100 0 200 50
10 200 0 500

BEFY 0 50 500 0

e Total handover for each configuration:

—RNC(1): {1,2};RNC(2): { 3,4 }: h(1,3) + h(1,4) +
h(2,3)+h(2,4)=10+0+ 200 + 50 = 260

—RNC(1):{2,3};RNC(2): { 1,4 }: h(2,1)+h(2,4) +
h(3,1)+h(3,4)=100+50+ 10+ 500 = 660

—RNC(1):{2,4}; RNC(2): { 1,3} h2,1)+h(2,3) +
h(4,1)+ h(4,3) =100+ 200 + 0 + 500 = 800

—RNC(1):{ 1,4 }; RNC(2): {2, 3 }: h(1,2) + h(1,3) +
h(4,2) +h(4,3) =100+ 10 + 50 + 500 = 660
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o 100
NG NG 2 100 0 200 50
10 200 0 500

BEFY 0 50 500 0

e Total handover for each configuration:
—RNC(1): {1,2}; RNC(2): {3, 4} h(1,3)+h(1,4) +
h(2,3) +h(2,4)=10+0+ 200 + 50 = 260
—RNC(1): {2,3 };RNC(2): { 1,4} h2,1)+h(2,4) +
h(3,1)+h(3,4) =100+ 50+ 10+ 500 = 660

—RNC(1): {2,4 }; RNC(2): {1, 3 }: h2,1) + h(2,3) +
h(4,1) +h(4,3)=100 + 200 + 0 + 500 = 800

—RNC(1):{ 1,4}, RNC(2): {2, 3 }: h(1,2) + h(1,3) +
h(4,2) +h(4,3)=100+ 10+ 50 + 500 = 660

Amazon.com — April 11, 2014 GRASP heuristics



0 100 10 0
100 0 200 50

10 200 O 500

e

Optimal conﬂguratlon

DI I
T(1) T(2) &/ T(4)

RNC(1) RNC(2)
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G=(T,E) Nodeset T are the BSs; Edgeset: (i,j)€E iff h(i,j)+h(,i) > O

1

0.9

0.8

0.7 r

o 01 02 03 04 05 06 07 08 09 1
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Tower are assigned to RNCs indicated by distinct colors/shapes

1

0.9

0.8

0.7

o 01 02 03 04 05 06 07 08 09 1
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CPLEX MIP solver

)

7602 7602 18.8
30 15 18266 18266  25911.0
40 15 29700 29700 101259.9
100 15 19000 49270 | day
100 25 36412 58637 | day
100 50 60922 70740 | day
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CPLEX MIP solver

)

7602 7602 18.8
30 15 18266 18266  25911.0
40 15 29700 29700 101259.9
100 15 19000 49270 | day
100 25 36412 58637 | day
100 50 60922 70740 | day

We would like to solve instances with 1000 towers.
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CPLEX MIP solver

)

7602 7602 18.8
30 15 18266 18266  25911.0
40 15 29700 29700 101259.9
100 15 19000 49270 | day
100 25 36412 58637 | day
100 50 60922 70740 | day

We would like to solve instances with 1000 towers.
Need heuristics!
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GRASP with evolutionary
path-relinking for
handover minimization

GRASP heuristics



GRASP with evolutionary path-relinking

eAlgorithm maintains an elite set of diverse good-quality
solutions found during search
*Repeat

— build BS-to-RNC assignment 1t' using a randomized greedy
algorithm

— apply local search to find local min assignment 1t near Tt'

— select assignment 1t' from elite pool and apply path-relinking
operator between 1t' and 1t and attempt to add result to elite
set

* Apply evolutionary path-relinking to elite set once in while
during search
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Randomized greedy construction

e Open one RNC at atime. ...
— use heuristic A to assign first BS to RNC

— while RNC can accommodate an unassigned BS
e use heuristic B to assign next BS to RNC

e [f all available RNCs have been opened and some
BS is still unassigned, open one or more artificial
RNCs having capacity equal to the max capacity
over all real RNCs
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Randomized greedy construction:
Heuristic A to assign first BS to RNC

o Let H(i) =sum Qo1 h(i,j) + h(,1)

-----

e Let () be the set of unassigned BSs that fit in
RNC

e Choose tower i from (2 with probability
proportional to its H(i) value and assign i to RNC

Amazon.com — April 11, 2014 GRASP heuristics



Randomized greedy construction:
Heuristic B to assign remaining BSs to RNC

o Let g(i) =sum ( h(i,j) + h(j,1)

j ERNC)

e Let () be the set of unassigned BSs that fit in
RNC

e Select tower i from {2 with probability
proportional to its g(i) value and assign i to RNC

Amazon.com — April 11, 2014 GRASP heuristics



| ocal search

e Repeat until no improving reassignment of BS to
RNC exists:

— Let {1, ], k } be such that BS i is assigned to RNC |,
RNC k has available capacity to accommodate BS |
and moving i from RNC j to RNC k reduces the
number of handovers between BSs assigned to
different RNCs

—If{1,], k } exists, then move BS i from RNC j to
RNC k
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Real instance with about 1000 towers and 30 RNC:
Manually produced solution

Total handover: 1878278

Amazon.com — April 11, 2014

RNC capacity

-

430316
411239
400336
217974
308351
201187
529630
385893
386041
388539
439961
424077
333287
367043
359166
312869
430039
479572
490495
432278
A47051

264254

508123

291730

340860
279128

226680
224102
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Real instance with about 1000 towers and 30 RNC: RNC capacity
Manually produced solution /

430316
Total handover: 1878278 411239
400336
217974
308351
201187
529630
385893
386041
388539
439961

_i',:it;:, . 224077

é&%t’ﬁé‘ at ggﬁ
. .. s A 359166
R TR -% {&:{?ﬁ ] 312869

:;:t. : 430039
< ":"-:'3""- 479572
e "-!l. 490495
¢ 55 T hid 432278
447051

. I
of 264254

508123

291730

340860
279128

226680
224102

Infeasible

. solution
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Real instance with about 1000 towers and 30 RNC:
GRASP+EVPR solution

Total handover: 1801772

Feasible

solution

Amazon.com — April 11, 2014 GRASP heuristics
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Real instance with about 1000 towers and 30 RNC: RNC capacity
GRASP+EVPR solution 'J

Total handover: 1801772

4% reduction
in total handover

Feasible
solution
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Progress of best feasible solution for five independent runs of GevPR-HMP
on a real instance with about 1000 towers and 30 RNCs.

Real world instance

% handover reduction

1 10 100 1000 10000 100000 1000000
Iterations
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Concluding remarks



Concluding remarks

We have given a review of classical GRASP

We then showed how the main components of GRASP
(randomized construction and local search) can be replaced

We showed how hybridization with path-relinking and elite
sets can add memory mechanisms to GRASP

We concluded with a recent application of GRASP.
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Two recent surveys of GRASP

R. and C.C. Ribeiro, “GRASP: Greedy
éiggﬁgdutugies Randomized Adaptive Search Procedures, in
-~ | "Search Methodologies,” 2nd edition,
E.K. Burke and G. Kendall (Eds.), Chapter 11,

pp. 287-310, Springer, 2014.

- R.and C.C. Ribeiro, "Greedy randomized
E— adaptive search procedures: Advances and
e applications,” in "Handbook of Metaheuristics,’
2nd edition, M. Gendreau and J.-Y. Potvin
(Eds.), pp. 281-317, Springer, 2010.
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Forthcoming book on GRASP

R. and C.C. Ribeiro, “"Problem solving with
GRASP: Greedy Randomized Adaptive Search
Procedures,” Springer, 2014.
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The End

These slides and all papers cited in this talk
can be downloaded from my homepage:
http://mauricioresende.com
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