
 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial
Tutorial given at CLAIO/SBPO 2012
Rio de Janeiro, Brazil ✤ September 2012

Biased random-key genetic
algorithms: A tutorial

Mauricio G. C. Resende
AT&T Labs Research
Florham Park, New Jersey

mgcr@research.att.com

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

AT&T Shannon Laboratory
Florham Park, New Jersey

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Summary: Day 1
• Basic concepts of combinatorial and continuous global optimization

• Basic concepts of genetic algorithms

• Random-key genetic algorithm of Bean (1994)

• Biased random-key genetic algorithms (BRKGA)
– Encoding / Decoding

– Initial population

– Evolutionary mechanisms

– Problem independent / problem dependent components

– Multi-start strategy

– Restart strategy

– Multi-population strategy

– Specifying a BRKGA

• Application programming interface (API) for BRKGA

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Summary: Day 2

• Applications of BRKGA
– Set covering
– Packing rectangles
– Packet routing on the Internet
– Handover minimization in mobility networks
– Continuous global optimization

• Overview of literature & concluding remarks

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Combinatorial and
Continuous Global
Optimization

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Combinatorial Optimization

Combinatorial optimization: process of finding the
best, or optimal, solution for problems with a discrete set
of feasible solutions.

 Applications: routing, scheduling, packing, inventory and
production management, location, logic, and assignment of
resources, among many others.

Economic impact: transportation (airlines, trucking, rail,
and shipping), forestry, manufacturing, logistics, aerospace,
energy (electrical power, petroleum, and natural gas),
agriculture, biotechnology, financial services, and
telecommunications, among many others.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Combinatorial Optimization

Given:
discrete set of feasible solutions X
objective function f(x): x  X  R

Objective (minimization):
find x  X : f(x) ≤ f(y),  y  X

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Combinatorial Optimization

Much progress in recent years on finding
exact (provably optimal) solutions: dynamic
programming, cutting planes, branch and
cut, …
Many hard combinatorial optimization
problems are still not solved exactly and
require good solution methods.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Combinatorial Optimization

Approximation algorithms are guaranteed to
find in polynomial-time a solution within a
given factor of the optimal.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Combinatorial Optimization

Approximation algorithms are guaranteed to
find in polynomial-time a solution within a
given factor of the optimal.
Sometimes the factor is too big, i.e. guaranteed
solutions may be far from optimal
Some optimization problems (e.g. max clique,
covering by pairs) cannot have approximation
schemes unless P=NP

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Combinatorial Optimization

Aim of heuristic methods for combinatorial
optimization is to quickly produce good-
quality solutions, without necessarily
providing any guarantee of solution quality.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Continuous Global Optimization

Given:
continuous set of feasible solutions X
objective function f(x): x  X  R

Objective (minimization):
find x  X : f(x) ≤ f(y),  y  X

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Continuous Global Optimization

Given:
continuous set of feasible solutions X
objective function f(x): x  X  R

Objective (minimization):
find x  X : f(x) ≤ f(y),  y  X

f(x) can be well-behaved or
not, e.g. it can be
non-convex, discontinuous,
non-differentiable, a black-box,
etc.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Continuous Box-Constrained Global
Optimization

Here, the continuous set of solutions

 X = [l

1
,u

1
] × [l

2
,u

2
] × ⋯ × [l

n
,u

n
]

is a hyper-rectangle, i.e. variables have lower and
upper bounds.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Metaheuristics

Metaheuristics are heuristics to devise heuristics.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Metaheuristics

Metaheuristics are high level procedures that coordinate
simple heuristics, such as local search, to find solutions that
are of better quality than those found by the simple heuristics
alone.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Metaheuristics

Metaheuristics are high level procedures that coordinate
simple heuristics, such as local search, to find solutions that
are of better quality than those found by the simple heuristics
alone.

Examples: GRASP and C-GRASP, simulated annealing,
genetic algorithms, tabu search, scatter search, ant colony
optimization, variable neighborhood search, and biased
random-key genetic algorithms (BRKGA).

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Genetic algorithms

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Genetic algorithms

Individual: solution

Adaptive methods that are used to solve search
and optimization problems.

Holland (1975)

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Genetic algorithms

Individual: solution (chromosome = string of genes)
Population: set of fixed number of individuals

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Genetic algorithms evolve population applying
Darwin's principle of survival of the fittest.

Genetic algorithms

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Genetic algorithms evolve population applying
Darwin's principle of survival of the fittest.

A series of generations are produced by
the algorithm. The most fit individual of the
last generation is the solution.

Genetic algorithms

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Genetic algorithms evolve population applying
Darwin's principle of survival of the fittest.

A series of generations are produced by
the algorithm. The most fit individual of the
last generation is the solution.

Individuals from one generation are combined
to produce offspring that make up next
generation.

Genetic algorithms

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Probability of selecting individual to mate
is proportional to its fitness: survival of the
fittest.

a

b

Genetic algorithms

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

a

b

Parents drawn from
generation K

c

Child in
generation K+1

Probability of selecting individual to mate
is proportional to its fitness: survival of the
fittest.

Genetic algorithms

a

b

Combine
parents

c

mutation

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Crossover and mutation

a

b

Combine
parents

 c

mutation

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Crossover and mutation

a

b

Combine
parents

 c

mutation

Crossover: Combines parents … passing along to offspring
 characteristics of each parent …
 Intensification of search

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Crossover and mutation

a

b

Combine
parents

 c

mutation

Mutation: Randomly changes chromosome of offspring ...
 Driver of evolutionary process ...
 Diversification of search

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Evolution of solutions

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Evolution of solutions

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Evolution of solutions

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Evolution of solutions

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Evolution of solutions

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Evolution of solutions

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Evolution of solutions

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Evolution of solutions

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Encoding solutions
with random keys

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Encoding with random keys

• A random key is a real random number in the
continuous interval [0,1).

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Encoding with random keys

• A random key is a real random number in the
continuous interval [0,1).

• A vector X of random keys, or simply random
keys, is an array of n random keys.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Encoding with random keys

• A random key is a real random number in the
continuous interval [0,1).

• A vector X of random keys, or simply random
keys, is an array of n random keys.

• Solutions of optimization problems can be
encoded by random keys.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Encoding with random keys

• A random key is a real random number in the
continuous interval [0,1).

• A vector X of random keys, or simply random
keys, is an array of n random keys.

• Solutions of optimization problems can be
encoded by random keys.

• A decoder is a deterministic algorithm that takes
a vector of random keys as input and outputs a
solution of the optimization problem.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Encoding with random keys: Sequencing

Encoding
 [1, 2, 3, 4, 5]

 X = [0.099, 0.216, 0.802, 0.368, 0.658]

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Encoding with random keys: Sequencing

Encoding
 [1, 2, 3, 4, 5]

 X = [0.099, 0.216, 0.802, 0.368, 0.658]

Decode by sorting vector of random keys

 [1, 2, 4, 5, 3]

 X = [0.099, 0.216, 0.368, 0.658, 0.802]

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Encoding with random keys: Sequencing

Encoding
 [1, 2, 3, 4, 5]

 X = [0.099, 0.216, 0.802, 0.368, 0.658]

Decode by sorting

 [1, 2, 4, 5, 3]

 X = [0.099, 0.216, 0.368, 0.658, 0.802]

Therefore, the vector of random keys:

X = [0.099, 0.216, 0.802, 0.368, 0.658]

encodes the sequence: 1– 2 – 4 – 5 – 3

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Encoding with random keys: Subset
selection (select 3 of 5 elements)

Encoding
 [1, 2, 3, 4, 5]

 X = [0.099, 0.216, 0.802, 0.368, 0.658]

Decode by sorting vector of random keys

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Encoding with random keys: Subset
selection (select 3 of 5 elements)

Encoding
 [1, 2, 3, 4, 5]

 X = [0.099, 0.216, 0.802, 0.368, 0.658]

Decode by sorting vector of random keys

 [1, 2, 4, 5, 3]

 X = [0.099, 0.216, 0.368, 0.658, 0.802]Encoding

Decode by sorting vector of random keys

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Encoding with random keys: Subset
selection (select 3 of 5 elements)

Encoding
 [1, 2, 3, 4, 5]

 X = [0.099, 0.216, 0.802, 0.368, 0.658]

Decode by sorting vector of random keys

 [1, 2, 4, 5, 3]

 X = [0.099, 0.216, 0.368, 0.658, 0.802]Encoding
Therefore, the vector of random keys:

X = [0.099, 0.216, 0.802, 0.368, 0.658]

encodes the subset: {1, 2, 4 }

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Encoding with random keys: Assigning integer
weights  [0,10] to a subset of 3 of 5 elements

Encoding
 [1, 2, 3, 4, 5 | 1, 2, 3, 4, 5]

 X = [0.099, 0.216, 0.802, 0.368, 0.658 | 0.4634, 0.5611, 0.2752, 0.4874, 0.0348]

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Encoding with random keys: Assigning integer
weights  [0,10] to a subset of 3 of 5 elements

Encoding
 [1, 2, 3, 4, 5 | 1, 2, 3, 4, 5]

 X = [0.099, 0.216, 0.802, 0.368, 0.658 | 0.4634, 0.5611, 0.2752, 0.4874, 0.0348]

Decode by sorting the first 5 keys and assign as the weight the value
W

i
 = floor [10 X

5+i
] + 1 to the 3 elements with smallest keys X

i
, for

 i =1,...,5.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Encoding with random keys: Assigning integer
weights  [0,10] to a subset of 3 of 5 elements

Encoding
 [1, 2, 3, 4, 5 | 1, 2, 3, 4, 5]

 X = [0.099, 0.216, 0.802, 0.368, 0.658 | 0.4634, 0.5611, 0.2752, 0.4874, 0.0348]

Decode by setting sorting the first 5 keys and assign

the element weight to W
i
 = floor [11 X

5+i
] to the 3 elements with

smallest keys X
i
, for i =1,...,5.

Therefore, the vector of random keys:

X = [0.099, 0.216, 0.802, 0.368, 0.658 | 0.4634, 0.5611, 0.2752, 0.4874, 0.0348]

encodes the weight vector W = (5,6,–,5,–)

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Chromosome adjustment

Chromosome adjustment is useful in the case of
complex decoders, e.g. those which have a local
search module.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

original
random key vector

phase 1
of

decoder

local
search

of
decoder

feasible
solution

decoder

adjusted
random key vector

phase 1
of

decoder

local
search

of
decoder

local
optimum

local
optimum

decoder

adjusted
random key vector

local
optimum

local
optimum

chromosome adjustment

original
random key vector

Chromosome
adjustment

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Flow 1 2 3

1 20 30

2 20 40

3 30 40

Dist 1 2 3

1 10 1

2 10 5

3 1 5

Quadratic assignment problem

original
random key vector:

(.83, .81, .72)

phase 1
of

decoder

3 →1
2 →2
1 →3

cost = f(1,2)  d(3,2) +
 f(1,3)  d(3,1) +
 f(2,3)  d(2,1) =
 100 + 30 + 400 = 530

3 →1
2 →2
1 →3

local
search

of
decoder

3 →1
2 →3
1 →2

local search swapped locations of
facilities 1 and 2, resulting in
cost = 200

adjusted
random key vector:

(.81, .83, .72)

Chromosome
adjustment

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Flow 1 2 3

1 20 30

2 20 40

3 30 40

Dist 1 2 3

1 10 1

2 10 5

3 1 5

adjusted
random key vector:

(.81, .83, .72)

phase 1
of

decoder

3 →1
2 →3
1 →2

cost = f(1,2)  d(2,3) +
 f(1,3)  d(2,1) +
 f(2,3)  d(3,1) =
 100 + 60 + 40 = 200

Quadratic assignment problem Chromosome
adjustment

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Flow 1 2 3

1 20 30

2 20 40

3 30 40

Dist 1 2 3

1 10 1

2 10 5

3 1 5

adjusted
random key vector:

(.81, .83, .72)

phase 1
of

decoder

3 →1
2 →3
1 →2

cost = f(1,2)  d(2,3) +
 f(1,3)  d(2,1) +
 f(2,3)  d(3,1) =
 100 + 60 + 40 = 200

Quadratic assignment problem Chromosome
adjustment

Not only is expensive local search avoided …
Characteristics of local optimum are passed on to future
generations …. They will be represented in the population by
adjusted random key vector.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Genetic algorithms
and random keys

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

GAs and random keys

• Introduced by Bean (1994)
for sequencing problems.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

GAs and random keys

• Introduced by Bean (1994)
for sequencing problems.

• Individuals are strings of
real-valued numbers
(random keys) in the
interval [0,1].

S = (0.25, 0.19, 0.67, 0.05, 0.89)
 s(1) s(2) s(3) s(4) s(5)

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

GAs and random keys

• Introduced by Bean (1994)
for sequencing problems.

• Individuals are strings of
real-valued numbers
(random keys) in the
interval [0,1).

• Sorting random keys results
in a sequencing order.

S = (0.25, 0.19, 0.67, 0.05, 0.89)
 s(1) s(2) s(3) s(4) s(5)

S' = (0.05, 0.19, 0.25, 0.67, 0.89)
 s(4) s(2) s(1) s(3) s(5)
Sequence: 4 – 2 – 1 – 3 – 5

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

GAs and random keys

• Mating is done using
parametrized uniform
crossover (Spears & DeJong , 1990)

a = (0.25, 0.19, 0.67, 0.05, 0.89)
b = (0.63, 0.90, 0.76, 0.93, 0.08)

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

GAs and random keys

a = (0.25, 0.19, 0.67, 0.05, 0.89)
b = (0.63, 0.90, 0.76, 0.93, 0.08)

• Mating is done using
parametrized uniform
crossover (Spears & DeJong , 1990)

• For each gene, flip a biased
coin to choose which
parent passes the allele
(key, or value of gene) to
the child.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

GAs and random keys

a = (0.25, 0.19, 0.67, 0.05, 0.89)
b = (0.63, 0.90, 0.76, 0.93, 0.08)
c = ()

• Mating is done using
parametrized uniform
crossover (Spears & DeJong , 1990)

• For each gene, flip a biased
coin to choose which
parent passes the allele
(key, or value of gene) to
the child.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

GAs and random keys

a = (0.25, 0.19, 0.67, 0.05, 0.89)
b = (0.63, 0.90, 0.76, 0.93, 0.08)
c = (0.25)

• Mating is done using
parametrized uniform
crossover (Spears & DeJong , 1990)

• For each gene, flip a biased
coin to choose which
parent passes the allele
(key, or value of gene) to
the child.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

GAs and random keys

a = (0.25, 0.19, 0.67, 0.05, 0.89)
b = (0.63, 0.90, 0.76, 0.93, 0.08)
c = (0.25, 0.90)

• Mating is done using
parametrized uniform
crossover (Spears & DeJong , 1990)

• For each gene, flip a biased
coin to choose which
parent passes the allele
(key, or value of gene) to
the child.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

GAs and random keys

a = (0.25, 0.19, 0.67, 0.05, 0.89)
b = (0.63, 0.90, 0.76, 0.93, 0.08)
c = (0.25, 0.90, 0.76)

• Mating is done using
parametrized uniform
crossover (Spears & DeJong , 1990)

• For each gene, flip a biased
coin to choose which
parent passes the allele
(key, or value of gene) to
the child.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

GAs and random keys

a = (0.25, 0.19, 0.67, 0.05, 0.89)
b = (0.63, 0.90, 0.76, 0.93, 0.08)
c = (0.25, 0.90, 0.76, 0.05)

• Mating is done using
parametrized uniform
crossover (Spears & DeJong , 1990)

• For each gene, flip a biased
coin to choose which
parent passes the allele
(key, or value of gene) to
the child.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

GAs and random keys

a = (0.25, 0.19, 0.67, 0.05, 0.89)
b = (0.63, 0.90, 0.76, 0.93, 0.08)
c = (0.25, 0.90, 0.76, 0.05, 0.89)

• Mating is done using
parametrized uniform
crossover (Spears & DeJong , 1990)

• For each gene, flip a biased
coin to choose which
parent passes the allele
(key, or value of gene) to
the child.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

GAs and random keys

a = (0.25, 0.19, 0.67, 0.05, 0.89)
b = (0.63, 0.90, 0.76, 0.93, 0.08)
c = (0.25, 0.90, 0.76, 0.05, 0.89)

If every random-key array corresponds
to a feasible solution: Mating always
produces feasible offspring.

• Mating is done using
parametrized uniform
crossover (Spears & DeJong , 1990)

• For each gene, flip a biased
coin to choose which
parent passes the allele
(key, or value of gene) to
the child.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

GAs and random keys

Initial population is made up of P
random-key vectors, each with N
keys, each having a value
generated uniformly at random in
the interval [0,1).

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

GAs and random keys
At the K-th generation,
compute the cost of each
solution ... Elite solutions

Population K

Non-elite
solutions

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

GAs and random keys
At the K-th generation,
compute the cost of each
solution and partition the
solutions into two sets:

 Elite solutions

Population K

Non-elite
solutions

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

GAs and random keys
At the K-th generation,
compute the cost of each
solution and partition the
solutions into two sets:
elite solutions and non-elite
solutions.

 Elite solutions

Population K

Non-elite
solutions

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

GAs and random keys
At the K-th generation,
compute the cost of each
solution and partition the
solutions into two sets:
elite solutions and non-elite
solutions. Elite set should
be smaller of the two sets
and contain best solutions.

 Elite solutions

Population K

Non-elite
solutions

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

GAs and random keys
Evolutionary dynamics

Population K Population K+1

 Elite solutions

Non-elite
solutions

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

GAs and random keys
Evolutionary dynamics
– Copy elite solutions from population

K to population K+1 Elite solutions

Population K+1Population K

 Elite solutions

Non-elite
solutions

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

GAs and random keys
Evolutionary dynamics
– Copy elite solutions from population

K to population K+1

– Add R random solutions (mutants)
to population K+1

 Elite solutions

Mutant
solutions

Population K+1Population K

 Elite solutions

Non-elite
solutions

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

GAs and random keys
Evolutionary dynamics
– Copy elite solutions from population

K to population K+1

– Add R random solutions (mutants)
to population K+1

– While K+1-th population < P
• RANDOM-KEY GA: Use any two

solutions in population K to produce
child in population K+1. Mates are
chosen at random.

 Elite solutions

Mutant
solutions

X

Population K+1Population K

 Elite solutions

Non-elite
solutions

Mutant
solutions

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Biased random key genetic algorithm

• A biased random key genetic algorithm (BRKGA)
is a random key genetic algorithm (RKGA).

• BRKGA and RKGA differ in how mates are
chosen for crossover and how parametrized
uniform crossover is applied.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

How RKGA & BRKGA differ

RKGA
both parents chosen at
random from entire
population

either parent can be
parent A in parametrized
uniform crossover

BRKGA
both parents chosen at
random but one parent
chosen from population
of elite solutions

best fit parent is parent A
in parametrized uniform
crossover

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

set covering
problem: scp51

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

set covering
problem: scpa

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

set k-covering
problem: scp45-11

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Two types of parent selection in BRKGA

1) select second parent from population of non-elite
solutions

2) select second parent from entire population,
excluding the selected first parent

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Biased random key GA
Evolutionary dynamics
– Copy elite solutions from population

K to population K+1

– Add R random solutions (mutants)
to population K+1

– While K+1-th population < P
• RANDOM-KEY GA: Use any two

solutions in population K to produce
child in population K+1. Mates are
chosen at random.

• BIASED RANDOM-KEY GA: Mate elite
solution with other solution of
population K to produce child in
population K+1. Mates are chosen at
random.

 Elite solutions

Mutant
solutions

X

Population K+1

BRKGA: Probability
child inherits
key of elite
parent > 0.5Population K

 Elite solutions

Non-elite
solutions

Mutant
solutions

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Observations

• Random method: keys are randomly generated so
solutions are always vectors of random keys

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Observations

• Random method: keys are randomly generated so
solutions are always vectors of random keys

• Elitist strategy: best solutions are passed without change
from one generation to the next (incumbent is kept)

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Observations

• Random method: keys are randomly generated so
solutions are always vectors of random keys

• Elitist strategy: best solutions are passed without change
from one generation to the next (incumbent is kept)

• Child inherits more characteristics of elite parent:
one parent is always selected (with replacement) from the
small elite set and probability that child inherits key of elite
parent > 0.5 Not so in the RKGA of Bean.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Observations

• Random method: keys are randomly generated so
solutions are always vectors of random keys

• Elitist strategy: best solutions are passed without change
from one generation to the next (incumbent is kept)

• Child inherits more characteristics of elite parent:
one parent is always selected (with replacement) from the
small elite set and probability that child inherits key of elite
parent > 0.5 Not so in the RKGA of Bean.

• No mutation in crossover: mutants are used instead
(they play same role as mutation in GAs … help escape local
optima)

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Decoders
• A decoder is a deterministic algorithm that takes as input a random-key

vector and returns a feasible solution of the optimization problem and
its cost.

• Bean (1994) proposed decoders based on sorting the random-key
vector to produce a sequence.

• A random-key GA searches the solution space indirectly by searching
the space of random keys and using the decoder to evaluate fitness of
the random key.

[0,1]N Solution space
of optimization
problem

decoder

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Decoders

[0,1]N Solution space
of optimization
problem

decoder

Search solution
space indirectly

• A decoder is a deterministic algorithm that takes as input a random-key
vector and returns a feasible solution of the optimization problem and
its cost.

• Bean (1994) proposed decoders based on sorting the random-key
vector to produce a sequence.

• A random-key GA searches the solution space indirectly by searching
the space of random keys and using the decoder to evaluate fitness of
the random key.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Decoders
• A decoder is a deterministic algorithm that takes as input a random-key

vector and returns a feasible solution of the optimization problem and
its cost.

• Bean (1994) proposed decoders based on sorting the random-key
vector to produce a sequence.

• A random-key GA searches the solution space indirectly by searching
the space of random keys and using the decoder to evaluate fitness of
the random key.

[0,1]N Solution space
of optimization
problem

decoder

Search solution
space indirectly

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Decoders
• A decoder is a deterministic algorithm that takes as input a random-key

vector and returns a feasible solution of the optimization problem and
its cost.

• Bean (1994) proposed decoders based on sorting the random-key
vector to produce a sequence.

• A random-key GA searches the solution space indirectly by searching
the space of random keys and using the decoder to evaluate fitness of
the random key.

[0,1]N Solution space
of optimization
problem

decoder

Search solution
space indirectly

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Framework for biased random-key genetic algorithms

Generate P vectors
of random keys

Decode each vector
of random keys

Stopping rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions
to next population

Generate mutants in
next population

Combine elite and
non-elite solutions
and add children to

next population

no

stop

yes

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Framework for biased random-key genetic algorithms

Generate P vectors
of random keys

Decode each vector
of random keys

Stopping rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions
to next population

Generate mutants in
next population

Combine elite and
non-elite solutions
and add children to

next population

stop

Problem independent

no yes

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Framework for biased random-key genetic algorithms

Generate P vectors
of random keys

Decode each vector
of random keys

Stopping rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions
to next population

Generate mutants in
next population

Combine elite and
non-elite solutions
and add children to

next population

stop

Problem independent

no yes

Problem dependent

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Decoding of random key vectors can be done in parallel

Generate P vectors
of random keys

Decode each vector
of random keys

Stopping rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions
to next population

Generate mutants in
next population

Combine elite and
non-elite solutions
and add children to

next population

stop

no yes

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

BRKGA in multi-start strategy

 Generate P vectors

of random keys
Decode each vector

of random keys

Restart rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions
to next population

Generate mutants in
next population

Combine elite and
non-elite solutions
and add children to

next population

no
yes

begin

if incumbent
improved, update

incumbent

stopping
rule

satisfied ?

output
incumbent stop

yes

no

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Randomized heuristic iteration
count distribution: constructed
by independently running the
algorithm a number of times, each
time stopping when the algorithm
finds a solution at least as good as a
given target.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

In most of the independent runs, the algorithm finds the target solution in
relatively few iterations:

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

In most of the independent runs, the algorithm finds the target solution in
relatively few iterations: 25% of the runs take fewer than 101 iterations

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

In most of the independent runs, the algorithm finds the target solution in
relatively few iterations: 50% of the runs take fewer than 192 iterations

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

In most of the independent runs, the algorithm finds the target solution in
relatively few iterations: 75% of the runs take fewer than 345 iterations

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

However, some runs take much longer: 10% of the runs take over 1000
iterations

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

However, some runs take much longer: 5% of the runs take over 2000
iterations

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

However, some runs take much longer: 2% of the runs take over 9715
iterations

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

However, some runs take much longer: the longest run took 11607
iterations

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Probability that algorithm will take
over 345 iterations: 25% = 1/4

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Probability that algorithm will take
over 345 iterations: 25% = 1/4

By restarting algorithm after 345
iterations, probability that new run
will take over 690 iterations: 25% =
1/4

Probability that algorithm with
restart will take over 690 iterations:
probability of taking over 345 X
probability of taking over 690
iterations given it took over 345 =
¼ x ¼ = 1/42

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Probability that algorithm will still be
running after K periods of 345
iterations: 1/4K

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Probability that algorithm will still be
running after K periods of 345
iterations: 1/4K

For example, probability that
algorithm with restart will still be
running after 1725 iterations (5
periods of 345 iterations): 1/45 
0.0977%

This is much less than the 5%
probability that the algorithm
without restart will take over 2000
iterations.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Probability that algorithm will still be
running after K periods of 345
iterations: 1/4K

For example, probability that
algorithm with restart will still be
running after 1725 iterations (5
periods of 345 iterations): 1/45 
0.0977%

This is much less than the 5%
probability that the algorithm
without restart will take over 2000
iterations.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Restart strategies

• First proposed by Luby et al. (1993)
• They define a restart strategy as a finite sequence

of time intervals S = {
1
, 
2
, 
3
, … } which define

epochs 
1
, 

1
+
2
, 

1
+
2
+
3
, … when the

algorithm is restarted from scratch.
• Luby et al. (1993) prove that the optimal restart

strategy uses 
1
= 

2
= 

3
= … = *, where * is a

constant.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Restart strategies

• Luby et al. (1993)

• Kautz et al. (2002)

• Palubeckis (2004)

• Sergienko et al. (2004)

• Nowicki & Smutnicki (2005)

• D’Apuzzo et al. (2006)

• Shylo et al. (2011a)

• Shylo et al. (2011b)

• Resende & Ribeiro (2011)

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Restart strategy for BRKGA

• Recall the restart strategy of Luby et al. where equal time
intervals 

1
= 

2
= 

3
= … = * pass between restarts.

• Strategy requires * as input.
• Since we have no prior information as to the runtime

distribution of the heuristic, we run the risk of:
– choosing * too small: restart variant may take long to

converge
– choosing * too big: restart variant may become like no-

restart variant

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Restart strategy for BRKGA

• We conjecture that number of iterations between
improvement of the incumbent (best so far) solution
varies less w.r.t. heuristic/ instance/ target than run
times.

• We propose the following restart strategy: Keep track of
the last generation when the incumbent improved and
restart BRKGA if K generations have gone by without
improvement.

• We call this strategy restart(K)

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Example of restart strategy for BRKGA: Load balancing

Given an ordered sequence of 1024 integers p[0], p[1], …, p[1023]



 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Place consecutive numbers in 32 buckets b[0], b[1], …, b[31]



b[0] b[1] b[2] b[3] b[4] b[29] b[30] b[31]

Example of restart strategy for BRKGA: Load balancing

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Add the numbers in each bucket b[0], b[1], …, b[31]



b[0] b[1] b[2] b[3] b[4] b[29] b[30] b[31]

p p p p p p p p

Example of restart strategy for BRKGA: Load balancing

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Place the buckets in 16 bins B[0], B[1], …, B[15]



b[0] b[1] b[2] b[3] b[4] b[29] b[30] b[31]

p pp

pp

p

pp


 B[0] B[1] B[2] B[15]

Example of restart strategy for BRKGA: Load balancing

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Add up the numbers in each bin B[0], B[1], …, B[15]



b[0] b[1] b[2] b[3] b[4] b[29] b[30] b[31]

p pp

pp

p

pp


 B[0] B[1] B[2] B[15]

T[0]=(p) T[1]=(p) T[2]=(p) T[15]=(p)

Example of restart strategy for BRKGA: Load balancing

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

OBJECTIVE: Minimize { Maximum (T[0], T[1], …, T[15]) }



b[0] b[1] b[2] b[3] b[4] b[29] b[30] b[31]

p pp

pp

p

pp


 B[0] B[1] B[2] B[15]

T[0]=(p) T[1]=(p) T[2]=(p) T[15]=(p)

Example of restart strategy for BRKGA: Load balancing

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Example of restart strategy for BRKGA: Load balancing

Encoding

X = [x[1], x[2], …, x[32] | x[32+1], x[32+2], …, x[32+16]]

Decoding
x[1], x[2], …, x[32] are used to define break points for buckets

x[32+1], x[32+2], …, x[32+16] are used to determine to
which bins the buckets are assigned

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Example of restart strategy for BRKGA: Load balancing

Encoding

X = [x[1], x[2], …, x[32] | x[32+1], x[32+2], …, x[32+16]]

Decoding
x[1], x[2], …, x[32] are used to define break points for buckets

Size of bucket i = floor (1024 × x[i]/(x[1]+x[2]+⋯+x[32])), i=1,...,15

Size of bucket 16 = 1024 – sum of sizes of first 15 buckets

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Example of restart strategy for BRKGA: Load balancing

Encoding

X = [x[1], x[2], …, x[32] | x[32+1], x[32+2], …, x[32+16]]

Decoding
x[1], x[2], …, x[32] are used to define break points for buckets

x[32+1], x[32+2], …, x[32+16] are used to determine to
which bins the buckets are assigned

Bin that bucket i is assigned to = floor (16 × x[32+i]) + 1

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Example of restart strategy for BRKGA: Load balancing

Decoding (Local search phase)
– while (there exists a bucket in the most loaded bin that

can be moved to another bin and not increase the
maximum load) then

• move that bucket to that bin
– end while

Make necessary chromosome adjustments to last 16
random keys of vector of random keys to reflect changes
made in local search phase: Add or subtract an integer
value from chromosome of bucket that moved to new bin.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Example of restart strategy for BRKGA: Load balancing

restart strategy:
 restart(2000) no restart

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

BRKGA with p parallel populations

evolve
pop 1

evolve
pop 2

evolve
pop 3

evolve
pop p

++gen

gen mod x = = 0

top v individuals
emigrate from
each pop to
other pops



yes

no

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

BRKGA with p parallel populations

evolve
pop 1

evolve
pop 2

evolve
pop 3

evolve
pop p

++gen

gen mod x = = 0

top v individuals
emigrate from
each pop to
other pops



yes

no

Every x generations
the v most fit individuals
from each population are
copied to the other p – 1
populations if not there
already.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Initialize population with some non-
random individuals

It is often useful to initialize the first population with
some individuals not generated totally at random.

– Generate some individuals using simple heuristics,
e.g. Buriol, M.G.C.R., Ribeiro, & Thorup (2005)

– Formulate 0-1 integer program and solve linear
programming (LP) relaxation and use LP solution as
individual, e.g. Andrade, Miyazawa, M.G.C.R., & Toso
(2012)

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

• Encoding is always done the same way, i.e. with a vector of
N random-keys (parameter N must be specified)

• Decoder that takes as input a vector of N random-keys and
outputs the corresponding solution of the combinatorial
optimization problem and its cost (this is usually a heuristic)

• Parameters

Specifying a biased random-key GA

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Specifying a biased random-key GA

Parameters:
– Size of population

– Parallel population parameters

– Size of elite partition

– Size of mutant set

– Child inheritance probability

– Restart strategy parameter

– Stopping criterion

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Specifying a biased random-key GA

Parameters:
– Size of population: a function of N, say N or 2N

– Parallel population parameters

– Size of elite partition

– Size of mutant set

– Child inheritance probability

– Restart strategy parameter

– Stopping criterion

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Specifying a biased random-key GA

Parameters:
– Size of population: a function of N, say N or 2N

– Parallel population parameters: say, p = 3 , v = 2, and x = 200

– Size of elite partition

– Size of mutant set

– Child inheritance probability

– Restart strategy parameter

– Stopping criterion

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Specifying a biased random-key GA

Parameters:
– Size of population: a function of N, say N or 2N

– Parallel population parameters: say, p = 3 , v = 2, and x = 200

– Size of elite partition: 15-25% of population

– Size of mutant set

– Child inheritance probability

– Restart strategy parameter

– Stopping criterion

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Specifying a biased random-key GA

Parameters:
– Size of population: a function of N, say N or 2N

– Parallel population parameters: say, p = 3 , v = 2, and x = 200

– Size of elite partition: 15-25% of population

– Size of mutant set: 5-15% of population

– Child inheritance probability

– Restart strategy parameter

– Stopping criterion

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Specifying a biased random-key GA

Parameters:
– Size of population: a function of N, say N or 2N

– Parallel population parameters: say, p = 3 , v = 2, and x = 200

– Size of elite partition: 15-25% of population

– Size of mutant set: 5-15% of population

– Child inheritance probability: > 0.5, say 0.7

– Restart strategy parameter

– Stopping criterion

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Specifying a biased random-key GA

Parameters:
– Size of population: a function of N, say N or 2N

– Parallel population parameters: say, p = 3 , v = 2, and x = 200

– Size of elite partition: 15-25% of population

– Size of mutant set: 5-15% of population

– Child inheritance probability: > 0.5, say 0.7

– Restart strategy parameter: a function of N, say 2N or 10N

– Stopping criterion

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Specifying a biased random-key GA

Parameters:
– Size of population: a function of N, say N or 2N

– Parallel population parameters: say, p = 3 , v = 2, and x = 200

– Size of elite partition: 15-25% of population

– Size of mutant set: 5-15% of population

– Child inheritance probability: > 0.5, say 0.7

– Restart strategy parameter: a function of N, say 2N or 10N

– Stopping criterion: e.g. time, # generations, solution quality,
generations without improvement

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

brkgaAPI: A C++ API for BRKGA

• Efficient and easy-to-use object oriented application
programming interface (API) for the algorithmic framework
of BRKGA.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

brkgaAPI: A C++ API for BRKGA

• Efficient and easy-to-use object oriented application
programming interface (API) for the algorithmic framework
of BRKGA.

• Cross-platform library handles large portion of problem
independent modules that make up the framework, e.g.
– population management
– evolutionary dynamics

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

brkgaAPI: A C++ API for BRKGA

• Efficient and easy-to-use object oriented application
programming interface (API) for the algorithmic framework
of BRKGA.

• Cross-platform library handles large portion of problem
independent modules that make up the framework, e.g.
– population management
– evolutionary dynamics

• Implemented in C++ and may benefit from shared-memory
parallelism if available.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

brkgaAPI: A C++ API for BRKGA

• Efficient and easy-to-use object oriented application
programming interface (API) for the algorithmic framework
of BRKGA.

• Cross-platform library handles large portion of problem
independent modules that make up the framework, e.g.
– population management
– evolutionary dynamics

• Implemented in C++ and may benefit from shared-memory
parallelism if available.

• User only needs to implement problem-dependent decoder.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

brkgaAPI: A C++ API for BRKGA

Paper: Rodrigo F. Toso and M.G.C.R., “A C++
Application Programming Interface for
Biased Random-Key Genetic Algorithms,”
AT&T Labs Technical Report, Florham Park, August 2011.

Software: http://www.research.att.com/~mgcr/src/brkgaAPI

http://www.research.att.com/

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Reference

Tech report version:

 http://www.research.att.com/~mgcr/doc/srkga.pdf

J.F. Gonçalves and M.G.C.R., “Biased random-key
genetic algorithms for combinatorial optimization,”
J. of Heuristics, vol.17, pp. 487-525, 2011.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Reference

M.G.C.R., “Biased random-key genetic algorithms
with applications in telecommunications,” TOP,
vol. 20, pp. 120-153, 2012.

Tech report version:

 http://www.research.att.com/~mgcr/doc/brkga-telecom.pdf

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Thanks!
These slides and all of the papers cited in this
tutorial can be downloaded from my homepage:

http://www.research.att.com/~mgcr

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Thanks!
These slides and all of the papers cited in this
tutorial can be downloaded from my homepage:

http://www.research.att.com/~mgcr

See you tomorrow for some applications of BRKGA.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial
Tutorial given at CLAIO/SBPO 2012
Rio de Janeiro, Brazil ✤ September 2012

Biased random-key genetic
algorithms: A tutorial

Mauricio G. C. Resende
AT&T Labs Research
Florham Park, New Jersey

mgcr@research.att.com

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

AT&T Shannon Laboratory
Florham Park, New Jersey

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Part 2 of tutorial

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Summary: Day 1
• Basic concepts of combinatorial and continuous global optimization

• Basic concepts of genetic algorithms

• Random-key genetic algorithm of Bean (1994)

• Biased random-key genetic algorithms (BRKGA)
– Encoding / Decoding

– Initial population

– Evolutionary mechanisms

– Problem independent / problem dependent components

– Multi-start strategy

– Restart strategy

– Multi-population strategy

– Specifying a BRKGA

• Application programming interface (API) for BRKGA

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Summary: Day 2

• Applications of BRKGA
– Set covering
– Packing rectangles
– Packet routing on the Internet
– Handover minimization in mobility networks
– Continuous global optimization

• Overview of literature & concluding remarks

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

• Encoding is always done the same way, i.e. with a vector of
N random-keys (parameter N must be specified)

• Decoder that takes as input a vector of N random-keys and
outputs the corresponding solution of the combinatorial
optimization problem and its cost (this is usually a heuristic)

• Parameters

Specifying a biased random-key GA

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Specifying a biased random-key GA

Parameters:
– Size of population

– Parallel population parameters

– Size of elite partition

– Size of mutant set

– Child inheritance probability

– Restart strategy parameter

– Stopping criterion

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Specifying a biased random-key GA

Parameters:
– Size of population: a function of N, say N or 2N

– Parallel population parameters

– Size of elite partition

– Size of mutant set

– Child inheritance probability

– Restart strategy parameter

– Stopping criterion

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Specifying a biased random-key GA

Parameters:
– Size of population: a function of N, say N or 2N

– Parallel population parameters: say, p = 3 , v = 2, and x = 200

– Size of elite partition

– Size of mutant set

– Child inheritance probability

– Restart strategy parameter

– Stopping criterion

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Specifying a biased random-key GA

Parameters:
– Size of population: a function of N, say N or 2N

– Parallel population parameters: say, p = 3 , v = 2, and x = 200

– Size of elite partition: 15-25% of population

– Size of mutant set

– Child inheritance probability

– Restart strategy parameter

– Stopping criterion

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Specifying a biased random-key GA

Parameters:
– Size of population: a function of N, say N or 2N

– Parallel population parameters: say, p = 3 , v = 2, and x = 200

– Size of elite partition: 15-25% of population

– Size of mutant set: 5-15% of population

– Child inheritance probability

– Restart strategy parameter

– Stopping criterion

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Specifying a biased random-key GA

Parameters:
– Size of population: a function of N, say N or 2N

– Parallel population parameters: say, p = 3 , v = 2, and x = 200

– Size of elite partition: 15-25% of population

– Size of mutant set: 5-15% of population

– Child inheritance probability: > 0.5, say 0.7

– Restart strategy parameter

– Stopping criterion

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Specifying a biased random-key GA

Parameters:
– Size of population: a function of N, say N or 2N

– Parallel population parameters: say, p = 3 , v = 2, and x = 200

– Size of elite partition: 15-25% of population

– Size of mutant set: 5-15% of population

– Child inheritance probability: > 0.5, say 0.7

– Restart strategy parameter: a function of N, say 2N or 10N

– Stopping criterion

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Specifying a biased random-key GA

Parameters:
– Size of population: a function of N, say N or 2N

– Parallel population parameters: say, p = 3 , v = 2, and x = 200

– Size of elite partition: 15-25% of population

– Size of mutant set: 5-15% of population

– Child inheritance probability: > 0.5, say 0.7

– Restart strategy parameter: a function of N, say 2N or 10N

– Stopping criterion: e.g. time, # generations, solution quality,
generations without improvement

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Some applications
of BRKGA

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Steiner triple covering

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

M.G.C.R., R.F. Toso, J.F. Gonçalves, and R.M.A.
Silva, “A biased random-key genetic
algorithm for the Steiner triple covering
problem,” Optimization Letters, vol. 6, pp. 605-
619, 2012.

tech report: http://www.research.att.com/~mgcr/doc/brkga-stn.pdf

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Steiner triple
covering problem

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Kirkman school girl problem [Kirkman, 1850]

Fifteen young ladies in a school walk out three
abreast for seven days in succession:

It is required to arrange them daily, so that no two
shall walk twice abreast.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Kirkman school girl problem [Kirkman, 1850]

Sunday Monday Tuesday Wednesday Thursday Friday Saturday

01, 06, 11 01, 02, 05 02, 03, 06 05, 06, 09 03, 05, 11 05, 07, 13 04, 11, 13

02, 07, 12 03, 04, 07 04, 05, 08 07, 08, 11 04, 06, 12 06,08, 14 05, 12, 14

03, 08, 13 08, 09, 12 09, 10, 13 01, 12, 13 07, 09, 15 02, 09, 11 02, 08, 15

04, 09, 14 10, 11, 14 11, 12, 15 03, 14, 15 01, 08, 10 03, 10, 12 01, 03, 09

05, 10, 15 06, 13, 15 01, 07, 14 02, 04, 10 02, 13, 14 01, 04, 15 06, 07, 10

If girls are numbered 01, 02, ..., 15, a solution is:

Ball, Rouse, and Coxeter (1974)

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Steiner triple system

A Steiner triple system on a set X of n elements is a
collection B of 3-sets (triples) such that, for any two
elements x and y in X, the pair {x, y} appears in
exactly one triple in B.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Steiner triple system

A Steiner triple system on a set X of n elements is a
collection B of 3-sets (triples) such that, for any two
elements x and y in X, the pair {x, y} appears in
exactly one triple in B.

First studied by Kirkman in 1847. Then by Steiner in 1853 and
hence the name.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Steiner triple system

A Steiner triple system on a set X of n elements is a
collection B of 3-sets (triples) such that, for any two
elements x and y in X, the pair {x, y} appears in
exactly one triple in B.

The school girl problem has the additional constraint that the
collection of |B| = 7  5 = 35 triples be divided into seven sets of
five triples, one for each day, such that each girl appears exactly once
in the set of five triples for that day.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Steiner triple system

A Steiner triple system on a set X of n elements is a
collection B of 3-sets (triples) such that, for any two
elements x and y in X, the pair {x, y} appears in
exactly one triple in B.

A Steiner triple system exists for a set X if and only if either
|X|= 6k+1 or |X|=6k+3 for some k > 0 [Kirkman, 1847]

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Steiner triple system

A Steiner triple system on a set X of n elements is a
collection B of 3-sets (triples) such that, for any two
elements x and y in X, the pair {x, y} appears in
exactly one triple in B.

One non-isomorphic Steiner triple system exists for |X| = 7 and 9.
This number grows quickly after that. For |X| = 19, there are over
1010 non-isomorphic Steiner triple systems.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Steiner triple system

A Steiner triple system on a set X of n elements is a
collection B of 3-sets (triples) such that, for any two
elements x and y in X, the pair {x, y} appears in
exactly one triple in B.

A Steiner triple system can be represented by a binary matrix A with
one column for each element in X and a row for each triple in B. In
this matrix A(i,j) = 1 if and only if element j is in triple i.

Each row i of A has exactly 3 entries with A(i,j) = 1.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

1-width of a binary matrix

The 1-width of a binary matrix A is the minimum
number of columns that can be chosen from A such
that every row has at least one “1” in the selected
columns.

The 1-width of a binary matrix A is the solution of the set
covering problem: min ∑j xj

 subject to Ax  1
m

, x
j
 { 0, 1 }

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Recursive procedure to generate Steiner
triple systems

Let A
3
 be the 1  3 matrix of all ones. A recursive

procedure described by Hall (1967) can generate
Steiner triple systems for which n  3k or
n 15  3k-1, for k 1, 2, ...

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Recursive procedure to generate Steiner
triple systems

Let A
3
 be the 1  3 matrix of all ones. A recursive

procedure described by Hall (1967) can generate
Steiner triple systems for which n  3k or
n 15  3k-1, for k 1, 2, ...

Starting from A
3
, the procedure can generate A

9
, A

27
, A

81
, A

243
, A

729
, …

Starting from A
15

 [Fulkerson et al., 1974], the procedure can generate

A
45

, A
135

, A
405

, ...

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Solving Steiner triple covering

Fulkerson, Nemhauser, and Trotter (1974) were first to
point out that the Steiner triple covering problem was a
computationally challenging set covering problem.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Solving Steiner triple covering

Fulkerson, Nemhauser, and Trotter (1974) were first to
point out that the Steiner triple covering problem was a
computationally challenging set covering problem.

They solved stn9 (A
9
), stn15 (A

15
), and stn27 (A

27
) to optimality, but not

stn45 (A
45

), which was solved in 1979 by Ratliff.

Mannino and Sassano (1995) solved stn81 and recently Ostrowski et al.
(2009; 2010) solved stn135 in 126 days of CPU and stn243 in 51 hours.
Independently, Ostergard and Vaskelainen (2010) also solved stn135.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Heuristics for Steiner triple covering (stn81 and stn135)

• Feo and R. (1989) proposed a GRASP, finding a cover of
size 61 for stn81, later shown to be optimal by Mannino
and Sassano (1995).

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Heuristics for Steiner triple covering (stn81 and stn135)

• Feo and R. (1989) proposed a GRASP, finding a cover of
size 61 for stn81, later shown to be optimal by Mannino
and Sassano (1995).

• Karmarkar, Ramakrishnan, and R. (1991) found a cover
of size 105 for stn135 with an interior point algorithm.
In the same paper, they used a GRASP to find a better
cover of size 104. Mannino and Sassano (1995) also
found a cover of this size.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Heuristics for Steiner triple covering (stn81 and stn135)

• Feo and R. (1989) proposed a GRASP, finding a cover of
size 61 for stn81, later shown to be optimal by Mannino
and Sassano (1995).

• Karmarkar, Ramakrishnan, and R. (1991) found a cover
of size 105 for stn135 with an interior point algorithm.
In the same paper, they used a GRASP to find a better
cover of size 104. Mannino and Sassano (1995) also
found a cover of this size.

• Odijk and van Maaren (1998) found a cover of size 103,
which was shown to be optimal by Ostrowski et al. and
Ostergard and Vaskelainen in 2010.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Heuristics for Steiner triple covering (stn243)

• The GRASP in Feo and R. (1989) as well as the interior
point method in Karmarkar, Ramakrishnan, and R.
(1991) produced covers of size 204 for stn243.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Heuristics for Steiner triple covering (stn243)

• The GRASP in Feo and R. (1989) as well as the interior
point method in Karmarkar, Ramakrishnan, and R.
(1991) produced covers of size 204 for stn243.

• Karmarkar, Ramakrishnan, and R. (1991) used the
GRASP of Feo and R. (1989) to improve the best known
cover to 203.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Heuristics for Steiner triple covering (stn243)

• The GRASP in Feo and R. (1989) as well as the interior
point method in Karmarkar, Ramakrishnan, and R.
(1991) produced covers of size 204 for stn243.

• Karmarkar, Ramakrishnan, and R. (1991) used the
GRASP of Feo and R. (1989) to improve the best known
cover to 203.

• Mannino and Sassano (1995) improved it further to
202.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Heuristics for Steiner triple covering (stn243)

• The GRASP in Feo and R. (1989) as well as the interior
point method in Karmarkar, Ramakrishnan, and R.
(1991) produced covers of size 204 for stn243.

• Karmarkar, Ramakrishnan, and R. (1991) used the
GRASP of Feo and R. (1989) to improve the best known
cover to 203.

• Mannino and Sassano (1995) improved it further to
202.

• Odijk and van Maaren (1998) found a cover of size 198,
which was shown to be optimal by Ostrowski et al.
(2009; 2010).

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Heuristics for Steiner triple covering (stn405 and stn729)

• No results have been previously presented for stn405.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Heuristics for Steiner triple covering (stn405 and stn729)

• No results have been previously presented for stn405.
• Ostrowski et al. (2010) report that the best solution

found by CPLEX 9 on stn729 after two weeks of CPU
time was 653.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Heuristics for Steiner triple covering (stn405 and stn729)

• No results have been previously presented for stn405.
• Ostrowski et al. (2010) report that the best solution

found by CPLEX 9 on stn729 after two weeks of CPU
time was 653.

• Using their enumerate-and-fix heuristic, they were able
to find a better cover of size 619.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Best known solutions to date
instance n m BKS opt? reference

stn9 9 12 5 yes Fulkerson et al. (1974)

stn15 15 35 9 yes Fulkerson et al. (1974)

stn27 27 117 18 yes Fulkerson et al. (1974)

stn45 45 330 30 yes Ratliff (1979)

stn81 81 1080 61 yes Mannino and Sassano
(1995)

stn135 135 3015 103 yes Ostrowski et al. (2009; 2010) and
Ostergard and Vaskelainen (2010)

stn243 243 9801 198 yes Ostrowski et al. (2009;
2010)

stn405 405 27270 335 ? M.G.C.R. et al. (2012)

stn729 729 88452 617 ? M.G.C.R. et al. (2012)

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

BRKGA for Steiner
triple covering

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Encoding a solution to a vector of random keys

A solution is encoded as an n-vector X = (X
1
, X

2
, ..., X

n
)

of random keys where n is the number of columns
of matrix A.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Encoding a solution to a vector of random keys

A solution is encoded as an n-vector X = (X
1
, X

2
, ..., X

n
)

of random keys where n is the number of columns
of matrix A.
Each key is a randomly generated number in the
real interval [0,1).

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Encoding a solution to a vector of random keys

A solution is encoded as an n-vector X = (X
1
, X

2
, ..., X

n
)

of random keys where n is the number of columns
of matrix A.
Each key is a randomly generated number in the
real interval [0,1).
The j-th component of X corresponds to the j-th
column of A.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Decoding a solution from a vector of random keys

Decoder takes as input an n-vector X = (X
1
, X

2
, ..., X

n
) of

random keys and returns a cover J*  {1, 2, ..., n }
corresponding to the indices of the columns of A
selected to cover the rows of A.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Decoding a solution from a vector of random keys

Decoder takes as input an n-vector X = (X
1
, X

2
, ..., X

n
) of

random keys and returns a cover J*  {1, 2, ..., n }
corresponding to the indices of the columns of A
selected to cover the rows of A.

Let Y = (Y
1
, Y

2
, ..., Y

n
) be a binary vector where Yj = 1 if

and only if j  J*.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Decoding a solution from a vector of random keys

Decoder has three phases:

Phase I: For j = 1, 2, ..., n, set Yj = 1 if X
j
≥½, set Yj = 0

otherwise.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Decoding a solution from a vector of random keys

Decoder has three phases:

Phase I: For j = 1, 2, ..., n, set Yj = 1 if X
j
≥½, set Yj = 0

otherwise.

The indices implied by the binary vector can correspond to either a
feasible or infeasible cover.

If cover is feasible, Phase II is skipped.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Decoding a solution from a vector of random keys

Decoder has three phases:

Phase II: If J* is not a valid cover, build a cover with
a greedy algorithm for set covering (Johnson, 1974)
starting from the partial cover J*.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Decoding a solution from a vector of random keys

Decoder has three phases:

Phase II: If J* is not a valid cover, build a cover with
a greedy algorithm for set covering (Johnson, 1974)
starting from the partial cover J*.

Greedy algorithm: While J* is not a valid cover, select to add in J* the
smallest index j  {1,2,...,n} \ J* for which the inclusion of j in J*
covers the maximum number of yet-uncovered rows.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Decoding a solution from a vector of random keys

Decoder has three phases:

Phase III: Local search attempts to remove
superfluous columns from cover J*.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Decoding a solution from a vector of random keys

Decoder has three phases:

Phase III: Local search attempts to remove
superfluous columns from cover J*.

Local search: While there is some element j  J* such that J* \ { j } is
still a valid cover, then such element having the smallest index is
removed from J*.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Implementation
issues

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Implementation issues

BRKGA framework (R. and Toso, 2010), a C++
framework for biased random-key genetic
algorithms.

– Object oriented
– Multi-threaded: parallel decoding using OpenMP
– General-purpose framework: implements all problem

independent components and provides a simple hook for
chromosome decoding

– Chromosome adjustment

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Implementation issues

Chromosome adjustment: decoder not only returns
the cover J* but also modifies the vector X of random
keys such that it decodes directly into J* with the
application of only the first phase of the decoder:

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Implementation issues

Chromosome correcting: decoder not only returns
the cover J* but also modifies the vector X of random
keys such that it decodes directly into J* with the
application of only the first phase of the decoder:

X
j
 is unchanged if X

j
 ≥½ and j J* or if X

j
½ and j J*

X
j
 changes to 1−X

j
 if X

j
  ½ and j J* or if X

j
 ≥½ and j J*

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Experimental
results

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Experiments: objectives

• Investigate effectiveness of BRKGA to find
optimal covers for instances with known
optimum.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Experiments: objectives

• Investigate effectiveness of BRKGA to find
optimal covers for instances with known
optimum.

• For the two instances (stn405 and stn729) for
which optimal solutions are not known, attempt
to produce better covers than previously found.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Experiments: objectives

• Investigate effectiveness of BRKGA to find
optimal covers for instances with known
optimum.

• For the two instances (stn405 and stn729) for
which optimal solutions are not known, attempt
to produce better covers than previously found.

• Investigate effectiveness of parallel
implementation.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Experiments: instances

Set of instances: stn9, stn15, stn27, stn45, stn81,
stn135, stn243, stn405, stn729

Instances can be downloaded from:

http://www2.research.att.com/~mgcr/data/steiner-triple-covering.tar.gz

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Experiments: computing environment

Computer: server with four 2.4 GHz Quad-core Intel Xeon
E7330 processors with 128 Gb of memory, running CentOS 5
Linux. Total of 16 processors.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Experiments: computing environment

Computer: server with four 2.4 GHz Quad-core Intel Xeon
E7330 processors with 128 Gb of memory, running CentOS 5
Linux. Total of 16 processors.

Compiler: g++ version 4.1.2 20080704 with flags -O3 -fopenmp

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Experiments: computing environment

Computer: server with four 2.4 GHz Quad-core Intel Xeon
E7330 processors with 128 Gb of memory, running CentOS 5
Linux. Total of 16 processors.

Compiler: g++ version 4.1.2 20080704 with flags -O3 -fopenmp

Random number generator: Mersenne Twister (Matsumoto
& Nishimura, 1998)

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Experiments: multi-population GA

We evolve 3 populations simultaneously (but sequentially).

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Experiments: multi-population GA

We evolve 3 populations simultaneously (but sequentially).

Every 100 generations the best two solutions from each
population replace the worst solutions of the other two
populations if not already present there.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Experiments: multi-population GA

We evolve 3 populations simultaneously (but sequentially).

Every 100 generations the best two solutions from each
population replace the worst solutions of the other two
populations if not already present there.

Parallel processing is only done when calling the decoder. Up to
16 chromosomes are decoded in parallel.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Experiments: other parameters

Population size: 10n, where n is the number of columns of A

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Experiments: other parameters

Population size: 10n, where n is the number of columns of A

Population partition: ⌈1.5n⌉ elite solutions; 1–⌈1.5n⌉=⌊8.5n⌋ non-
elite solutions

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Experiments: other parameters

Population size: 10n, where n is the number of columns of A

Population partition: ⌈1.5n⌉ elite solutions; 1–⌈1.5n⌉=⌊8.5n⌋ non-
elite solutions

Mutants: ⌊5.5n⌋ are created at each generation

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Experiments: other parameters

Population size: 10n, where n is the number of columns of A

Population partition: ⌈1.5n⌉ elite solutions; 1–⌈1.5n⌉=⌊8.5n⌋ non-
elite solutions

Mutants: ⌊5.5n⌋ are created at each generation

Probability child inherits gene of elite/non-elite parent: biased coin
60% : 40%

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Experiments: other parameters

Population size: 10n, where n is the number of columns of A

Population partition: ⌈1.5n⌉ elite solutions; 1–⌈1.5n⌉=⌊8.5n⌋ non-
elite solutions

Mutants: ⌊5.5n⌋ are created at each generation

Probability child inherits gene of elite/non-elite parent: biased coin
60% : 40%

Stopping rule: we use different stopping rules for each of the three
types of experiments

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Experiments on instances with known optimal covers

For each instance: ran GA independently 100 times, stopping
when an optimal cover was found.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Experiments on instances with known optimal covers

For each instance: ran GA independently 100 times, stopping
when an optimal cover was found.
On all 100 runs for each instance, the algorithm found an optimal
cover.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Experiments on instances with known optimal covers

For each instance: ran GA independently 100 times, stopping
when an optimal cover was found.
On all 100 runs for each instance, the algorithm found an optimal
cover.

On the smallest instances (stn9, stn15, stn27) an optimal cover was
always found in the initial population.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Experiments on instances with known optimal covers

For each instance: ran GA independently 100 times, stopping
when an optimal cover was found.
On all 100 runs for each instance, the algorithm found an optimal
cover.

On the smallest instances (stn9, stn15, stn27) an optimal cover was
always found in the initial population.

On stn81 an optimal cover was found in the initial population in 99
of the 100 runs. In the remaining run, an optimal cover was found in
the second iteration.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Instance stn45

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Optimal cover found in initial population in 54/100 runs

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Largest number of iterations in 100 runs was 12

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Time per 1000 generations: 4.70s (real), 70.55s (user), 2.73s (sys)

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Instance stn135

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Most difficult instance of those with known optimal cover

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

9 of the 100 runs found an optimal cover in less than 1000 iterations

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

39 of the 100 runs required over 10,000 iterations

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

No run required fewer than 23 iterations

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

 Longest run took 75,741 iterations

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Time per 1000 generations: 19.91s (real), 316.70s (user), 0.85s (sys)

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

 Instance stn243

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

 Appears to be much easier than stn135

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

 39/100 runs required fewer than 100 generations

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

 95/100 runs required fewer than 200 generations

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

 The longest of the 100 runs took 341 generations

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Time per 1000 generations: 68.60s (real), 1095.19s (user), 0.79s (sys)

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Simulation of random multi-start on stn243

To show that success of BRKGA to consistently find covers of
size 198 on stn243 was not due to the decoder alone ...

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Simulation of random multi-start on stn243

To show that success of BRKGA to consistently find covers of
size 198 on stn243 was not due to the decoder alone ...

We conducted 100 independent runs simulating a random multi-start
algorithm.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Simulation of random multi-start on stn243

To show that success of BRKGA to consistently find covers of
size 198 on stn243 was not due to the decoder alone ...

We conducted 100 independent runs simulating a random multi-start
algorithm.

Each run consisted of 1000 generations with three populations, each with
an elite set of size 1 and a mutant set of size 999.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Simulation of random multi-start on stn243

To show that success of BRKGA to consistently find covers of
size 198 on stn243 was not due to the decoder alone ...

We conducted 100 independent runs simulating a random multi-start
algorithm.

Each run consisted of 1000 generations with three populations, each with
an elite set of size 1 and a mutant set of size 999.

At each iteration 2997 random solutions are generated, each evaluated with
the decoder.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Simulation of random multi-start on stn243

To show that success of BRKGA to consistently find covers of
size 198 on stn243 was not due to the decoder alone ...

We conducted 100 independent runs simulating a random multi-start
algorithm.

Each run consisted of 1000 generations with three populations, each with
an elite set of size 1 and a mutant set of size 999.

At each iteration 2997 random solutions are generated, each evaluated with
the decoder.

Mating never takes place since elite and mutants make up the entire
population.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Simulation of random multi-start on stn243

To show that success of BRKGA to consistently find covers of
size 198 on stn243 was not due to the decoder alone ...

About 300 million solutions were generated.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Simulation of random multi-start on stn243

To show that success of BRKGA to consistently find covers of
size 198 on stn243 was not due to the decoder alone ...

About 300 million solutions were generated.

The random multi-start was far from finding an optimal cover of size 198.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Simulation of random multi-start on stn243

To show that success of BRKGA to consistently find covers of
size 198 on stn243 was not due to the decoder alone ...

About 300 million solutions were generated.

The random multi-start was far from finding an optimal cover of size 198.

It found covers of size 202 in 9/100 runs and of size 203 in the remaining
91/100.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Experiments on the two largest instances

For instances stn405 and stn729: ran GA and stopped after 5000
generations without improvement.

For both instances, GA found improved solutions …

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Experiments on the two largest instances

For instances stn405 and stn729: ran GA and stopped after 5000
generations without improvement.

For both instances, GA found improved solutions …

For stn405 … three runs found covers of size 335.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Experiments on the two largest instances

For instances stn405 and stn729: ran GA and stopped after 5000
generations without improvement.

For both instances, GA found improved solutions …

For stn405 … three runs found covers of size 335.

Run 1 found the cover after 203 generations.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Experiments on the two largest instances

For instances stn405 and stn729: ran GA and stopped after 5000
generations without improvement.

For both instances, GA found improved solutions …

For stn405 … three runs found covers of size 335.

Run 1 found the cover after 203 generations.

Run 2 … after 5165 generations.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Experiments on the two largest instances

For instances stn405 and stn729: ran GA and stopped after 5000
generations without improvement.

For both instances, GA found improved solutions …

For stn405 … three runs found covers of size 335.

Run 1 found the cover after 203 generations.

Run 2 … after 5165 generations.

Run 3 … after 2074 generations.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Experiments on the two largest instances

For instances stn405 and stn729: ran GA and stopped after 5000
generations without improvement.

For both instances, GA found improved solutions …

For stn405 … three runs found covers of size 335.

Run 1 found the cover after 203 generations.

Run 2 … after 5165 generations.

Run 3 … after 2074 generations.

Time per 1000 generations: 796.82s (real), 12723.40s (user), 11.67s (sys)

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Indices of 405 – 335 = 70 zeroes of covers of size 335 for stn405

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Experiments on the two largest instances

For instances stn405 and stn729: ran GA and stopped after 5000
generations without improvement.

For both instances, GA found improved solutions …

For stn729 … one run found a cover of size 617 after 1601 generations.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Experiments on the two largest instances

For instances stn405 and stn729: ran GA and stopped after 5000
generations without improvement.

For both instances, GA found improved solutions …

For stn729 … one run found a cover of size 617 after 1601 generations.

Time per 1000 generations: 6099.40s (real), 93946.68s (user), 498.00s (sys)

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Indices of 729 – 617 = 112 zeroes of cover of size 617 for stn729

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Computing covers with a parallel implementation

The BRKGA does decoding in parallel. Decoding is the major
computational bottleneck of the BRKGA.

There are other tasks that are not done in parallel, including …

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Computing covers with a parallel implementation

The BRKGA does decoding in parallel. Decoding is the major
computational bottleneck of the BRKGA.

There are other tasks that are not done in parallel, including …

Generation of random key vectors in initial population and mutants at
each generation with corresponding calls to random number
generator;

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Computing covers with a parallel implementation

The BRKGA does decoding in parallel. Decoding is the major
computational bottleneck of the BRKGA.

There are other tasks that are not done in parallel, including …

Generation of random key vectors in initial population and mutants at
each generation with corresponding calls to random number
generator;

Crossover at each generation to produce offspring;

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Computing covers with a parallel implementation

The BRKGA does decoding in parallel. Decoding is the major
computational bottleneck of the BRKGA.

There are other tasks that are not done in parallel, including …

Generation of random key vectors in initial population and mutants at
each generation with corresponding calls to random number
generator;

Crossover at each generation to produce offspring;

Periodic exchange of elite solutions among multiple populations;

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Computing covers with a parallel implementation

The BRKGA does decoding in parallel. Decoding is the major
computational bottleneck of the BRKGA.

There are other tasks that are not done in parallel, including …

Generation of random key vectors in initial population and mutants at
each generation with corresponding calls to random number
generator;

Crossover at each generation to produce offspring;

Periodic exchange of elite solutions among multiple populations;

Sorting of population by fitness values;

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Computing covers with a parallel implementation

The BRKGA does decoding in parallel. Decoding is the major
computational bottleneck of the BRKGA.

There are other tasks that are not done in parallel, including …

Generation of random key vectors in initial population and mutants at
each generation with corresponding calls to random number
generator;

Crossover at each generation to produce offspring;

Periodic exchange of elite solutions among multiple populations;

Sorting of population by fitness values;

Copying elite solutions to next generation.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Computing covers with a parallel implementation

The BRKGA does decoding in parallel. Decoding is the major
computational bottleneck of the BRKGA.

There are other tasks that are not done in parallel ...

Consequently 100% efficiency (linear speedup) cannot be expected.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Computing covers with a parallel implementation

The BRKGA does decoding in parallel. Decoding is the major
computational bottleneck of the BRKGA.

There are other tasks that are not done in parallel ...

Consequently 100% efficiency (linear speedup) cannot be expected.

Nevertheless, we observe significant speedup.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Computing covers with a parallel implementation

To illustrate the parallel efficiency of the BRKGA we carried out the
following experiment on instance stn243 …

On each of five processor configurations (single processor, two,
four, eight, and 16 processors) …

We made 10 independent runs of the BRKGA, stopping when
an optimal cover of size 198 was found.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Speedup with 16 processors is almost 11-fold.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Parallel efficiency is t
1
 / [p – t

p
], where p is the number

of processors and t
k
 is the real time using k processors.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Log fit suggests that with 64 processors we can still expect
a 32-fold speedup.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Some
remarks

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Some remarks

Introduced a biased random-key genetic algorithm for the Steiner
triple covering problem.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Some remarks

Introduced a biased random-key genetic algorithm for the Steiner
triple covering problem.

The parallel, multi-population, implementation of the BRKGA not only
found optimal covers for all instances with known optimal solution …

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Some remarks

Introduced a biased random-key genetic algorithm for the Steiner
triple covering problem.

The parallel, multi-population, implementation of the BRKGA not only
found optimal covers for all instances with known optimal solution …

It also found new best known covers for two recently introduced
instances … of size 335 for stn405 and 617 for stn729

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Some remarks

Introduced a biased random-key genetic algorithm for the Steiner
triple covering problem.

The parallel, multi-population, implementation of the BRKGA not only
found optimal covers for all instances with known optimal solution …

It also found new best known covers for two recently introduced
instances … of size 335 for stn405 and 617 for stn729

The parallel implementation achieved a speedup of 10.8 with 16
processors and is expected to achieve a speedup of about 32 with 64
processors

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Packing weighted
rectangles

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Reference

J.F. Gonçalves and M.G.C.R., “A parallel multi-
population genetic algorithm for a
constrained two-dimensional orthogonal
packing problem,” Journal of Combinatorial
Optimization, vol. 22, pp. 180-201, 2011.

Tech report:
http://www.research.att.com/~mgcr/doc/pack2d.pdf

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Constrained orthogonal packing

• Given a large planar stock rectangle (W, H) of width
W and height H;

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Constrained orthogonal packing

• Given a large planar stock rectangle (W, H) of width
W and height H;

W

H

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Constrained orthogonal packing

• Given a large planar stock rectangle (W, H) of width
W and height H;

• Given N smaller rectangle types (w[i], h[i]),
i = 1,...,N, each of width w[i], height h[i], and value
v[i];

W

H

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Constrained orthogonal packing

• Given a large planar stock rectangle (W, H) of width
W and height H;

• Given N smaller rectangle types (w[i], h[i]),
i = 1,...,N, each of width w[i], height h[i], and value
v[i];

W

H

1

2
3

4

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Constrained orthogonal packing

• r[i] rectangles of type i = 1, ..., N are to be packed in the
large rectangle without overlap and such that their edges
are parallel to the edges of the large rectangle;

W

H
2

1

34

2

1

1

3

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Constrained orthogonal packing

• r[i] rectangles of type i = 1, ..., N are to be packed in the
large rectangle without overlap and such that their edges
are parallel to the edges of the large rectangle;

• For i = 1, ..., N, we require that:
 0 ≤P[i]≤ r[i] ≤ Q[i]

W

H
2

1

34

2

1

1

3

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Constrained orthogonal packing

• r[i] rectangles of type i = 1, ..., N are to be packed in the
large rectangle without overlap and such that their edges
are parallel to the edges of the large rectangle;

• For i = 1, ..., N, we require that:
 0 ≤P[i]≤ r[i] ≤ Q[i]

W

H
2

1

34

2

1

1

3
Suppose 5≤ r[1] ≤ 12

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Constrained orthogonal packing

• r[i] rectangles of type i = 1, ..., N are to be packed in the
large rectangle without overlap and such that their edges
are parallel to the edges of the large rectangle;

• For i = 1, ..., N, we require that:
 0 ≤P[i]≤ r[i] ≤ Q[i]

W

H
2

1

34

2

1

1

Suppose 5≤ r[1] ≤ 12
1

1

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Objective

Among the many feasible packings, we want to find one that
maximizes total value of packed rectangles:
 v[1] r[1] + v[2] r[2] + ⋅⋅⋅+v[N] r[N]

W

H
2

1
4

2

1

1

1

1

2

1

W

H
2

1

34

2

1

1

1

1

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Objective

Among the many feasible packings, we want to find one that
maximizes total value of packed rectangles:
 v[1] r[1] + v[2] r[2] + ⋅⋅⋅+v[N] r[N]

W

H
2

1
4

2

1

1

1

1

2

1

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Objective

Among the many feasible packings, we want to find one that
maximizes total value of packed rectangles:
 v[1] r[1] + v[2] r[2] + ⋅⋅⋅+v[N] r[N]

W

H

1

4

2

1

1

1

1

2

1

4 4

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Objective

Among the many feasible packings, we want to find one that
maximizes total value of packed rectangles:
 v[1] r[1] + v[2] r[2] + ⋅⋅⋅+v[N] r[N]

W

H

1

4

1

1

1

2

1

4 4
33

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Applications

Problem arises in several production processes, e.g.
– Textile
– Glass
– Wood
– Paper

where rectangular figures are cut from large
rectangular sheets of materials.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Hopper & Turton, 2001
Instance 4-1 60 x 60
Value: 3576

Previous best: 3580 by a
Tabu Search heuristic
(Alvarez-Valdes et al., 2007)

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Hopper & Turton, 2001
Instance 4-2 60 x 60
Value: 3585

Previous best: 3580 by a
Tabu Search heuristic
(Alvarez-Valdes et al., 2007)

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Hopper & Turton, 2001
Instance 4-2 60 x 60
Value: 3586

Previous best: 3580 by a
Tabu Search heuristic
(Alvarez-Valdes et al., 2007)

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Hopper & Turton, 2001
Instance 4-2 60 x 60
Value: 3591

Previous best: 3580 by a
Tabu Search heuristic
(Alvarez-Valdes et al., 2007)

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Hopper & Turton, 2001
Instance 4-2 60 x 60
Value: 3591
New best known solution!
Previous best: 3580 by a
Tabu Search heuristic
(Alvarez-Valdes et al., 2007)

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

BRKGA for
constrained 2-dim
orthogonal packing

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Encoding

• Solutions are encoded as vectors K of
 2N' = 2 { Q[1] + Q[2] +  + Q[N] }
random keys, where Q[i] is the maximum number
of rectangles of type i (for i = 1, ..., N) that can be
packed.

• K = (k[1], ..., k[N'], k[N'+1], ..., k[2N'])

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Encoding

• Solutions are encoded as vectors K of
 2N' = 2 { Q[1] + Q[2] +  + Q[N] }
random keys, where Q[i] is the maximum number
of rectangles of type i (for i = 1, ..., N) that can be
packed.

• K = (k[1], ..., k[N'], k[N'+1], ..., k[2N'])

Rectangle type
packing sequence
(RTPS)

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Encoding

• Solutions are encoded as vectors K of
 2N' = 2 { Q[1] + Q[2] +  + Q[N] }
random keys, where Q[i] is the maximum number
of rectangles of type i (for i = 1, ..., N) that can be
packed.

• K = (k[1], ..., k[N'], k[N'+1], ..., k[2N'])

Rectangle type
packing sequence
(RTPS)

Vector of placement
procedures (VPP)

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Decoding

• Simple heuristic to pack rectangles:
– Make Q[i] copies of rectangle i, for i = 1, ..., N.
– Order the N' = Q[1] + Q[2] +  + Q[N] rectangles in

some way.
– Process the rectangles in the above order. Place the

rectangle in the stock rectangle according to one of
the following heuristics: bottom-left (BL) or left-
bottom (LB). If rectangle cannot be positioned,
discard it and go on to the next rectangle in the
order.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Decoding

• Simple heuristic to pack rectangles:
– Make Q[i] copies of rectangle i, for i = 1, ..., N.
– Order the N' = Q[1] + Q[2] +  + Q[N] rectangles in

some way. Sort first N' keys to obtain order.
– Process the rectangles in the above order. Place the

rectangle in the stock rectangle according to one of
the following heuristics: bottom-left (BL) or left-
bottom (LB). If rectangle cannot be positioned,
discard it and go on to the next rectangle in the
order.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Decoding

• Simple heuristic to pack rectangles:
– Make Q[i] copies of rectangle i, for i = 1, ..., N.
– Order the N' = Q[1] + Q[2] +  + Q[N] rectangles in

some way. Sort first N' keys to obtain order.
– Process the rectangles in the above order. Place the

rectangle in the stock rectangle according to one of
the following heuristics: bottom-left (BL) or left-
bottom (LB). If rectangle cannot be positioned,
discard it and go on to the next rectangle in the
order. Use the last N' keys to determine which
heuristic to use. If k[N'+i] > 0.5 use LB, else use BL.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Decoding

• A maximal empty rectangular space (ERS) is an empty
rectangular space not contained in any other ERS.

• ERSs are generated and updated using the Difference
Process of Lai and Chan (1997).

• When placing a rectangle, we limit ourselves only to
maximal ERSs. We order all the maximal ERSs and place
the rectangle in the first maximal ERS in which it fits.

• Let (x[i], y[i]) be the coordinates of the bottom left
corner of the i-th ERS.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Decoding

• A maximal empty rectangular space (ERS) is an empty
rectangular space not contained in any other ERS.

• ERSs are generated and updated using the Difference
Process of Lai and Chan (1997).

• When placing a rectangle, we limit ourselves only to
maximal ERSs. We order all the maximal ERSs and place
the rectangle in the first maximal ERS in which it fits.

• Let (x[i], y[i]) be the coordinates of the bottom left
corner of the i-th ERS.

i-th
ERS

(x[i], y[i])

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Decoding

• If BL is used, ERSs are ordered such that
ERS[i] < ERS[j] if y[i] < y[j] or y[i] = y[j] and
x[i] < x[j].

ERS[i]

ERS[j]

ERS[i]
ERS[j]

ERS[i] < ERS[j]

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

1

3
2 4

BL can run into problems even
on small instances (Liu & Teng, 1999).

Consider this instance with 4
rectangles.

BL cannot find the optimal
solution for any RTPS.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

1

3
2 4

We show 6 rectangle type
packing sequences (RTPS's)
where we fix rectangle 1 in
the first position.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

1

3

2

4

1

3

2

4

1

32

4 1

3 2

41

2

4

1

2

41
3

2

4

1
3

24

RTPS: 1-2-4-3

RTPS: 1-4-2-3

RTPS: 1-3-2-4

RTPS: 1-2-3-4

RTPS: 1-4-3-2

RTPS: 1-2-3-4

RTPS: 1-3-4-2

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

1

3

2

4

1

3

2

4

1

32

4 1

3 2

41

2

4

1

2

41
3

2

4

1
3

24

RTPS: 1-2-4-3

RTPS: 1-4-2-3

RTPS: 1-3-2-4

RTPS: 1-2-3-4

RTPS: 1-4-3-2

RTPS: 1-2-3-4

RTPS: 1-3-4-2

Similar infeasibilities
are observed if 2, 3,
or 4 is the first
rectangle in the
RTPS.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Decoding

• If LB is used, ERSs are ordered such that
ERS[i] < ERS[j] if x[i] < x[j] or x[i] = x[j] and
y[i] < y[j].

ERS[i]

ERS[j]

ERS[i]

ERS[j]

ERS[i] < ERS[j]

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

1
BL

3
LB2

BL
4

BL

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

1
BL

3
LB2

BL
4

BL

ERS[1]

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

1
BL

3
LB2

BL
4

BL

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

1
BL

3
LB2

BL
4

BL

ERS[1]

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

1
BL

3
LB2

BL
4

BL

ERS[2]

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

1
BL

3
LB

2
BL

4
BL

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

1
BL

3
LB

2
BL

4
BL

ERS[1]

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

1
BL

3
LB

2
BL

4
BL

ERS[2]

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

1
BL

3
LB

2
BL

4
BL

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

1
BL

3
LB

2
BL

4
BL

ERS[1]

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

1
BL

3
LB

2
BL

4
BL

ERS[1]

4 does not fit
in ERS[1].

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

1
BL

3
LB

2
BL

4
BL

ERS[2]

4 does fit
in ERS[2].

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

1
BL

3
LB

2
BL

4
BL Optimal solution!

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Implementation
details

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Packing layers

• When placing a rectangle type in an ERS we try
to build a layer containing several rectangles of
that rectangle type.

• We use two types of layers:
– Horizontal layer when using BL
– Vertical layer when using LB

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Packing layers

Horizontal layer (BL)

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Packing layers

Horizontal layer (BL)

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Packing layers

Horizontal layer (BL) Vertical layer (LB)

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Packing layers

Horizontal layer (BL) Vertical layer (LB)

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Population initialization
• Initial population does not consist entirely of random

vectors.

• Four non-random vectors are introduced into each
population.

• The chromosomes of these four solutions are generated
such that their rectangle type packing sequences (RTPSes)
are equivalent to packing rectangles in decreasing order of
their values. Four variations of the placement procedure are
considered:
– Random, all BL, all LB, alternating between BL and LB

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Modified total value fitness function
• Natural fitness function is v[1] r[1] + v[2] r[2] +
⋅⋅⋅+v[N] r[N] where r[i] is the number of rectangles of
type i to be packed and v[i] is the value of a rectangle of
type i.

• Two solution may have the same natural fitness but one
may be more “fit” than the other.

• We use an adaptation of the modified measure proposed
by Gonçalves (2007) that is able to capture the
improvement potential of different packings with
identical natural fitness function values.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Modified total value fitness function
Modified total value fitness function is

 v[1] r[1] + v[2] r[2] + ⋅⋅⋅+v[N] r[N] +

 0.03  min v[i] of all rectangles  area largest ERS left over
 area of stock rectangle

Ties are broken by area of largest maximal empty
rectangular space (ERS) left over.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Handling lower bounds
To handle the lower bounds P[i] on r[i] we impose a
penalty of 1010 which is subtracted from the
modified fitness function if r[i] < P[i] for some
i = 1, ..., N.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Multi-population strategy
• Three populations are evolved simultaneously.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Multi-population strategy
• Three populations are evolved simultaneously.
• Every 15 generations populations exchange

information:
– The best two solutions over all three populations are

copied to the populations where they are not present.
– They replace the worst solution(s) in the population.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Multi-population strategy
• Three populations are evolved simultaneously.
• Every 15 generations populations exchange

information:
– The best two solutions over all three populations are

copied to the populations where they are not present.
– They replace the worst solution(s) in the population.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Multi-population strategy
• Three populations are evolved simultaneously.
• Every 15 generations populations exchange

information:
– The best two solutions over all three populations are

copied to the populations where they are not present.
– They replace the worst solution(s) in the population.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Parallel implementation
• Fitness evaluations are done in parallel.
• Easy to implement using OpenMP in C++.
• In multi-core CPUs results in almost linear

speed-ups.
• Experiments done on an Intel 2.66 GHz Xeon

Quadcore CPU using the Linux CentOS 5
operating sysem.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Experimental results

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Design
• We compare solution values obtained by the

parallel multi-population BRKGA with solutions
obtained by the heuristics that produced the best
computational results to date:

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Design
• We compare solution values obtained by the

parallel multi-population BRKGA with solutions
obtained by the heuristics that produced the best
computational results to date:
– PH: population-based heuristic of Beasley (2004)

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Design
• We compare solution values obtained by the

parallel multi-population BRKGA with solutions
obtained by the heuristics that produced the best
computational results to date:
– PH: population-based heuristic of Beasley (2004)
– GA: genetic algorithm of Hadjiconsantinou & Iori

(2007)

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Design
• We compare solution values obtained by the

parallel multi-population BRKGA with solutions
obtained by the heuristics that produced the best
computational results to date:
– PH: population-based heuristic of Beasley (2004)
– GA: genetic algorithm of Hadjiconsantinou & Iori

(2007)
– GRASP: greedy randomized adaptive search

procedure of Alvarez-Valdes et al. (2005)

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Design
• We compare solution values obtained by the

parallel multi-population BRKGA with solutions
obtained by the heuristics that produced the best
computational results to date:
– PH: population-based heuristic of Beasley (2004)
– GA: genetic algorithm of Hadjiconsantinou & Iori

(2007)
– GRASP: greedy randomized adaptive search

procedure of Alvarez-Valdes et al. (2005)
– TABU: tabu search of Alvarez-Valdes et al. (2007)

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Design
• We use the same set of test problems considered

by Alvarez-Valdes et al. (2007):
– 21 instances with known optimal solutions from the

literature {Beasley (1985), Hadjiconstantinou &
Christofides (1995), Wang (1983), Christofides &
Whitlock (1977), Fekete & Schepers (2004)};

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Design
• We use the same set of test problems considered

by Alvarez-Valdes et al. (2007):
– 630 large problems, randomly generated by Beasley

(2004), following Fekete & Schepers (2004);

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Design
• We use the same set of test problems considered

by Alvarez-Valdes et al. (2007):
– 31 zero-waste instances used by Lueng et al. (2003);

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Design
• We use the same set of test problems considered

by Alvarez-Valdes et al. (2007):
– 21 doubly constrained problems resulting from the

introduction of lower bounds for some rectangle
types in the first set of Beasley (2004).

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Configuration of the BRKGA
• Small pilot study determined the configuration of

the BRKGA:

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Configuration of the BRKGA
• Small pilot study determined the configuration of

the BRKGA:
– Elite set: top 25% solutions in population

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Configuration of the BRKGA
• Small pilot study determined the configuration of

the BRKGA:
– Elite set: top 25% solutions in population
– Mutants: 15% of population

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Configuration of the BRKGA
• Small pilot study determined the configuration of

the BRKGA:
– Elite set: top 25% solutions in population
– Mutants: 15% of population
– Elite parent inheritance probability: 70%

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Configuration of the BRKGA
• Small pilot study determined the configuration of

the BRKGA:
– Elite set: top 25% solutions in population
– Mutants: 15% of population
– Elite parent inheritance probability: 70%
– Population size: 15 times the number of rectangles in

problem instance (at most 2000 solutions)

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Configuration of the BRKGA
• Small pilot study determined the configuration of

the BRKGA:
– Elite set: top 25% solutions in population
– Mutants: 15% of population
– Elite parent inheritance probability: 70%
– Population size: 15 times the number of rectangles in

problem instance (at most 2000 solutions)
– Number of populations: 3

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Configuration of the BRKGA
• Small pilot study determined the configuration of

the BRKGA:
– Elite set: top 25% solutions in population
– Mutants: 15% of population
– Elite parent inheritance probability: 70%
– Population size: 15 times the number of rectangles in

problem instance (at most 2000 solutions)
– Number of populations: 3
– Exchange best two solutions every 15 generations

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Configuration of the BRKGA
• Small pilot study determined the configuration of

the BRKGA:
– Elite set: top 25% solutions in population
– Mutants: 15% of population
– Elite parent inheritance probability: 70%
– Population size: 15 times the number of rectangles in

problem instance (at most 2000 solutions)
– Number of populations: 3
– Exchange best two solutions every 15 generations
– Stop after 1000 generations

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Overall average percentage deviation from
optimal/best lower bound with 4 variant
Set Description BL BL-L BL-LB-L BL-LB-L-4NR

1 From literature
(optimal)

0.00 0.00 0.00 0.00

2 Large random 1.04 1.00 0.87 0.83
3 Zero-waste 0.48 0.48 0.24 0.17
4 Doubly constrained 6.36 6.36 6.36 6.36

BL: Using only Bottom Left placement
BL-L: BL with layers
BL-LB-L: BL and Left Bottom with layers
BL-LB-L-4NR: BL-LB-L with four non-random starting solutions

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Overall average percentage deviation from
optimal/best lower bound
Problem PH GA GRASP TABU BRKGA

BL-LB-L-4NR

From
literature
(optimal)

5.49 0.00 0.19 0.00 0.00

Large
random

1.67 1.32 1.07 0.98 0.83

Zero-waste 1.68 0.42 0.17

Doubly
constrained

8.11 7.36 6.62 6.36

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Number of best solutions / total instances

Problem PH GA GRASP TABU BRKGA
BL-LB-L-4NR

From
literature
(optimal)

13/21 21/21 18/21 21/21 21/21

Large
random*

0/21 0/21 5/21 8/21 20/21

Zero-waste 5/31 17/31 30/31

Doubly
constrained

11/21 12/21 17/21 19/21

* For large random: number of best average solutions / total instance classes

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Minimum, average, and maximum solution
times (secs) for BRKGA (BL-LB-L-4NR)

Problem Min solution
time (secs)

Avg solution
time (secs)

Max solution
time (secs)

From literature
(optimal)

0.00 0.05 0.55

Large random 1.78 23.85 72.70

Zero-waste 0.01 82.21 808.03

Doubly
constrained

0.00 1.16 16.87

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

New BKS
for a 100 x100
doubly
constrained
instance of
Fekete &
Schepers (1997)
of value 20678.
Previous best
was 19657 by
tabu search of
Alvarez-Valdes et
al., (2007).

30 types
30 rectangles

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

New BKS for a 100
x 100 doubly
constrained
instance Fekete &
Schepers (1997) of
value 22140.

Previous BKS was
22011 by tabu
search of Alvarez-
Valdes et al. (2007).

29 types
97 rectangles

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Some remarks
• We proposed a BRKGA heuristic for a

constrained 2-dimensional orthogonal packing
problem.

• Highlights:
– Hybrid placement heuristics are coordinated by GA
– Multiple populations evolve and exchange information
– Modified fitness function
– Parallel fitness evaluations
– Some non-random starting solutions added to

starting populations

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Some remarks
• Extensive computational experiments carried out.
• Highlights:

– Layers improves only Bottom-Left
– Left-Bottom improves Bottom-Left with layers
– LB and BL with layers and 4 non-random starting

solutions is best strategy
– BRKGA finds better solutions than state of the art

heuristics for a large number of instances
– Several new best known solutions produced by the

BRKGA

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Some remarks
We have extended this to 3D packing:
J.F. Gonçalves and M.G.C.R., “A parallel multi-population biased
random-key genetic algorithm for a container loading problem,”
Computers & Operations Research, vol. 29, pp. 179-190, 2012.

Tech report: http://www.research.att.com/~mgcr/doc/brkga-pack3d.pdf

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

OSPF routing in IP
networks

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

The Internet

• The Internet is composed of
many (inter-connected)
autonomous systems (AS).

• An AS is a network controlled
by a single entity, e.g. ISP,
university, corporation,
country, ...

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Routing

• A packet is sent from a origination router S to a
destination router T.

• S and T may be in
– same AS:
– different ASes:

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

• A packet is sent from a origination router S to a
destination router T.

• S and T may be in
– same AS: IGP routing
– different ASes:

Routing

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

• A packet is sent from a origination router S to a
destination router T.

• S and T may be in
– same AS: IGP routing
– different ASes: BGP routing

Routing

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

IGP Routing

• IGP (interior gateway
protocol) routing is
concerned with
routing within an AS.

S

T

AS

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

• IGP (interior gateway
protocol) routing is
concerned with
routing within an AS.

S

T

AS

IGP Routing

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

• IGP (interior gateway
protocol) routing is
concerned with
routing within an AS.

S

T

AS

IGP Routing

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

• IGP (interior gateway
protocol) routing is
concerned with
routing within an AS.

S

T

AS

IGP Routing

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

• IGP (interior gateway
protocol) routing is
concerned with
routing within an AS.

S

T

AS

IGP Routing

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

• IGP (interior gateway
protocol) routing is
concerned with
routing within an AS.

S

T

AS

IGP Routing

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

• IGP (interior gateway
protocol) routing is
concerned with
routing within an AS.

• Routing decisions are
made by AS operator.

S

T

AS

IGP Routing

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

BGP Routing

• BGP (border gateway
protocol) routing deals
with routing between
different ASes.

AS

AS

AS

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

BGP Routing

• BGP (border gateway
protocol) routing deals
with routing between
different ASes.

AS

AS

AS

Peering points

Peering points

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

BGP Routing

• BGP (border gateway
protocol) routing deals
with routing between
different ASes.

s

t

AS

AS

AS

Peering points

Peering points

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

BGP Routing

• BGP (border gateway
protocol) routing deals
with routing between
different ASes.

s

t

AS

AS

AS

Peering points

Peering points

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

BGP Routing

• BGP (border gateway
protocol) routing deals
with routing between
different ASes.

s

t

AS

AS

AS

Peering points

Peering points

Ingress point

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

BGP Routing

• BGP (border gateway
protocol) routing deals
with routing between
different ASes.

s

t

AS

AS

AS

Peering points

Peering points

Ingress point

Egress point

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

BGP Routing

• BGP (border gateway
protocol) routing deals
with routing between
different ASes.

s

t

AS

AS

AS

Peering points

Peering points

Ingress point

Egress point

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

BGP Routing

• BGP (border gateway
protocol) routing deals
with routing between
different ASes.

s

t

AS

AS

AS

Peering points

Peering points

Ingress point

Egress point

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

IGP Routing

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

OSPF routing

• Given a network G = (N,A), where N is the set of
routers and A is the set of links.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

• Given a network G = (N,A), where N is the set of
routers and A is the set of links.

• The OSPF (open shortest path first) routing
protocol assumes each link a has a weight w(a)
assigned to it so that a packet from a source
router s to a destination router t is routed on a
shortest weight path from s to t.

OSPF routing

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

• Given a network G = (N,A), where N is the set of
routers and A is the set of links.

• The OSPF (open shortest path first) routing
protocol assumes each link a has a weight w(a)
assigned to it so that a packet from a source
router s to a destination router t is routed on a
shortest weight path from s to t.

s
t

OSPF routing

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

s
t

OSPF routing
• Given a network G = (N,A), where N is the set of

routers and A is the set of links.
• The OSPF (open shortest path first) routing

protocol assumes each link a has a weight w(a)
assigned to it so that a packet from a source
router s to a destination router t is routed on a
shortest weight path from s to t.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

s
t

Traffic splitting

OSPF routing
• Given a network G = (N,A), where N is the set of

routers and A is the set of links.
• The OSPF (open shortest path first) routing

protocol assumes each link a has a weight w(a)
assigned to it so that a packet from a source
router s to a destination router t is routed on a
shortest weight path from s to t.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

OSPF routing
• By setting OSPF weights appropriately, one can do traffic

engineering, i.e. route traffic so as to optimize some
objective (e.g. minimize congestion, maximize
throughput, etc.).

● Some recent papers on this topic:
– Fortz & Thorup (2000, 2004)
– Ramakrishnan & Rodrigues (2001)
– Sridharan, Guérin, & Diot (2002)
– Fortz, Rexford, & Thorup (2002)
– Ericsson, Resende, & Pardalos (2002)
– Buriol, Resende, Ribeiro, & Thorup (2002, 2005)
– Reis, Ritt, Buriol, & Resende (2011)

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

● By setting OSPF weights appropriately, one can do
traffic engineering, i.e. route traffic so as to optimize
some objective (e.g. minimize congestion, maximize
throughput, etc.).

• Some recent papers on this topic:

– Fortz & Thorup (2000, 2004)

– Ramakrishnan & Rodrigues (2001)

– Sridharan, Guérin, & Diot (2002)

– Fortz, Rexford, & Thorup (2002)

– Ericsson, Resende, & Pardalos (2002)

– Buriol, Resende, Ribeiro, & Thorup (2002, 2005)

– Reis, Ritt, Buriol & Resende (2011)

OSPF routing

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Packet routing

router

router

router

router

router

When packet arrives at router,
router must decide where to
send it next.

Packet’s final
destination.

Routing consists in finding a
link-path from source to
destination.

D1

D2

D3

D4

R1

R2

R3

R4 Routing table

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

OSPF routing

• Assign an integer weight  [1, wmax] to each link
in AS. In general, wmax = 65535=216 −1.

• Each router computes tree of shortest weight
paths to all other routers in the AS, with itself as
the root, using Dijkstra’s algorithm.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

OSPF routing

321

35
1

2

4
6

D1

D2

D3

D4

R1

R1

R2

R3

root

First hop routers.

Routing table

Destination routers

Routing table is filled
with first hop routers
for each possible destination.

D5

D6

R1

R3

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

OSPF routing

321

35
1

2

4
6

D1

D2

D3

D4

R1

R1

R2

R3

root

First hop routers.

Routing table

Destination routers

Routing table is filled
with first hop routers
for each possible destination.

D5

D6

R1

R3

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

OSPF routing

321

35
1

2

4
6

D1

D2

D3

D4

R1

R1

R2

R3

root

First hop routers.

Routing table

Destination routers

Routing table is filled
with first hop routers
for each possible destination.

D5

D6

R1

R3

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

OSPF routing

321

35
1

2

4
6

D1

D2

D3

D4

R1

R1

R2

R3

root

First hop routers.

Routing table

Destination routers

Routing table is filled
with first hop routers
for each possible destination.

D5

D6

R1

R3

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

D1

D2

D3

D4

R1

R1, R2

R2

R3

Routing table
Routing table is filled
with first hop routers
for each possible destination.
In case of multiple shortest
paths, flow is evenly split.

D5

D6

R1

R3

321

35
1

2

4
6

First hop routers.

Destination routers

OSPF routing

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

OSPF weight setting

• OSPF weights are assigned by network operator.
– CISCO assigns, by default, a weight proportional to the

inverse of the link bandwidth (Inv Cap).
– If all weights are unit, the weight of a path is the number of

hops in the path.

• We propose two BRKGA to find good OSPF weights.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Minimization of congestion

• Consider the directed capacitated network G = (N,A,c),
where N are routers, A are links, and ca is the capacity
of link a  A.

• We use the measure of Fortz & Thorup (2000) to
compute congestion:

 = 1(l1) + 2(l2) + … + |A|(l|A|)
 where la is the load on link a  A,

 a(la) is piecewise linear and convex,

 a(0) = 0, for all a  A.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Piecewise linear and convex a(la)
link congestion measure

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

0 0 .2 0 .4 0 .6 0 .8 1 1 .2

c
o

s
t

pe
r

 u
n

it
 o

f
c

a
pa

c
it

y

t r u n k u t il iza t io n r a t e

slope = 1
slope = 3 slope = 10

slope = 70

slope = 500

slope = 5000

(la  ca)

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

OSPF weight setting problem

• Given a directed network G = (N, A) with link
capacities ca  A and demand matrix D = (ds,t)
specifying a demand to be sent from node s to
node t :
– Assign weights wa [1, wmax] to each link a  A,

such that the objective function  is minimized
when demand is routed according to the OSPF
protocol.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

BRKGA for OSPF routing in IP networks

M. Ericsson, M.G.C.R., & P.M. Pardalos, “A genetic
algorithm for the weight setting problem
in OSPF routing,” J. of Combinatorial Optimization,
vol. 6, pp. 299–333, 2002.

Tech report version:

 http://www2.research.att.com/~mgcr/doc/gaospf.pdf

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

BRKGA for OSPF routing in IP networks
Ericsson, R., & Pardalos (J. Comb. Opt., 2002)

• Encoding:
– A vector X of N random keys, where N is the number of links. The

i-th random key corresponds to the i-th link weight.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

BRKGA for OSPF routing in IP networks
Ericsson, R., & Pardalos (J. Comb. Opt., 2002)

• Encoding:
– A vector X of N random keys, where N is the number of links. The

i-th random key corresponds to the i-th link weight.

• Decoding:

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

BRKGA for OSPF routing in IP networks
Ericsson, R., & Pardalos (J. Comb. Opt., 2002)

• Encoding:
– A vector X of N random keys, where N is the number of links. The

i-th random key corresponds to the i-th link weight.

• Decoding:
– For i = 1, …, N: set w(i) = ceil (X(i)  w

max
)

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

BRKGA for OSPF routing in IP networks
Ericsson, R., & Pardalos (J. Comb. Opt., 2002)

• Encoding:
– A vector X of N random keys, where N is the number of links. The

i-th random key corresponds to the i-th link weight.

• Decoding:
– For i = 1, …, N: set w(i) = ceil (X(i)  w

max
)

– Compute shortest paths and route traffic according to OSPF.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

BRKGA for OSPF routing in IP networks
Ericsson, R., & Pardalos (J. Comb. Opt., 2002)

• Encoding:
– A vector X of N random keys, where N is the number of links. The

i-th random key corresponds to the i-th link weight.

• Decoding:
– For i = 1, …, N: set w(i) = ceil (X(i)  w

max
)

– Compute shortest paths and route traffic according to OSPF.
– Compute load on each link, compute link congestion, add up all

link congestions to compute network congestion.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

cost
GA solutions

Tier-1 ISP backbone network (90 routers, 274 links)

generation

LP lower
bound

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

0

0 .2

0 .4

0 .6

0 .8

1

1 .2

1 .4

1 .6

1 .8

2

0 5 0 0 0 1 0 0 0 0 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 4 0 0 0 0 4 5 0 0 0 5 0 0 0 0

In vC ap
GA

L PLB

Weight setting with GA
permits a 50% increase in
traffic volume w.r.t. weight
setting with the Inverse
Capacity rule.

demand

Max
utilization

Tier-1 ISP backbone network (90 routers, 274 links)

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Improved BRKGA for OSPF routing in IP networks

L.S. Buriol, M.G.C.R., C.C. Ribeiro, and M. Thorup, “A
hybrid genetic algorithm for the weight
setting problem in OSPF/IS-IS routing,”
Networks, vol. 46, pp. 36–56, 2005.

Tech report version:

 http://www2.research.att.com/~mgcr/doc/hgaospf.pdf

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Improved BRKGA for OSPF routing in IP networks
Buriol, R., Ribeiro, and Thorup (Networks, 2005)

 Elite solutions

• Encoding:
– A vector X of N random keys, where N is the number of links.

The i-th random key corresponds to the i-th link weight.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Improved BRKGA for OSPF routing in IP networks
Buriol, R., Ribeiro, and Thorup (Networks, 2005)

 Elite solutions

• Encoding:
– A vector X of N random keys, where N is the number of links.

The i-th random key corresponds to the i-th link weight.

• Decoder:

– For i = 1, …, N: set w(i) = ceil (X(i)  w
max

)

– Compute shortest paths and route traffic according to OSPF.
– Compute load on each link, compute link congestion, add up

all link congestions to compute network congestion.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Improved BRKGA for OSPF routing in IP networks
Buriol, R., Ribeiro, and Thorup (Networks, 2005)

 Elite solutions

• Encoding:
– A vector X of N random keys, where N is the number of links.

The i-th random key corresponds to the i-th link weight.

• Decoder:

– For i = 1, …, N: set w(i) = ceil (X(i)  w
max

)

– Compute shortest paths and route traffic according to OSPF.
– Compute load on each link, compute link congestion, add up

all link congestions to compute network congestion.
– Apply fast local search to improve weights.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

 Elite solutions

Mutant
solutions

X

Population K+1

Population K

 Elite solutions

Non-elite
solutions

Mutant
solutions

Local search

Decoder has a local search phase

Biased coin flip crossover

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Fast local search

• Let A* be the set of five arcs a  A having
largest a values.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Fast local search

• Let A* be the set of five arcs a  A having
largest a values.

• Scan arcs a  A* from largest to smallest a:

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Fast local search

• Let A* be the set of five arcs a  A having
largest a values.

• Scan arcs a  A* from largest to smallest a:

 Increase arc weight, one unit at a time, in the range

 [wa , wa  (wmax – wa)/4]

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Fast local search

• Let A* be the set of five arcs a  A having
largest a values.

• Scan arcs a  A* from largest to smallest a:

 Increase arc weight, one unit at a time, in the range

 [wa , wa  (wmax – wa)/4]
 If total cost  is reduced, restart local search.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Effect of decoder with fast local search

1 0

1 0 0

1 0 0 0

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0

c
o

s
t

t ime (sec o n d s)

Original: Ericsson,
R., and Pardalos
(2002)

Improved: Buriol, R.,
Ribeiro, and Thorup
(2005)

LP lower bound

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Effect of decoder with fast local search

1 0

1 0 0

1 0 0 0

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0

c
o

s
t

t ime (sec o n d s)

Improved BRKGA:
 Finds solutions faster

 Finds better solutions
Original: Ericsson,
R., and Pardalos
(2002)

Improved: Buriol, R.,
Ribeiro, and Thorup
(2005)

LP lower bound

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Handover minimization
in mobility networks

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

handover

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

handover
(or handoff)

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

RNC

• Each cell tower has associated with it
an amount of traffic.

• Each cell tower is connected to a Radio
Network Controller (RNC).

• Each RNC can have one or more cell
towers connected to it.

• Each RNC can handle a given amount
of traffic ... this limits the subsets of cell
towers that can be connected to it.

• An RNC controls the cell towers
connected to it.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

RNC

• Handovers can occur between towers

RNC RNC

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

RNC

• Handovers can occur between towers
– connected to the same RNC

RNC RNC

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

RNC

• Handovers can occur between towers
– connected to the same RNC
– connected to different RNCs

RNC RNC

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

RNC

• Handovers between towers connected to different RNCs tend
to fail more often than handovers between towers connected to
the same RNC.

• Handover failure results in dropped call!

RNC RNC

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

RNC

• If we minimize the number of handovers between towers
connected to different RNCs we may be able to reduce the
number of dropped calls.

RNC RNC

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

RNC

• HANDOVER MINIMIZATION: Assign towers to RNCs such that
RNC capacity is not violated and number of handovers between
towers assigned to different RNCs is minimized.

RNC RNC

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

RNC

• HANDOVER MINIMIZATION: Assign towers to RNCs such that
RNC capacity is not violated and number of handovers between
towers assigned to different RNCs is minimized.

RNC RNC

Node-capacitated graph partitioning problem

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Example

• 4 towers: t(1) = 25; t(2) = 15; t(3) = 35; t(4) = 25
• 2 RNCs: c(1) = 50; c(2) = 60
• Handover matrix:
 1 2 3 4

1 0 100 10 0
2 100 0 200 50
3 10 200 0 500
4 0 50 500 0

RNC RNC

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

• 4 towers: t(1) = 25; t(2) = 15; t(3) = 35; t(4) = 25
• 2 RNCs: c(1) = 50; c(2) = 60
• Given this traffic profile and RNC capacities the feasible

configurations are:
– RNC(1): { 1, 2 }; RNC(2): { 3, 4 }
– RNC(1): { 2, 3 }; RNC(2): { 1, 4 }
– RNC(1): { 2, 4 }; RNC(2): { 1, 3 }
– RNC(1): { 1, 4 }; RNC(2): { 2, 3 }

RNC RNC

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

• Total handover for each configuration:

RNC RNC

1 2 3 4
1 0 100 10 0
2 100 0 200 50
3 10 200 0 500
4 0 50 500 0

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

• Total handover for each configuration:
– RNC(1): { 1, 2 }; RNC(2): { 3, 4 }: h(1,3) + h(1,4) +

h(2,3) + h(2,4) = 10 + 0 + 200 + 50 = 260

RNC RNC

1 2 3 4
1 0 100 10 0
2 100 0 200 50
3 10 200 0 500
4 0 50 500 0

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

• Total handover for each configuration:
– RNC(1): { 1, 2 }; RNC(2): { 3, 4 }: h(1,3) + h(1,4) +

h(2,3) + h(2,4) = 10 + 0 + 200 + 50 = 260

– RNC(1): { 2, 3 }; RNC(2): { 1, 4 }: h(2,1) + h(2,4) +
h(3,1) + h(3,4) = 100 + 50 + 10 + 500 = 660

RNC RNC

1 2 3 4
1 0 100 10 0
2 100 0 200 50
3 10 200 0 500
4 0 50 500 0

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

• Total handover for each configuration:
– RNC(1): { 1, 2 }; RNC(2): { 3, 4 }: h(1,3) + h(1,4) +

h(2,3) + h(2,4) = 10 + 0 + 200 + 50 = 260

– RNC(1): { 2, 3 }; RNC(2): { 1, 4 }: h(2,1) + h(2,4) +
h(3,1) + h(3,4) = 100 + 50 + 10 + 500 = 660

– RNC(1): { 2, 4 }; RNC(2): { 1, 3 }: h(2,1) + h(2,3) +
h(4,1) + h(4,3) = 100 + 200 + 0 + 500 = 800

RNC RNC

1 2 3 4
1 0 100 10 0
2 100 0 200 50
3 10 200 0 500
4 0 50 500 0

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

• Total handover for each configuration:
– RNC(1): { 1, 2 }; RNC(2): { 3, 4 }: h(1,3) + h(1,4) +

h(2,3) + h(2,4) = 10 + 0 + 200 + 50 = 260

– RNC(1): { 2, 3 }; RNC(2): { 1, 4 }: h(2,1) + h(2,4) +
h(3,1) + h(3,4) = 100 + 50 + 10 + 500 = 660

– RNC(1): { 2, 4 }; RNC(2): { 1, 3 }: h(2,1) + h(2,3) +
h(4,1) + h(4,3) = 100 + 200 + 0 + 500 = 800

– RNC(1): { 1, 4 }; RNC(2): { 2, 3 }: h(1,2) + h(1,3) +
h(4,2) + h(4,3) = 100 + 10 + 50 + 500 = 660

RNC RNC

1 2 3 4
1 0 100 10 0
2 100 0 200 50
3 10 200 0 500
4 0 50 500 0

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

• Total handover for each configuration:
– RNC(1): { 1, 2 }; RNC(2): { 3, 4 }: h(1,3) + h(1,4) +

h(2,3) + h(2,4) = 10 + 0 + 200 + 50 = 260260

– RNC(1): { 2, 3 }; RNC(2): { 1, 4 }: h(2,1) + h(2,4) +
h(3,1) + h(3,4) = 100 + 50 + 10 + 500 = 660

– RNC(1): { 2, 4 }; RNC(2): { 1, 3 }: h(2,1) + h(2,3) +
h(4,1) + h(4,3) = 100 + 200 + 0 + 500 = 800

– RNC(1): { 1, 4 }; RNC(2): { 2, 3 }: h(1,2) + h(1,3) +
h(4,2) + h(4,3) = 100 + 10 + 50 + 500 = 660

RNC RNC

1 2 3 4
1 0 100 10 0
2 100 0 200 50
3 10 200 0 500
4 0 50 500 0

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Optimal configuration:

 T(1) T(2) T(3) T(4)

RNC(1) RNC(2)

1 2 3 4
1 0 100 10 0
2 100 0 200 50
3 10 200 0 500
4 0 50 500 0

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

G=(T,E) Nodeset T are the towers; Edgeset: (i,j)∈E iff h(i,j)+h(j,i) > 0

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Tower are assigned to RNCs indicated by distinct colors/shapes

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Mixed integer programming formulation

• T is the set of towers
• R is the set of RNCs

• x
e,k

= 1 if edge e =(i,j) has both endpoints in RNC k

• y
i,k

= 1 if tower i is assigned to RNC k

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Mixed integer programming formulation

Each tower can only be assigned to one RNC:

 sum

{k ∈ R}
 y

i,k
= 1, for all i ∈ T

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Mixed integer programming formulation

Each e=(i,j) cannot be in RNC k if either of its endpoints
is not assigned to RNC k:

 x

e,k
 ≤ y

i,k
, for all e=(i,j) ∈ E, k ∈ R

 x
e,k

 ≤ y
j,k

, for all e=(i,j) ∈ E, k ∈ R

 x
e,k

  y
i,k

+ y
j,k
 1, for all e=(i,j) ∈ E, k ∈ R

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Mixed integer programming formulation

Each RNC k can only accommodate c
k
 units of traffic:

 sum

{i ∈ T}
 t

i
y

i,k
≤ c

k
, for all k ∈ R

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Mixed integer programming formulation

Minimize handover between towers assigned to
different RNCs is equivalent to maximize handover
between towers assigned to the same RNC.
Objective function:

 max { sum
{ k ∈ R }

{ sum
{ e=(i,j) ∈ E }

 h(i,j)

x

e,k
} }

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

CPLEX MIP solver

Towers RNCs BKS CPLEX time (s)

20 10 7602 7602 18.80
30 15 18266 18266 25911.00
40 15 29700 29700 101259.91

100 15 19000 49270 1 day
100 25 36412 58637 1 day
100 50 60922 70740 1 day

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

CPLEX MIP solver

Towers RNCs BKS CPLEX time (s)

20 10 7602 7602 18.80
30 15 18266 18266 25911.00
40 15 29700 29700 101259.91

100 15 19000 49270 1 day
100 25 36412 58637 1 day
100 50 60922 70740 1 day

We would like to solve instances with 1000 towers.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

CPLEX MIP solver

Towers RNCs BKS CPLEX time (s)

20 10 7602 7602 18.80
30 15 18266 18266 25911.00
40 15 29700 29700 101259.91

100 15 19000 49270 1 day
100 25 36412 58637 1 day
100 50 60922 70740 1 day

We would like to solve instances with 1000 towers.We would like to solve instances with 1000 towers.
Need heuristics!Need heuristics!

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

A simple BRKGA
for HMP

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Encoding

Each solution is encoded as a vector of |T| random
keys, where |T| is the number of towers

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Decoding

Decoder takes input a vector of |T| random keys and
outputs a tower-to-RNC assignment:
1) sort vector resulting in ordering of towers
2) scan towers in order …

– place tower in RNC with available capacity with which the
tower has greatest number of handovers with other towers
already assigned to RNC

– if RNC with available capacity does not exist, open a new
artificial RNC with capacity max { c

i
 | i  open RNCs }

3) apply tower move local search to produce local
minimum

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Another BRKGA
for HMP

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Encoding

Each solution is encoded as a vector of 2 |T|
random keys, where |T| is the number of towers

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Decoding
Decoder takes input a vector of 2 |T| random keys and outputs
a tower-to-RNC assignment:

1) sort first |T| keys resulting in ordering of towers

2) scan towers in order …
– place tower in RNC with available capacity as indicated by mapping

[0,1) to [1, 2, .., |RNCs|] from second |T| keys

– scan unassigned towers in order and place them in RNC with
available capacity maximizing handover count with tower assigned
there

– if RNC with available capacity does not exist, assign tower to RNC
with maximum handover count w.r.t. to tower

3) apply tower move local search to produce local minimum

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Experiments with
BRKGA-1 for HMP

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

BRKGA: 100 towers : 14 RNCs

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

BRKGA: 100 towers : 14 RNCs Generation: 56324
Handovers: 19750

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Generation: 56324
Handovers: 19750

Generation: 1
Handovers: 25872

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

BRKGA for bound
constrained global

optimization

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Bound-constrained global optimization

Find

x* = argmin{ f(x) | l x u },
where f: Rn → R, and l, x, u Rn

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

● Given a nonlinear system: f
1
(x) = 0, …, f

r
(x)=0

● Formulate the optimization problem:

Find x∗ = argmin{F (x) = ∑
i=1...r

 f
i
2(x) ∣ l x u}

● Since F (x) ≥ 0 for all l x u, then
F (x) = 0 ⇔ f

i
 (x) = 0 for all i ∈ {1, . . . , r}

● Hence if ∃ l x* u ∋ F (x∗) = 0 ⇒ x∗ is a global
minimizer of problem and x∗ is a root of the system of
equations: f

1
(x) = 0, ..., f

r
(x)=0.

System of nonlinear equations
Hirsch, Pardalos, M.G.C.R. (2006)

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Suppose the k-th root (roots are denoted x
1
 , . . . , x

k
) has been found.

Then solve new problem, with the modified objective function given by:

F(x)= ∑
i=1..r

 f
i
2(x) + ∑

j=1..k
 e -∥x-x(j)∥


(∥x-x

j
∥)

where



()=1 if ; 0, otherwise

 is a large constant, and  is a small constant.

This has the effect of creating an area of repulsion near solutions that have
already been found by the heuristic.

System of nonlinear equations
Hirsch, Pardalos, M.G.C.R. (2006)

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

BRKGA for bound-
constrained global

optimization

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Encoding & Decoder of BRKGA for global optimization

● A solution is encoded as a vector  = (



n
) of size

n, where 
i
 is a random number in the interval [0,1], for

i=1,...,n. The i-th component of corresponds to the i-th
dimension of hyper-rectangle S.

● A decoder takes as input the vector of random keys 
and returns a solution x S with

x
i
 = l

i
 + 

i
 . (u

i
 - l

i
), for i=1,...,n.

During all decoder process, the solutions fitness are
→calculated by the objective function f: S R of global

optimization problem.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Computational environment

Computer with a 1.66GHz Intel Core 2 processor
with 1 GB of Memory
Ubuntu version 4.3.2-1ubuntu11
C language, gcc compiler version 4.3.2
Random-number generator: Mersenne Twister
algorithm (Matsumoto and Nishimura, 1998)

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Robot kinematics
problem

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Robot kinematics application

● First described by Tsai and Morgan (1985).

● Considered a “challenging problem” in Floudas et al. (1999).

● Given a 6-revolute manipulator (rigid-bodies, or links, connected
together by joints), with the first link designated the base, and the
last link designated the hand of the robot: Determine the possible
positions of the hand, given that the joints are movable.

● Problem is reduced to solving a system of eight nonlinear equations
in eight unknowns.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Robot kinematics application
Find x = (x

1
 , x

2
 , . . . , x

8
) such that:

● f
1
 (x) = 4.731 · 10−3 x

1
 x

3
 − 0.3578x

2
x

3
 − 0.1238x

1
 + x

7

 − 1.637 · 10−3 x
2
 − 0.9338x

4
 − 0.3571 = 0

● f
2
 (x) = 0.2238x

1
x

3
 + 0.7623x

2
x

3
 + 0.2638x

1
− x

7
 − 0.07745x

2

 − 0.6734x
4
 − 0.6022 = 0

● f
3
 (x) = x

6
 x

8
 + 0.3578x

1
 + 4.731 · 10−3 x

2
 = 0

● f
4
 (x) = − 0.7623x

1
 + 0.2238x

2
 + 0.3461 = 0

● f
5
 (x) = x

1
2 + x

2
2 − 1 = 0

● f
6
 (x) = x

3
2 + x

4
2 − 1 = 0

● f
7
 (x) = x

5
2 + x

6
2 − 1 = 0

● f
8
 (x) = x

7
2 + x

8
2 − 1 = 0

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

● Size of chromosome: 8
● Size of population: 10
● Size of elite partition: 20% of population
● Size of mutant set: 10% of population
● Child inheritance probability: 0.7
● Stopping criterion: at any time during a run, we say that the heuristic has

solved the problem if GAP = | F(x) – F(x*)|  with  = 0.0001,

where x is the current best solution found by the heuristic and

x* is the known global minimum solution.

Parameters of biased random-key GA for
robot kinematics application

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Robot kinematics application

● We ran BRKGA five times (a different starting
random seed for each run) with  = 1,  = 1010

● In each case, BRKGA heuristic was able to find all
16 known roots.

● The average CPU time needed to find the 16 roots
was 3623.27 seconds.

● The next table illustrates one of these solutions:
the 16 roots were found in 4013.27 seconds by
running BRKGA heuristic with seed=270001.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

x1 x2 x3 x4 x5 x6 x7 x8
4.95 s 0.1658 −0.9851 0.7153 −0.6950 −0.9975 0.0638 −0.5251 −0.8557

0.1644 −0.9864 0.7185 −0.6956 −0.9980 0.0638 −0.5278 −0.8494
7.5 s 0.1619 −0.9851 0.7182 −0.6946 −0.9979 −0.0616 −0.5232 0.8503

0.1644 −0.9864 0.7185 −0.6956 −0.9980 −0.0638 −0.5278 0.8494
13.19 s 0.1731 −0.9827 0.7181 −0.6946 0.9973 −0.0686 −0.5195 0.8544

0.1644 −0.9864 0.7185 −0.6956 0.9980 −0.0638 −0.5278 0.8494
5.95 s 0.6729 0.7394 −0.6480 −0.7641 −0.9623 −0.2706 −0.4333 0.9027

0.6716 0.7410 −0.6516 −0.7586 −0.9625 −0.2711 −0.4376 0.8992
6.86 s 0.6736 0.7383 −0.6505 −0.7553 0.9634 0.2696 −0.4333 −0.9010

0.6716 0.7410 −0.6516 −0.7586 0.9625 0.2711 −0.4376 −0.8992
6.53 s 0.6792 0.7328 −0.6555 −0.7553 0.9612 −0.27613 −0.4343 0.9027

0.6716 0.7410 −0.6516 −0.7586 0.9625 −0.2711 −0.4376 0.8992
11.05 s 0.6768 0.7358 0.9502 −0.3132 −0.9623 0.2708 0.4002 −0.9162

0.6716 0.7410 0.9519 −0.3064 −0.9638 0.2666 0.4046 −0.9145
15.24 s 0.6674 0.7427 0.9508 −0.3132 0.9661 −0.2620 0.4002 0.9156

0.6716 0.7410 0.9519 −0.3064 0.9638 −0.2666 0.4046 0.9145
9.16 s 0.6792 0.7362 −0.6564 −0.7553 −0.9617 0.2745 −0.4343 −0.9008

0.6716 0.7410 −0.6516 −0.7586 −0.9625 0.2711 −0.4376 −0.8992
98.98 s 0.6707 0.7462 0.953 −0.3041 0.9644 0.2631 0.4079 −0.9107

0.6716 0.7410 0.9519 −0.3064 0.9638 0.2666 0.4046 −0.9145
135.02 s 0.6646 0.749 0.9551 −0.3015 −0.9652 −0.2625 0.4101 0.9114

0.6716 0.7410 0.9519 −0.3064 −0.9638 −0.2666 0.4046 0.9145
354.76 s 0.1604 −0.9891 −0.9505 −0.3167 −0.9979 −0.0581 0.4111 0.909

0.1644 −0.9864 −0.9471 −0.3210 −0.9982 −0.0594 0.4110 0.9116
360.76 s 0.168 −0.9844 −0.9514 −0.3167 0.9998 −0.0602 0.4098 0.9124

0.1644 −0.9864 −0.9471 −0.3210 0.9982 −0.0594 0.4110 0.9116
409.27 s 0.1606 −0.9855 −0.9481 −0.3183 −0.9976 0.0554 0.4138 −0.9076

0.1644 −0.9864 −0.9471 −0.3210 −0.9982 0.0594 0.4110 −0.9116
1204.24 s 0.1712 −0.9850 −0.9427 −0.3275 0.9976 0.0621 0.4052 −0.9143

0.1644 −0.9864 −0.9471 −0.3210 0.9982 0.0594 0.4110 −0.9116
1369.81 s 0.1718 −0.9837 0.7178 −0.6947 0.9943 0.0687 −0.5246 −0.8519

0.1644 −0.9864 0.7185 −0.6956 0.9980 0.0638 −0.5278 −0.8494

9.79321 10­5

7.19678 10­5

9.54526 10­5

9.76283 10­5

6.49664 10­5

9.23596 10­5

9.68334 10­5

9.81702 10­5

9.1171 10­5

8.55693 10­5

9.82556 10­5

9.32723 10­5

9.70348 10­5

7.28536 10­5

8.21721 10­5

8.63659 10­5

Known roots x=(x1,...,x8) of system in [−1, 1]8 described in Floudas et al. [1999], Kearfott [1987].

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

x1 x2 x3 x4 x5 x6 x7 x8
4.95 s 0.1658 −0.9851 0.7153 −0.6950 −0.9975 0.0638 −0.5251 −0.8557

0.1644 −0.9864 0.7185 −0.6956 −0.9980 0.0638 −0.5278 −0.8494
7.5 s 0.1619 −0.9851 0.7182 −0.6946 −0.9979 −0.0616 −0.5232 0.8503

0.1644 −0.9864 0.7185 −0.6956 −0.9980 −0.0638 −0.5278 0.8494
13.19 s 0.1731 −0.9827 0.7181 −0.6946 0.9973 −0.0686 −0.5195 0.8544

0.1644 −0.9864 0.7185 −0.6956 0.9980 −0.0638 −0.5278 0.8494
5.95 s 0.6729 0.7394 −0.6480 −0.7641 −0.9623 −0.2706 −0.4333 0.9027

0.6716 0.7410 −0.6516 −0.7586 −0.9625 −0.2711 −0.4376 0.8992
6.86 s 0.6736 0.7383 −0.6505 −0.7553 0.9634 0.2696 −0.4333 −0.9010

0.6716 0.7410 −0.6516 −0.7586 0.9625 0.2711 −0.4376 −0.8992
6.53 s 0.6792 0.7328 −0.6555 −0.7553 0.9612 −0.27613 −0.4343 0.9027

0.6716 0.7410 −0.6516 −0.7586 0.9625 −0.2711 −0.4376 0.8992
11.05 s 0.6768 0.7358 0.9502 −0.3132 −0.9623 0.2708 0.4002 −0.9162

0.6716 0.7410 0.9519 −0.3064 −0.9638 0.2666 0.4046 −0.9145
15.24 s 0.6674 0.7427 0.9508 −0.3132 0.9661 −0.2620 0.4002 0.9156

0.6716 0.7410 0.9519 −0.3064 0.9638 −0.2666 0.4046 0.9145
9.16 s 0.6792 0.7362 −0.6564 −0.7553 −0.9617 0.2745 −0.4343 −0.9008

0.6716 0.7410 −0.6516 −0.7586 −0.9625 0.2711 −0.4376 −0.8992
98.98 s 0.6707 0.7462 0.953 −0.3041 0.9644 0.2631 0.4079 −0.9107

0.6716 0.7410 0.9519 −0.3064 0.9638 0.2666 0.4046 −0.9145
135.02 s 0.6646 0.749 0.9551 −0.3015 −0.9652 −0.2625 0.4101 0.9114

0.6716 0.7410 0.9519 −0.3064 −0.9638 −0.2666 0.4046 0.9145
354.76 s 0.1604 −0.9891 −0.9505 −0.3167 −0.9979 −0.0581 0.4111 0.909

0.1644 −0.9864 −0.9471 −0.3210 −0.9982 −0.0594 0.4110 0.9116
360.76 s 0.168 −0.9844 −0.9514 −0.3167 0.9998 −0.0602 0.4098 0.9124

0.1644 −0.9864 −0.9471 −0.3210 0.9982 −0.0594 0.4110 0.9116
409.27 s 0.1606 −0.9855 −0.9481 −0.3183 −0.9976 0.0554 0.4138 −0.9076

0.1644 −0.9864 −0.9471 −0.3210 −0.9982 0.0594 0.4110 −0.9116
1204.24 s 0.1712 −0.9850 −0.9427 −0.3275 0.9976 0.0621 0.4052 −0.9143

0.1644 −0.9864 −0.9471 −0.3210 0.9982 0.0594 0.4110 −0.9116
1369.81 s 0.1718 −0.9837 0.7178 −0.6947 0.9943 0.0687 −0.5246 −0.8519

0.1644 −0.9864 0.7185 −0.6956 0.9980 0.0638 −0.5278 −0.8494

9.79321 10­5

7.19678 10­5

9.54526 10­5

9.76283 10­5

6.49664 10­5

9.23596 10­5

9.68334 10­5

9.81702 10­5

9.1171 10­5

8.55693 10­5

9.82556 10­5

9.32723 10­5

9.70348 10­5

7.28536 10­5

8.21721 10­5

8.63659 10­5

Known roots x=(x1,...,x8) of system in [−1, 1]8 described in Floudas et al. [1999], Kearfott [1987].
Roots x=(x1,...,x8) of system in [−1, 1]8 found by running BRKGA with seed=270001. For each root,
the time (seconds) and the value of obj. function F(x) are shown in the first column.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Chemical
reaction

engineering

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Non-Isothermal CSTR (continuously stirred tank reactors) problem

Originally described in Kubicek et al. (1980)

This problem concerns a model of two continuous non-
adiabatic stirred tank reactors. These reactors are in
series, in steady state, with a recycle component, and
have an exothermic first-order irreversible reaction.

When certain variables are eliminated, the model results
in a system of two nonlinear equations ...

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

1 and 2 represent the dimensionless temperatures in the two reactors in
the domain [0,1]2.

Parameters , D, 1, and 1 are set to 1000, 22, 2, and 2, respectively. The
recycle ratio parameter R takes on values in the set ={0.935, 0.940, ... ,
0.995}, whose number of known solutions varies between 1 and 7.

Non-Isothermal CSTR (continuously stirred tank reactors) problem

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

● Size of chromosome: 8
● Size of population: 100
● Size of elite partition: 20% of population
● Size of mutant set: 10% of population
● Child inheritance probability: 0.7
● Stopping criterion: at any time during a run, we say that the heuristic has

solved the problem if GAP = | F(x) – F(x*)|  with  = 0.000001,

where x is the current best solution found by the heuristic and

x* is the known global minimum solution.

Parameters of BRKGA for Non-Isothermal CSTR
problem

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

For each value of the parameter R given in the set , we ran the
BRKGA heuristic 5 times, each time searching for all of roots.

R #sols. C-GRASP
avg.#found

C-GRASP
avg. time

BRKGA
avg.#found

BRKGA
avg. time

0.935 1 1.00 0.60s 1.00 0.822s
0.940 1 1.00 0.77s 1.00 0.635s
0.945 3 3.00 0.19s 3.00 0.876s
0.950 5 4.99 1.11s 4.65 1.760s
0.955 5 5.00 1.69s 5.00 2.342s
0.960 7 6.96 2.41s 6.87 2.375s
0.965 5 4.95 1.81s 4.78 2.054s
0.970 5 4.99 1.34s 4.82 1.732s
0.975 5 4.96 1.83s 4.76 2.012s
0.980 5 4.98 1.90s 4.92 2.759s
0.985 5 4.99 2.23s 4.95 4.310s
0.990 1 1.00 0.01s 1.00 0.018s
0.995 1 1.00 0.01s 1.00 0.034s

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Automotive
engineering

problem

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

● Kinematic synthesis mechanism for automotive steering.
● This problem was originally described in Pramanik (2002).
● The Ackerman steering mechanism is a four-bar mechanism for

steering four-wheel vehicles. When a vehicle turns, the steered
wheels need to be angled so that they are both 90o with respect to a
certain line. This means that the wheels will have to be at different
angles with respect to the non-steered wheels. The Ackerman design
arranges the wheels automatically by moving the steering pivot
inward.

● Pramanik states that “the Ackerman design reveals progressive
deviations from ideal steering with increasing ranges of motion.”

● Pramanik instead considers a six-member mechanism. This
produces the system of equations given ...

Automotive steering problem

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

x
1
, x

2
, and x

3
 are, respectively, the normalized steering pivot rod radius, the normalized

tire pivot radius, and the normalized 'length' direction distance from the steering rod
pivot point to the tire pivot.

We want to find x
1
, x

2
, x

3
such that

F(x) = G
0
(Ψ

0
,φ

0
)2+ G

1
(Ψ

1
,φ

1
)2+ G

2
(Ψ

2
,φ

2
)2+ G

3
(Ψ

3
,φ

3
)2 is minimized, where

i = 0, 1, 2, 3

= 0

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

● Size of chromosome: 8
● Size of population: 100
● Size of elite partition: 20% of population
● Size of mutant set: 10% of population
● Child inheritance probability: 0.7
● Stopping criterion: at any time during a run, we say that the heuristic has

solved the problem if GAP = | F(x) – F(x*)|  with  = 0.000001,

where x is the current best solution found by the heuristic and

x* is the known global minimum solution. Here, we know F(x*) = 0.

Parameters of biased random-key GA for
automotive steering problem

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

When the angles 
i
 and 

i
 are given as:

This system had two roots in the domain [0.06, 1]3.

Using BRKGA, we solved the problem 10 times.

Each time, BRKGA found the two roots of the system .

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Computing two roots of system

root 1 = (0.0968218, 0.146321, 0.0631119)

root 2 = (0.128868, 0.254157, 0.144998)

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Literature survey

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Literature

• BRKGAs have been applied in a wide range of
areas.

• The following is a sampling of some papers that
appeared in the literature applying BRKGAs.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Survey

• Survey: Gonçalves and R. (2011)

J.F. Gonçalves and M.G.C.R., “Biased random-key
genetic algorithms for combinatorial optimization,”
J. of Heuristics, vol.17, pp. 487-525, 2011.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Telecommunications

• Routing: Ericsson, R., Pardalos (2002), Buriol et al. (2002, 2005),
Reis et al. (2011), Noronha, R., Ribeiro (2007, 2008, 2011),
Heckeler et al. (2011)

• Design: Andrade et al. (2006), Buriol, R., Thorup (2007)

• Network monitoring: Breslau et al. (2011)

• Regenerator location: Duarte et al. (2011)

• Fiber installation in optical networks: Goulart et al. (2011)

• Path-based recovery in flexgrid optical networks: Castro et al.
(2012)

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Telecommunications (cont'd)

• Handover minimization: Morán-Mirabal et al. (2012)

• Survivable IP/MPLS-over-WSON multi-layer network: Ruiz et al.
(2011), Pedrola et al. (2011)

• Survey: R. (2012)

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Scheduling

• Job-shop scheduling: Gonçalves, Mendes, R. (2005),
Gonçalves and R. (2012)

• Single machine scheduling: Valente et al. (2006), Valente
and Gonçalves (2008)

• Resource constrained project scheduling: Gonçalves,
Mendes, R. (2008, 2009), Gonçalves, R., Mendes (2011)

• Selection and scheduling of observations on Earth
observing satellites: Tangpattanakul, Josefowiez, Lopez
(2012)

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Production planning

• Assembly line balancing: Gonçalves and Almeida (2002)

• Manufacturing cell formation: Gonçalves and R. (2004)

• Single machine scheduling: Valente et al. (2006), Valente
and Gonçalves (2008)

• Assembly line worker assignment and balancing:
Moreira et al. (2010)

• Lot sizing and scheduling with capacity constraints
and backorders: Gonçalves and Sousa (2011)

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Network optimization

• Concave minimum cost flow: Fontes and Gonçalves
(2007)

• Robust shortest path: Coco, Noronha, Santos (2012)

• Tree of hubs location: Pessoa, Santos, R. (2012)

• Hop-constrained trees in nonlinear cost flow
networks: Fontes and Gonçalves (2012)

• Capacitated arc routing: Martinez, Loiseau, R. (2011)

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Power systems

• Unit commitment: Roque, Fontes, Fontes (2010, 2011)

• Multi-objective unit commitment: Roque, Fontes, Fontes
(2012)

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Packing

• 2D orthogonal packing: Gonçalves and R. (2011)

• 3D container loading: Gonçalves and R. (2012a)

• 2D/3D bin packing: Gonçalves and R. (2012b)

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Covering

• Steiner triple systems: R. et al. (2012)

• Covering by pairs: Breslau et al. (2011)

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Transportation

• Tollbooth assignment: Buriol. et al. (2009, 2010)

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Auctions

• Combinatorial auctions: Andrade et al. (2012)

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Automatic parameter tuning

• GRASP with path-relinking: Festa et al. (2010)

• GRASP with evolutionary path-relinking: Morán-Mirabal,
González-Velarde, R. (2012)

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Continuous global optimization

• Bound-constrained optimization: Silva, Pardalos, R.
(2012)

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Software

• C++ API: Toso and R. (2012)

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Reference

Tech report version:

 http://www.research.att.com/~mgcr/doc/srkga.pdf

J.F. Gonçalves and M.G.C.R., “Biased random-key
genetic algorithms for combinatorial optimization,”
J. of Heuristics, vol.17, pp. 487-525, 2011.

 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

These slides and all of the papers cited in this
tutorial can be downloaded from my homepage:

http://www.research.att.com/~mgcr

	2012-09-CLAIO2012-brkga-tutorial-day1.pdf
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Combinatorial Optimization Handbook of Applied Optimization P.M. Pardalos and M.G.C. Resende, eds. Oxford U. Press, 2002
	Combinatorial Optimization
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Metaheuristics Metaheuristics: Computer Decision-Making M.G.C. Resende and J.P. de Sousa, eds., Kluwer, 2003
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147

