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Summary

• Biased random-key genetic algorithms
• Three applications in telecommunications

– Routing in IP networks
– Design of survivable IP networks with composite links
– Redundant server location for content distribution

• Concluding remarks
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M.G.C.R., “Biased random-key genetic algorithms 
with applications in telecommunications,” TOP, 
vol. 20, pp. 120-153, 2012.

Tech report version:
        
         http://www2.research.att.com/~mgcr/doc/brkga-telecom.pdf
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Biased random-key 
genetic algorithms
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Genetic algorithms

Individual: solution

Adaptive methods that are used to solve search
and optimization problems.

Holland (1975)
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Genetic algorithms

Individual: solution (chromosome = string of genes)
Population: set of fixed number of individuals
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Genetic algorithms evolve population applying
Darwin's principle of survival of the fittest.

Genetic algorithms
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Genetic algorithms evolve population applying
Darwin's principle of survival of the fittest.

A series of generations are produced by 
the algorithm. The most fit individual of the
last generation is the solution. 

Genetic algorithms
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Genetic algorithms evolve population applying
Darwin's principle of survival of the fittest.

A series of generations are produced by 
the algorithm. The most fit individual of the 
last generation is the solution. 

Individuals from one generation are combined
to produce offspring that make up next 
generation.

Genetic algorithms
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Probability of selecting individual to mate
is proportional to its fitness: survival of the 
fittest.

a

b

Genetic algorithms
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a

b

Parents drawn from 
generation K

c

Child in 
generation K+1

Probability of selecting individual to mate
is proportional to its fitness: survival of the 
fittest.

Genetic algorithms

a

b

Combine
parents

c

mutation
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Crossover and mutation

a

b

Combine
parents

 c

mutation
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Crossover and mutation

a

b

Combine
parents

 c

mutation

Crossover: Combines parents … passing along to offspring
                  characteristics of each parent …
                                                 Intensification of search
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Crossover and mutation

a

b

Combine
parents

 c

mutation

Mutation:  Randomly changes chromosome of offspring ... 
                 Driver of evolutionary process ...
                                                 Diversification of search
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Evolution of solutions



UNIFESP – São José dos Campos ✤ March 27, 2013 BRKGA with applications in telecom

Evolution of solutions
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Evolution of solutions
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Evolution of solutions
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Evolution of solutions
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Evolution of solutions
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Evolution of solutions
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Evolution of solutions
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Encoding solutions
with random keys
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Encoding with random keys

• A random key is a real random number in the 
continuous interval [0,1).
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Encoding with random keys

• A random key is a real random number in the 
continuous interval [0,1).

• A vector X of random keys, or simply random 
keys, is an array of n random keys.
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Encoding with random keys

• A random key is a real random number in the 
continuous interval [0,1).

• A vector X of random keys, or simply random 
keys, is an array of n random keys.

• Solutions of optimization problems can be 
encoded by random keys.
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Encoding with random keys

• A random key is a real random number in the 
continuous interval [0,1).

• A vector X of random keys, or simply random 
keys, is an array of n random keys.

• Solutions of optimization problems can be 
encoded by random keys.

• A decoder is a deterministic algorithm that takes 
a vector of random keys as input and outputs a 
feasible solution of the optimization problem.
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Encoding with random keys: Sequencing

Encoding
        [        1,         2,        3,        4,         5 ] 

  X = [ 0.099, 0.216, 0.802, 0.368, 0.658 ]
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Encoding with random keys: Sequencing

Encoding
        [        1,         2,        3,        4,         5 ] 

  X = [ 0.099, 0.216, 0.802, 0.368, 0.658 ]

Decode by sorting vector of random keys

        [        1,         2,        4,        5,         3 ] 

  X = [ 0.099, 0.216, 0.368, 0.658, 0.802 ]
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Encoding with random keys: Sequencing

Encoding
        [        1,         2,        3,        4,         5 ] 

  X = [ 0.099, 0.216, 0.802, 0.368, 0.658 ]

Decode by sorting

        [        1,         2,        4,        5,         3 ] 

  X = [ 0.099, 0.216, 0.368, 0.658, 0.802 ]

Therefore, the vector of random keys:

X = [ 0.099, 0.216, 0.802, 0.368, 0.658 ]

encodes the sequence: 1– 2 – 4 – 5 – 3



UNIFESP – São José dos Campos ✤ March 27, 2013 BRKGA with applications in telecom

Encoding with random keys: Subset 
selection (select 3 of 5 elements)

Encoding
        [        1,         2,        3,        4,         5 ] 

  X = [ 0.099, 0.216, 0.802, 0.368, 0.658 ]

Decode by sorting vector of random keys
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Encoding with random keys: Subset 
selection (select 3 of 5 elements)

Encoding
        [        1,         2,        3,        4,         5 ] 

  X = [ 0.099, 0.216, 0.802, 0.368, 0.658 ]

Decode by sorting vector of random keys

        [        1,         2,        4,        5,         3 ] 

  X = [ 0.099, 0.216, 0.368, 0.658, 0.802 ]Encoding
  

Decode by sorting vector of random keys
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Encoding with random keys: Subset 
selection (select 3 of 5 elements)

Encoding
        [        1,         2,        3,        4,         5 ] 

  X = [ 0.099, 0.216, 0.802, 0.368, 0.658 ]

Decode by sorting vector of random keys

        [        1,         2,        4,        5,         3 ] 

  X = [ 0.099, 0.216, 0.368, 0.658, 0.802 ]Encoding
Therefore, the vector of random keys:

X = [ 0.099, 0.216, 0.802, 0.368, 0.658 ]

encodes the subset: {1, 2, 4 }
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Encoding with random keys: Assigning integer 
weights  [0,10] to a subset of 3 of 5 elements

Encoding
        [        1,        2,        3,        4,        5 |          1,          2,          3,          4,           5 ] 

  X = [ 0.099, 0.216, 0.802, 0.368, 0.658 | 0.4634, 0.5611, 0.2752, 0.4874, 0.0348 ]



UNIFESP – São José dos Campos ✤ March 27, 2013 BRKGA with applications in telecom

Encoding with random keys: Assigning integer 
weights  [0,10] to a subset of 3 of 5 elements

Encoding
        [        1,        2,        3,        4,        5 |          1,          2,          3,          4,           5 ] 

  X = [ 0.099, 0.216, 0.802, 0.368, 0.658 | 0.4634, 0.5611, 0.2752, 0.4874, 0.0348 ]

Decode by sorting the first 5 keys and assign as the weight the value 
W

i
 =   floor [ 10 X

5+i
 ] + 1 to the 3 elements with smallest keys X

i
, for  

     i =1,...,5.
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Encoding with random keys: Assigning integer 
weights  [0,10] to a subset of 3 of 5 elements

Encoding
        [        1,        2,        3,        4,        5 |          1,          2,          3,          4,           5 ] 

  X = [ 0.099, 0.216, 0.802, 0.368, 0.658 | 0.4634, 0.5611, 0.2752, 0.4874, 0.0348 ]

Decode by setting sorting the first 5 keys and assign

the element weight to W
i
 =   floor [ 11 X

5+i
 ] to the 3 elements with 

smallest keys X
i
, for i =1,...,5.

Therefore, the vector of random keys:

X = [ 0.099, 0.216, 0.802, 0.368, 0.658 | 0.4634, 0.5611, 0.2752, 0.4874, 0.0348 ]      

encodes the weight vector W = (5,6,–,5,–)
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Genetic algorithms 
and random keys
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GAs and random keys

• Introduced by Bean (1994) 
for sequencing problems.
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GAs and random keys

• Introduced by Bean (1994) 
for sequencing problems.

• Individuals are strings of 
real-valued numbers 
(random keys) in the 
interval [0,1).

S = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
          s(1)   s(2)   s(3)   s(4)    s(5)
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GAs and random keys

• Introduced by Bean (1994) 
for sequencing problems.

• Individuals are strings of 
real-valued numbers 
(random keys) in the 
interval [0,1).

• Sorting random keys results 
in a sequencing order.

S = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
          s(1)   s(2)   s(3)   s(4)    s(5)

S' = ( 0.05, 0.19, 0.25, 0.67, 0.89 )
          s(4)   s(2)   s(1)   s(3)    s(5)
Sequence: 4 – 2 – 1 – 3 – 5 
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GAs and random keys

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele 
(key, or value of gene) to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = (                                              )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele 
(key, or value of gene) to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25                                      )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele 
(key, or value of gene) to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90                             )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele 
(key, or value of gene) to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90, 0.76                    )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele 
(key, or value of gene) to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90, 0.76, 0.05          )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele 
(key, or value of gene) to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90, 0.76, 0.05, 0.89 )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele 
(key, or value of gene) to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90, 0.76, 0.05, 0.89 )

If every random-key array corresponds
to a feasible solution: Mating always
produces feasible offspring.

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele 
(key, or value of gene) to 
the child.
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GAs and random keys

Initial population is made up of P 
random-key vectors, each with N 
keys, each having a value 
generated uniformly at random in 
the interval [0,1).
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GAs and random keys
At the K-th generation, 
compute the cost of each 
solution ...  Elite solutions

Population K

Non-elite
solutions



UNIFESP – São José dos Campos ✤ March 27, 2013 BRKGA with applications in telecom

GAs and random keys
At the K-th generation, 
compute the cost of each 
solution and partition the 
solutions into two sets: 

 Elite solutions

Population K

Non-elite
solutions
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GAs and random keys
At the K-th generation, 
compute the cost of each 
solution and partition the 
solutions into two sets: 
elite solutions and non-elite 
solutions. 

 Elite solutions

Population K

Non-elite
solutions
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GAs and random keys
At the K-th generation, 
compute the cost of each 
solution and partition the 
solutions into two sets: 
elite solutions and non-elite 
solutions. Elite set should 
be smaller of the two sets 
and contain best solutions.

 Elite solutions

Population K

Non-elite
solutions
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GAs and random keys
Evolutionary dynamics

Population K Population K+1

 Elite solutions

Non-elite
solutions
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GAs and random keys
Evolutionary dynamics
– Copy elite solutions from population 

K to population K+1  Elite solutions

Population K+1Population K

 Elite solutions

Non-elite
solutions
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GAs and random keys
Evolutionary dynamics
– Copy elite solutions from population 

K to population K+1

– Add R random solutions (mutants) 
to population K+1

 Elite solutions

Mutant
solutions

Population K+1Population K

 Elite solutions

Non-elite
solutions
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GAs and random keys
Evolutionary dynamics
– Copy elite solutions from population 

K to population K+1

– Add R random solutions (mutants) 
to population K+1

– While K+1-th population < P
• RANDOM-KEY GA: Use any two 

solutions in population K to produce 
child in population K+1. Mates are 
chosen at random.

 Elite solutions

Mutant
solutions

X

Population K+1Population K

 Elite solutions

Non-elite
solutions

Mutant
solutions
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Biased random key genetic algorithm

• A biased random key genetic algorithm (BRKGA) 
is a random key genetic algorithm (RKGA).
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Biased random key genetic algorithm

• A biased random key genetic algorithm (BRKGA) 
is a random key genetic algorithm (RKGA).

• BRKGA and RKGA differ in how mates are 
chosen for crossover and how parametrized 
uniform crossover is applied.
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How RKGA & BRKGA differ

RKGA
both parents chosen at 
random from entire 
population

BRKGA
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How RKGA & BRKGA differ

RKGA
both parents chosen at 
random from entire 
population

BRKGA
both parents chosen at 
random but one parent 
chosen from population 
of elite solutions
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How RKGA & BRKGA differ

RKGA
both parents chosen at 
random from entire 
population

either parent can be 
parent A in parametrized 
uniform crossover

BRKGA
both parents chosen at 
random but one parent 
chosen from population 
of elite solutions
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How RKGA & BRKGA differ

RKGA
both parents chosen at 
random from entire 
population

either parent can be 
parent A in parametrized 
uniform crossover

BRKGA
both parents chosen at 
random but one parent 
chosen from population 
of elite solutions

best fit parent is parent A 
in parametrized uniform 
crossover 
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Biased random key GA
Evolutionary dynamics
– Copy elite solutions from population 

K to population K+1

– Add R random solutions (mutants) 
to population K+1

– While K+1-th population < P
• RANDOM-KEY GA: Use any two 

solutions in population K to produce 
child in population K+1. Mates are 
chosen at random.

• BIASED RANDOM-KEY GA: Mate elite 
solution with other solution  of 
population K to produce child in 
population K+1. Mates are chosen at 
random.

 Elite solutions

Mutant
solutions

X

Population K+1

BRKGA: Probability
child inherits
key of elite 
parent > 0.5Population K

 Elite solutions

Non-elite
solutions

Mutant
solutions
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Paper comparing BRKGA and Bean's 
Method

Gonçalves, R., and Toso, “Biased and unbiased 
random-key genetic algorithms: An 
experimental analysis”, AT&T Labs Research 
Technical Report, Florham Park, December 2012.
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set covering
problem: scp41
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set covering
problem: scp41

Pr(t
BRKGA

 ≤ t
RKGA

) = 0.740 

Probability computed with method 
of Ribeiro et al. (2012)
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set covering
problem: scp51
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set covering
problem: scp51

Pr(t
BRKGA

 ≤ t
RKGA

) = 0.999 
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set covering
problem: scpa1
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set covering
problem: scpa1

Pr(t
BRKGA

 ≤ t
RKGA

) = 0.733 



UNIFESP – São José dos Campos ✤ March 27, 2013 BRKGA with applications in telecom

set k-covering
problem: scp41-2
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set k-covering
problem: scp41-2

Pr(t
BRKGA

 ≤ t
RKGA

) = 0.999 
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set k-covering
problem: scp45-11
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set k-covering
problem: scp45-11

Pr(t
BRKGA

 ≤ t
RKGA

) = 0.881 
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set k-covering
problem: scp48-7
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set k-covering
problem: scp48-7

Pr(t
BRKGA

 ≤ t
RKGA

) = 0.847
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Observations

• Random method: keys are randomly generated so 
solutions are always vectors of random keys
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Observations

• Random method: keys are randomly generated so 
solutions are always vectors of random keys

• Elitist strategy:  best solutions are passed without change 
from one generation to the next (incumbent is kept)
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Observations

• Random method: keys are randomly generated so 
solutions are always vectors of random keys

• Elitist strategy:  best solutions are passed without change 
from one generation to the next (incumbent is kept)

• Child inherits more characteristics of elite parent: 
one parent is always selected (with replacement) from the 
small elite set and probability that child inherits key of elite 
parent > 0.5   Not so in the RKGA of Bean. 
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Observations

• Random method: keys are randomly generated so 
solutions are always vectors of random keys

• Elitist strategy:  best solutions are passed without change 
from one generation to the next (incumbent is kept)

• Child inherits more characteristics of elite parent: 
one parent is always selected (with replacement) from the 
small elite set and probability that child inherits key of elite 
parent > 0.5   Not so in the RKGA of Bean. 

• No mutation in crossover: mutants are used instead 
(they play same role as mutation in GAs … help escape local 
optima) 
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Framework for biased random-key genetic algorithms

Generate P vectors 
of random keys 

Decode each vector 
of random keys 

Stopping rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions 
to next population

Generate mutants in 
next population

Combine elite and
non-elite solutions
and add children to

next population

no

stop

yes
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Framework for biased random-key genetic algorithms

Generate P vectors 
of random keys 

Decode each vector 
of random keys 

Stopping rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions 
to next population

Generate mutants in 
next population

Combine elite and
non-elite solutions
and add children to

next population

stop

Problem independent

no yes
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Framework for biased random-key genetic algorithms

Generate P vectors 
of random keys 

Decode each vector 
of random keys 

Stopping rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions 
to next population

Generate mutants in 
next population

Combine elite and
non-elite solutions
and add children to

next population

stop

Problem independent

no yes

Problem dependent
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Decoding of random key vectors can be done in parallel

Generate P vectors 
of random keys 

Decode each vector 
of random keys 

Stopping rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions 
to next population

Generate mutants in 
next population

Combine elite and
non-elite solutions
and add children to

next population

stop

no yes



UNIFESP – São José dos Campos ✤ March 27, 2013 BRKGA with applications in telecom

brkgaAPI: A C++ API for BRKGA

• Efficient and easy-to-use object oriented application 
programming interface (API) for the algorithmic framework 
of BRKGA.
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brkgaAPI: A C++ API for BRKGA

• Efficient and easy-to-use object oriented application 
programming interface (API) for the algorithmic framework 
of BRKGA.

• Cross-platform library handles large portion of problem 
independent modules that make up the framework, e.g.
– population management
– evolutionary dynamics
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brkgaAPI: A C++ API for BRKGA

• Efficient and easy-to-use object oriented application 
programming interface (API) for the algorithmic framework 
of BRKGA.

• Cross-platform library handles large portion of problem 
independent modules that make up the framework, e.g.
– population management
– evolutionary dynamics

• Implemented in C++ and may benefit from shared-memory 
parallelism if available.
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brkgaAPI: A C++ API for BRKGA

• Efficient and easy-to-use object oriented application 
programming interface (API) for the algorithmic framework 
of BRKGA.

• Cross-platform library handles large portion of problem 
independent modules that make up the framework, e.g.
– population management
– evolutionary dynamics

• Implemented in C++ and may benefit from shared-memory 
parallelism if available.

• User only needs to implement problem-dependent decoder.
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brkgaAPI: A C++ API for BRKGA

Paper: Rodrigo F. Toso and M.G.C.R., “A C++ 
Application Programming Interface for 
Biased Random-Key Genetic Algorithms,”  
AT&T Labs Technical Report, Florham Park, August 2011.

Software: http://www.research.att.com/~mgcr/src/brkgaAPI

http://www.research.att.com/
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Is a BRKGA any different from applying 
the decoder to random keys?

• Simulate a random multi-start decoding method 
with a BRKGA by setting size of elite partition to 
1 and number of mutants to P–1

• Each iteration, best solution is maintained in elite 
set and P–1random key vectors are generated as 
mutants … no mating is done since population 
already has P individuals
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solution
Network monitor location problem (opt = 23)

Time (ibm t41 secs)

BRKGA solutions Random multi-start solutions

Optimal value

best random solution
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BRKGA in multi-start strategy

   Generate P vectors 

of random keys 
Decode each vector 

of random keys 

Restart rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions 
to next population

Generate mutants in 
next population

Combine elite and
non-elite solutions
and add children to

next population

no
yes

begin

if incumbent
improved, update

incumbent

stopping
rule

satisfied ?

output
incumbent stop

yes

no
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Randomized heuristic iteration 
count distribution: constructed 
by independently running the 
algorithm a number of times, each 
time stopping when the algorithm 
finds a solution at least as good as a 
given target.  
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In most of the independent runs, the algorithm finds the target solution in 
relatively few iterations: 
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In most of the independent runs, the algorithm finds the target solution in 
relatively few iterations: 25% of the runs take fewer than 101 iterations
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In most of the independent runs, the algorithm finds the target solution in 
relatively few iterations: 50% of the runs take fewer than 192 iterations
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In most of the independent runs, the algorithm finds the target solution in 
relatively few iterations: 75% of the runs take fewer than 345 iterations
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However, some runs take much longer: 10% of the runs take over 1000 
iterations
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However, some runs take much longer:  5% of the runs take over 2000 
iterations
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However, some runs take much longer:  2% of the runs take over 9715 
iterations
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However, some runs take much longer:  the longest run took 11607 
iterations
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Probability that algorithm will take 
over 345 iterations: 25% = 1/4
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Probability that algorithm will take 
over 345 iterations: 25% = 1/4

By restarting algorithm after 345 
iterations, probability that new run  
will take over 690 iterations: 25% = 
1/4

Probability that algorithm with 
restart will take over 690 iterations: 
probability of taking over 345  X  
probability of taking over 690 
iterations given it took over 345 = 
¼ x ¼ = 1/42
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Probability that algorithm will still be 
running after K periods of 345 
iterations:  1/4K
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Probability that algorithm will still be 
running after K periods of 345 
iterations:  1/4K

For example, probability that 
algorithm with restart will still be 
running after 1725 iterations (5 
periods of 345 iterations):  1/45   
0.0977%

This is much less than the 5% 
probability that the algorithm 
without restart will take over 2000 
iterations. 
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Probability that algorithm will still be 
running after K periods of 345 
iterations:  1/4K

For example, probability that 
algorithm with restart will still be 
running after 1725 iterations (5 
periods of 345 iterations):  1/45   
0.0977%

This is much less than the 5% 
probability that the algorithm 
without restart will take over 2000 
iterations. 
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Restart strategies

• First proposed by Luby et al. (1993)
• They define a restart strategy as a finite sequence 

of time intervals  S = {
1
, 

2
, 

3
, … } which define 

epochs  
1
,   

1
+

2
,   

1
+

2
+

3
,  … when the 

algorithm is restarted from scratch.
• Luby et al. (1993) prove that the optimal restart 

strategy uses 
1
= 

2
= 

3
= … = *, where * is a 

constant.
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Restart strategies

• Luby et al. (1993)

• Kautz et al. (2002)

• Palubeckis (2004)

• Sergienko et al. (2004)

• Nowicki & Smutnicki (2005)

• D’Apuzzo et al. (2006)

• Shylo et al. (2011a)

• Shylo et al. (2011b)

• Resende & Ribeiro (2011)
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Restart strategy for BRKGA

• Recall the restart strategy of Luby et al. where equal time 
intervals 

1
= 

2
= 

3
= … = * pass between restarts.

• Strategy requires * as input.
• Since we have no prior information as to the runtime 

distribution of the heuristic, we run the risk of:
– choosing * too small:  restart variant may take long to 

converge
– choosing * too big:  restart variant may become like 

no-restart variant
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Restart strategy for BRKGA

• We conjecture that number of iterations between 
improvement of the incumbent (best so far) solution 
varies less w.r.t. heuristic/ instance/ target than run 
times.

• We propose the following restart strategy: Keep track of 
the last generation when the incumbent improved and 
restart BRKGA if K generations have gone by without 
improvement.

• We call this strategy restart(K)  
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Example of restart strategy for BRKGA: Load balancing

restart strategy: 
               restart(2000) no restart
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Specifying a BRKGA
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• Encoding is always done the same way, i.e. with a vector of 
N random-keys (parameter N must be specified)

Specifying a biased random-key GA
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• Encoding is always done the same way, i.e. with a vector of 
N random-keys (parameter N must be specified)

• Decoder that takes as input a vector of N random-keys and 
outputs the corresponding solution of the combinatorial 
optimization problem and its cost (this is usually a heuristic)

Specifying a biased random-key GA
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• Encoding is always done the same way, i.e. with a vector of 
N random-keys (parameter N must be specified)

• Decoder that takes as input a vector of N random-keys and 
outputs the corresponding solution of the combinatorial 
optimization problem and its cost (this is usually a heuristic)

• Parameters

Specifying a biased random-key GA
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Specifying a biased random-key GA

Parameters:
– Size of population

– Parallel population parameters

– Size of elite partition

– Size of mutant set

– Child inheritance probability

– Restart strategy parameter

– Stopping criterion
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Specifying a biased random-key GA

Parameters:
– Size of population:  a function of N, say N or 2N

– Parallel population parameters

– Size of elite partition

– Size of mutant set

– Child inheritance probability

– Restart strategy parameter

– Stopping criterion
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Specifying a biased random-key GA

Parameters:
– Size of population:  a function of N, say N or 2N

– Parallel population parameters: say, p = 3 , v  = 2, and x = 200

– Size of elite partition

– Size of mutant set

– Child inheritance probability

– Restart strategy parameter

– Stopping criterion
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Specifying a biased random-key GA

Parameters:
– Size of population:  a function of N, say N or 2N

– Parallel population parameters: say, p = 3 , v  = 2, and x = 200

– Size of elite partition: 15-25% of population

– Size of mutant set

– Child inheritance probability

– Restart strategy parameter

– Stopping criterion
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Specifying a biased random-key GA

Parameters:
– Size of population:  a function of N, say N or 2N

– Parallel population parameters: say, p = 3 , v  = 2, and x = 200

– Size of elite partition: 15-25% of population

– Size of mutant set: 5-15% of population

– Child inheritance probability

– Restart strategy parameter

– Stopping criterion
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Specifying a biased random-key GA

Parameters:
– Size of population:  a function of N, say N or 2N

– Parallel population parameters: say, p = 3 , v  = 2, and x = 200

– Size of elite partition: 15-25% of population

– Size of mutant set: 5-15% of population

– Child inheritance probability: > 0.5, say 0.7

– Restart strategy parameter

– Stopping criterion
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Specifying a biased random-key GA

Parameters:
– Size of population:  a function of N, say N or 2N

– Parallel population parameters: say, p = 3 , v  = 2, and x = 200

– Size of elite partition: 15-25% of population

– Size of mutant set: 5-15% of population

– Child inheritance probability: > 0.5, say 0.7

– Restart strategy parameter: a function of N, say 2N or 10N

– Stopping criterion
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Specifying a biased random-key GA

Parameters:
– Size of population:  a function of N, say N or 2N

– Parallel population parameters: say, p = 3 , v  = 2, and x = 200

– Size of elite partition: 15-25% of population

– Size of mutant set: 5-15% of population

– Child inheritance probability: > 0.5, say 0.7

– Restart strategy parameter: a function of N, say 2N or 10N

– Stopping criterion: e.g. time, # generations, solution quality,              
# generations without improvement
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Applications in 
telecommunications
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Three applications in telecommunications

• Routing in IP networks
• Design of survivable IP networks
• Redundant server location for content distribution
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OSPF routing in IP 
networks
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The Internet

• The Internet is composed of 
many (inter-connected) 
autonomous systems (AS).

• An AS is a network controlled 
by a single entity, e.g. ISP, 
university, corporation, 
country, ...
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Routing

• A packet is sent from a origination router S to a 
destination router T.

• S and T may be in
– same AS:  
– different ASes: 
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• A packet is sent from a origination router S to a 
destination router T.

• S and T may be in
– same AS:  IGP routing
– different ASes: 

Routing
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• A packet is sent from a origination router S to a 
destination router T.

• S and T may be in
– same AS:  IGP routing
– different ASes: BGP routing

Routing
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IGP Routing

• IGP (interior gateway 
protocol) routing is 
concerned with 
routing within an AS.

S

T

AS
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• IGP (interior gateway 
protocol) routing is 
concerned with 
routing within an AS.

S

T

AS

IGP Routing
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• IGP (interior gateway 
protocol) routing is 
concerned with 
routing within an AS.

S

T

AS

IGP Routing
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• IGP (interior gateway 
protocol) routing is 
concerned with 
routing within an AS.

S

T

AS

IGP Routing
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• IGP (interior gateway 
protocol) routing is 
concerned with 
routing within an AS.

S

T

AS

IGP Routing
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• IGP (interior gateway 
protocol) routing is 
concerned with 
routing within an AS.

S

T

AS

IGP Routing
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• IGP (interior gateway 
protocol) routing is 
concerned with 
routing within an AS.

• Routing decisions are 
made by AS operator.

S

T

AS

IGP Routing
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BGP Routing

• BGP (border gateway 
protocol) routing deals 
with routing between 
different ASes.

AS

AS

AS
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BGP Routing

• BGP (border gateway 
protocol) routing deals 
with routing between 
different ASes.

AS

AS

AS

Peering points

Peering points
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BGP Routing

• BGP (border gateway 
protocol) routing deals 
with routing between 
different ASes.

s

t

AS

AS

AS

Peering points

Peering points
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BGP Routing

• BGP (border gateway 
protocol) routing deals 
with routing between 
different ASes.

s

t

AS

AS

AS

Peering points

Peering points
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BGP Routing

• BGP (border gateway 
protocol) routing deals 
with routing between 
different ASes.

s

t

AS

AS

AS

Peering points

Peering points

Ingress point
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BGP Routing

• BGP (border gateway 
protocol) routing deals 
with routing between 
different ASes.

s

t

AS

AS

AS

Peering points

Peering points

Ingress point

Egress point
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BGP Routing

• BGP (border gateway 
protocol) routing deals 
with routing between 
different ASes.

s

t

AS

AS

AS

Peering points

Peering points

Ingress point

Egress point
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BGP Routing

• BGP (border gateway 
protocol) routing deals 
with routing between 
different ASes.

s

t

AS

AS

AS

Peering points

Peering points

Ingress point

Egress point
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IGP Routing
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OSPF routing

• Given a network G = (N,A), where N is the set of 
routers and A is the set of links. 
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• Given a network G = (N,A), where N is the set of 
routers and A is the set of links. 

• The OSPF (open shortest path first) routing 
protocol assumes each link a has a weight w(a) 
assigned to it so that a packet from a source 
router s to a destination router t is routed on a 
shortest weight path from s to t.

OSPF routing
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• Given a network G = (N,A), where N is the set of 
routers and A is the set of links. 

• The OSPF (open shortest path first) routing 
protocol assumes each link a has a weight w(a) 
assigned to it so that a packet from a source 
router s to a destination router t is routed on a 
shortest weight path from s to t.

s
t

OSPF routing
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s
t

OSPF routing
• Given a network G = (N,A), where N is the set of 

routers and A is the set of links. 
• The OSPF (open shortest path first) routing 

protocol assumes each link a has a weight w(a) 
assigned to it so that a packet from a source 
router s to a destination router t is routed on a 
shortest weight path from s to t.



UNIFESP – São José dos Campos ✤ March 27, 2013 BRKGA with applications in telecom

s
t

Traffic splitting

OSPF routing
• Given a network G = (N,A), where N is the set of 

routers and A is the set of links. 
• The OSPF (open shortest path first) routing 

protocol assumes each link a has a weight w(a) 
assigned to it so that a packet from a source 
router s to a destination router t is routed on a 
shortest weight path from s to t.
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OSPF routing
• By setting OSPF weights appropriately, one can do traffic 

engineering, i.e. route traffic so as to optimize some 
objective (e.g. minimize congestion, maximize 
throughput, etc.).

● Some recent papers on this topic:
– Fortz & Thorup (2000, 2004)
– Ramakrishnan & Rodrigues (2001)
– Sridharan, Guérin, & Diot (2002)
– Fortz, Rexford, & Thorup (2002)
– Ericsson, Resende, & Pardalos (2002)
– Buriol, Resende, Ribeiro, & Thorup (2002, 2005)
– Reis, Ritt, Buriol, & Resende (2011)
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● By setting OSPF weights appropriately, one can do 
traffic engineering, i.e. route traffic so as to optimize 
some objective (e.g. minimize congestion, maximize 
throughput, etc.).

• Some recent papers on this topic:

– Fortz & Thorup (2000, 2004)

– Ramakrishnan & Rodrigues (2001)

– Sridharan, Guérin, & Diot (2002)

– Fortz, Rexford, & Thorup (2002)

– Ericsson, Resende, & Pardalos (2002)

– Buriol, Resende, Ribeiro, & Thorup (2002, 2005)

– Reis, Ritt, Buriol & Resende (2011)

OSPF routing
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Packet routing

router

router

router

router

router

When packet arrives at router,
router must decide where to
send it next.

Packet’s final 
destination.

Routing consists in finding a
link-path from source to 
destination.

D1

D2

D3

D4

R1

R2

R3

R4 Routing table
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OSPF routing

• Assign an integer weight ∈ [1, wmax ] to each link 
in AS.   In general, wmax = 65535=216 −1.

• Each router computes tree of shortest weight 
paths to all other routers in the AS, with itself as 
the root, using Dijkstra’s algorithm.
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OSPF routing

321

35
1

2

4
6

D1

D2

D3

D4

R1

R1

R2

R3

root

First hop routers.

Routing table

Destination routers

Routing table is filled
with first hop routers
for each possible destination.

D5

D6

R1

R3
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OSPF routing
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OSPF routing
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OSPF routing
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D1

D2

D3

D4

R1

R1, R2

R2

R3

Routing table
Routing table is filled
with first hop routers
for each possible destination.
In case of multiple shortest 
paths, flow is evenly split.

D5

D6

R1

R3

321

35
1

2

4
6

First hop routers.

Destination routers

OSPF routing
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OSPF weight setting

• OSPF weights are assigned by network operator.
– CISCO assigns, by default, a weight proportional to the 

inverse of the link bandwidth (Inv Cap).
– If all weights are unit, the weight of a path is the number of 

hops in the path.

• We propose two BRKGA to find good OSPF weights.
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Minimization of congestion

• Consider the directed capacitated network G = (N,A,c), 
where N  are routers, A  are links, and ca is the capacity 
of link a ∈ A.

• We use the measure of Fortz & Thorup (2000) to 
compute congestion:

                   Φ = Φ1(l1) + Φ2(l2) + … + Φ|A|(l|A|) 
    where la  is the load on link a ∈ A, 

              Φa(la) is piecewise linear and convex,

              Φa(0) = 0, for all a ∈ A.
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Piecewise linear and convex Φa(la) 
link congestion measure 
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OSPF weight setting problem

• Given a directed network G = (N, A ) with link 
capacities ca ∈ A  and demand matrix D = (ds,t ) 
specifying a demand to be sent from node s  to   
node t :
– Assign weights wa ∈ [1, wmax ] to each link a ∈ A, 

such that the objective function Φ is minimized 
when demand is routed according to the OSPF 
protocol.
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BRKGA for OSPF routing in IP networks                     

M. Ericsson, M.G.C.R., & P.M. Pardalos, “A genetic 
algorithm for the weight setting problem in OSPF 
routing,” J. of Combinatorial Optimization, vol. 6, pp. 
299–333, 2002.

Tech report version:

              http://www2.research.att.com/~mgcr/doc/gaospf.pdf
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BRKGA for OSPF routing in IP networks                    
Ericsson, R., & Pardalos (J. Comb. Opt., 2002)

• Encoding:
– A vector X of N random keys, where N is the number of links. The 

i-th random key corresponds to the i-th link weight.
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BRKGA for OSPF routing in IP networks                    
Ericsson, R., & Pardalos (J. Comb. Opt., 2002)

• Encoding:
– A vector X of N random keys, where N is the number of links. The 

i-th random key corresponds to the i-th link weight.

• Decoding:
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BRKGA for OSPF routing in IP networks                    
Ericsson, R., & Pardalos (J. Comb. Opt., 2002)

• Encoding:
– A vector X of N random keys, where N is the number of links. The 

i-th random key corresponds to the i-th link weight.

• Decoding:
– For i = 1, …, N:  set w(i) = ceil ( X(i) × w

max
 )
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BRKGA for OSPF routing in IP networks                    
Ericsson, R., & Pardalos (J. Comb. Opt., 2002)

• Encoding:
– A vector X of N random keys, where N is the number of links. The 

i-th random key corresponds to the i-th link weight.

• Decoding:
– For i = 1, …, N:  set w(i) = ceil ( X(i) × w

max
 )

– Compute shortest paths and route traffic according to OSPF.
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BRKGA for OSPF routing in IP networks                    
Ericsson, R., & Pardalos (J. Comb. Opt., 2002)

• Encoding:
– A vector X of N random keys, where N is the number of links. The 

i-th random key corresponds to the i-th link weight.

• Decoding:
– For i = 1, …, N:  set w(i) = ceil ( X(i) × w

max
 )

– Compute shortest paths and route traffic according to OSPF.
– Compute load on each link, compute link congestion, add up all 

link congestions to compute network congestion.
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cost
GA solutions

Tier-1 ISP backbone network (90 routers, 274 links)

generation

LP lower 
bound
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Weight setting with GA
permits a 50% increase in
traffic volume w.r.t.  weight
setting with the Inverse 
Capacity rule.

Tier-1 ISP backbone network (90 routers, 274 links)
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Improved BRKGA for OSPF routing in IP networks             

        

L.S. Buriol, M.G.C.R., C.C. Ribeiro, and M. Thorup, “A 
hybrid genetic algorithm for the weight setting problem 
in OSPF/IS-IS routing,” Networks, vol. 46, pp. 36–56, 
2005.

Tech report version: 

            http://www2.research.att.com/~mgcr/doc/hgaospf.pdf
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Improved BRKGA for OSPF routing in IP networks          
Buriol, R., Ribeiro, and Thorup (Networks, 2005)

 Elite solutions

• Encoding:
– A vector X of N random keys, where N is the number of links. 

The i-th random key corresponds to the i-th link weight.
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Improved BRKGA for OSPF routing in IP networks          
Buriol, R., Ribeiro, and Thorup (Networks, 2005)

 Elite solutions

• Encoding:
– A vector X of N random keys, where N is the number of links. 

The i-th random key corresponds to the i-th link weight.

• Decoder:

– For i = 1, …, N:  set w(i) = ceil ( X(i) × w
max

 )

– Compute shortest paths and route traffic according to OSPF.
– Compute load on each link, compute link congestion, add up 

all link congestions to compute network congestion.
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Improved BRKGA for OSPF routing in IP networks          
Buriol, R., Ribeiro, and Thorup (Networks, 2005)

 Elite solutions

• Encoding:
– A vector X of N random keys, where N is the number of links. 

The i-th random key corresponds to the i-th link weight.

• Decoder:

– For i = 1, …, N:  set w(i) = ceil ( X(i) × w
max

 )

– Compute shortest paths and route traffic according to OSPF.
– Compute load on each link, compute link congestion, add up 

all link congestions to compute network congestion.
– Apply fast local search to improve weights.
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 Elite solutions

Mutant
solutions

X

Population K+1

Population K

 Elite solutions

Non-elite
solutions

Mutant
solutions

Local search

Decoder has a local search phase

Biased coin flip crossover



UNIFESP – São José dos Campos ✤ March 27, 2013 BRKGA with applications in telecom

Fast local search

• Let A* be the set of five arcs a ∈ A  having 
largest Φa values.
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Fast local search

• Let A* be the set of five arcs a ∈ A  having 
largest Φa values.

• Scan arcs a ∈ A* from largest to smallest Φa:
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Fast local search

• Let A* be the set of five arcs a ∈ A  having 
largest Φa values.

• Scan arcs a ∈ A* from largest to smallest Φa:

 Increase arc weight, one unit at a time, in the range  

      [wa , wa + (wmax – wa )/4 ]



UNIFESP – São José dos Campos ✤ March 27, 2013 BRKGA with applications in telecom

Fast local search

• Let A* be the set of five arcs a ∈ A  having 
largest Φa values.

• Scan arcs a ∈ A* from largest to smallest Φa:

 Increase arc weight, one unit at a time, in the range  

      [wa , wa + (wmax – wa )/4 ]
 If total cost Φ is reduced, restart local search.
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Effect of decoder with fast local search 
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Original: Ericsson, 
R., and Pardalos 
(2002)

Improved: Buriol, R., 
Ribeiro, and Thorup 
(2005)

LP lower bound
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Effect of decoder with fast local search 
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Improved BRKGA:
  Finds solutions faster

  Finds better solutions
Original: Ericsson, 
R., and Pardalos 
(2002)

Improved: Buriol, R., 
Ribeiro, and Thorup 
(2005)

LP lower bound
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Survivable IP 
network design
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Survivable IP network design                   

L.S. Buriol, M.G.C.R., and M. Thorup, “Survivable IP 
network design with OSPF routing,” Networks, vol. 49, 
pp. 51–64, 2007.

Tech report version:

          http://www2.research.att.com/~mgcr/doc/gamult.pdf
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Survivable IP network design
Buriol, R., & Thorup (Networks, 2007)

• Given 
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Survivable IP network design
Buriol, R., & Thorup (Networks, 2007)

• Given 
– directed graph G = (N,A), where 

N is the set of routers, A is the 
set of potential arcs where 
capacity can be installed, 
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Survivable IP network design
Buriol, R., & Thorup (Networks, 2007)

• Given 
– directed graph G = (N,A), where 

N is the set of routers, A is the 
set of potential arcs where 
capacity can be installed, 

– a demand matrix D that for 
each pair (s,t) ∈ N×N, specifies 
the demand D(s,t) between s 
and t,
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Survivable IP network design
Buriol, R., & Thorup (Networks, 2007)

• Given 
– directed graph G = (N,A), where 

N is the set of routers, A is the 
set of potential arcs where 
capacity can be installed, 

– a demand matrix D that for 
each pair (s,t) ∈ N×N, specifies 
the demand D(s,t) between s 
and t,

– a cost K(a) to lay fiber on arc a 
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Survivable IP network design
Buriol, R., & Thorup (Networks, 2007)

• Given 
– directed graph G = (N,A), where 

N is the set of routers, A is the 
set of potential arcs where 
capacity can be installed, 

– a demand matrix D that for 
each pair (s,t) ∈ N×N, specifies 
the demand D(s,t) between s 
and t,

– a cost K(a) to lay fiber on arc a 

– a capacity increment C for the 
fiber.
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Survivable IP network design
Buriol, R., & Thorup (Networks, 2007)

• Given 
– directed graph G = (N,A), where 

N is the set of routers, A is the 
set of potential arcs where 
capacity can be installed, 

– a demand matrix D that for 
each pair (s,t) ∈ N×N, specifies 
the demand D(s,t) between s 
and t,

– a cost K(a) to lay fiber on arc a 

– a capacity increment C for the 
fiber.

• Determine 
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Survivable IP network design
Buriol, R., & Thorup (Networks, 2007)

• Given 
– directed graph G = (N,A), where 

N is the set of routers, A is the 
set of potential arcs where 
capacity can be installed, 

– a demand matrix D that for 
each pair (s,t) ∈ N×N, specifies 
the demand D(s,t) between s 
and t,

– a cost K(a) to lay fiber on arc a 

– a capacity increment C for the 
fiber.

• Determine 
– OSPF weight w(a) to assign to each 

arc a ∈ A,
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Survivable IP network design
Buriol, R., & Thorup (Networks, 2007)

• Given 
– directed graph G = (N,A), where 

N is the set of routers, A is the 
set of potential arcs where 
capacity can be installed, 

– a demand matrix D that for 
each pair (s,t) ∈ N×N, specifies 
the demand D(s,t) between s 
and t,

– a cost K(a) to lay fiber on arc a 

– a capacity increment C for the 
fiber.

• Determine 
– OSPF weight w(a) to assign to each 

arc a ∈ A,

– which arcs should be used to deploy 
fiber and how many units 
(multiplicities) M(a) of capacity C 
should be installed on each arc          
a ∈ A,
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Survivable IP network design
Buriol, R., & Thorup (Networks, 2007)

• Given 
– directed graph G = (N,A), where 

N is the set of routers, A is the 
set of potential arcs where 
capacity can be installed, 

– a demand matrix D that for 
each pair (s,t) ∈ N×N, specifies 
the demand D(s,t) between s 
and t,

– a cost K(a) to lay fiber on arc a 

– a capacity increment C for the 
fiber.

• Determine 
– OSPF weight w(a) to assign to each 

arc a ∈ A,

– which arcs should be used to deploy 
fiber and how many units 
(multiplicities) M(a) of capacity C 
should be installed on each arc          
a ∈ A,

• such that all the demand can be routed 
on the network even when any single 
arc fails.
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Survivable IP network design
Buriol, R., & Thorup (Networks, 2007)

• Given 
– directed graph G = (N,A), where 

N is the set of routers, A is the 
set of potential arcs where 
capacity can be installed, 

– a demand matrix D that for 
each pair (s,t) ∈ N×N, specifies 
the demand D(s,t) between s 
and t,

– a cost K(a) to lay fiber on arc a 

– a capacity increment C for the 
fiber.

• Determine 
– OSPF weight w(a) to assign to each 

arc a ∈ A,

– which arcs should be used to deploy 
fiber and how many units 
(multiplicities) M(a) of capacity C 
should be installed on each arc          
a ∈ A,

• such that all the demand can be routed 
on the network even when any single 
arc fails.

• Min total design cost = ∑
a∈A 

M(a)×K(a). 
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Survivable IP network design

 Elite solutions

• Encoding:
– A vector X of N random keys, where N is the number of links. The 

i-th random key corresponds to the i-th link weight.
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• Encoding:
– A vector X of N random keys, where N is the number of links. The 

i-th random key corresponds to the i-th link weight.

• Decoder:
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Survivable IP network design

 Elite solutions

• Encoding:
– A vector X of N random keys, where N is the number of links. The 

i-th random key corresponds to the i-th link weight.

• Decoder:
– For i = 1, …, N:  set w(i) = ceil ( X(i) × w

max
 )
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Survivable IP network design

 Elite solutions

• Encoding:
– A vector X of N random keys, where N is the number of links. The 

i-th random key corresponds to the i-th link weight.

• Decoder:
– For i = 1, …, N:  set w(i) = ceil ( X(i) × w

max
 )

– For each failure mode:  route demand according to OSPF and for 
each arc a∈A determine the load on arc a. 
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Survivable IP network design

 Elite solutions

• Encoding:
– A vector X of N random keys, where N is the number of links. The 

i-th random key corresponds to the i-th link weight.

• Decoder:
– For i = 1, …, N:  set w(i) = ceil ( X(i) × w

max
 )

– For each failure mode:  route demand according to OSPF and for 
each arc a∈A determine the load on arc a. 

– For each arc a∈A, determine the multiplicity M(a) using the 
maximum load for that arc over all failure modes. 
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Survivable IP network design

 Elite solutions

• Encoding:
– A vector X of N random keys, where N is the number of links. The 

i-th random key corresponds to the i-th link weight.

• Decoder:
– For i = 1, …, N:  set w(i) = ceil ( X(i) × w

max
 )

– For each failure mode:  route demand according to OSPF and for 
each arc a∈A determine the load on arc a. 

– For each arc a∈A, determine the multiplicity M(a) using the 
maximum load for that arc over all failure modes. 

– Network design cost = ∑
a∈A 

 M(a) ×  K(a)
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Computing the “fitness” of a solution
(single link failure case)

Determine load L(a)
 on each arc a ∈A.

For each arc a ∈A, set 
maxL(a) =  max{L(a), maxL(a)}

For each arc e ∈A,
compute M(a)

Route all demand
on shortest 
path graph

Determine load L(a)
 on each arc a ∈A.

For each arc a ∈A,
set maxL(a) = 

max{L(a),maxL(a)}

For each arc e ∈A,
remove arc e from 

network G.

Compute shortest
path graph on 

G \ {e}

Route all demand
on shortest 
path graph

For each arc  a ∈A, set 
M(a) = 1; maxL(a) = –∞ 

Any M(a)
changed?

yes

no, then stop
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Composite-link design

• In Buriol, R., and Thorup (2006)
– links were all of the same type,
– only the link multiplicity had to be determined.

● Now consider composite links. Given a load L(a) on arc a, we 
can compose several different link types that sum up to the 
needed capacity c(a) ≥ L(a):

– c(a) = ∑
t used in arc a 

M(t) × γ(t), where

– M(t) is the multiplicity of link type t
– γ(t) is the capacity of link type t
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● In Buriol, Resende, and Thorup (2006)
– links were all of the same type,
– only the link multiplicity had to be determined.

• Now consider composite links. Given a load L(a) on arc a, we 
can compose several different link types that sum up to the 
needed capacity c(a) ≥ L(a):

– c(a) = ∑
t used in arc a 

M(t) × γ(t), where

– M(t) is the multiplicity of link type t

– γ(t) is the capacity of link type t

Composite-link design
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D.V. Andrade, L.S. Buriol,  M.G.C.R., and M. Thorup, 
“Survivable composite-link IP network design with OSPF 
routing,” The Eighth INFORMS Telecommunications 
Conference, Dallas, Texas, April 2006.

Tech report:

                       
http://www2.research.att.com/~mgcr/doc/composite.pdf

Composite-link design
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• Link types = { 1, 2, ..., T }
• Capacities = { c(1), c(2), ..., c(T) } : c(i) < c(i+1)
• Prices / unit length = { p(1), p(2), ..., p(T) }: p(i) < p(i+1)
● Assumptions:

– [p(T)/c(T)] < [p(T–1)/c(T–1)] < ··· < [p(1)/c(1)], i.e. price 
per unit of capacity is smaller for links with greater capacity

– c(i) = α × c(i–1), for α ∈ N, α > 1, i.e. capacities are 
multiples of each other by powers of α

Composite-link design
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• Link types = { 1, 2, ..., T }
• Capacities = { c(1), c(2), ..., c(T) } : c(i) < c(i+1)
• Prices / unit length = { p(1), p(2), ..., p(T) }: p(i) < p(i+1)
• Assumptions:

– [p(T)/c(T)] < [p(T–1)/c(T–1)] < ··· < [p(1)/c(1)], i.e. price 
per unit of capacity is smaller for links with greater capacity

– c(i) = α × c(i–1), for α ∈ N, α > 1, i.e. capacities are 
multiples of each other by powers of α

Composite-link design
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• Link types = { 1, 2, ..., T }
• Capacities = { c(1), c(2), ..., c(T) } : c(i) < c(i+1)
• Prices / unit length = { p(1), p(2), ..., p(T) }: p(i) < p(i+1)
• Assumptions:

– [p(T)/c(T)] < [p(T–1)/c(T–1)] < ··· < [p(1)/c(1)]: economies of 
scale

– c(i) = α × c(i–1), for α ∈ N, α > 1,  e.g.                       
c(OC192) = 4 × c(OC48);  c(OC48) = 4 × c(OC12);       
c(OC12) = 4 × c(OC3);

OC3 OC192OC48OC12
155 Mb/s 10 Gb/s 2.5 Gb/s 622 Mb/s α = 4 

Composite-link design
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Survivable composite link IP network design

 Elite solutions

• Encoding:
– A vector X of N random keys, where N is the number of links. The 

i-th random key corresponds to the i-th link weight.
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Survivable composite link IP network design

 Elite solutions

• Encoding:
– A vector X of N random keys, where N is the number of links. The 

i-th random key corresponds to the i-th link weight.

• Decoder:
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Survivable composite link IP network design

 Elite solutions

• Encoding:
– A vector X of N random keys, where N is the number of links. The 

i-th random key corresponds to the i-th link weight.

• Decoder:
– For i = 1, …, N:  set w(i) = ceil ( X(i) × w

max
 )
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Survivable composite link IP network design

 Elite solutions

• Encoding:
– A vector X of N random keys, where N is the number of links. The 

i-th random key corresponds to the i-th link weight.

• Decoder:
– For i = 1, …, N:  set w(i) = ceil ( X(i) × w

max
 )

– For each failure mode:  route demand according to OSPF and for 
each arc i∈A determine the load on arc i. 
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Survivable composite link IP network design

 Elite solutions

• Encoding:
– A vector X of N random keys, where N is the number of links. The 

i-th random key corresponds to the i-th link weight.

• Decoder:
– For i = 1, …, N:  set w(i) = ceil ( X(i) × w

max
 )

– For each failure mode:  route demand according to OSPF and for 
each arc i∈A determine the load on arc i. 

– For each arc i∈A, determine the multiplicity M(t,i) for each link 
type t using the maximum load for that arc over all failure modes. 
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Survivable composite link IP network design

 Elite solutions

• Encoding:
– A vector X of N random keys, where N is the number of links. The 

i-th random key corresponds to the i-th link weight.

• Decoder:
– For i = 1, …, N:  set w(i) = ceil ( X(i) × w

max
 )

– For each failure mode:  route demand according to OSPF and for 
each arc i∈A determine the load on arc i. 

– For each arc i∈A, determine the multiplicity M(t,i) for each link 
type t using the maximum load for that arc over all failure modes. 

– Network design cost = ∑
i∈A 

 ∑
t used in arc i 

M(t,i) ×  p(t)
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Computing the “fitness” of a solution
(single link failure case)

Set k = T

Input 
load L

Use as many as 
possible ( L/c(k) ) of 

type k links without 
exceeding the load L

Compute cost π(k) of
satisfying remaining
load with link type k

 Set k = k – 1

Let k*=argmin { π(k) }

yes

no

Update load: 
L = L – L/c(k)

Release links of types
k*– 1, ..., 1 and use

 L/c(k*) of type k* links

done

k = 0 ?
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Redundant content 
distribution
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Reference:
    L. Breslau, I. Diakonikolas, N. Duffield,        

Y. Gu, M. Hajiaghayi, D.S. Johnson,           
H. Karloff, M.G.C.R., and S. Sen, 
“Disjoint-path facility location: Theory and 
practice,” Proceedings of the Thirteenth 
Workshop on Algorithm Engineering and 
Experiments (ALENEX11), SIAM, San 
Francisco,          pp. 60–74, January 22, 
2011               

       
      

Tech report version:

http://www2.research.att.com/~mgcr/doc/monitoring-alenex.pdf
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Redundant content distribution (RCD)

• Suppose a number of users located at nodes in a 
network demand content.
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Redundant content distribution

• Suppose a number of users located at nodes in a 
network demand content.

• Copies of content are stored throughout the 
network in data warehouses. 

• Content is sent from data warehouse to user on 
routes determined by OSPF.

• Problem: Locate minimum number of 
warehouses in network such all users get their 
content even in presence of edge failures. 
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Redundant content distribution

ts

Traffic from node s to node t flows on paths defined by OSPF.
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Redundant content distribution

ts

We don't know on which path a particular packet will flow.
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Redundant content distribution

ts

We say traffic from node s to node t is interrupted if any edge
in one of the paths from s to t fails. 

X
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We say traffic from source nodes s
a
 and s

b
 to 

node t is interrupted if any common edge
in one of the paths from s

a
 to t and s

b
 to t fails. 

ts
a

s
b

X
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If all paths from source node s
a
 to node t are 

disjoint from all paths from node s
b
 to t, then 

traffic to t will never be interrupted for any single 
edge failure. 

ts
a

s
b
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Redundant content distribution

Suppose nodes b
1
, b

2
, ... want some 

content (e.g. video).

We want the smallest set S of 
servers such that:

for every b
i 
 there exist m

1
, m

2 
∈ S 

both of which can provide content 
to b

i

and all paths m
1
  b are disjoint 

with all paths m
2
  b  

b
1

m
1

m
2

m
3

b
2

m
4

b
3

b
4
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Redundant content distribution

• Given: 
– A directed network G = (V, E);
– A set of nodes B  V where content-demanding 

users are located; 
– A set of nodes M  V where content warehouses can 

be located; 

– The set of all OSPF paths from m to b, for m
 
 M and 

b  B.
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Redundant content distribution

• Compute: 
– The set of triples { m

1
, m

2
, b }i, i = 1, 2, …, T, such 

that all paths from m
1
 to b and from m

2 
to b are 

disjoint, where m
1
, m

2 
 M and b  B.

– Note that if BM ∅, then some triples will be of 
the type { b, b, b }, where bBM, i.e. a data 
warehouse that is co-located with a user can provide 
content to the user by itself.
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Redundant content distribution

• Solve the covering by pairs problem: 
– Find a smallest-cardinality set M* M such that for all 

b  B, there exists a triple { m
1
, m

2
, b } in the set of 

triples such that m
1
, m

2 
 M*.
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Greedy algorithm for covering by pairs

• initialize partial cover M* = { }
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Greedy algorithm for covering by pairs

• initialize partial cover M* = { }
• while M* is not a cover do:

– find m  M \ M* such that M*  {m} covers a maximum 
number of additional user nodes (break ties by vertex 
index) and set M* = M*  {m}
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Greedy algorithm for covering by pairs

• initialize partial cover M* = { }
• while M* is not a cover do:

– find m  M \ M* such that M*  {m} covers a maximum 
number of additional user nodes (break ties by vertex 
index) and set M* = M*  {m}

– if no m  M \ M* yields an increase in coverage, then 
choose a pair {m

1
,m

2
}

 
 M \ M* that yields a maximum 

increase in coverage and set M* = M*  {m
1
}  {m

2
}
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Greedy algorithm for covering by pairs

• initialize partial cover M* = { }
• while M* is not a cover do:

– find m  M \ M* such that M*  {m} covers a maximum 
number of additional user nodes (break ties by vertex 
index) and set M* = M*  {m}

– if no m  M \ M* yields an increase in coverage, then 
choose a pair {m

1
,m

2
}

 
 M \ M* that yields a maximum 

increase in coverage and set M* = M*  {m
1
}  {m

2
}

– if no pair exists, then the problem is infeasible
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BRKGA for 
redundant content 

distribution
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BRKGA for the RCD problem
• Encoding: 

– A vector X of N keys randomly generated in the real 
interval (0,1], where N = |M| is the number of potential 
data warehouse nodes. The i-th random key corresponds 
to the i-th potential data warehouse node.
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interval (0,1], where N = |M| is the number of potential 
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to the i-th potential data warehouse node.

• Decoder: 
– For i = 1, …, N:  if X(i) > ½, add i-th data warehouse 

node to solution
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BRKGA for the RCD problem
• Encoding: 

– A vector X of N keys randomly generated in the real 
interval (0,1], where N = |M| is the number of potential 
data warehouse nodes. The i-th random key corresponds 
to the i-th potential data warehouse node.

• Decoder: 
– For i = 1, …, N:  if X(i) > ½, add i-th data warehouse 

node to solution
– If solution is feasible, i.e. all users are covered: STOP
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BRKGA for the RCD problem
• Encoding: 

– A vector X of N keys randomly generated in the real 
interval (0,1], where N = |M| is the number of potential 
data warehouse nodes. The i-th random key corresponds 
to the i-th potential data warehouse node.

• Decoder: 
– For i = 1, …, N:  if X(i) > ½, add i-th data warehouse 

node to solution
– If solution is feasible, i.e. all users are covered: STOP
– Else, apply greedy algorithm to cover uncovered user 

nodes.
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BRKGA for the RCD problem

• Size of population: N (number of monitoring nodes)
• Size of elite set: 15% of N
• Size of mutant set: 10% of N
• Biased coin probability: 70%
• Stop after N generations without improvement of 

best found solution
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Another application: Host placement 
for end-to-end monitoring

• Internet service provider (ISP) delivers virtual private 
network (VPN) service to customers.



UNIFESP – São José dos Campos ✤ March 27, 2013 BRKGA with applications in telecom

Another application: Host placement 
for end-to-end monitoring

• Internet service provider (ISP) delivers virtual private 
network (VPN) service to customers.

• The ISP agrees to send traffic between locations specified 
by the customer and promises to provide certain level of 
service on the connections.



UNIFESP – São José dos Campos ✤ March 27, 2013 BRKGA with applications in telecom

Another application: Host placement 
for end-to-end monitoring

• Internet service provider (ISP) delivers virtual private 
network (VPN) service to customers.

• The ISP agrees to send traffic between locations specified 
by the customer and promises to provide certain level of 
service on the connections.

• A key service quality metric is packet loss rate.
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Another application: Host placement 
for end-to-end monitoring

• Internet service provider (ISP) delivers virtual private 
network (VPN) service to customers.

• The ISP agrees to send traffic between locations specified 
by the customer and promises to provide certain level of 
service on the connections.

• A key service quality metric is packet loss rate.
• We want to minimize the number of monitoring equipment 

placed in the network to measure packet loss rate: This is a 
type of covering by pairs problem.
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Time (ibm t41 secs)

solution
n100-i2-m100-b100 (opt = 23)

BRKGA solutions Random multi-start solutions

Optimal value
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Real-world instance derived from a proprietary Tier-1
Internet Service Provider (ISP) backbone network using 
OSPF for routing.
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Size of network:  about 1000 nodes, where almost all can
store content and about 90% have content-demanding users.
Over 45 million triples.
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Concluding 
remarks
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Concluding remarks
• A small modification of Bean's RKGA results in a BRKGA.

• Though small, this modification, leads to significant 
performance improvements.

• BRKGA are true metaheuristics: they coordinate simple 
heuristics and produce better solutions than the simple 
heuristics alone.

• Problem independent module of a BRKGA needs to be 
implemented once and can be reused for a wide range of 
problems.  User can focus on problem dependent module.

• BRKGA heuristics are highly parallelizable.  Calls to decoder 
are independent.
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Concluding remarks
• BRKGA have been applied in a wide range of application 

areas, including scheduling, packing, cutting, tollbooth 
assignment, ...
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Concluding remarks
• BRKGA have been applied in a wide range of application 

areas, including scheduling, packing, cutting, tollbooth 
assignment, ...

• We have had only a small glimpse at BRKGA applications to 
problems arising in telecommunications.

• The BRKGAs described in this talk are all state-of-the-art 
heuristics for these applications

• We are currently working on a number of other applications 
in telecommunications, including the degree-constrained  
and the capacitated spanning tree problems and a 
metropolitan network design problem. 
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Thanks!
These slides and all of the papers cited in this talk 
can be downloaded from my homepage:

http://www2.research.att.com/~mgcr
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