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Summary
• Metaheuristics and basic concepts of genetic algorithms

• Random-key genetic algorithm of Bean (1994)

• Biased random-key genetic algorithms (BRKGA)
– Encoding / Decoding

– Initial population

– Evolutionary mechanisms

– Problem independent / problem dependent components

– Multi-start strategy

– Specifying a BRKGA

– Application programming interface (API) for BRKGA

• BRKGA for 2-dim and 3-dim packing

• BRKGA for 3-dim bin packing
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Metaheuristics

Metaheuristics are heuristics to devise heuristics.             
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Metaheuristics

Metaheuristics are high level procedures that coordinate 
simple heuristics, such as local search, to find solutions that 
are of better quality than those found by the simple heuristics 
alone.
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Metaheuristics

Metaheuristics are high level procedures that coordinate 
simple heuristics, such as local search, to find solutions that 
are of better quality than those found by the simple heuristics 
alone.

Examples: GRASP and C-GRASP, simulated annealing, 
genetic algorithms, tabu search, scatter search, ant colony 
optimization, variable neighborhood search, and biased 
random-key genetic algorithms (BRKGA).  
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Genetic algorithms
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Genetic algorithms

Individual: solution

Adaptive methods that are used to solve search
and optimization problems.

Holland (1975)



 Texas A&M, College Station, Texas ✤ Mar. 28, 2014 Packing with a BRKGA 

Genetic algorithms

Individual: solution (chromosome = string of genes)
Population: set of fixed number of individuals
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Genetic algorithms evolve population applying
Darwin's principle of survival of the fittest.

Genetic algorithms
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Genetic algorithms evolve population applying
Darwin's principle of survival of the fittest.

A series of generations are produced by 
the algorithm. The most fit individual of the
last generation is the solution. 

Genetic algorithms
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Genetic algorithms evolve population applying
Darwin's principle of survival of the fittest.

A series of generations are produced by 
the algorithm. The most fit individual of the 
last generation is the solution. 

Individuals from one generation are combined
to produce offspring that make up next 
generation.

Genetic algorithms
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Probability of selecting individual to mate
is proportional to its fitness: survival of the 
fittest.

a

b

Genetic algorithms
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a

b

Parents drawn from 
generation K

c

Child in 
generation K+1

Probability of selecting individual to mate
is proportional to its fitness: survival of the 
fittest.

Genetic algorithms

a

b

Combine
parents

c

mutation
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Crossover and mutation

a

b

Combine
parents

 c

mutation
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Crossover and mutation

a

b

Combine
parents

 c

mutation

Crossover: Combines parents … passing along to offspring
                  characteristics of each parent …
                                                 Intensification of search
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Crossover and mutation

a

b

Combine
parents

 c

mutation

Mutation:  Randomly changes chromosome of offspring ... 
                 Driver of evolutionary process ...
                                                 Diversification of search
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Evolution of solutions
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Evolution of solutions
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Evolution of solutions
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Evolution of solutions
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Evolution of solutions
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Evolution of solutions
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Evolution of solutions
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Evolution of solutions
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Reference

Tech report version:

        

         http://www.research.att.com/~mgcr/doc/srkga.pdf

J.F. Gonçalves and M.G.C.R., “Biased random-key 
genetic algorithms for combinatorial optimization,” 
J. of Heuristics, vol.17, pp. 487-525, 2011.
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Encoding solutions
with random keys
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Encoding with random keys

• A random key is a real random number in the 
continuous interval [0,1).
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Encoding with random keys

• A random key is a real random number in the 
continuous interval [0,1).

• A vector X of random keys, or simply random 
keys, is an array of n random keys.
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Encoding with random keys

• A random key is a real random number in the 
continuous interval [0,1).

• A vector X of random keys, or simply random 
keys, is an array of n random keys.

• Solutions of optimization problems can be 
encoded by random keys.
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Encoding with random keys

• A random key is a real random number in the 
continuous interval [0,1).

• A vector X of random keys, or simply random 
keys, is an array of n random keys.

• Solutions of optimization problems can be 
encoded by random keys.

• A decoder is a deterministic algorithm that takes 
a vector of random keys as input and outputs a 
feasible solution of the optimization problem.
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Encoding with random keys: Sequencing

Encoding
        [        1,         2,        3,        4,         5 ] 

  X = [ 0.099, 0.216, 0.802, 0.368, 0.658 ]
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Encoding with random keys: Sequencing

Encoding
        [        1,         2,        3,        4,         5 ] 

  X = [ 0.099, 0.216, 0.802, 0.368, 0.658 ]

Decode by sorting vector of random keys

        [        1,         2,        4,        5,         3 ] 

  X = [ 0.099, 0.216, 0.368, 0.658, 0.802 ]
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Encoding with random keys: Sequencing

Encoding
        [        1,         2,        3,        4,         5 ] 

  X = [ 0.099, 0.216, 0.802, 0.368, 0.658 ]

Decode by sorting

        [        1,         2,        4,        5,         3 ] 

  X = [ 0.099, 0.216, 0.368, 0.658, 0.802 ]

Therefore, the vector of random keys:

X = [ 0.099, 0.216, 0.802, 0.368, 0.658 ]

encodes the sequence: 1– 2 – 4 – 5 – 3
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Encoding with random keys: Subset 
selection (select 3 of 5 elements)

Encoding
        [        1,         2,        3,        4,         5 ] 

  X = [ 0.099, 0.216, 0.802, 0.368, 0.658 ]

Decode by sorting vector of random keys
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Encoding with random keys: Subset 
selection (select 3 of 5 elements)

Encoding
        [        1,         2,        3,        4,         5 ] 

  X = [ 0.099, 0.216, 0.802, 0.368, 0.658 ]

Decode by sorting vector of random keys

        [        1,         2,        4,        5,         3 ] 

  X = [ 0.099, 0.216, 0.368, 0.658, 0.802 ]Encoding
  

Decode by sorting vector of random keys
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Encoding with random keys: Subset 
selection (select 3 of 5 elements)

Encoding
        [        1,         2,        3,        4,         5 ] 

  X = [ 0.099, 0.216, 0.802, 0.368, 0.658 ]

Decode by sorting vector of random keys

        [        1,         2,        4,        5,         3 ] 

  X = [ 0.099, 0.216, 0.368, 0.658, 0.802 ]Encoding
Therefore, the vector of random keys:

X = [ 0.099, 0.216, 0.802, 0.368, 0.658 ]

encodes the subset: {1, 2, 4 }
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Encoding with random keys: Assigning integer 
weights  [0,10] to a subset of 3 of 5 elements

Encoding
        [        1,        2,        3,        4,        5 |          1,          2,          3,          4,           5 ] 

  X = [ 0.099, 0.216, 0.802, 0.368, 0.658 | 0.4634, 0.5611, 0.2752, 0.4874, 0.0348 ]
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Encoding with random keys: Assigning integer 
weights  [0,10] to a subset of 3 of 5 elements

Encoding
        [        1,        2,        3,        4,        5 |          1,          2,          3,          4,           5 ] 

  X = [ 0.099, 0.216, 0.802, 0.368, 0.658 | 0.4634, 0.5611, 0.2752, 0.4874, 0.0348 ]

Decode by sorting the first 5 keys and assign as the weight the value 
W

i
 =   floor [ 10 X

5+i
 ] + 1 to the 3 elements with smallest keys X

i
, for  

     i =1,...,5.
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Encoding with random keys: Assigning integer 
weights  [0,10] to a subset of 3 of 5 elements

Encoding
        [        1,        2,        3,        4,        5 |          1,          2,          3,          4,           5 ] 

  X = [ 0.099, 0.216, 0.802, 0.368, 0.658 | 0.4634, 0.5611, 0.2752, 0.4874, 0.0348 ]

Decode by setting sorting the first 5 keys and assign

the element weight to W
i
 =   floor [ 11 X

5+i
 ] to the 3 elements with 

smallest keys X
i
, for i =1,...,5.

Therefore, the vector of random keys:

X = [ 0.099, 0.216, 0.802, 0.368, 0.658 | 0.4634, 0.5611, 0.2752, 0.4874, 0.0348 ]      

encodes the weight vector W = (5,6,–,5,–)
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Genetic algorithms 
and random keys
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GAs and random keys

• Introduced by Bean (1994) 
for sequencing problems.
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GAs and random keys

• Introduced by Bean (1994) 
for sequencing problems.

• Individuals are strings of 
real-valued numbers 
(random keys) in the 
interval [0,1).

S = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
          s(1)   s(2)   s(3)   s(4)    s(5)
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GAs and random keys

• Introduced by Bean (1994) 
for sequencing problems.

• Individuals are strings of 
real-valued numbers 
(random keys) in the 
interval [0,1).

• Sorting random keys results 
in a sequencing order.

S = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
          s(1)   s(2)   s(3)   s(4)    s(5)

S' = ( 0.05, 0.19, 0.25, 0.67, 0.89 )
          s(4)   s(2)   s(1)   s(3)    s(5)
Sequence: 4 – 2 – 1 – 3 – 5 
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GAs and random keys

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele 
(key, or value of gene) to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = (                                              )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele 
(key, or value of gene) to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25                                      )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele 
(key, or value of gene) to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90                             )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele 
(key, or value of gene) to 
the child.



 Texas A&M, College Station, Texas ✤ Mar. 28, 2014 Packing with a BRKGA 

GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90, 0.76                    )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele 
(key, or value of gene) to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90, 0.76, 0.05          )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele 
(key, or value of gene) to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90, 0.76, 0.05, 0.89 )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele 
(key, or value of gene) to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90, 0.76, 0.05, 0.89 )

If every random-key array corresponds
to a feasible solution: Mating always
produces feasible offspring.

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele 
(key, or value of gene) to 
the child.
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GAs and random keys

Initial population is made up of P 
random-key vectors, each with N 
keys, each having a value 
generated uniformly at random in 
the interval [0,1).
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GAs and random keys
At the K-th generation, 
compute the cost of each 
solution ...  Elite solutions

Population K

Non-elite
solutions
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GAs and random keys
At the K-th generation, 
compute the cost of each 
solution and partition the 
solutions into two sets: 

 Elite solutions

Population K

Non-elite
solutions
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GAs and random keys
At the K-th generation, 
compute the cost of each 
solution and partition the 
solutions into two sets: 
elite solutions and non-elite 
solutions. 

 Elite solutions

Population K

Non-elite
solutions
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GAs and random keys
At the K-th generation, 
compute the cost of each 
solution and partition the 
solutions into two sets: 
elite solutions and non-elite 
solutions. Elite set should 
be smaller of the two sets 
and contain best solutions.

 Elite solutions

Population K

Non-elite
solutions
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GAs and random keys
Evolutionary dynamics

Population K Population K+1

 Elite solutions

Non-elite
solutions
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GAs and random keys
Evolutionary dynamics
– Copy elite solutions from population 

K to population K+1  Elite solutions

Population K+1Population K

 Elite solutions

Non-elite
solutions
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GAs and random keys
Evolutionary dynamics
– Copy elite solutions from population 

K to population K+1

– Add R random solutions (mutants) 
to population K+1

 Elite solutions

Mutant
solutions

Population K+1Population K

 Elite solutions

Non-elite
solutions
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GAs and random keys
Evolutionary dynamics
– Copy elite solutions from population 

K to population K+1

– Add R random solutions (mutants) 
to population K+1

– While K+1-th population < P
• RANDOM-KEY GA: Use any two 

solutions in population K to produce 
child in population K+1. Mates are 
chosen at random.

 Elite solutions

Mutant
solutions

X

Population K+1Population K

 Elite solutions

Non-elite
solutions

Mutant
solutions
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Biased random key genetic algorithm

• A biased random key genetic algorithm (BRKGA) 
is a random key genetic algorithm (RKGA).
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Biased random key genetic algorithm

• A biased random key genetic algorithm (BRKGA) 
is a random key genetic algorithm (RKGA).

• BRKGA and RKGA differ in how mates are 
chosen for crossover and how parametrized 
uniform crossover is applied.
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How RKGA & BRKGA differ

RKGA
both parents chosen at 
random from entire 
population

BRKGA
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How RKGA & BRKGA differ

RKGA
both parents chosen at 
random from entire 
population

BRKGA
both parents chosen at 
random but one parent 
chosen from population 
of elite solutions
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How RKGA & BRKGA differ

RKGA
both parents chosen at 
random from entire 
population

either parent can be 
parent A in parametrized 
uniform crossover

BRKGA
both parents chosen at 
random but one parent 
chosen from population 
of elite solutions
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How RKGA & BRKGA differ

RKGA
both parents chosen at 
random from entire 
population

either parent can be 
parent A in parametrized 
uniform crossover

BRKGA
both parents chosen at 
random but one parent 
chosen from population 
of elite solutions

best fit parent is parent A 
in parametrized uniform 
crossover 
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Biased random key GA
Evolutionary dynamics
– Copy elite solutions from population 

K to population K+1

– Add R random solutions (mutants) 
to population K+1

– While K+1-th population < P
• RANDOM-KEY GA: Use any two 

solutions in population K to produce 
child in population K+1. Mates are 
chosen at random.

• BIASED RANDOM-KEY GA: Mate elite 
solution with other solution  of 
population K to produce child in 
population K+1. Mates are chosen at 
random.

 Elite solutions

Mutant
solutions

X

Population K+1

BRKGA: Probability
child inherits
key of elite 
parent > 0.5Population K

 Elite solutions

Non-elite
solutions

Mutant
solutions
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Paper comparing BRKGA and Bean's 
Method

Gonçalves, R., and Toso, “Biased and unbiased 
random-key genetic algorithms: An 
experimental analysis”, Proceedings of the 10th 
Metaheuristics International Conference, Singapore, 
August 2013.
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set covering
problem: scp41
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set covering
problem: scp41

Pr(t
BRKGA

 ≤ t
RKGA

) = 0.740 

Probability computed with method 
of Ribeiro et al. (2012)
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set covering
problem: scp51
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set covering
problem: scp51

Pr(t
BRKGA

 ≤ t
RKGA

) = 0.999 
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set covering
problem: scpa1
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set covering
problem: scpa1

Pr(t
BRKGA

 ≤ t
RKGA

) = 0.733 
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set k-covering
problem: scp41-2
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set k-covering
problem: scp41-2

Pr(t
BRKGA

 ≤ t
RKGA

) = 0.999 
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set k-covering
problem: scp45-11
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set k-covering
problem: scp45-11

Pr(t
BRKGA

 ≤ t
RKGA

) = 0.881 
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set k-covering
problem: scp48-7
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set k-covering
problem: scp48-7

Pr(t
BRKGA

 ≤ t
RKGA

) = 0.847
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Observations

• Random method: keys are randomly generated so 
solutions are always vectors of random keys
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Observations

• Random method: keys are randomly generated so 
solutions are always vectors of random keys

• Elitist strategy:  best solutions are passed without change 
from one generation to the next (incumbent is kept)
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Observations

• Random method: keys are randomly generated so 
solutions are always vectors of random keys

• Elitist strategy:  best solutions are passed without change 
from one generation to the next (incumbent is kept)

• Child inherits more characteristics of elite parent: 
one parent is always selected (with replacement) from the 
small elite set and probability that child inherits key of elite 
parent > 0.5   Not so in the RKGA of Bean. 
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Observations

• Random method: keys are randomly generated so 
solutions are always vectors of random keys

• Elitist strategy:  best solutions are passed without change 
from one generation to the next (incumbent is kept)

• Child inherits more characteristics of elite parent: 
one parent is always selected (with replacement) from the 
small elite set and probability that child inherits key of elite 
parent > 0.5   Not so in the RKGA of Bean. 

• No mutation in crossover: mutants are used instead 
(they play same role as mutation in GAs … help escape local 
optima) 
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Framework for biased random-key genetic algorithms

Generate P vectors 
of random keys 

Decode each vector 
of random keys 

Stopping rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions 
to next population

Generate mutants in 
next population

Combine elite and
non-elite solutions
and add children to

next population

no

stop

yes
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Framework for biased random-key genetic algorithms

Generate P vectors 
of random keys 

Decode each vector 
of random keys 

Stopping rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions 
to next population

Generate mutants in 
next population

Combine elite and
non-elite solutions
and add children to

next population

stop

Problem independent

no yes
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Framework for biased random-key genetic algorithms

Generate P vectors 
of random keys 

Decode each vector 
of random keys 

Stopping rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions 
to next population

Generate mutants in 
next population

Combine elite and
non-elite solutions
and add children to

next population

stop

Problem independent

no yes

Problem dependent
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Decoding of random key vectors can be done in parallel

Generate P vectors 
of random keys 

Decode each vector 
of random keys 

Stopping rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions 
to next population

Generate mutants in 
next population

Combine elite and
non-elite solutions
and add children to

next population

stop

no yes
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Is a BRKGA any different from applying 
the decoder to random keys?

• Simulate a random multi-start decoding method 
with a BRKGA by setting size of elite partition to 
1 and number of mutants to P–1

• Each iteration, best solution is maintained in elite 
set and P–1random key vectors are generated as 
mutants … no mating is done since population 
already has P individuals
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solution
Network monitor location problem (opt = 23)

Time (ibm t41 secs)

BRKGA solutions Random multi-start solutions

Optimal value

best random solution



 Texas A&M, College Station, Texas ✤ Mar. 28, 2014 Packing with a BRKGA 

BRKGA in multi-start strategy

   Generate P vectors 

of random keys 
Decode each vector 

of random keys 

Restart rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions 
to next population

Generate mutants in 
next population

Combine elite and
non-elite solutions
and add children to

next population

no
yes

begin

if incumbent
improved, update

incumbent

stopping
rule

satisfied ?

output
incumbent stop

yes

no
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Randomized heuristic iteration 
count distribution: constructed 
by independently running the 
algorithm a number of times, each 
time stopping when the algorithm 
finds a solution at least as good as a 
given target.  
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In most of the independent runs, the algorithm finds the target solution in 
relatively few iterations: 
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In most of the independent runs, the algorithm finds the target solution in 
relatively few iterations: 25% of the runs take fewer than 101 iterations
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In most of the independent runs, the algorithm finds the target solution in 
relatively few iterations: 50% of the runs take fewer than 192 iterations
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In most of the independent runs, the algorithm finds the target solution in 
relatively few iterations: 75% of the runs take fewer than 345 iterations
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However, some runs take much longer: 10% of the runs take over 1000 
iterations
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However, some runs take much longer:  5% of the runs take over 2000 
iterations
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However, some runs take much longer:  2% of the runs take over 9715 
iterations
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However, some runs take much longer:  the longest run took 11607 
iterations
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Probability that algorithm will take 
over 345 iterations: 25% = 1/4
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Probability that algorithm will take 
over 345 iterations: 25% = 1/4

By restarting algorithm after 345 
iterations, probability that new run  
will take over 690 iterations: 25% = 
1/4

Probability that algorithm with 
restart will take over 690 iterations: 
probability of taking over 345  X  
probability of taking over 690 
iterations given it took over 345 = 
¼ x ¼ = 1/42
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Probability that algorithm will still be 
running after K periods of 345 
iterations:  1/4K
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Probability that algorithm will still be 
running after K periods of 345 
iterations:  1/4K

For example, probability that 
algorithm with restart will still be 
running after 1725 iterations (5 
periods of 345 iterations):  1/45   
0.0977%

This is much less than the 5% 
probability that the algorithm 
without restart will take over 2000 
iterations. 
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Probability that algorithm will still be 
running after K periods of 345 
iterations:  1/4K

For example, probability that 
algorithm with restart will still be 
running after 1725 iterations (5 
periods of 345 iterations):  1/45   
0.0977%

This is much less than the 5% 
probability that the algorithm 
without restart will take over 2000 
iterations. 
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Restart strategies

• First proposed by Luby et al. (1993)
• They define a restart strategy as a finite sequence 

of time intervals  S = {
1
, 

2
, 

3
, … } which define 

epochs  
1
,   

1
+

2
,   

1
+

2
+

3
,  … when the 

algorithm is restarted from scratch.
• Luby et al. (1993) prove that the optimal restart 

strategy uses 
1
= 

2
= 

3
= … = *, where * is a 

constant.
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Restart strategy for BRKGA

• Recall the restart strategy of Luby et al. where equal time 
intervals 

1
= 

2
= 

3
= … = * pass between restarts.

• Strategy requires * as input.
• Since we have no prior information as to the runtime 

distribution of the heuristic, we run the risk of:
– choosing * too small:  restart variant may take long to 

converge
– choosing * too big:  restart variant may become like 

no-restart variant
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Restart strategy for BRKGA

• We conjecture that number of iterations between 
improvement of the incumbent (best so far) solution 
varies less w.r.t. heuristic/ instance/ target than run 
times.

• We propose the following restart strategy: Keep track of 
the last generation when the incumbent improved and 
restart BRKGA if K generations have gone by without 
improvement.

• We call this strategy restart(K)  
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Example of restart strategy for BRKGA: Load balancing

Given an unordered sequence of 1024 integers p[0], p[1], …, p[1023] 


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Place consecutive numbers in 32 buckets b[0], b[1], …, b[31] 



b[0]    b[1]     b[2]        b[3]         b[4]                b[29]  b[30] b[31] 

Example of restart strategy for BRKGA: Load balancing
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Add the numbers in each bucket b[0], b[1], …, b[31] 



b[0]    b[1]     b[2]        b[3]         b[4]                b[29]  b[30] b[31] 

p p p p p p p p

Example of restart strategy for BRKGA: Load balancing
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Place the buckets in 16 bins B[0], B[1], …, B[15] 



b[0]    b[1]     b[2]        b[3]         b[4]                b[29]  b[30] b[31] 

p pp

pp

p

pp


 B[0]                 B[1]                    B[2]                        B[15] 

Example of restart strategy for BRKGA: Load balancing
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Add up the numbers in each bin B[0], B[1], …, B[15] 



b[0]    b[1]     b[2]        b[3]         b[4]                b[29]  b[30] b[31] 

p pp

pp

p

pp


 B[0]                 B[1]                    B[2]                        B[15] 

T[0]=(p) T[1]=(p) T[2]=(p) T[15]=(p)

Example of restart strategy for BRKGA: Load balancing
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OBJECTIVE:  Minimize { Maximum (T[0], T[1], …, T[15]) } 



b[0]    b[1]     b[2]        b[3]         b[4]                b[29]  b[30] b[31] 

p pp

pp

p

pp


 B[0]                 B[1]                    B[2]                        B[15] 

T[0]=(p) T[1]=(p) T[2]=(p) T[15]=(p)

Example of restart strategy for BRKGA: Load balancing
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Example of restart strategy for BRKGA: Load balancing

restart strategy: 
               restart(2000) no restart
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Specifying a BRKGA
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• Encoding is always done the same way, i.e. with a vector of 
N random-keys (parameter N must be specified)

Specifying a biased random-key GA
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• Encoding is always done the same way, i.e. with a vector of 
N random-keys (parameter N must be specified)

• Decoder that takes as input a vector of N random-keys and 
outputs the corresponding solution of the combinatorial 
optimization problem and its cost (this is usually a heuristic)

Specifying a biased random-key GA
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• Encoding is always done the same way, i.e. with a vector of 
N random-keys (parameter N must be specified)

• Decoder that takes as input a vector of N random-keys and 
outputs the corresponding solution of the combinatorial 
optimization problem and its cost (this is usually a heuristic)

• Parameters

Specifying a biased random-key GA



 Texas A&M, College Station, Texas ✤ Mar. 28, 2014 Packing with a BRKGA 

Specifying a biased random-key GA

Parameters:
– Size of population

– Size of elite partition

– Size of mutant set

– Child inheritance probability

– Restart strategy parameter

– Stopping criterion
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Specifying a biased random-key GA

Parameters:
– Size of population:  a function of N, say N or 2N

– Size of elite partition

– Size of mutant set

– Child inheritance probability

– Restart strategy parameter

– Stopping criterion
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Specifying a biased random-key GA

Parameters:
– Size of population:  a function of N, say N or 2N

– Size of elite partition: 15-25% of population

– Size of mutant set

– Child inheritance probability

– Restart strategy parameter

– Stopping criterion
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Specifying a biased random-key GA

Parameters:
– Size of population:  a function of N, say N or 2N

– Size of elite partition: 15-25% of population

– Size of mutant set: 5-15% of population

– Child inheritance probability

– Restart strategy parameter

– Stopping criterion
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Specifying a biased random-key GA

Parameters:
– Size of population:  a function of N, say N or 2N

– Size of elite partition: 15-25% of population

– Size of mutant set: 5-15% of population

– Child inheritance probability: > 0.5, say 0.7

– Restart strategy parameter

– Stopping criterion
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Specifying a biased random-key GA

Parameters:
– Size of population:  a function of N, say N or 2N

– Size of elite partition: 15-25% of population

– Size of mutant set: 5-15% of population

– Child inheritance probability: > 0.5, say 0.7

– Restart strategy parameter: a function of N, say 2N or 10N

– Stopping criterion
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Specifying a biased random-key GA

Parameters:
– Size of population:  a function of N, say N or 2N

– Size of elite partition: 15-25% of population

– Size of mutant set: 5-15% of population

– Child inheritance probability: > 0.5, say 0.7

– Restart strategy parameter: a function of N, say 2N or 10N

– Stopping criterion: e.g. time, # generations, solution quality,              
# generations without improvement
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brkgaAPI: A C++ API for BRKGA

• Efficient and easy-to-use object oriented application 
programming interface (API) for the algorithmic framework 
of BRKGA.



 Texas A&M, College Station, Texas ✤ Mar. 28, 2014 Packing with a BRKGA 

brkgaAPI: A C++ API for BRKGA

• Efficient and easy-to-use object oriented application 
programming interface (API) for the algorithmic framework 
of BRKGA.

• Cross-platform library handles large portion of problem 
independent modules that make up the framework, e.g.
– population management
– evolutionary dynamics



 Texas A&M, College Station, Texas ✤ Mar. 28, 2014 Packing with a BRKGA 

brkgaAPI: A C++ API for BRKGA

• Efficient and easy-to-use object oriented application 
programming interface (API) for the algorithmic framework 
of BRKGA.

• Cross-platform library handles large portion of problem 
independent modules that make up the framework, e.g.
– population management
– evolutionary dynamics

• Implemented in C++ and may benefit from shared-memory 
parallelism if available.
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brkgaAPI: A C++ API for BRKGA

• Efficient and easy-to-use object oriented application 
programming interface (API) for the algorithmic framework 
of BRKGA.

• Cross-platform library handles large portion of problem 
independent modules that make up the framework, e.g.
– population management
– evolutionary dynamics

• Implemented in C++ and may benefit from shared-memory 
parallelism if available.

• User only needs to implement problem-dependent decoder.
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brkgaAPI: A C++ API for BRKGA

Paper: Rodrigo F. Toso and M.G.C.R.,                                         

“A C++ Application Programming Interface  
for Biased Random-Key Genetic Algorithms,”    
Optimization Methods & Software, published online 13 March 2014.

Software: http://www.research.att.com/~mgcr/src/brkgaAPI

http://www.research.att.com/
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An example BRKGA:
Packing weighted 

rectangles



 Texas A&M, College Station, Texas ✤ Mar. 28, 2014 Packing with a BRKGA 

Reference

J.F. Gonçalves and M.G.C.R., “A parallel 
multi-population genetic algorithm for a 
constrained two-dimensional orthogonal 
packing problem,” Journal of Combinatorial 
Optimization, vol. 22, pp. 180-201, 2011.

Tech report:
http://www.research.att.com/~mgcr/doc/pack2d.pdf
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Constrained orthogonal packing

• Given a large planar stock rectangle (W, H) of width 
W and height H;
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Constrained orthogonal packing

• Given a large planar stock rectangle (W, H) of width 
W and height H;

W

H
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Constrained orthogonal packing

• Given a large planar stock rectangle (W, H) of width 
W and height H;

• Given N smaller rectangle types (w[i], h[i]),               
i = 1,...,N, each of width w[i], height h[i], and value 
v[i];

W

H
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Constrained orthogonal packing

• Given a large planar stock rectangle (W, H) of width 
W and height H;

• Given N smaller rectangle types (w[i], h[i]),               
i = 1,...,N, each of width w[i], height h[i], and value 
v[i];

W

H

1

2
3

4
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Constrained orthogonal packing

• r[i] rectangles of type i = 1, ..., N are to be packed in the 
large rectangle without overlap and such that their edges 
are parallel to the edges of the large rectangle;

W

H
2

1

34

2

1

1

3
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Constrained orthogonal packing

• r[i] rectangles of type i = 1, ..., N are to be packed in the 
large rectangle without overlap and such that their edges 
are parallel to the edges of the large rectangle;

• For i = 1, ..., N, we require that:                                           
                                                 0 ≤P[i]≤ r[i] ≤ Q[i]

W

H
2

1

34

2

1

1

3
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Constrained orthogonal packing

• r[i] rectangles of type i = 1, ..., N are to be packed in the 
large rectangle without overlap and such that their edges 
are parallel to the edges of the large rectangle;

• For i = 1, ..., N, we require that:                                           
                                                 0 ≤P[i]≤ r[i] ≤ Q[i]

W

H
2

1

34

2

1

1

3
Suppose 5≤ r[1] ≤ 12
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Constrained orthogonal packing

• r[i] rectangles of type i = 1, ..., N are to be packed in the 
large rectangle without overlap and such that their edges 
are parallel to the edges of the large rectangle;

• For i = 1, ..., N, we require that:                                           
                                                 0 ≤P[i]≤ r[i] ≤ Q[i]

W

H
2

1

34

2

1

1

Suppose 5≤ r[1] ≤ 12
1

1



 Texas A&M, College Station, Texas ✤ Mar. 28, 2014 Packing with a BRKGA 

Objective

Among the many feasible packings, we want to find one that 
maximizes total value of packed rectangles:                              
                             v[1] r[1] + v[2] r[2] + ⋅⋅⋅+v[N] r[N]  

W

H
2

1
4

2

1

1

1

1

2

1

W

H
2

1

3
4

2

1

1

1

1
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Objective

Among the many feasible packings, we want to find one that 
maximizes total value of packed rectangles:                              
                             v[1] r[1] + v[2] r[2] + ⋅⋅⋅+v[N] r[N]  

W

H
2

1
4

2

1

1

1

1

2

1
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Objective

Among the many feasible packings, we want to find one that 
maximizes total value of packed rectangles:                              
                             v[1] r[1] + v[2] r[2] + ⋅⋅⋅+v[N] r[N]  

W

H

1

4

2

1

1

1

1

2

1

4 4
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Objective

Among the many feasible packings, we want to find one that 
maximizes total value of packed rectangles:                              
                             v[1] r[1] + v[2] r[2] + ⋅⋅⋅+v[N] r[N]  

W

H

1

4

1

1

1

2

1

4 4
33
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Applications

Problem arises in several production processes, e.g.
– Textile
– Glass
– Wood
– Paper

where rectangular figures are cut from large 
rectangular sheets of materials.
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Hopper & Turton, 2001
Instance 4-1 60 x 60
Value: 3576

Previous best: 3580 by a
Tabu Search heuristic 
(Alvarez-Valdes et al., 2007)
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Hopper & Turton, 2001
Instance 4-2 60 x 60
Value: 3585

Previous best: 3580 by a
Tabu Search heuristic 
(Alvarez-Valdes et al., 2007)
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Hopper & Turton, 2001
Instance 4-2 60 x 60
Value: 3586

Previous best: 3580 by a
Tabu Search heuristic 
(Alvarez-Valdes et al., 2007)
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Hopper & Turton, 2001
Instance 4-2 60 x 60
Value: 3591

Previous best: 3580 by a
Tabu Search heuristic 
(Alvarez-Valdes et al., 2007)
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Hopper & Turton, 2001
Instance 4-2 60 x 60
Value: 3591
New best known solution!
Previous best: 3580 by a
Tabu Search heuristic 
(Alvarez-Valdes et al., 2007)
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BRKGA for 
constrained 2-dim 
orthogonal packing
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Encoding

• Solutions are encoded as vectors X of                   
           2N' = 2 { Q[1] + Q[2] +  + Q[N] }          
random keys, where Q[i] is the maximum number 
of rectangles of type i (for i = 1, ..., N) that can be 
packed.

• X = ( X[1], ..., X[N'],        X[N'+1], ..., X[2N'] )
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Encoding

• Solutions are encoded as vectors X of                   
           2N' = 2 { Q[1] + Q[2] +  + Q[N] }          
random keys, where Q[i] is the maximum number 
of rectangles of type i (for i = 1, ..., N) that can be 
packed.

• X = ( X[1], ..., X[N'],        X[N'+1], ..., X[2N'] )

Rectangle type
packing sequence
(RTPS)
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Encoding

• Solutions are encoded as vectors X of                   
           2N' = 2 { Q[1] + Q[2] +  + Q[N] }          
random keys, where Q[i] is the maximum number 
of rectangles of type i (for i = 1, ..., N) that can be 
packed.

• X = ( X[1], ..., X[N'],        X[N'+1], ..., X[2N'] )

Rectangle type
packing sequence
(RTPS)

Vector of placement
procedures (VPP)



 Texas A&M, College Station, Texas ✤ Mar. 28, 2014 Packing with a BRKGA 

Decoding 

• Simple heuristic to pack rectangles:
– Make Q[i] copies of rectangle i, for i = 1, ..., N.
– Order the N' = Q[1] + Q[2] +  + Q[N] rectangles in 

some way. 
– Process the rectangles in the above order.  Place the 

rectangle in the stock rectangle according to one of 
the following heuristics:  bottom-left (BL) or 
left-bottom (LB).  If rectangle cannot be positioned, 
discard it and go on to the next rectangle in the 
order.
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Decoding 

• Simple heuristic to pack rectangles:
– Make Q[i] copies of rectangle i, for i = 1, ..., N.
– Order the N' = Q[1] + Q[2] +  + Q[N] rectangles in 

some way. Sort first N' keys of X to obtain order.
– Process the rectangles in the above order.  Place the 

rectangle in the stock rectangle according to one of 
the following heuristics:  bottom-left (BL) or 
left-bottom (LB).  If rectangle cannot be positioned, 
discard it and go on to the next rectangle in the 
order.
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Decoding 

• Simple heuristic to pack rectangles:
– Make Q[i] copies of rectangle i, for i = 1, ..., N.
– Order the N' = Q[1] + Q[2] +  + Q[N] rectangles in 

some way. Sort first N' keys of X to obtain order.
– Process the rectangles in the above order.  Place the 

rectangle in the stock rectangle according to one of 
the following heuristics:  bottom-left (BL) or 
left-bottom (LB).  If rectangle cannot be positioned, 
discard it and go on to the next rectangle in the 
order.  Use the last N' keys of X to determine which 
heuristic to use. If k[N'+i] > 0.5 use LB, else use BL. 
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Decoding 

• A maximal empty rectangular space (ERS) is an empty 
rectangular space not contained in any other ERS.

• ERSs are generated and updated using the Difference 
Process of Lai and Chan (1997).

• When placing a rectangle, we limit ourselves only to 
maximal ERSs.  We order all the maximal ERSs and place 
the rectangle in the first maximal ERS in which it fits.

• Let (x[i], y[i]) be the coordinates of the bottom left 
corner of the i-th ERS.
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Decoding 

• A maximal empty rectangular space (ERS) is an empty 
rectangular space not contained in any other ERS.

• ERSs are generated and updated using the Difference 
Process of Lai and Chan (1997).

• When placing a rectangle, we limit ourselves only to 
maximal ERSs.  We order all the maximal ERSs and place 
the rectangle in the first maximal ERS in which it fits.

• Let (x[i], y[i]) be the coordinates of the bottom left 
corner of the i-th ERS.

i-th 
ERS

(x[i], y[i])
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Decoding 

• If BL is used, ERSs are ordered such that      
ERS[i] < ERS[j] if y[i] < y[j] or y[i] = y[j] and          
x[i] < x[j].

ERS[i]

ERS[j]

ERS[i]
ERS[j]

ERS[i] < ERS[j]
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1

3
2 4

BL can run into problems even
on small instances (Liu & Teng, 1999).

Consider this instance with 4 
rectangles.

BL cannot find the optimal 
solution for any RTPS.
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1

3
2 4

We show 6 rectangle type
packing sequences (RTPS's) 
where we fix rectangle 1 in 
the first position.
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1

3

2

4

1

3

2

4

1

32

4 1

3 2

41

2

4

1

2

41
3

2

4

1
3

24

RTPS: 1-2-4-3

RTPS: 1-4-2-3

RTPS: 1-3-2-4

RTPS: 1-2-3-4

RTPS: 1-4-3-2

RTPS: 1-2-3-4

RTPS: 1-3-4-2
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1

3

2

4

1

3

2

4

1

32

4 1

3 2

41

2

4

1

2

41
3

2

4

1
3

24

RTPS: 1-2-4-3

RTPS: 1-4-2-3

RTPS: 1-3-2-4

RTPS: 1-2-3-4

RTPS: 1-4-3-2

RTPS: 1-2-3-4

RTPS: 1-3-4-2

Similar infeasibilities
are observed if 2, 3,
or 4 is the first 
rectangle in the 
RTPS.
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Decoding 

• If LB is used, ERSs are ordered such that      
ERS[i] < ERS[j] if x[i] < x[j] or x[i] = x[j] and          
y[i] < y[j].

ERS[i]

ERS[j]

ERS[i]

ERS[j]

ERS[i] < ERS[j]
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1
BL

3
LB2

BL
4

BL
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1
BL

3
LB2

BL
4

BL

ERS[1]
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1
BL

3
LB2

BL
4

BL
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1
BL

3
LB2

BL
4

BL

ERS[1]
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1
BL

3
LB2

BL
4

BL

ERS[2]
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1
BL

3
LB

2
BL

4
BL
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1
BL

3
LB

2
BL

4
BL

ERS[1]
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1
BL

3
LB

2
BL

4
BL

ERS[2]
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1
BL

3
LB

2
BL

4
BL
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1
BL

3
LB

2
BL

4
BL

ERS[1]
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1
BL

3
LB

2
BL

4
BL

ERS[1]

4 does not fit
in ERS[1].
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1
BL

3
LB

2
BL

4
BL

ERS[2]

4 does fit
in ERS[2].
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1
BL

3
LB

2
BL

4
BL Optimal solution!
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Experimental results
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Design
• We compare solution values obtained by the 

parallel multi-population BRKGA with solutions 
obtained by the heuristics that produced the best 
computational results to date:
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Design
• We compare solution values obtained by the 

parallel multi-population BRKGA with solutions 
obtained by the heuristics that produced the best 
computational results to date:
– PH:  population-based heuristic of Beasley (2004)
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Design
• We compare solution values obtained by the 

parallel multi-population BRKGA with solutions 
obtained by the heuristics that produced the best 
computational results to date:
– PH:  population-based heuristic of Beasley (2004)
– GA: genetic algorithm of Hadjiconsantinou & Iori 

(2007)
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Design
• We compare solution values obtained by the 

parallel multi-population BRKGA with solutions 
obtained by the heuristics that produced the best 
computational results to date:
– PH:  population-based heuristic of Beasley (2004)
– GA: genetic algorithm of Hadjiconsantinou & Iori 

(2007)
– GRASP: greedy randomized adaptive search 

procedure of Alvarez-Valdes et al. (2005)
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Design
• We compare solution values obtained by the 

parallel multi-population BRKGA with solutions 
obtained by the heuristics that produced the best 
computational results to date:
– PH:  population-based heuristic of Beasley (2004)
– GA: genetic algorithm of Hadjiconsantinou & Iori 

(2007)
– GRASP: greedy randomized adaptive search 

procedure of Alvarez-Valdes et al. (2005)
– TABU: tabu search of Alvarez-Valdes et al. (2007)
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Number of best solutions / total instances

Problem PH GA GRASP TABU BRKGA         
BL-LB-L-4NR

From 
literature 
(optimal)

13/21 21/21 18/21 21/21 21/21

Large 
random*

0/21 0/21 5/21 8/21 20/21

Zero-waste 5/31 17/31 30/31

Doubly 
constrained

11/21 12/21 17/21 19/21

* For large random: number of best average solutions / total instance classes
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Minimum, average, and maximum solution        
times (secs) for BRKGA (BL-LB-L-4NR)

Problem Min solution 
time     (secs)

Avg solution 
time     (secs)

Max solution 
time   (secs)

From literature 
(optimal)

0.00 0.05 0.55

Large random 1.78 23.85 72.70

Zero-waste 0.01 82.21 808.03

Doubly 
constrained

0.00 1.16 16.87
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New BKS
for a 100 x100
doubly 
constrained 
instance of 
Fekete &
Schepers (1997)
of value 20678.
Previous best
was 19657 by
tabu search of
Alvarez-Valdes et
al., (2007).
 

30 types
30 rectangles
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New BKS for a 100 
x 100 doubly 
constrained 
instance Fekete & 
Schepers (1997) of 
value 22140.

Previous BKS was 
22011 by tabu 
search of 
Alvarez-Valdes et al. 
(2007).

29 types
97 rectangles
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Some remarks
We have extended this to 3D packing:                                                   
J.F. Gonçalves and M.G.C.R., “A parallel multi-population biased 
random-key genetic algorithm for a container loading 
problem,” Computers & Operations Research, vol. 29, pp. 179-190, 
2012.

Tech report: http://www.research.att.com/~mgcr/doc/brkga-pack3d.pdf
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3D bin packing
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J.F. Gonçalves and M.G.C.R., “A biased 
random-key genetic algorithm for 2D 
and 3D bin packing problems,” 
International J. of Production Economics, vol. 15, pp. 
500–510, 2013.

http://www.research.att.com/~mgcr/doc/brkga-binpacking.pdf
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3D bin packing problem
Container (bin) of
fixed dimension

Boxes of different dimensions

Minimize number of containers 
(bins) needed to pack all boxes
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3D bin packing constraints

• Each box is placed completely within container
• Boxes do not overlap with each other
• Each box is placed parallel to the side walls of bin
• In some instances, only certain box orientations 

are allowed (there are at most six possible 
orientations)
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Six possible orientations for each box
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Difference process - DP 
(Lai & Chan, 1997)

When box is placed in container …
         use DP to keep track of maximal free spaces 
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Encoding

Solutions are encoded as vectors of 3n random keys, 
where n is the number of boxed to be packed.

X = ( x
1
 , x

2
 , …, x

n
 , x

n+1
, x

n+2
, …, x

2n
, x

2n+1
, x

2n+2
, …, x

3n
) 

Box packing sequence Box orientation

X = ( x
1
 , x

2
 , …, x

n
 , x

n+1
, x

n+2
, …, x

2n
, x

2n+1
, x

2n+2
, …, x

3n
) X = ( x

1
 , x

2
 , …, x

n
 , x

n+1
, x

n+2
, …, x

2n
, x

2n+1
, x

2n+2
, …, x

3n
) 

Placement heuristic
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Decoding
1) Sort first n keys of X to produce sequence boxes will be packed; 

2) Use second n keys of X to determine which placement heuristic to 
use (back-bottom-left or back-left-bottom):
• if x

n+i
 <  then use ½ back-bottom-left to pack i-th box

• if x
n+i

 ≥  then use back-left-bottom to pack i-th box½

3) Use third n keys of X  to determine which of six orientations to 
use when packing box: 
• x

2n+i
  [0,1/6): orientation 1;     

• x
2n+i

  [1/6,2/6): orientation 2; … 

• x
2n+i

  [5/6,1]: orientation 6.
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Decoding

For each box
– scan containers in order they were opened
– use placement heuristic to place box in first container in 

which box fits with its specified orientation
– if box does not fit in any open container, open new 

container and place box using placement heuristic with its 
specified orientation
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Fitness function

Instead of using as fitness measure the number of bins (NB)
– use adjusted fitness: aNB 
– aNB = NB + ( LeastLoad / BinVolume ), where

✗ LeastLoad is load on least loaded bin
✗ BinVolume is volume of bin: H x W x L
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Experiment

• Parameters:
– population size: p = 30n

– size of elite partition: p
e
 = .10p

– number of of mutans: p
m
 = .15p

– crossover probability: 0.7
– stopping criterion: 300 generations
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Experiment

• Instances:
– 320 instances of Martello et al. (2000)
– generator is available at http://www.diku.dk/~pisinger/codes/html

– 8 classes
– 40 instances per class
– 10 instances for each value of n ∈ {50, 100, 150, 

200)

http://www.diku.dk/~pisinger/codes/html
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Experiment

• We compare BRKGA with:
– TS3, the tabu search of Lodi et al. (2002)
– GLS, the guided local search of Faroe et al. (2003)
– TS2PACK, the tabu search of Crainic et al. (2009)
– GRASP, the greedy randomized adaptive search 

procedure of Parreno et al. (2010)
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Class 1 - Bin size: 100 x 100 x 100

Boxes LB BRKGA GRASP TS3 TS2PACK GLS

50 12.5 13.4 13.4 13.4 13.4 13.4

100 25.1 26.6 26.6 26.6 26.7 26.7

150 34.7 36.4 36.4 36.7 37.0 37.0

200 48.4 50.9 50.9 51.2 51.1 51.2

Sum: 120.7 127.3 127.3 127.9 128.2 128.3



 Texas A&M, College Station, Texas ✤ Mar. 28, 2014 Packing with a BRKGA 

Class 2 - Bin size: 100 x 100 x 100

Boxes LB BRKGA GRASP TS3 TS2PACK GLS

50 12.7 13.8 13.8 13.8

Did not run
100 24.1 25.6 25.7 25.7

150 35.1 36.7 36.9 37.2

200 47.5 49.4 49.4 50.1

Sum: 119.4 125.5 125.8 126.8
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Class 3 - Bin size: 100 x 100 x 100

Boxes LB BRKGA GRASP TS3 TS2PACK GLS

50 12.3 13.3 13.3 13.3

Did not run
100 24.7 25.9 26.0 26.0

150 36.0 37.5 37.6 37.7

200 47.8 49.8 50.0 50.5

Sum: 120.8 126.5 126.9 127.5
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Class 4 - Bin size: 100 x 100 x 100

Boxes LB BRKGA GRASP TS3 TS2PACK GLS

50 28.7 29.4 29.4 29.4 29.4 29.4

100 57.6 59.0 59.0 59.0 58.9 59.0

150 85.2 86.8 86.8 86.8 86.8 86.8

200 116.3 118.8 118.8 118.8 118.8 119.0

Sum: 287.8 294.0 294.0 294.0 293.9 294.2
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Class 5 - Bin size: 100 x 100 x 100

Boxes LB BRKGA GRASP TS3 TS2PACK GLS

50 7.3 8.3 8.3 8.4 8.3 8.3

100 12.9 15.0 15.0 15.0 15.2 15.1

150 17.4 20.0 20.1 20.4 20.1 20.2

200 24.4 27.1 27.1 27.6 27.4 27.2

Sum: 62.0 70.4 70.5 71.4 71.0 70.8
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Class 6 - Bin size: 10 x 10 x 10

Boxes LB BRKGA GRASP TS3 TS2PACK GLS

50 8.7 9.8 9.8 9.9 9.8 9.8

100 17.5 18.8 19.0 19.1 19.1 19.1

150 26.9 29.2 29.2 29.4 29.2 29.4

200 35.0 37.2 37.4 37.7 37.7 37.7

Sum: 88.1 95.0 95.4 96.1 95.8 96.0
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Class 7 - Bin size: 40 x 40 x 40

Boxes LB BRKGA GRASP TS3 TS2PACK GLS

50 6.3 7.4 7.4 7.5 7.4 7.4

100 10.9 12.2 12.5 12.5 12.3 12.3

150 13.7 15.2 16.0 16.1 15.8 15.8

200 21.0 23.4 23.5 23.9 23.5 23.5

Sum: 51.9 58.2 59.4 60.0 59.0 59.0
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Class 8 - Bin size: 100 x 100 x 100

Boxes LB BRKGA GRASP TS3 TS2PACK GLS

50 0.8 9.2 9.2 9.3 9.2 9.2

100 17.5 18.9 18.9 18.9 18.8 18.9

150 21.3 23.5 24.1 24.1 23.9 23.9

200 26.7 29.3 29.8 30.3 30.0 29.9

Sum: 66.3 80.9 82.0 82.6 81.9 81.9
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Summary

Class Bin size BRKGA GRASP TS3 TS2PACK GLS

1 1003 127.3 127.3 127.9 128.2 128.3

2 1003 125.5 125.8 126.8

3 1003 126.5 126.9 127.5

4 1003 294.0 294.0 294.0 293.9 294.2

5 1003 70.4 70.5 71.4 71.0 70.8

6 103 95.0 95.4 96.1 95.8 96.0

7 403 58.2 59.4 60.0 59.0 59.0

8 1003 80.9 82.0 82.6 81.9 81.9

Sum(rows 1, 4-8): 725.8 728.6 732.0 729.8 730.2

Sum(rows 1-8): 977.8 981.3 986.3
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Concluding remarks

• Reviewed BRKGA framework
• Applied framework to

– 2D/3D packing to maximize value packed
– 2D/3D bin packing to minimize number of bins

• All decoders were simple heuristics
• BRKGA “learned” how to “operate” the heuristics
• In all cases, several new best known solutions 

were produced
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Thanks!
These slides and all of the papers cited in this 
lecture can be downloaded from my homepage:

http://www.research.att.com/~mgcr
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