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Summary
• Metaheuristics and basic concepts of genetic algorithms

• Random-key genetic algorithm of Bean (1994)

• Biased random-key genetic algorithms (BRKGA)
– Encoding / Decoding

– Initial population

– Evolutionary mechanisms

– Problem independent / problem dependent components

– Multi-start strategy

– Specifying a BRKGA

– Application programming interface (API) for BRKGA
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Metaheuristics

Metaheuristics are heuristics to devise heuristics.             
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Metaheuristics

Metaheuristics are high level procedures that coordinate 
simple heuristics, such as local search, to find solutions that 
are of better quality than those found by the simple heuristics 
alone.
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Metaheuristics

Metaheuristics are high level procedures that coordinate 
simple heuristics, such as local search, to find solutions that 
are of better quality than those found by the simple heuristics 
alone.

Examples: GRASP and C-GRASP, simulated annealing, 
genetic algorithms, tabu search, scatter search, ant colony 
optimization, variable neighborhood search, and biased 
random-key genetic algorithms (BRKGA).  
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Genetic algorithms
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Genetic algorithms

Individual: solution

Adaptive methods that are used to solve search
and optimization problems.

Holland (1975)
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Genetic algorithms

Individual: solution (chromosome = string of genes)
Population: set of fixed number of individuals
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Genetic algorithms evolve population applying
Darwin's principle of survival of the fittest.

Genetic algorithms
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Genetic algorithms evolve population applying
Darwin's principle of survival of the fittest.

A series of generations are produced by 
the algorithm. The most fit individual of the
last generation is the solution. 

Genetic algorithms
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Genetic algorithms evolve population applying
Darwin's principle of survival of the fittest.

A series of generations are produced by 
the algorithm. The most fit individual of the 
last generation is the solution. 

Individuals from one generation are combined
to produce offspring that make up next 
generation.

Genetic algorithms
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Probability of selecting individual to mate
is proportional to its fitness: survival of the 
fittest.

a

b

Genetic algorithms
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a

b

Parents drawn from 
generation K

c

Child in 
generation K+1

Probability of selecting individual to mate
is proportional to its fitness: survival of the 
fittest.

Genetic algorithms

a

b

Combine
parents

c

mutation
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Crossover and mutation

a

b

Combine
parents

 c

mutation
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Crossover and mutation

a

b

Combine
parents

 c

mutation

Crossover: Combines parents … passing along to offspring
                  characteristics of each parent …
                                                 Intensification of search
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Crossover and mutation

a

b

Combine
parents

 c

mutation

Mutation:  Randomly changes chromosome of offspring ... 
                 Driver of evolutionary process ...
                                                 Diversification of search
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Evolution of solutions
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Evolution of solutions
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Evolution of solutions
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Evolution of solutions
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Evolution of solutions
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Reference

Tech report version:

        

         http://www.research.att.com/~mgcr/doc/srkga.pdf

J.F. Gonçalves and M.G.C.R., “Biased random-key 
genetic algorithms for combinatorial optimization,” 
J. of Heuristics, vol.17, pp. 487-525, 2011.
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Encoding solutions
with random keys
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Encoding with random keys

• A random key is a real random number in the 
continuous interval [0,1).
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Encoding with random keys

• A random key is a real random number in the 
continuous interval [0,1).

• A vector X of random keys, or simply random 
keys, is an array of n random keys.
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Encoding with random keys

• A random key is a real random number in the 
continuous interval [0,1).

• A vector X of random keys, or simply random 
keys, is an array of n random keys.

• Solutions of optimization problems can be 
encoded by random keys.
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Encoding with random keys

• A random key is a real random number in the 
continuous interval [0,1).

• A vector X of random keys, or simply random 
keys, is an array of n random keys.

• Solutions of optimization problems can be 
encoded by random keys.

• A decoder is a deterministic algorithm that inputs 
a vector of random keys and outputs a feasible 
solution of the problem.
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Encoding with random keys: Sequencing

Encoding
        [        1,         2,        3,        4,         5 ] 

  X = [ 0.099, 0.216, 0.802, 0.368, 0.658 ]
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Encoding with random keys: Sequencing

Encoding
        [        1,         2,        3,        4,         5 ] 

  X = [ 0.099, 0.216, 0.802, 0.368, 0.658 ]

Decode by sorting vector of random keys

        [        1,         2,        4,        5,         3 ] 

  X = [ 0.099, 0.216, 0.368, 0.658, 0.802 ]
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Encoding with random keys: Sequencing

Encoding
        [        1,         2,        3,        4,         5 ] 

  X = [ 0.099, 0.216, 0.802, 0.368, 0.658 ]

Decode by sorting

        [        1,         2,        4,        5,         3 ] 

  X = [ 0.099, 0.216, 0.368, 0.658, 0.802 ]

Therefore, the vector of random keys:

X = [ 0.099, 0.216, 0.802, 0.368, 0.658 ]

encodes the sequence: 1– 2 – 4 – 5 – 3
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Encoding with random keys: Subset 
selection (select 3 of 5 elements)

Encoding
        [        1,         2,        3,        4,         5 ] 

  X = [ 0.099, 0.216, 0.802, 0.368, 0.658 ]

Decode by sorting vector of random keys
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Encoding with random keys: Subset 
selection (select 3 of 5 elements)

Encoding
        [        1,         2,        3,        4,         5 ] 

  X = [ 0.099, 0.216, 0.802, 0.368, 0.658 ]

Decode by sorting vector of random keys

        [        1,         2,        4,        5,         3 ] 

  X = [ 0.099, 0.216, 0.368, 0.658, 0.802 ]Encoding
  

Decode by sorting vector of random keys
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Encoding with random keys: Subset 
selection (select 3 of 5 elements)

Encoding
        [        1,         2,        3,        4,         5 ] 

  X = [ 0.099, 0.216, 0.802, 0.368, 0.658 ]

Decode by sorting vector of random keys

        [        1,         2,        4,        5,         3 ] 

  X = [ 0.099, 0.216, 0.368, 0.658, 0.802 ]Encoding
Therefore, the vector of random keys:

X = [ 0.099, 0.216, 0.802, 0.368, 0.658 ]

encodes the subset: {1, 2, 4 }
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Encoding with random keys: Assigning integer 
weights  [0,10] to a subset of 3 of 5 elements

Encoding
        [        1,        2,        3,        4,        5 |          1,          2,          3,          4,           5 ] 

  X = [ 0.099, 0.216, 0.802, 0.368, 0.658 | 0.4634, 0.5611, 0.2752, 0.4874, 0.0348 ]
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Encoding with random keys: Assigning integer 
weights  [0,10] to a subset of 3 of 5 elements

Encoding
        [        1,        2,        3,        4,        5 |          1,          2,          3,          4,           5 ] 

  X = [ 0.099, 0.216, 0.802, 0.368, 0.658 | 0.4634, 0.5611, 0.2752, 0.4874, 0.0348 ]

Decode by sorting the first 5 keys and assign as the weight the value 
W

i
 =   floor [ 10 X

5+i
 ] + 1 to the 3 elements with smallest keys X

i
, for  

     i =1,...,5.
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Encoding with random keys: Assigning integer 
weights  [0,10] to a subset of 3 of 5 elements

Encoding
        [        1,        2,        3,        4,        5 |          1,          2,          3,          4,           5 ] 

  X = [ 0.099, 0.216, 0.802, 0.368, 0.658 | 0.4634, 0.5611, 0.2752, 0.4874, 0.0348 ]

Decode by setting sorting the first 5 keys and assign

the element weight to W
i
 =   floor [ 11 X

5+i
 ] to the 3 elements with 

smallest keys X
i
, for i =1,...,5.

Therefore, the vector of random keys:

X = [ 0.099, 0.216, 0.802, 0.368, 0.658 | 0.4634, 0.5611, 0.2752, 0.4874, 0.0348 ]      

encodes the weight vector W = (5,6,–,5,–)
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Genetic algorithms 
and random keys
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GAs and random keys

• Introduced by Bean (1994) 
for sequencing problems.
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GAs and random keys

• Introduced by Bean (1994) 
for sequencing problems.

• Individuals are strings of 
real-valued numbers 
(random keys) in the 
interval [0,1).

S = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
          s(1)   s(2)   s(3)   s(4)    s(5)
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GAs and random keys

• Introduced by Bean (1994) 
for sequencing problems.

• Individuals are strings of 
real-valued numbers 
(random keys) in the 
interval [0,1).

• Sorting random keys results 
in a sequencing order.

S = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
          s(1)   s(2)   s(3)   s(4)    s(5)

S' = ( 0.05, 0.19, 0.25, 0.67, 0.89 )
          s(4)   s(2)   s(1)   s(3)    s(5)
Sequence: 4 – 2 – 1 – 3 – 5 
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GAs and random keys

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele 
(key, or value of gene) to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = (                                              )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele 
(key, or value of gene) to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25                                      )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele 
(key, or value of gene) to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90                             )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele 
(key, or value of gene) to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90, 0.76                    )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele 
(key, or value of gene) to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90, 0.76, 0.05          )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele 
(key, or value of gene) to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90, 0.76, 0.05, 0.89 )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele 
(key, or value of gene) to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90, 0.76, 0.05, 0.89 )

If every random-key array corresponds
to a feasible solution: Mating always
produces feasible offspring.

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele 
(key, or value of gene) to 
the child.
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GAs and random keys

Initial population is made up of P 
random-key vectors, each with N 
keys, each having a value 
generated uniformly at random in 
the interval [0,1).
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GAs and random keys
At the K-th generation, 
compute the cost of each 
solution ...  Elite solutions

Population K

Non-elite
solutions
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GAs and random keys
At the K-th generation, 
compute the cost of each 
solution and partition the 
solutions into two sets: 

 Elite solutions

Population K

Non-elite
solutions
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GAs and random keys
At the K-th generation, 
compute the cost of each 
solution and partition the 
solutions into two sets: 
elite solutions and non-elite 
solutions. 

 Elite solutions

Population K

Non-elite
solutions
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GAs and random keys
At the K-th generation, 
compute the cost of each 
solution and partition the 
solutions into two sets: 
elite solutions and non-elite 
solutions. Elite set should 
be smaller of the two sets 
and contain best solutions.

 Elite solutions

Population K

Non-elite
solutions
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GAs and random keys
Evolutionary dynamics

Population K Population K+1

 Elite solutions

Non-elite
solutions
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GAs and random keys
Evolutionary dynamics
– Copy elite solutions from population 

K to population K+1  Elite solutions

Population K+1Population K

 Elite solutions

Non-elite
solutions
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GAs and random keys
Evolutionary dynamics
– Copy elite solutions from population 

K to population K+1

– Add R random solutions (mutants) 
to population K+1

 Elite solutions

Mutant
solutions

Population K+1Population K

 Elite solutions

Non-elite
solutions
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GAs and random keys
Evolutionary dynamics
– Copy elite solutions from population 

K to population K+1

– Add R random solutions (mutants) 
to population K+1

– While K+1-th population < P
• RANDOM-KEY GA: Use any two 

solutions in population K to produce 
child in population K+1. Mates are 
chosen at random.

 Elite solutions

Mutant
solutions

X

Population K+1Population K

 Elite solutions

Non-elite
solutions

Mutant
solutions
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Biased random key genetic algorithm

• A biased random key genetic algorithm (BRKGA) 
is a random key genetic algorithm (RKGA).
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Biased random key genetic algorithm

• A biased random key genetic algorithm (BRKGA) 
is a random key genetic algorithm (RKGA).

• BRKGA and RKGA differ in how mates are 
chosen for crossover and how parametrized 
uniform crossover is applied.
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How RKGA & BRKGA differ

RKGA
both parents chosen at 
random from entire 
population

BRKGA
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How RKGA & BRKGA differ

RKGA
both parents chosen at 
random from entire 
population

BRKGA
both parents chosen at 
random but one parent 
chosen from population 
of elite solutions
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How RKGA & BRKGA differ

RKGA
both parents chosen at 
random from entire 
population

either parent can be 
parent A in parametrized 
uniform crossover

BRKGA
both parents chosen at 
random but one parent 
chosen from population 
of elite solutions
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How RKGA & BRKGA differ

RKGA
both parents chosen at 
random from entire 
population

either parent can be 
parent A in parametrized 
uniform crossover

BRKGA
both parents chosen at 
random but one parent 
chosen from population 
of elite solutions

best fit parent is parent A 
in parametrized uniform 
crossover 
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Biased random key GA
Evolutionary dynamics
– Copy elite solutions from population 

K to population K+1

– Add R random solutions (mutants) 
to population K+1

– While K+1-th population < P
• RANDOM-KEY GA: Use any two 

solutions in population K to produce 
child in population K+1. Mates are 
chosen at random.

• BIASED RANDOM-KEY GA: Mate elite 
solution with other solution  of 
population K to produce child in 
population K+1. Mates are chosen at 
random.

 Elite solutions

Mutant
solutions

X

Population K+1

BRKGA: Probability
child inherits
key of elite 
parent > 0.5Population K

 Elite solutions

Non-elite
solutions

Mutant
solutions
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Paper comparing BRKGA and Bean's 
Method

Gonçalves, R., and Toso, “Biased and unbiased 
random-key genetic algorithms: An 
experimental analysis”, Proceedings of the  
10th Metaheuristics International Conference    
(MIC 2013), Singapore, August 2013.
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set covering
problem: scp41
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set covering
problem: scp41

Pr(t
BRKGA

 ≤ t
RKGA

) = 0.740 

Probability computed with method 
of Ribeiro et al. (2012)
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set covering
problem: scp51
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set covering
problem: scp51

Pr(t
BRKGA

 ≤ t
RKGA

) = 0.999 
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set covering
problem: scpa1
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set covering
problem: scpa1

Pr(t
BRKGA

 ≤ t
RKGA

) = 0.733 
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set k-covering
problem: scp41-2
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set k-covering
problem: scp41-2

Pr(t
BRKGA

 ≤ t
RKGA

) = 0.999 
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set k-covering
problem: scp45-11
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set k-covering
problem: scp45-11

Pr(t
BRKGA

 ≤ t
RKGA

) = 0.881 
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set k-covering
problem: scp48-7
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set k-covering
problem: scp48-7

Pr(t
BRKGA

 ≤ t
RKGA

) = 0.847
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Observations

• Random method: keys are randomly generated so 
solutions are always vectors of random keys



 SBPO 2013 ✤ September 16-19, 2013 BRKGA 

Observations

• Random method: keys are randomly generated so 
solutions are always vectors of random keys

• Elitist strategy:  best solutions are passed without change 
from one generation to the next (incumbent is kept)
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Observations

• Random method: keys are randomly generated so 
solutions are always vectors of random keys

• Elitist strategy:  best solutions are passed without change 
from one generation to the next (incumbent is kept)

• Child inherits more characteristics of elite parent: 
one parent is always selected (with replacement) from the 
small elite set and probability that child inherits key of elite 
parent > 0.5   Not so in the RKGA of Bean. 
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Observations

• Random method: keys are randomly generated so 
solutions are always vectors of random keys

• Elitist strategy:  best solutions are passed without change 
from one generation to the next (incumbent is kept)

• Child inherits more characteristics of elite parent: 
one parent is always selected (with replacement) from the 
small elite set and probability that child inherits key of elite 
parent > 0.5   Not so in the RKGA of Bean. 

• No mutation in crossover: mutants are used instead 
(they play same role as mutation in GAs … help escape local 
optima) 
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Framework for biased random-key genetic algorithms

Generate P vectors 
of random keys 

Decode each vector 
of random keys 

Stopping rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions 
to next population

Generate mutants in 
next population

Combine elite and
non-elite solutions
and add children to

next population

no

stop

yes
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Framework for biased random-key genetic algorithms

Generate P vectors 
of random keys 

Decode each vector 
of random keys 

Stopping rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions 
to next population

Generate mutants in 
next population

Combine elite and
non-elite solutions
and add children to

next population

stop

Problem independent

no yes
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Framework for biased random-key genetic algorithms

Generate P vectors 
of random keys 

Decode each vector 
of random keys 

Stopping rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions 
to next population

Generate mutants in 
next population

Combine elite and
non-elite solutions
and add children to

next population

stop

Problem independent

no yes

Problem dependent
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Decoding of random key vectors can be done in parallel

Generate P vectors 
of random keys 

Decode each vector 
of random keys 

Stopping rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions 
to next population

Generate mutants in 
next population

Combine elite and
non-elite solutions
and add children to

next population

stop

no yes
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Is a BRKGA any different from applying 
the decoder to random keys?

• Simulate a random multi-start decoding method 
with a BRKGA by setting size of elite partition to 
1 and number of mutants to P–1

• Each iteration, best solution is maintained in elite 
set and P–1random key vectors are generated as 
mutants … no mating is done since population 
already has P individuals
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solution
Network monitor location problem (opt = 23)

Time (ibm t41 secs)

BRKGA solutions Random multi-start solutions

Optimal value

best random solution
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BRKGA in multi-start strategy

   Generate P vectors 

of random keys 
Decode each vector 

of random keys 

Restart rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions 
to next population

Generate mutants in 
next population

Combine elite and
non-elite solutions
and add children to

next population

no
yes

begin

if incumbent
improved, update

incumbent

stopping
rule

satisfied ?

output
incumbent stop

yes

no

BRKGA
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Randomized heuristic iteration 
count distribution: constructed 
by independently running the 
algorithm a number of times, each 
time stopping when the algorithm 
finds a solution at least as good as a 
given target.  
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In most of the independent runs, the algorithm finds the target solution in 
relatively few iterations: 
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In most of the independent runs, the algorithm finds the target solution in 
relatively few iterations: 25% of the runs take fewer than 101 iterations
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In most of the independent runs, the algorithm finds the target solution in 
relatively few iterations: 50% of the runs take fewer than 192 iterations
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In most of the independent runs, the algorithm finds the target solution in 
relatively few iterations: 75% of the runs take fewer than 345 iterations
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However, some runs take much longer: 10% of the runs take over 1000 
iterations
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However, some runs take much longer:  5% of the runs take over 2000 
iterations
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However, some runs take much longer:  2% of the runs take over 9715 
iterations
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However, some runs take much longer:  the longest run took 11607 
iterations
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Probability that algorithm will take 
over 345 iterations: 25% = 1/4
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Probability that algorithm will take 
over 345 iterations: 25% = 1/4

By restarting algorithm after 345 
iterations, probability that new run  
will take over 690 iterations: 25% = 
1/4

Probability that algorithm with 
restart will take over 690 iterations: 
probability of taking over 345  X  
probability of taking over 690 
iterations given it took over 345 = 
¼ x ¼ = 1/42



 SBPO 2013 ✤ September 16-19, 2013 BRKGA 

Probability that algorithm will still be 
running after K periods of 345 
iterations:  1/4K
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Probability that algorithm will still be 
running after K periods of 345 
iterations:  1/4K

For example, probability that 
algorithm with restart will still be 
running after 1725 iterations (5 
periods of 345 iterations):  1/45   
0.0977%

This is much less than the 5% 
probability that the algorithm 
without restart will take over 2000 
iterations. 
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Probability that algorithm will still be 
running after K periods of 345 
iterations:  1/4K

For example, probability that 
algorithm with restart will still be 
running after 1725 iterations (5 
periods of 345 iterations):  1/45   
0.0977%

This is much less than the 5% 
probability that the algorithm 
without restart will take over 2000 
iterations. 
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Example of restart strategy for BRKGA: Load balancing

restart strategy: 
               restart(2000) no restart
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Specifying a BRKGA
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• Encoding is always done the same way, i.e. with a vector of 
N random-keys (parameter N must be specified)

Specifying a biased random-key GA
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• Encoding is always done the same way, i.e. with a vector of 
N random-keys (parameter N must be specified)

• Decoder that takes as input a vector of N random-keys and 
outputs the corresponding solution of the combinatorial 
optimization problem and its cost (this is usually a heuristic)

Specifying a biased random-key GA
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• Encoding is always done the same way, i.e. with a vector of 
N random-keys (parameter N must be specified)

• Decoder that takes as input a vector of N random-keys and 
outputs the corresponding solution of the combinatorial 
optimization problem and its cost (this is usually a heuristic)

• Parameters

Specifying a biased random-key GA
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Specifying a biased random-key GA

Parameters:
– Size of population

– Parallel population parameters

– Size of elite partition

– Size of mutant set

– Child inheritance probability

– Restart strategy parameter

– Stopping criterion
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Specifying a biased random-key GA

Parameters:
– Size of population:  a function of N, say N or 2N

– Parallel population parameters

– Size of elite partition

– Size of mutant set

– Child inheritance probability

– Restart strategy parameter

– Stopping criterion
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Specifying a biased random-key GA

Parameters:
– Size of population:  a function of N, say N or 2N

– Parallel population parameters: say, p = 3 , v  = 2, and x = 200

– Size of elite partition

– Size of mutant set

– Child inheritance probability

– Restart strategy parameter

– Stopping criterion
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Specifying a biased random-key GA

Parameters:
– Size of population:  a function of N, say N or 2N

– Parallel population parameters: say, p = 3 , v  = 2, and x = 200

– Size of elite partition: 15-25% of population

– Size of mutant set

– Child inheritance probability

– Restart strategy parameter

– Stopping criterion
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Specifying a biased random-key GA

Parameters:
– Size of population:  a function of N, say N or 2N

– Parallel population parameters: say, p = 3 , v  = 2, and x = 200

– Size of elite partition: 15-25% of population

– Size of mutant set: 5-15% of population

– Child inheritance probability

– Restart strategy parameter

– Stopping criterion
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Specifying a biased random-key GA

Parameters:
– Size of population:  a function of N, say N or 2N

– Parallel population parameters: say, p = 3 , v  = 2, and x = 200

– Size of elite partition: 15-25% of population

– Size of mutant set: 5-15% of population

– Child inheritance probability: > 0.5, say 0.7

– Restart strategy parameter

– Stopping criterion
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Specifying a biased random-key GA

Parameters:
– Size of population:  a function of N, say N or 2N

– Parallel population parameters: say, p = 3 , v  = 2, and x = 200

– Size of elite partition: 15-25% of population

– Size of mutant set: 5-15% of population

– Child inheritance probability: > 0.5, say 0.7

– Restart strategy parameter: a function of N, say 2N or 10N

– Stopping criterion



 SBPO 2013 ✤ September 16-19, 2013 BRKGA 

Specifying a biased random-key GA

Parameters:
– Size of population:  a function of N, say N or 2N

– Parallel population parameters: say, p = 3 , v  = 2, and x = 200

– Size of elite partition: 15-25% of population

– Size of mutant set: 5-15% of population

– Child inheritance probability: > 0.5, say 0.7

– Restart strategy parameter: a function of N, say 2N or 10N

– Stopping criterion: e.g. time, # generations, solution quality,              
# generations without improvement
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brkgaAPI: A C++ API for BRKGA

• Efficient and easy-to-use object oriented application 
programming interface (API) for the algorithmic framework 
of BRKGA.
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brkgaAPI: A C++ API for BRKGA

• Efficient and easy-to-use object oriented application 
programming interface (API) for the algorithmic framework 
of BRKGA.

• Cross-platform library handles large portion of problem 
independent modules that make up the framework, e.g.
– population management
– evolutionary dynamics
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brkgaAPI: A C++ API for BRKGA

• Efficient and easy-to-use object oriented application 
programming interface (API) for the algorithmic framework 
of BRKGA.

• Cross-platform library handles large portion of problem 
independent modules that make up the framework, e.g.
– population management
– evolutionary dynamics

• Implemented in C++ and may benefit from shared-memory 
parallelism if available.
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brkgaAPI: A C++ API for BRKGA

• Efficient and easy-to-use object oriented application 
programming interface (API) for the algorithmic framework 
of BRKGA.

• Cross-platform library handles large portion of problem 
independent modules that make up the framework, e.g.
– population management
– evolutionary dynamics

• Implemented in C++ and may benefit from shared-memory 
parallelism if available.

• User only needs to implement problem-dependent decoder.
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brkgaAPI: A C++ API for BRKGA

Paper: Rodrigo F. Toso and M.G.C.R., “A C++ 
Application Programming Interface for 
Biased Random-Key Genetic Algorithms,”  
AT&T Labs Technical Report, Florham Park, August 2011.

Software: http://www.research.att.com/~mgcr/src/brkgaAPI

http://www.research.att.com/
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Concluding remarks

• Reviewed BRKGA framework
• Showed BRKGA outperforms RKGA of Bean 

(1994)
• Reviewed restart mechanisms for BRKGA 

heuristics
• Showed how to specify a BRKGA heuristic
• Presented an C++ API for BRKGA
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Thanks!
These slides and all of the papers cited in this 
lecture can be downloaded from my homepage:

http://www.research.att.com/~mgcr
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