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Summary: Day 1
• Basic concepts of combinatorial and continuous global optimization

• Basic concepts of genetic algorithms

• Random-key genetic algorithm of Bean (1994)

• Biased random-key genetic algorithms (BRKGA)
– Encoding / Decoding

– Initial population

– Evolutionary mechanisms

– Problem independent / problem dependent components

– Multi-start strategy

– Restart strategy

– Multi-population strategy

– Specifying a BRKGA

• Application programming interface (API) for BRKGA
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Summary: Day 2

• Applications of BRKGA
– Set covering
– Packing rectangles
– Packet routing on the Internet
– Handover minimization in mobility networks
– Continuous global optimization

• Overview of literature & concluding remarks
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Combinatorial and 
Continuous Global 
Optimization
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Combinatorial Optimization

Combinatorial optimization: process of finding the 
best, or optimal, solution for problems with a discrete set 
of feasible solutions. 

 Applications: routing, scheduling, packing, inventory and 
production management, location, logic, and assignment of 
resources, among many others.

Economic impact: transportation (airlines, trucking, rail, 
and shipping), forestry, manufacturing, logistics, aerospace, 
energy (electrical power, petroleum, and natural gas), 
agriculture, biotechnology, financial services, and 
telecommunications, among many others.
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Combinatorial Optimization

Given:
discrete set of feasible solutions  X
objective function f(x): x  X  R

Objective (minimization):
find x  X : f(x) ≤ f(y),  y  X
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Combinatorial Optimization

Much progress in recent years on finding  
exact (provably optimal) solutions: dynamic 
programming, cutting planes, branch and 
cut, …
Many hard combinatorial optimization 
problems are still not solved exactly and 
require good solution methods.
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Combinatorial Optimization

Approximation algorithms are guaranteed to 
find in polynomial-time a solution within a 
given factor of the optimal. 
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Combinatorial Optimization

Approximation algorithms are guaranteed to 
find in polynomial-time a solution within a 
given factor of the optimal. 
Sometimes the factor is too big, i.e. guaranteed 
solutions may be far from optimal
Some optimization problems (e.g. max clique, 
covering by pairs) cannot have approximation 
schemes unless P=NP
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Combinatorial Optimization

Aim of heuristic methods for combinatorial 
optimization is to quickly produce good-
quality solutions, without necessarily 
providing any guarantee of solution quality. 
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Continuous Global Optimization

Given:
continuous set of feasible solutions  X
objective function f(x): x  X  R

Objective (minimization):
find x  X : f(x) ≤ f(y),  y  X
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Continuous Global Optimization

Given:
continuous set of feasible solutions  X
objective function f(x): x  X  R

Objective (minimization):
find x  X : f(x) ≤ f(y),  y  X

f(x) can be well-behaved or 
not, e.g. it can be
non-convex, discontinuous,
non-differentiable, a black-box,
etc.
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Continuous Box-Constrained Global 
Optimization

Here, the continuous set of solutions              
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is a hyper-rectangle, i.e. variables have lower and 
upper bounds.
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Metaheuristics

Metaheuristics are heuristics to devise heuristics.             
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Metaheuristics

Metaheuristics are high level procedures that coordinate 
simple heuristics, such as local search, to find solutions that 
are of better quality than those found by the simple heuristics 
alone.
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Metaheuristics

Metaheuristics are high level procedures that coordinate 
simple heuristics, such as local search, to find solutions that 
are of better quality than those found by the simple heuristics 
alone.

Examples: GRASP and C-GRASP, simulated annealing, 
genetic algorithms, tabu search, scatter search, ant colony 
optimization, variable neighborhood search, and biased 
random-key genetic algorithms (BRKGA).  
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Genetic algorithms
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Genetic algorithms

Individual: solution

Adaptive methods that are used to solve search
and optimization problems.

Holland (1975)
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Genetic algorithms

Individual: solution (chromosome = string of genes)
Population: set of fixed number of individuals
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Genetic algorithms evolve population applying
Darwin's principle of survival of the fittest.

Genetic algorithms
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Genetic algorithms evolve population applying
Darwin's principle of survival of the fittest.

A series of generations are produced by 
the algorithm. The most fit individual of the
last generation is the solution. 

Genetic algorithms
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Genetic algorithms evolve population applying
Darwin's principle of survival of the fittest.

A series of generations are produced by 
the algorithm. The most fit individual of the 
last generation is the solution. 

Individuals from one generation are combined
to produce offspring that make up next 
generation.

Genetic algorithms
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Probability of selecting individual to mate
is proportional to its fitness: survival of the 
fittest.

a

b

Genetic algorithms
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a

b

Parents drawn from 
generation K

c

Child in 
generation K+1

Probability of selecting individual to mate
is proportional to its fitness: survival of the 
fittest.

Genetic algorithms

a

b

Combine
parents

c

mutation
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Crossover and mutation

a

b

Combine
parents

 c

mutation
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Crossover and mutation

a

b

Combine
parents

 c

mutation

Crossover: Combines parents … passing along to offspring
                  characteristics of each parent …
                                                 Intensification of search
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Crossover and mutation

a

b

Combine
parents

 c

mutation

Mutation:  Randomly changes chromosome of offspring ... 
                 Driver of evolutionary process ...
                                                 Diversification of search
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Evolution of solutions
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Evolution of solutions
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Evolution of solutions
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Evolution of solutions
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Evolution of solutions



 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Evolution of solutions
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Evolution of solutions
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Evolution of solutions
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Encoding solutions
with random keys
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Encoding with random keys

• A random key is a real random number in the 
continuous interval [0,1).
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Encoding with random keys

• A random key is a real random number in the 
continuous interval [0,1).

• A vector X of random keys, or simply random 
keys, is an array of n random keys.
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Encoding with random keys

• A random key is a real random number in the 
continuous interval [0,1).

• A vector X of random keys, or simply random 
keys, is an array of n random keys.

• Solutions of optimization problems can be 
encoded by random keys.



 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Encoding with random keys

• A random key is a real random number in the 
continuous interval [0,1).

• A vector X of random keys, or simply random 
keys, is an array of n random keys.

• Solutions of optimization problems can be 
encoded by random keys.

• A decoder is a deterministic algorithm that takes 
a vector of random keys as input and outputs a 
solution of the optimization problem.
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Encoding with random keys: Sequencing

Encoding
        [        1,         2,        3,        4,         5 ] 

  X = [ 0.099, 0.216, 0.802, 0.368, 0.658 ]
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Encoding with random keys: Sequencing

Encoding
        [        1,         2,        3,        4,         5 ] 

  X = [ 0.099, 0.216, 0.802, 0.368, 0.658 ]

Decode by sorting vector of random keys

        [        1,         2,        4,        5,         3 ] 

  X = [ 0.099, 0.216, 0.368, 0.658, 0.802 ]
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Encoding with random keys: Sequencing

Encoding
        [        1,         2,        3,        4,         5 ] 

  X = [ 0.099, 0.216, 0.802, 0.368, 0.658 ]

Decode by sorting

        [        1,         2,        4,        5,         3 ] 

  X = [ 0.099, 0.216, 0.368, 0.658, 0.802 ]

Therefore, the vector of random keys:

X = [ 0.099, 0.216, 0.802, 0.368, 0.658 ]

encodes the sequence: 1– 2 – 4 – 5 – 3
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Encoding with random keys: Subset 
selection (select 3 of 5 elements)

Encoding
        [        1,         2,        3,        4,         5 ] 

  X = [ 0.099, 0.216, 0.802, 0.368, 0.658 ]

Decode by sorting vector of random keys
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Encoding with random keys: Subset 
selection (select 3 of 5 elements)

Encoding
        [        1,         2,        3,        4,         5 ] 

  X = [ 0.099, 0.216, 0.802, 0.368, 0.658 ]

Decode by sorting vector of random keys

        [        1,         2,        4,        5,         3 ] 

  X = [ 0.099, 0.216, 0.368, 0.658, 0.802 ]Encoding
  

Decode by sorting vector of random keys
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Encoding with random keys: Subset 
selection (select 3 of 5 elements)

Encoding
        [        1,         2,        3,        4,         5 ] 

  X = [ 0.099, 0.216, 0.802, 0.368, 0.658 ]

Decode by sorting vector of random keys

        [        1,         2,        4,        5,         3 ] 

  X = [ 0.099, 0.216, 0.368, 0.658, 0.802 ]Encoding
Therefore, the vector of random keys:

X = [ 0.099, 0.216, 0.802, 0.368, 0.658 ]

encodes the subset: {1, 2, 4 }
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Encoding with random keys: Assigning integer 
weights  [0,10] to a subset of 3 of 5 elements

Encoding
        [        1,        2,        3,        4,        5 |          1,          2,          3,          4,           5 ] 

  X = [ 0.099, 0.216, 0.802, 0.368, 0.658 | 0.4634, 0.5611, 0.2752, 0.4874, 0.0348 ]
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Encoding with random keys: Assigning integer 
weights  [0,10] to a subset of 3 of 5 elements

Encoding
        [        1,        2,        3,        4,        5 |          1,          2,          3,          4,           5 ] 

  X = [ 0.099, 0.216, 0.802, 0.368, 0.658 | 0.4634, 0.5611, 0.2752, 0.4874, 0.0348 ]

Decode by sorting the first 5 keys and assign as the weight the value 
W

i
 =   floor [ 10 X

5+i
 ] + 1 to the 3 elements with smallest keys X

i
, for  

     i =1,...,5.
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Encoding with random keys: Assigning integer 
weights  [0,10] to a subset of 3 of 5 elements

Encoding
        [        1,        2,        3,        4,        5 |          1,          2,          3,          4,           5 ] 

  X = [ 0.099, 0.216, 0.802, 0.368, 0.658 | 0.4634, 0.5611, 0.2752, 0.4874, 0.0348 ]

Decode by setting sorting the first 5 keys and assign

the element weight to W
i
 =   floor [ 11 X

5+i
 ] to the 3 elements with 

smallest keys X
i
, for i =1,...,5.

Therefore, the vector of random keys:

X = [ 0.099, 0.216, 0.802, 0.368, 0.658 | 0.4634, 0.5611, 0.2752, 0.4874, 0.0348 ]      

encodes the weight vector W = (5,6,–,5,–)
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Chromosome adjustment

Chromosome adjustment is useful in the case of 
complex decoders, e.g. those which have a local 
search module.
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original
random key vector

phase 1
of 

decoder

local
search

of
decoder

feasible
solution

decoder

adjusted
random key vector

phase 1
of 

decoder

local
search

of
decoder

local
optimum

local
optimum

decoder

adjusted
random key vector

local
optimum

local
optimum

chromosome adjustment

original
random key vector

Chromosome 
adjustment
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Flow 1 2 3

1 20 30

2 20 40

3 30 40

Dist 1 2 3

1 10 1

2 10 5

3 1 5

Quadratic assignment problem

original
random key vector:

( .83, .81, .72 )

phase 1
of 

decoder

3 →1
2 →2
1 →3

cost = f(1,2)  d(3,2) +
          f(1,3)  d(3,1) + 
          f(2,3)  d(2,1) =
          100 + 30 + 400 = 530

3 →1
2 →2
1 →3

local
search

of
decoder

3 →1
2 →3
1 →2

local search swapped locations of
facilities 1 and 2, resulting in
cost = 200

adjusted
random key vector:

( .81, .83, .72)

Chromosome 
adjustment
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Flow 1 2 3

1 20 30

2 20 40

3 30 40

Dist 1 2 3

1 10 1

2 10 5

3 1 5

adjusted
random key vector:

( .81, .83, .72 )

phase 1
of 

decoder

3 →1
2 →3
1 →2

cost = f(1,2)  d(2,3) +
          f(1,3)  d(2,1) + 
          f(2,3)  d(3,1) =
          100 + 60 + 40 = 200

Quadratic assignment problem Chromosome 
adjustment



 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Flow 1 2 3

1 20 30

2 20 40

3 30 40

Dist 1 2 3

1 10 1

2 10 5

3 1 5

adjusted
random key vector:

( .81, .83, .72 )

phase 1
of 

decoder

3 →1
2 →3
1 →2

cost = f(1,2)  d(2,3) +
          f(1,3)  d(2,1) + 
          f(2,3)  d(3,1) =
          100 + 60 + 40 = 200

Quadratic assignment problem Chromosome 
adjustment

Not only is expensive local search avoided …
Characteristics of local optimum are passed on to future
generations …. They will be represented in the population by
adjusted random key vector.
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Genetic algorithms 
and random keys
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GAs and random keys

• Introduced by Bean (1994) 
for sequencing problems.
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GAs and random keys

• Introduced by Bean (1994) 
for sequencing problems.

• Individuals are strings of 
real-valued numbers 
(random keys) in the 
interval [0,1].

S = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
          s(1)   s(2)   s(3)   s(4)    s(5)
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GAs and random keys

• Introduced by Bean (1994) 
for sequencing problems.

• Individuals are strings of 
real-valued numbers 
(random keys) in the 
interval [0,1).

• Sorting random keys results 
in a sequencing order.

S = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
          s(1)   s(2)   s(3)   s(4)    s(5)

S' = ( 0.05, 0.19, 0.25, 0.67, 0.89 )
          s(4)   s(2)   s(1)   s(3)    s(5)
Sequence: 4 – 2 – 1 – 3 – 5 
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GAs and random keys

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele 
(key, or value of gene) to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = (                                              )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele 
(key, or value of gene) to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25                                      )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele 
(key, or value of gene) to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90                             )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele 
(key, or value of gene) to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90, 0.76                    )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele 
(key, or value of gene) to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90, 0.76, 0.05          )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele 
(key, or value of gene) to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90, 0.76, 0.05, 0.89 )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele 
(key, or value of gene) to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90, 0.76, 0.05, 0.89 )

If every random-key array corresponds
to a feasible solution: Mating always
produces feasible offspring.

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele 
(key, or value of gene) to 
the child.
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GAs and random keys

Initial population is made up of P 
random-key vectors, each with N 
keys, each having a value 
generated uniformly at random in 
the interval [0,1).
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GAs and random keys
At the K-th generation, 
compute the cost of each 
solution ...  Elite solutions

Population K

Non-elite
solutions
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GAs and random keys
At the K-th generation, 
compute the cost of each 
solution and partition the 
solutions into two sets: 

 Elite solutions

Population K

Non-elite
solutions
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GAs and random keys
At the K-th generation, 
compute the cost of each 
solution and partition the 
solutions into two sets: 
elite solutions and non-elite 
solutions. 

 Elite solutions

Population K

Non-elite
solutions
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GAs and random keys
At the K-th generation, 
compute the cost of each 
solution and partition the 
solutions into two sets: 
elite solutions and non-elite 
solutions. Elite set should 
be smaller of the two sets 
and contain best solutions.

 Elite solutions

Population K

Non-elite
solutions
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GAs and random keys
Evolutionary dynamics

Population K Population K+1

 Elite solutions

Non-elite
solutions
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GAs and random keys
Evolutionary dynamics
– Copy elite solutions from population 

K to population K+1  Elite solutions

Population K+1Population K

 Elite solutions

Non-elite
solutions
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GAs and random keys
Evolutionary dynamics
– Copy elite solutions from population 

K to population K+1

– Add R random solutions (mutants) 
to population K+1

 Elite solutions

Mutant
solutions

Population K+1Population K

 Elite solutions

Non-elite
solutions
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GAs and random keys
Evolutionary dynamics
– Copy elite solutions from population 

K to population K+1

– Add R random solutions (mutants) 
to population K+1

– While K+1-th population < P
• RANDOM-KEY GA: Use any two 

solutions in population K to produce 
child in population K+1. Mates are 
chosen at random.

 Elite solutions

Mutant
solutions

X

Population K+1Population K

 Elite solutions

Non-elite
solutions

Mutant
solutions
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Biased random key genetic algorithm

• A biased random key genetic algorithm (BRKGA) 
is a random key genetic algorithm (RKGA).

• BRKGA and RKGA differ in how mates are 
chosen for crossover and how parametrized 
uniform crossover is applied.
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How RKGA & BRKGA differ

RKGA
both parents chosen at 
random from entire 
population

either parent can be 
parent A in parametrized 
uniform crossover

BRKGA
both parents chosen at 
random but one parent 
chosen from population 
of elite solutions

best fit parent is parent A 
in parametrized uniform 
crossover 
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set covering
problem: scp51
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set covering
problem: scpa
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set k-covering
problem: scp45-11
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Two types of parent selection in BRKGA

1) select second parent from population of non-elite 
solutions

2) select second parent from entire population, 
excluding the selected first parent
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Biased random key GA
Evolutionary dynamics
– Copy elite solutions from population 

K to population K+1

– Add R random solutions (mutants) 
to population K+1

– While K+1-th population < P
• RANDOM-KEY GA: Use any two 

solutions in population K to produce 
child in population K+1. Mates are 
chosen at random.

• BIASED RANDOM-KEY GA: Mate elite 
solution with other solution  of 
population K to produce child in 
population K+1. Mates are chosen at 
random.

 Elite solutions

Mutant
solutions

X

Population K+1

BRKGA: Probability
child inherits
key of elite 
parent > 0.5Population K

 Elite solutions

Non-elite
solutions

Mutant
solutions
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Observations

• Random method: keys are randomly generated so 
solutions are always vectors of random keys
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Observations

• Random method: keys are randomly generated so 
solutions are always vectors of random keys

• Elitist strategy:  best solutions are passed without change 
from one generation to the next (incumbent is kept)
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Observations

• Random method: keys are randomly generated so 
solutions are always vectors of random keys

• Elitist strategy:  best solutions are passed without change 
from one generation to the next (incumbent is kept)
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one parent is always selected (with replacement) from the 
small elite set and probability that child inherits key of elite 
parent > 0.5   Not so in the RKGA of Bean. 
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Observations

• Random method: keys are randomly generated so 
solutions are always vectors of random keys

• Elitist strategy:  best solutions are passed without change 
from one generation to the next (incumbent is kept)

• Child inherits more characteristics of elite parent: 
one parent is always selected (with replacement) from the 
small elite set and probability that child inherits key of elite 
parent > 0.5   Not so in the RKGA of Bean. 

• No mutation in crossover: mutants are used instead 
(they play same role as mutation in GAs … help escape local 
optima) 



 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Decoders
• A decoder is a deterministic algorithm that takes as input a random-key 

vector and returns a feasible solution of the optimization problem and 
its cost.

• Bean (1994) proposed decoders based on sorting the random-key 
vector to produce a sequence.

• A random-key GA searches the solution space indirectly by searching 
the space of random keys and using the decoder to evaluate fitness of 
the random key.

[0,1]N Solution space
of optimization
problem

decoder
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Decoders
• A decoder is a deterministic algorithm that takes as input a random-key 

vector and returns a feasible solution of the optimization problem and 
its cost.

• Bean (1994) proposed decoders based on sorting the random-key 
vector to produce a sequence.

• A random-key GA searches the solution space indirectly by searching 
the space of random keys and using the decoder to evaluate fitness of 
the random key.
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decoder
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Framework for biased random-key genetic algorithms

Generate P vectors 
of random keys 

Decode each vector 
of random keys 

Stopping rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions 
to next population

Generate mutants in 
next population

Combine elite and
non-elite solutions
and add children to

next population

no

stop

yes
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Framework for biased random-key genetic algorithms

Generate P vectors 
of random keys 

Decode each vector 
of random keys 

Stopping rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions 
to next population

Generate mutants in 
next population

Combine elite and
non-elite solutions
and add children to

next population

stop

Problem independent

no yes

Problem dependent
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Decoding of random key vectors can be done in parallel

Generate P vectors 
of random keys 

Decode each vector 
of random keys 

Stopping rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions 
to next population

Generate mutants in 
next population

Combine elite and
non-elite solutions
and add children to

next population

stop

no yes
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BRKGA in multi-start strategy

   Generate P vectors 

of random keys 
Decode each vector 

of random keys 

Restart rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions 
to next population

Generate mutants in 
next population

Combine elite and
non-elite solutions
and add children to

next population

no
yes

begin

if incumbent
improved, update

incumbent

stopping
rule

satisfied ?

output
incumbent stop

yes

no
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Randomized heuristic iteration 
count distribution: constructed 
by independently running the 
algorithm a number of times, each 
time stopping when the algorithm 
finds a solution at least as good as a 
given target.  
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In most of the independent runs, the algorithm finds the target solution in 
relatively few iterations: 
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In most of the independent runs, the algorithm finds the target solution in 
relatively few iterations: 25% of the runs take fewer than 101 iterations
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In most of the independent runs, the algorithm finds the target solution in 
relatively few iterations: 50% of the runs take fewer than 192 iterations
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In most of the independent runs, the algorithm finds the target solution in 
relatively few iterations: 75% of the runs take fewer than 345 iterations
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However, some runs take much longer: 10% of the runs take over 1000 
iterations
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However, some runs take much longer:  5% of the runs take over 2000 
iterations
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However, some runs take much longer:  2% of the runs take over 9715 
iterations
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However, some runs take much longer:  the longest run took 11607 
iterations
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Probability that algorithm will take 
over 345 iterations: 25% = 1/4
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Probability that algorithm will take 
over 345 iterations: 25% = 1/4

By restarting algorithm after 345 
iterations, probability that new run  
will take over 690 iterations: 25% = 
1/4

Probability that algorithm with 
restart will take over 690 iterations: 
probability of taking over 345  X  
probability of taking over 690 
iterations given it took over 345 = 
¼ x ¼ = 1/42
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Probability that algorithm will still be 
running after K periods of 345 
iterations:  1/4K
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Probability that algorithm will still be 
running after K periods of 345 
iterations:  1/4K

For example, probability that 
algorithm with restart will still be 
running after 1725 iterations (5 
periods of 345 iterations):  1/45   
0.0977%

This is much less than the 5% 
probability that the algorithm 
without restart will take over 2000 
iterations. 
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Probability that algorithm will still be 
running after K periods of 345 
iterations:  1/4K

For example, probability that 
algorithm with restart will still be 
running after 1725 iterations (5 
periods of 345 iterations):  1/45   
0.0977%

This is much less than the 5% 
probability that the algorithm 
without restart will take over 2000 
iterations. 
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Restart strategies

• First proposed by Luby et al. (1993)
• They define a restart strategy as a finite sequence 

of time intervals  S = {
1
, 
2
, 
3
, … } which define 

epochs  
1
,   

1
+
2
,   

1
+
2
+
3
,  … when the 

algorithm is restarted from scratch.
• Luby et al. (1993) prove that the optimal restart 

strategy uses 
1
= 

2
= 

3
= … = *, where * is a 

constant.
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Restart strategies

• Luby et al. (1993)

• Kautz et al. (2002)

• Palubeckis (2004)

• Sergienko et al. (2004)

• Nowicki & Smutnicki (2005)

• D’Apuzzo et al. (2006)

• Shylo et al. (2011a)

• Shylo et al. (2011b)

• Resende & Ribeiro (2011)
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Restart strategy for BRKGA

• Recall the restart strategy of Luby et al. where equal time 
intervals 

1
= 

2
= 

3
= … = * pass between restarts.

• Strategy requires * as input.
• Since we have no prior information as to the runtime 

distribution of the heuristic, we run the risk of:
– choosing * too small:  restart variant may take long to 

converge
– choosing * too big:  restart variant may become like no-

restart variant
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Restart strategy for BRKGA

• We conjecture that number of iterations between 
improvement of the incumbent (best so far) solution 
varies less w.r.t. heuristic/ instance/ target than run 
times.

• We propose the following restart strategy: Keep track of 
the last generation when the incumbent improved and 
restart BRKGA if K generations have gone by without 
improvement.

• We call this strategy restart(K)  
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Example of restart strategy for BRKGA: Load balancing

Given an ordered sequence of 1024 integers p[0], p[1], …, p[1023] 


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Place consecutive numbers in 32 buckets b[0], b[1], …, b[31] 



b[0]    b[1]     b[2]        b[3]         b[4]                b[29]  b[30] b[31] 

Example of restart strategy for BRKGA: Load balancing
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Add the numbers in each bucket b[0], b[1], …, b[31] 



b[0]    b[1]     b[2]        b[3]         b[4]                b[29]  b[30] b[31] 

p p p p p p p p

Example of restart strategy for BRKGA: Load balancing
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Place the buckets in 16 bins B[0], B[1], …, B[15] 



b[0]    b[1]     b[2]        b[3]         b[4]                b[29]  b[30] b[31] 

p pp

pp

p

pp


 B[0]                 B[1]                    B[2]                        B[15] 

Example of restart strategy for BRKGA: Load balancing
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Add up the numbers in each bin B[0], B[1], …, B[15] 



b[0]    b[1]     b[2]        b[3]         b[4]                b[29]  b[30] b[31] 

p pp

pp

p

pp


 B[0]                 B[1]                    B[2]                        B[15] 

T[0]=(p) T[1]=(p) T[2]=(p) T[15]=(p)

Example of restart strategy for BRKGA: Load balancing
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OBJECTIVE:  Minimize { Maximum (T[0], T[1], …, T[15]) } 



b[0]    b[1]     b[2]        b[3]         b[4]                b[29]  b[30] b[31] 

p pp

pp

p

pp


 B[0]                 B[1]                    B[2]                        B[15] 

T[0]=(p) T[1]=(p) T[2]=(p) T[15]=(p)

Example of restart strategy for BRKGA: Load balancing
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Example of restart strategy for BRKGA: Load balancing

Encoding

X = [ x[1], x[2], …, x[32]   |   x[32+1], x[32+2], …, x[32+16] ]

Decoding
x[1], x[2], …, x[32] are used to define break points for buckets

x[32+1], x[32+2], …, x[32+16]  are used to determine to 
which bins the buckets are assigned
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Example of restart strategy for BRKGA: Load balancing

Encoding

X = [ x[1], x[2], …, x[32]   |   x[32+1], x[32+2], …, x[32+16] ]

Decoding
x[1], x[2], …, x[32] are used to define break points for buckets

Size of bucket i = floor (1024 × x[i]/(x[1]+x[2]+⋯+x[32])), i=1,...,15

Size of bucket 16 = 1024 – sum of sizes of first 15 buckets
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Example of restart strategy for BRKGA: Load balancing

Encoding

X = [ x[1], x[2], …, x[32]   |   x[32+1], x[32+2], …, x[32+16] ]

Decoding
x[1], x[2], …, x[32] are used to define break points for buckets

x[32+1], x[32+2], …, x[32+16]  are used to determine to 
which bins the buckets are assigned

Bin that bucket i is assigned to = floor (16 × x[32+i]) + 1 
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Example of restart strategy for BRKGA: Load balancing

Decoding (Local search phase)
– while (there exists a bucket in the most loaded bin that 

can be moved to another bin and not increase the 
maximum load) then

• move that bucket to that bin
– end while

Make necessary chromosome adjustments to last 16 
random keys of vector of random keys to reflect changes 
made in local search phase: Add or subtract an integer 
value from chromosome of bucket that moved to new bin.
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Example of restart strategy for BRKGA: Load balancing

restart strategy: 
               restart(2000) no restart
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BRKGA with p parallel populations

evolve
pop 1

evolve 
pop 2

evolve
pop 3

evolve 
pop p

++gen

gen mod x = = 0

top v individuals
emigrate from
each pop to 
other pops



yes

no
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BRKGA with p parallel populations

evolve
pop 1

evolve 
pop 2

evolve
pop 3

evolve 
pop p

++gen

gen mod x = = 0

top v individuals
emigrate from
each pop to 
other pops



yes

no

Every x generations
the v most fit individuals 
from each population are 
copied to the other p – 1
populations if not there 
already.
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Initialize population with some non-
random individuals

It is often useful to initialize the first population with 
some individuals not generated totally at random.

– Generate some individuals using simple heuristics, 
e.g. Buriol, M.G.C.R., Ribeiro, & Thorup (2005)

– Formulate 0-1 integer program and solve linear 
programming (LP) relaxation and use LP solution as 
individual, e.g. Andrade, Miyazawa, M.G.C.R., & Toso 
(2012)  
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• Encoding is always done the same way, i.e. with a vector of 
N random-keys (parameter N must be specified)

• Decoder that takes as input a vector of N random-keys and 
outputs the corresponding solution of the combinatorial 
optimization problem and its cost (this is usually a heuristic)

• Parameters

Specifying a biased random-key GA



 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Specifying a biased random-key GA

Parameters:
– Size of population

– Parallel population parameters

– Size of elite partition

– Size of mutant set

– Child inheritance probability

– Restart strategy parameter

– Stopping criterion
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Specifying a biased random-key GA
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– Size of population:  a function of N, say N or 2N
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Specifying a biased random-key GA

Parameters:
– Size of population:  a function of N, say N or 2N

– Parallel population parameters: say, p = 3 , v  = 2, and x = 200

– Size of elite partition: 15-25% of population

– Size of mutant set: 5-15% of population

– Child inheritance probability: > 0.5, say 0.7

– Restart strategy parameter

– Stopping criterion
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Specifying a biased random-key GA

Parameters:
– Size of population:  a function of N, say N or 2N

– Parallel population parameters: say, p = 3 , v  = 2, and x = 200

– Size of elite partition: 15-25% of population

– Size of mutant set: 5-15% of population

– Child inheritance probability: > 0.5, say 0.7

– Restart strategy parameter: a function of N, say 2N or 10N

– Stopping criterion
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Specifying a biased random-key GA

Parameters:
– Size of population:  a function of N, say N or 2N

– Parallel population parameters: say, p = 3 , v  = 2, and x = 200

– Size of elite partition: 15-25% of population

– Size of mutant set: 5-15% of population

– Child inheritance probability: > 0.5, say 0.7

– Restart strategy parameter: a function of N, say 2N or 10N

– Stopping criterion: e.g. time, # generations, solution quality,              
# generations without improvement
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brkgaAPI: A C++ API for BRKGA

• Efficient and easy-to-use object oriented application 
programming interface (API) for the algorithmic framework 
of BRKGA.
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brkgaAPI: A C++ API for BRKGA

• Efficient and easy-to-use object oriented application 
programming interface (API) for the algorithmic framework 
of BRKGA.

• Cross-platform library handles large portion of problem 
independent modules that make up the framework, e.g.
– population management
– evolutionary dynamics
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• Efficient and easy-to-use object oriented application 
programming interface (API) for the algorithmic framework 
of BRKGA.

• Cross-platform library handles large portion of problem 
independent modules that make up the framework, e.g.
– population management
– evolutionary dynamics

• Implemented in C++ and may benefit from shared-memory 
parallelism if available.
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brkgaAPI: A C++ API for BRKGA

• Efficient and easy-to-use object oriented application 
programming interface (API) for the algorithmic framework 
of BRKGA.

• Cross-platform library handles large portion of problem 
independent modules that make up the framework, e.g.
– population management
– evolutionary dynamics

• Implemented in C++ and may benefit from shared-memory 
parallelism if available.

• User only needs to implement problem-dependent decoder.
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brkgaAPI: A C++ API for BRKGA

Paper: Rodrigo F. Toso and M.G.C.R., “A C++ 
Application Programming Interface for 
Biased Random-Key Genetic Algorithms,”  
AT&T Labs Technical Report, Florham Park, August 2011.

Software: http://www.research.att.com/~mgcr/src/brkgaAPI

http://www.research.att.com/
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Reference

Tech report version:

        

         http://www.research.att.com/~mgcr/doc/srkga.pdf

J.F. Gonçalves and M.G.C.R., “Biased random-key 
genetic algorithms for combinatorial optimization,” 
J. of Heuristics, vol.17, pp. 487-525, 2011.
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Reference

M.G.C.R., “Biased random-key genetic algorithms 
with applications in telecommunications,” TOP, 
vol. 20, pp. 120-153, 2012.

Tech report version:
        
         http://www.research.att.com/~mgcr/doc/brkga-telecom.pdf
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Thanks!
These slides and all of the papers cited in this 
tutorial can be downloaded from my homepage:

http://www.research.att.com/~mgcr
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Thanks!
These slides and all of the papers cited in this 
tutorial can be downloaded from my homepage:

http://www.research.att.com/~mgcr

See you tomorrow for some applications of BRKGA.
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Part 2 of tutorial
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Summary: Day 1
• Basic concepts of combinatorial and continuous global optimization

• Basic concepts of genetic algorithms

• Random-key genetic algorithm of Bean (1994)

• Biased random-key genetic algorithms (BRKGA)
– Encoding / Decoding

– Initial population

– Evolutionary mechanisms

– Problem independent / problem dependent components

– Multi-start strategy

– Restart strategy

– Multi-population strategy

– Specifying a BRKGA

• Application programming interface (API) for BRKGA
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Summary: Day 2

• Applications of BRKGA
– Set covering
– Packing rectangles
– Packet routing on the Internet
– Handover minimization in mobility networks
– Continuous global optimization

• Overview of literature & concluding remarks
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• Encoding is always done the same way, i.e. with a vector of 
N random-keys (parameter N must be specified)

• Decoder that takes as input a vector of N random-keys and 
outputs the corresponding solution of the combinatorial 
optimization problem and its cost (this is usually a heuristic)

• Parameters

Specifying a biased random-key GA
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Specifying a biased random-key GA

Parameters:
– Size of population

– Parallel population parameters

– Size of elite partition

– Size of mutant set

– Child inheritance probability

– Restart strategy parameter

– Stopping criterion
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Specifying a biased random-key GA

Parameters:
– Size of population:  a function of N, say N or 2N

– Parallel population parameters: say, p = 3 , v  = 2, and x = 200

– Size of elite partition: 15-25% of population

– Size of mutant set: 5-15% of population

– Child inheritance probability: > 0.5, say 0.7

– Restart strategy parameter: a function of N, say 2N or 10N

– Stopping criterion: e.g. time, # generations, solution quality,              
# generations without improvement
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Some applications 
of BRKGA
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Steiner triple covering
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M.G.C.R., R.F. Toso, J.F. Gonçalves, and R.M.A. 
Silva,  “A biased random-key genetic 
algorithm for the Steiner triple covering 
problem,” Optimization Letters, vol. 6, pp. 605-
619, 2012.

tech report: http://www.research.att.com/~mgcr/doc/brkga-stn.pdf
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Steiner triple 
covering problem
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Kirkman school girl problem [Kirkman, 1850]

Fifteen young ladies in a school walk out three 
abreast for seven days in succession: 

It is required to arrange them daily, so that no two 
shall walk twice abreast.
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Kirkman school girl problem [Kirkman, 1850]

Sunday Monday Tuesday Wednesday Thursday Friday Saturday

01, 06, 11 01, 02, 05 02, 03, 06 05, 06, 09 03, 05, 11 05, 07, 13 04, 11, 13 

02, 07, 12 03, 04, 07 04, 05, 08 07, 08, 11 04, 06, 12 06,08, 14 05, 12, 14

03, 08, 13 08, 09, 12 09, 10, 13 01, 12, 13 07, 09, 15 02, 09, 11 02, 08, 15

04, 09, 14 10, 11, 14 11, 12, 15 03, 14, 15 01, 08, 10 03, 10, 12 01, 03, 09

05, 10, 15 06, 13, 15 01, 07, 14 02, 04, 10 02, 13, 14 01, 04, 15 06, 07, 10

If girls are numbered 01, 02, ..., 15, a solution is:

Ball, Rouse, and Coxeter (1974) 
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Steiner triple system

A Steiner triple system on a set X of n elements is a 
collection B of 3-sets (triples) such that, for any two 
elements x and y in X, the pair {x, y} appears in 
exactly one triple in B.
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Steiner triple system

A Steiner triple system on a set X of n elements is a 
collection B of 3-sets (triples) such that, for any two 
elements x and y in X, the pair {x, y} appears in 
exactly one triple in B.

First studied by Kirkman in 1847.  Then by Steiner in 1853 and 
hence the name.
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Steiner triple system

A Steiner triple system on a set X of n elements is a 
collection B of 3-sets (triples) such that, for any two 
elements x and y in X, the pair {x, y} appears in 
exactly one triple in B.

The school girl problem has the additional constraint that the 
collection of |B| = 7  5 = 35 triples be divided into seven sets of 
five triples, one for each day, such that each girl appears exactly once 
in the set of five triples for that day. 
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Steiner triple system

A Steiner triple system on a set X of n elements is a 
collection B of 3-sets (triples) such that, for any two 
elements x and y in X, the pair {x, y} appears in 
exactly one triple in B.

A Steiner triple system exists for a set X if and only if either              
|X|= 6k+1 or |X|=6k+3 for some k > 0     [ Kirkman, 1847 ] 
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Steiner triple system

A Steiner triple system on a set X of n elements is a 
collection B of 3-sets (triples) such that, for any two 
elements x and y in X, the pair {x, y} appears in 
exactly one triple in B.

One non-isomorphic Steiner triple system exists for |X| = 7 and 9. 
This number grows quickly after that.  For |X| = 19, there are over 
1010 non-isomorphic Steiner triple systems. 
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Steiner triple system

A Steiner triple system on a set X of n elements is a 
collection B of 3-sets (triples) such that, for any two 
elements x and y in X, the pair {x, y} appears in 
exactly one triple in B.

A Steiner triple system can be represented by a binary matrix A with 
one column for each element in X and a row for each triple in B. In 
this matrix A(i,j) = 1 if and only if element j is in triple i.

Each row i of A has exactly 3 entries with A(i,j) = 1.
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1-width of a binary matrix

The 1-width of a binary matrix A is the minimum 
number of columns that can be chosen from A such 
that every row has at least one “1” in the selected 
columns.

The 1-width of a binary matrix A is the solution of the set 
covering problem:  min ∑j  xj

  subject to Ax  1
m 

, x
j 
 { 0, 1 }
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Recursive procedure to generate Steiner 
triple systems

Let  A
3
 be the 1  3 matrix of all ones.  A recursive 

procedure described by Hall (1967) can generate 
Steiner triple systems for which n  3k or                    
n 15  3k-1, for k 1, 2, ...
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Recursive procedure to generate Steiner 
triple systems

Let  A
3
 be the 1  3 matrix of all ones.  A recursive 

procedure described by Hall (1967) can generate 
Steiner triple systems for which n  3k or                    
n 15  3k-1, for k 1, 2, ...

Starting from A
3
, the procedure can generate A

9
, A

27
, A

81
, A

243
, A

729
, …

Starting from A
15

 [Fulkerson et al., 1974], the procedure can generate 

A
45

, A
135

, A
405

, ...
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Solving Steiner triple covering

Fulkerson, Nemhauser, and Trotter (1974) were first to 
point out that the Steiner triple covering problem was a 
computationally challenging set covering problem.
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Solving Steiner triple covering

Fulkerson, Nemhauser, and Trotter (1974) were first to 
point out that the Steiner triple covering problem was a 
computationally challenging set covering problem.

They solved stn9 (A
9
), stn15 (A

15
), and stn27 (A

27
) to optimality, but not 

stn45 (A
45

), which was solved in 1979 by Ratliff.

Mannino and Sassano (1995) solved stn81 and recently Ostrowski et al. 
(2009; 2010) solved stn135 in 126 days of CPU and stn243 in 51 hours. 
Independently, Ostergard and Vaskelainen (2010) also solved stn135.
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Heuristics for Steiner triple covering (stn81 and stn135)

• Feo and R. (1989) proposed a GRASP, finding a cover of 
size 61 for stn81, later shown to be optimal by Mannino 
and Sassano (1995).
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Heuristics for Steiner triple covering (stn81 and stn135)

• Feo and R. (1989) proposed a GRASP, finding a cover of 
size 61 for stn81, later shown to be optimal by Mannino 
and Sassano (1995).

• Karmarkar, Ramakrishnan, and R. (1991) found a cover 
of size 105 for stn135 with an interior point algorithm. 
In the same paper, they used a GRASP to find a better 
cover of size 104.  Mannino and Sassano (1995) also 
found a cover of this size.



 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Heuristics for Steiner triple covering (stn81 and stn135)

• Feo and R. (1989) proposed a GRASP, finding a cover of 
size 61 for stn81, later shown to be optimal by Mannino 
and Sassano (1995).

• Karmarkar, Ramakrishnan, and R. (1991) found a cover 
of size 105 for stn135 with an interior point algorithm. 
In the same paper, they used a GRASP to find a better 
cover of size 104.  Mannino and Sassano (1995) also 
found a cover of this size.

• Odijk and van Maaren (1998) found a cover of size 103, 
which was shown to be optimal by Ostrowski et al. and 
Ostergard and Vaskelainen in 2010.
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Heuristics for Steiner triple covering (stn243)

• The GRASP in Feo and R. (1989) as well as the interior 
point method in Karmarkar, Ramakrishnan, and R. 
(1991) produced covers of size 204 for stn243. 
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Heuristics for Steiner triple covering (stn243)

• The GRASP in Feo and R. (1989) as well as the interior 
point method in Karmarkar, Ramakrishnan, and R. 
(1991) produced covers of size 204 for stn243. 

• Karmarkar, Ramakrishnan, and R. (1991) used the 
GRASP of Feo and R. (1989) to improve the best known 
cover to 203.
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Heuristics for Steiner triple covering (stn243)

• The GRASP in Feo and R. (1989) as well as the interior 
point method in Karmarkar, Ramakrishnan, and R. 
(1991) produced covers of size 204 for stn243. 

• Karmarkar, Ramakrishnan, and R. (1991) used the 
GRASP of Feo and R. (1989) to improve the best known 
cover to 203.

• Mannino and Sassano (1995) improved it further to 
202.
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Heuristics for Steiner triple covering (stn243)

• The GRASP in Feo and R. (1989) as well as the interior 
point method in Karmarkar, Ramakrishnan, and R. 
(1991) produced covers of size 204 for stn243. 

• Karmarkar, Ramakrishnan, and R. (1991) used the 
GRASP of Feo and R. (1989) to improve the best known 
cover to 203.

• Mannino and Sassano (1995) improved it further to 
202.

• Odijk and van Maaren (1998) found a cover of size 198, 
which was shown to be optimal by Ostrowski et al. 
(2009; 2010).
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Heuristics for Steiner triple covering (stn405 and stn729)

• No results have been previously presented for stn405. 
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Heuristics for Steiner triple covering (stn405 and stn729)

• No results have been previously presented for stn405. 
• Ostrowski et al. (2010) report that the best solution 

found by CPLEX 9 on stn729 after two weeks of CPU 
time was 653.
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Heuristics for Steiner triple covering (stn405 and stn729)

• No results have been previously presented for stn405. 
• Ostrowski et al. (2010) report that the best solution 

found by CPLEX 9 on stn729 after two weeks of CPU 
time was 653.

• Using their enumerate-and-fix heuristic, they were able 
to find a better cover of size 619.



 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Best known solutions to date
instance n m BKS opt? reference

stn9 9 12 5 yes Fulkerson et al. (1974)

stn15 15 35 9 yes Fulkerson et al. (1974)

stn27 27 117 18 yes Fulkerson et al. (1974)

stn45 45 330 30 yes Ratliff (1979)

stn81 81 1080 61 yes Mannino and Sassano 
(1995)

stn135 135 3015 103 yes Ostrowski et al. (2009; 2010) and 
Ostergard and Vaskelainen (2010)

stn243 243 9801 198 yes Ostrowski et al. (2009; 
2010)

stn405 405 27270 335 ? M.G.C.R. et al. (2012)

stn729 729 88452 617 ? M.G.C.R. et al. (2012)
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BRKGA for Steiner 
triple covering
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Encoding a solution to a vector of random keys

A solution is encoded as an n-vector X = (X
1
, X

2
, ..., X

n
) 

of random keys where n is the number of columns 
of matrix A.  
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Encoding a solution to a vector of random keys

A solution is encoded as an n-vector X = (X
1
, X

2
, ..., X

n
) 

of random keys where n is the number of columns 
of matrix A.  
Each key is a randomly generated number in the 
real interval [0,1).
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Encoding a solution to a vector of random keys

A solution is encoded as an n-vector X = (X
1
, X

2
, ..., X

n
) 

of random keys where n is the number of columns 
of matrix A.  
Each key is a randomly generated number in the 
real interval [0,1).
The j-th component of X corresponds to the j-th  
column of A.
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Decoding a solution from a vector of random keys

Decoder takes as input an n-vector X = (X
1
, X

2
, ..., X

n
) of 

random keys and returns a cover J*  {1, 2, ..., n } 
corresponding to the indices of the columns of A 
selected to cover the rows of A.
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Decoding a solution from a vector of random keys

Decoder takes as input an n-vector X = (X
1
, X

2
, ..., X

n
) of 

random keys and returns a cover J*  {1, 2, ..., n } 
corresponding to the indices of the columns of A 
selected to cover the rows of A.

Let Y = (Y
1
, Y

2
, ..., Y

n
) be a binary vector where Yj = 1 if 

and only if j  J*. 



 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Decoding a solution from a vector of random keys

Decoder has three phases:

Phase I: For j = 1, 2, ..., n, set Yj = 1 if X
j
≥½,  set Yj = 0 

otherwise.
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Decoding a solution from a vector of random keys

Decoder has three phases:

Phase I: For j = 1, 2, ..., n, set Yj = 1 if X
j
≥½,  set Yj = 0 

otherwise.

The indices implied by the binary vector can correspond to either a 
feasible or infeasible cover.

If cover is feasible, Phase II is skipped.
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Decoding a solution from a vector of random keys

Decoder has three phases:

Phase II: If J* is not a valid cover, build a cover with 
a greedy algorithm for set covering (Johnson, 1974) 
starting from the partial cover J*.
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Decoding a solution from a vector of random keys

Decoder has three phases:

Phase II: If J* is not a valid cover, build a cover with 
a greedy algorithm for set covering (Johnson, 1974) 
starting from the partial cover J*.

Greedy algorithm: While J* is not a valid cover, select to add in J* the 
smallest index j  {1,2,...,n} \ J* for which the inclusion of j in J* 
covers the maximum number of yet-uncovered rows.
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Decoding a solution from a vector of random keys

Decoder has three phases:

Phase III: Local search attempts to remove 
superfluous columns from cover J*.
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Decoding a solution from a vector of random keys

Decoder has three phases:

Phase III: Local search attempts to remove 
superfluous columns from cover J*.

Local search: While there is some element j  J* such that J* \ { j } is 
still a valid cover, then such element having the smallest index is 
removed from J*.
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Implementation 
issues
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Implementation issues

BRKGA framework (R. and Toso, 2010), a C++ 
framework for biased random-key genetic 
algorithms.

– Object oriented
– Multi-threaded: parallel decoding using OpenMP
– General-purpose framework: implements all problem 

independent components and provides a simple hook for 
chromosome decoding

– Chromosome adjustment
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Implementation issues

Chromosome adjustment: decoder not only returns 
the cover J* but also modifies the vector X of random 
keys such that it decodes directly into J* with the 
application of only the first phase of the decoder:
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Implementation issues

Chromosome correcting: decoder not only returns 
the cover J* but also modifies the vector X of random 
keys such that it decodes directly into J* with the 
application of only the first phase of the decoder:

X
j
 is unchanged if  X

j
 ≥½  and  j J* or if  X

j
½  and  j J*

X
j
 changes to 1−X

j
 if  X

j
  ½  and  j J* or if  X

j
 ≥½  and  j J*
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Experimental
results
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Experiments: objectives

• Investigate effectiveness of BRKGA to find 
optimal covers for instances with known 
optimum.
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Experiments: objectives

• Investigate effectiveness of BRKGA to find 
optimal covers for instances with known 
optimum.

• For the two instances (stn405 and stn729) for 
which optimal solutions are not known, attempt 
to produce better covers than previously found.
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Experiments: objectives

• Investigate effectiveness of BRKGA to find 
optimal covers for instances with known 
optimum.

• For the two instances (stn405 and stn729) for 
which optimal solutions are not known, attempt 
to produce better covers than previously found.

• Investigate effectiveness of parallel 
implementation.
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Experiments: instances

Set of instances: stn9, stn15, stn27, stn45, stn81, 
stn135, stn243, stn405, stn729

Instances can be downloaded from:  

http://www2.research.att.com/~mgcr/data/steiner-triple-covering.tar.gz



 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Experiments: computing environment

Computer: server with four 2.4 GHz Quad-core Intel Xeon 
E7330 processors with 128 Gb of memory, running CentOS 5 
Linux.  Total of 16 processors.
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Experiments: computing environment

Computer: server with four 2.4 GHz Quad-core Intel Xeon 
E7330 processors with 128 Gb of memory, running CentOS 5 
Linux.  Total of 16 processors.

Compiler: g++ version 4.1.2 20080704 with flags -O3 -fopenmp
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Experiments: computing environment

Computer: server with four 2.4 GHz Quad-core Intel Xeon 
E7330 processors with 128 Gb of memory, running CentOS 5 
Linux.  Total of 16 processors.

Compiler: g++ version 4.1.2 20080704 with flags -O3 -fopenmp

Random number generator:  Mersenne Twister (Matsumoto 
& Nishimura, 1998)
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Experiments: multi-population GA

We evolve 3 populations simultaneously (but sequentially).
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Experiments: multi-population GA

We evolve 3 populations simultaneously (but sequentially).

Every 100 generations the best two solutions from each 
population replace the worst solutions of the other two 
populations if not already present there. 
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Experiments: multi-population GA

We evolve 3 populations simultaneously (but sequentially).

Every 100 generations the best two solutions from each 
population replace the worst solutions of the other two 
populations if not already present there. 

Parallel processing is only done when calling the decoder. Up to 
16 chromosomes are decoded in parallel.
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Experiments: other parameters

Population size:  10n, where n is the number of columns of A
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Experiments: other parameters

Population size:  10n, where n is the number of columns of A

Population partition: ⌈1.5n⌉ elite solutions; 1–⌈1.5n⌉=⌊8.5n⌋ non-
elite solutions
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elite solutions

Mutants:  ⌊5.5n⌋ are created at each generation
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Experiments: other parameters

Population size:  10n, where n is the number of columns of A

Population partition: ⌈1.5n⌉ elite solutions; 1–⌈1.5n⌉=⌊8.5n⌋ non-
elite solutions

Mutants:  ⌊5.5n⌋ are created at each generation

Probability child inherits gene of elite/non-elite parent: biased coin 
60% : 40%
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Experiments: other parameters

Population size:  10n, where n is the number of columns of A

Population partition: ⌈1.5n⌉ elite solutions; 1–⌈1.5n⌉=⌊8.5n⌋ non-
elite solutions

Mutants:  ⌊5.5n⌋ are created at each generation

Probability child inherits gene of elite/non-elite parent: biased coin 
60% : 40%

Stopping rule:  we use different stopping rules for each of the three 
types of experiments



 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Experiments on instances with known optimal covers

For each instance: ran GA independently 100 times, stopping 
when an optimal cover was found.
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Experiments on instances with known optimal covers

For each instance: ran GA independently 100 times, stopping 
when an optimal cover was found.
On all 100 runs for each instance, the algorithm found an optimal 
cover.
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Experiments on instances with known optimal covers

For each instance: ran GA independently 100 times, stopping 
when an optimal cover was found.
On all 100 runs for each instance, the algorithm found an optimal 
cover.

On the smallest instances (stn9, stn15, stn27) an optimal cover was 
always found in the initial population.
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Experiments on instances with known optimal covers

For each instance: ran GA independently 100 times, stopping 
when an optimal cover was found.
On all 100 runs for each instance, the algorithm found an optimal 
cover.

On the smallest instances (stn9, stn15, stn27) an optimal cover was 
always found in the initial population.

On stn81 an optimal cover was found in the initial population in 99 
of the 100 runs. In the remaining run, an optimal cover was found in 
the second iteration.
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Instance stn45 
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Optimal cover found in initial population in 54/100 runs
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Largest number of iterations in 100 runs was 12
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Time per 1000 generations: 4.70s (real), 70.55s (user), 2.73s (sys)
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Instance stn135  



 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Most difficult instance of those with known optimal cover
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9 of the 100 runs found an optimal cover in less than 1000 iterations
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39 of the 100 runs required over 10,000 iterations
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No run required fewer than 23 iterations
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 Longest run took 75,741 iterations
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Time per 1000 generations: 19.91s (real), 316.70s (user), 0.85s (sys)
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 Instance stn243
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 Appears to be much easier than stn135
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 39/100 runs required fewer than 100 generations 
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 95/100 runs required fewer than 200 generations 
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 The longest of the 100 runs took 341 generations 
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Time per 1000 generations: 68.60s (real), 1095.19s (user), 0.79s (sys)
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Simulation of random multi-start on stn243

To show that success of BRKGA to consistently find covers of 
size 198 on stn243 was not due to the decoder alone ...
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To show that success of BRKGA to consistently find covers of 
size 198 on stn243 was not due to the decoder alone ...

We conducted 100 independent runs simulating a random multi-start 
algorithm.

Each run consisted of 1000 generations with three populations, each with 
an elite set of size 1 and a mutant set of size 999.
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Simulation of random multi-start on stn243

To show that success of BRKGA to consistently find covers of 
size 198 on stn243 was not due to the decoder alone ...

We conducted 100 independent runs simulating a random multi-start 
algorithm.

Each run consisted of 1000 generations with three populations, each with 
an elite set of size 1 and a mutant set of size 999.

At each iteration 2997 random solutions are generated, each evaluated with 
the decoder. 
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Simulation of random multi-start on stn243

To show that success of BRKGA to consistently find covers of 
size 198 on stn243 was not due to the decoder alone ...

We conducted 100 independent runs simulating a random multi-start 
algorithm.

Each run consisted of 1000 generations with three populations, each with 
an elite set of size 1 and a mutant set of size 999.

At each iteration 2997 random solutions are generated, each evaluated with 
the decoder. 

Mating never takes place since elite and mutants make up the entire 
population.
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Simulation of random multi-start on stn243

To show that success of BRKGA to consistently find covers of 
size 198 on stn243 was not due to the decoder alone ...

About 300 million solutions were generated.
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Simulation of random multi-start on stn243

To show that success of BRKGA to consistently find covers of 
size 198 on stn243 was not due to the decoder alone ...

About 300 million solutions were generated.

The random multi-start was far from finding an optimal cover of size 198.

It found covers of size 202 in 9/100 runs and of size 203 in the remaining 
91/100.
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Experiments on the two largest instances

For instances stn405 and stn729: ran GA and stopped after 5000 
generations without improvement.

For both instances, GA found improved solutions …
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Run 1 found the cover after 203 generations.
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Experiments on the two largest instances

For instances stn405 and stn729: ran GA and stopped after 5000 
generations without improvement.

For both instances, GA found improved solutions …

For stn405 … three runs found covers of size 335.

Run 1 found the cover after 203 generations.

Run 2 … after 5165 generations.

Run 3 … after 2074 generations.

Time per 1000 generations: 796.82s (real), 12723.40s (user), 11.67s (sys)
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Indices of 405 – 335 = 70 zeroes of covers of size 335 for stn405
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Experiments on the two largest instances

For instances stn405 and stn729: ran GA and stopped after 5000 
generations without improvement.

For both instances, GA found improved solutions …

For stn729 … one run found a cover of size 617 after 1601 generations.
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Experiments on the two largest instances

For instances stn405 and stn729: ran GA and stopped after 5000 
generations without improvement.

For both instances, GA found improved solutions …

For stn729 … one run found a cover of size 617 after 1601 generations.

Time per 1000 generations: 6099.40s (real), 93946.68s (user), 498.00s (sys)
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Indices of 729 – 617 = 112 zeroes of cover of size 617 for stn729
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Computing covers with a parallel implementation

The BRKGA does decoding in parallel.  Decoding is the major 
computational bottleneck of the BRKGA.

There are other tasks that are not done in parallel, including …
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Computing covers with a parallel implementation

The BRKGA does decoding in parallel.  Decoding is the major 
computational bottleneck of the BRKGA.

There are other tasks that are not done in parallel, including …

Generation of random key vectors in initial population and mutants at 
each generation with corresponding calls to random number 
generator;

Crossover at each generation to produce offspring;

Periodic exchange of elite solutions among multiple populations;

Sorting of population by fitness values;
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Computing covers with a parallel implementation

The BRKGA does decoding in parallel.  Decoding is the major 
computational bottleneck of the BRKGA.

There are other tasks that are not done in parallel, including …

Generation of random key vectors in initial population and mutants at 
each generation with corresponding calls to random number 
generator;

Crossover at each generation to produce offspring;

Periodic exchange of elite solutions among multiple populations;

Sorting of population by fitness values;

Copying elite solutions to next generation.
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Computing covers with a parallel implementation

The BRKGA does decoding in parallel.  Decoding is the major 
computational bottleneck of the BRKGA.

There are other tasks that are not done in parallel ... 

Consequently 100% efficiency (linear speedup) cannot be expected.
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Computing covers with a parallel implementation

The BRKGA does decoding in parallel.  Decoding is the major 
computational bottleneck of the BRKGA.

There are other tasks that are not done in parallel ... 

Consequently 100% efficiency (linear speedup) cannot be expected.

Nevertheless, we observe significant speedup.
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Computing covers with a parallel implementation

To illustrate the parallel efficiency of the BRKGA we carried out the 
following experiment on instance stn243 …

On each of five processor configurations (single processor, two, 
four, eight, and 16 processors) …

We made 10 independent runs of the BRKGA, stopping when 
an optimal cover of size 198 was found. 



 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial



 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Speedup with 16 processors is almost 11-fold.
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Parallel efficiency is  t
1
 / [ p – t

p
 ], where p is the number 

of processors and t
k
 is the real time using k processors.
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Log fit suggests that with 64 processors we can still expect
a 32-fold speedup.
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Some
remarks
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instances … of size 335 for stn405 and 617 for stn729
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Some remarks

Introduced a biased random-key genetic algorithm for the Steiner 
triple covering problem.

The parallel, multi-population, implementation of the BRKGA not only 
found optimal covers for all instances with known optimal solution …

It also found new best known covers for two recently introduced 
instances … of size 335 for stn405 and 617 for stn729

The parallel implementation achieved a speedup of 10.8 with 16 
processors and is expected to achieve a speedup of about 32 with 64 
processors
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Packing weighted 
rectangles
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Reference

J.F. Gonçalves and M.G.C.R., “A parallel multi-
population genetic algorithm for a 
constrained two-dimensional orthogonal 
packing problem,” Journal of Combinatorial 
Optimization, vol. 22, pp. 180-201, 2011.

Tech report:
http://www.research.att.com/~mgcr/doc/pack2d.pdf
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Constrained orthogonal packing

• Given a large planar stock rectangle (W, H) of width 
W and height H;

• Given N smaller rectangle types (w[i], h[i]),               
i = 1,...,N, each of width w[i], height h[i], and value 
v[i];

W

H

1

2
3

4
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Constrained orthogonal packing

• r[i] rectangles of type i = 1, ..., N are to be packed in the 
large rectangle without overlap and such that their edges 
are parallel to the edges of the large rectangle;

W
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Constrained orthogonal packing

• r[i] rectangles of type i = 1, ..., N are to be packed in the 
large rectangle without overlap and such that their edges 
are parallel to the edges of the large rectangle;

• For i = 1, ..., N, we require that:                                           
                                                 0 ≤P[i]≤ r[i] ≤ Q[i]
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Constrained orthogonal packing
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Constrained orthogonal packing

• r[i] rectangles of type i = 1, ..., N are to be packed in the 
large rectangle without overlap and such that their edges 
are parallel to the edges of the large rectangle;

• For i = 1, ..., N, we require that:                                           
                                                 0 ≤P[i]≤ r[i] ≤ Q[i]

W

H
2

1

34

2

1

1

Suppose 5≤ r[1] ≤ 12
1

1
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Objective

Among the many feasible packings, we want to find one that 
maximizes total value of packed rectangles:                              
                             v[1] r[1] + v[2] r[2] + ⋅⋅⋅+v[N] r[N]  
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Objective

Among the many feasible packings, we want to find one that 
maximizes total value of packed rectangles:                              
                             v[1] r[1] + v[2] r[2] + ⋅⋅⋅+v[N] r[N]  
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Objective

Among the many feasible packings, we want to find one that 
maximizes total value of packed rectangles:                              
                             v[1] r[1] + v[2] r[2] + ⋅⋅⋅+v[N] r[N]  

W

H

1

4

1

1

1

2

1

4 4
33
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Applications

Problem arises in several production processes, e.g.
– Textile
– Glass
– Wood
– Paper

where rectangular figures are cut from large 
rectangular sheets of materials.
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Hopper & Turton, 2001
Instance 4-1 60 x 60
Value: 3576

Previous best: 3580 by a
Tabu Search heuristic 
(Alvarez-Valdes et al., 2007)



 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Hopper & Turton, 2001
Instance 4-2 60 x 60
Value: 3585

Previous best: 3580 by a
Tabu Search heuristic 
(Alvarez-Valdes et al., 2007)
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Hopper & Turton, 2001
Instance 4-2 60 x 60
Value: 3586

Previous best: 3580 by a
Tabu Search heuristic 
(Alvarez-Valdes et al., 2007)
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Hopper & Turton, 2001
Instance 4-2 60 x 60
Value: 3591

Previous best: 3580 by a
Tabu Search heuristic 
(Alvarez-Valdes et al., 2007)
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Hopper & Turton, 2001
Instance 4-2 60 x 60
Value: 3591
New best known solution!
Previous best: 3580 by a
Tabu Search heuristic 
(Alvarez-Valdes et al., 2007)
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BRKGA for 
constrained 2-dim 
orthogonal packing
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Encoding

• Solutions are encoded as vectors K of                   
           2N' = 2 { Q[1] + Q[2] +  + Q[N] }          
random keys, where Q[i] is the maximum number 
of rectangles of type i (for i = 1, ..., N) that can be 
packed.

• K = ( k[1], ..., k[N'],        k[N'+1], ..., k[2N'] )
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Encoding

• Solutions are encoded as vectors K of                   
           2N' = 2 { Q[1] + Q[2] +  + Q[N] }          
random keys, where Q[i] is the maximum number 
of rectangles of type i (for i = 1, ..., N) that can be 
packed.

• K = ( k[1], ..., k[N'],        k[N'+1], ..., k[2N'] )

Rectangle type
packing sequence
(RTPS)

Vector of placement
procedures (VPP)
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Decoding 

• Simple heuristic to pack rectangles:
– Make Q[i] copies of rectangle i, for i = 1, ..., N.
– Order the N' = Q[1] + Q[2] +  + Q[N] rectangles in 

some way. 
– Process the rectangles in the above order.  Place the 

rectangle in the stock rectangle according to one of 
the following heuristics:  bottom-left (BL) or left-
bottom (LB).  If rectangle cannot be positioned, 
discard it and go on to the next rectangle in the 
order.
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Decoding 

• Simple heuristic to pack rectangles:
– Make Q[i] copies of rectangle i, for i = 1, ..., N.
– Order the N' = Q[1] + Q[2] +  + Q[N] rectangles in 

some way. Sort first N' keys to obtain order.
– Process the rectangles in the above order.  Place the 

rectangle in the stock rectangle according to one of 
the following heuristics:  bottom-left (BL) or left-
bottom (LB).  If rectangle cannot be positioned, 
discard it and go on to the next rectangle in the 
order.  Use the last N' keys to determine which 
heuristic to use. If k[N'+i] > 0.5 use LB, else use BL. 
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Decoding 

• A maximal empty rectangular space (ERS) is an empty 
rectangular space not contained in any other ERS.

• ERSs are generated and updated using the Difference 
Process of Lai and Chan (1997).

• When placing a rectangle, we limit ourselves only to 
maximal ERSs.  We order all the maximal ERSs and place 
the rectangle in the first maximal ERS in which it fits.

• Let (x[i], y[i]) be the coordinates of the bottom left 
corner of the i-th ERS.
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Decoding 

• A maximal empty rectangular space (ERS) is an empty 
rectangular space not contained in any other ERS.

• ERSs are generated and updated using the Difference 
Process of Lai and Chan (1997).

• When placing a rectangle, we limit ourselves only to 
maximal ERSs.  We order all the maximal ERSs and place 
the rectangle in the first maximal ERS in which it fits.

• Let (x[i], y[i]) be the coordinates of the bottom left 
corner of the i-th ERS.

i-th 
ERS

(x[i], y[i])
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Decoding 

• If BL is used, ERSs are ordered such that      
ERS[i] < ERS[j] if y[i] < y[j] or y[i] = y[j] and          
x[i] < x[j].

ERS[i]

ERS[j]

ERS[i]
ERS[j]

ERS[i] < ERS[j]
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1

3
2 4

BL can run into problems even
on small instances (Liu & Teng, 1999).

Consider this instance with 4 
rectangles.

BL cannot find the optimal 
solution for any RTPS.
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1

3
2 4

We show 6 rectangle type
packing sequences (RTPS's) 
where we fix rectangle 1 in 
the first position.
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1

3

2

4

1

3

2

4

1

32

4 1

3 2

41

2

4

1

2

41
3

2

4

1
3

24

RTPS: 1-2-4-3

RTPS: 1-4-2-3

RTPS: 1-3-2-4

RTPS: 1-2-3-4

RTPS: 1-4-3-2

RTPS: 1-2-3-4

RTPS: 1-3-4-2
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1

3

2

4

1

3

2

4

1

32

4 1

3 2

41

2

4

1

2

41
3

2

4

1
3

24

RTPS: 1-2-4-3

RTPS: 1-4-2-3

RTPS: 1-3-2-4

RTPS: 1-2-3-4

RTPS: 1-4-3-2

RTPS: 1-2-3-4

RTPS: 1-3-4-2

Similar infeasibilities
are observed if 2, 3,
or 4 is the first 
rectangle in the 
RTPS.
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Decoding 

• If LB is used, ERSs are ordered such that      
ERS[i] < ERS[j] if x[i] < x[j] or x[i] = x[j] and          
y[i] < y[j].

ERS[i]

ERS[j]

ERS[i]

ERS[j]

ERS[i] < ERS[j]
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1
BL

3
LB2

BL
4

BL
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1
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3
LB2

BL
4

BL

ERS[2]
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1
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3
LB

2
BL

4
BL

ERS[2]
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1
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3
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2
BL
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1
BL

3
LB

2
BL

4
BL

ERS[1]

4 does not fit
in ERS[1].
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1
BL

3
LB

2
BL

4
BL

ERS[2]

4 does fit
in ERS[2].
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1
BL

3
LB

2
BL

4
BL Optimal solution!
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Implementation 
details



 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Packing layers

• When placing a rectangle type in an ERS we try 
to build a layer containing several rectangles of 
that rectangle type.

• We use two types of layers:
– Horizontal layer when using BL
– Vertical layer when using LB
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Packing layers

Horizontal layer (BL) Vertical layer (LB)
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Packing layers

Horizontal layer (BL) Vertical layer (LB)
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Population initialization
• Initial population does not consist entirely of random 

vectors.

• Four non-random vectors are introduced into each 
population.

• The chromosomes of these four solutions are generated 
such that their rectangle type packing sequences (RTPSes) 
are equivalent to packing rectangles in decreasing order of 
their values. Four variations of the placement procedure are 
considered:
– Random, all BL, all LB, alternating between BL and LB
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Modified total value fitness function
• Natural fitness function is v[1] r[1] + v[2] r[2] + 
⋅⋅⋅+v[N] r[N] where r[i] is the number of rectangles of 
type i to be packed and v[i] is the value of a rectangle of 
type i.

• Two solution may have the same natural fitness but one 
may be more “fit” than the other.

• We use an adaptation of the modified measure proposed 
by Gonçalves (2007) that is able to capture the 
improvement potential of different packings with 
identical natural fitness function values.



 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Modified total value fitness function
Modified total value fitness function is                      
                                                                                
            v[1] r[1] + v[2] r[2] + ⋅⋅⋅+v[N] r[N] +       
                                                                                
  0.03  min v[i] of all rectangles  area largest ERS left over   
        area of stock rectangle

Ties are broken by area of largest maximal empty 
rectangular space (ERS) left over.
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Handling lower bounds
To handle the lower bounds P[i] on r[i] we impose a 
penalty of 1010 which is subtracted from the 
modified fitness function if r[i] < P[i] for some          
i = 1, ..., N.
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Multi-population strategy
• Three populations are evolved simultaneously.
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Multi-population strategy
• Three populations are evolved simultaneously.
• Every 15 generations populations exchange 

information:
– The best two solutions over all three populations are 

copied to the populations where they are not present. 
– They replace the worst solution(s) in the population.
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Multi-population strategy
• Three populations are evolved simultaneously.
• Every 15 generations populations exchange 

information:
– The best two solutions over all three populations are 
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Parallel implementation
• Fitness evaluations are done in parallel.
• Easy to implement using OpenMP in C++.
• In multi-core CPUs results in almost linear      

speed-ups.
• Experiments done on an Intel 2.66 GHz Xeon 

Quadcore CPU using the Linux CentOS 5 
operating sysem.
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Experimental results
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Design
• We compare solution values obtained by the 

parallel multi-population BRKGA with solutions 
obtained by the heuristics that produced the best 
computational results to date:
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Design
• We compare solution values obtained by the 

parallel multi-population BRKGA with solutions 
obtained by the heuristics that produced the best 
computational results to date:
– PH:  population-based heuristic of Beasley (2004)
– GA: genetic algorithm of Hadjiconsantinou & Iori 

(2007)
– GRASP: greedy randomized adaptive search 

procedure of Alvarez-Valdes et al. (2005)



 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Design
• We compare solution values obtained by the 

parallel multi-population BRKGA with solutions 
obtained by the heuristics that produced the best 
computational results to date:
– PH:  population-based heuristic of Beasley (2004)
– GA: genetic algorithm of Hadjiconsantinou & Iori 

(2007)
– GRASP: greedy randomized adaptive search 

procedure of Alvarez-Valdes et al. (2005)
– TABU: tabu search of Alvarez-Valdes et al. (2007)
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Design
• We use the same set of test problems considered 

by Alvarez-Valdes et al. (2007):
– 21 instances with known optimal solutions from the 

literature {Beasley (1985), Hadjiconstantinou & 
Christofides (1995), Wang (1983), Christofides & 
Whitlock (1977), Fekete & Schepers (2004)};
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Design
• We use the same set of test problems considered 

by Alvarez-Valdes et al. (2007):
– 630 large problems, randomly generated by Beasley 

(2004), following Fekete & Schepers (2004);



 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Design
• We use the same set of test problems considered 

by Alvarez-Valdes et al. (2007):
– 31 zero-waste instances used by Lueng et al. (2003);
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Design
• We use the same set of test problems considered 

by Alvarez-Valdes et al. (2007):
– 21 doubly constrained problems resulting from the 

introduction of lower bounds for some rectangle 
types in the first set of Beasley (2004).
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Configuration of the BRKGA
• Small pilot study determined the configuration of 

the BRKGA:
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problem instance (at most 2000 solutions)
 



 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Configuration of the BRKGA
• Small pilot study determined the configuration of 

the BRKGA:
– Elite set: top 25% solutions in population
– Mutants: 15% of population
– Elite parent inheritance probability: 70%
– Population size: 15 times the number of rectangles in 

problem instance (at most 2000 solutions)
– Number of populations: 3

 



 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Configuration of the BRKGA
• Small pilot study determined the configuration of 

the BRKGA:
– Elite set: top 25% solutions in population
– Mutants: 15% of population
– Elite parent inheritance probability: 70%
– Population size: 15 times the number of rectangles in 

problem instance (at most 2000 solutions)
– Number of populations: 3
– Exchange best two solutions every 15 generations
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Configuration of the BRKGA
• Small pilot study determined the configuration of 

the BRKGA:
– Elite set: top 25% solutions in population
– Mutants: 15% of population
– Elite parent inheritance probability: 70%
– Population size: 15 times the number of rectangles in 

problem instance (at most 2000 solutions)
– Number of populations: 3
– Exchange best two solutions every 15 generations
– Stop after 1000 generations 
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Overall average percentage deviation from 
optimal/best lower bound with 4 variant
Set Description BL BL-L BL-LB-L BL-LB-L-4NR

1 From literature 
(optimal)

0.00 0.00 0.00 0.00

2 Large random 1.04 1.00 0.87 0.83
3 Zero-waste 0.48 0.48 0.24 0.17
4 Doubly constrained 6.36 6.36 6.36 6.36

BL: Using only Bottom Left placement
BL-L: BL with layers
BL-LB-L: BL and Left Bottom with layers
BL-LB-L-4NR: BL-LB-L with four non-random starting solutions 
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Overall average percentage deviation from 
optimal/best lower bound
Problem PH GA GRASP TABU BRKGA         

BL-LB-L-4NR

From 
literature 
(optimal)

5.49 0.00 0.19 0.00 0.00

Large 
random

1.67 1.32 1.07 0.98 0.83

Zero-waste 1.68 0.42 0.17

Doubly 
constrained

8.11 7.36 6.62 6.36
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Number of best solutions / total instances

Problem PH GA GRASP TABU BRKGA         
BL-LB-L-4NR

From 
literature 
(optimal)

13/21 21/21 18/21 21/21 21/21

Large 
random*

0/21 0/21 5/21 8/21 20/21

Zero-waste 5/31 17/31 30/31

Doubly 
constrained

11/21 12/21 17/21 19/21

* For large random: number of best average solutions / total instance classes
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Minimum, average, and maximum solution        
times (secs) for BRKGA (BL-LB-L-4NR)

Problem Min solution 
time     (secs)

Avg solution 
time     (secs)

Max solution 
time   (secs)

From literature 
(optimal)

0.00 0.05 0.55

Large random 1.78 23.85 72.70

Zero-waste 0.01 82.21 808.03

Doubly 
constrained

0.00 1.16 16.87
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New BKS
for a 100 x100
doubly 
constrained 
instance of 
Fekete &
Schepers (1997)
of value 20678.
Previous best
was 19657 by
tabu search of
Alvarez-Valdes et
al., (2007).
 

30 types
30 rectangles
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New BKS for a 100 
x 100 doubly 
constrained 
instance Fekete & 
Schepers (1997) of 
value 22140.

Previous BKS was 
22011 by tabu 
search of Alvarez-
Valdes et al. (2007).

29 types
97 rectangles
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Some remarks
• We proposed a BRKGA heuristic for a 

constrained 2-dimensional orthogonal packing 
problem. 

• Highlights:
– Hybrid placement heuristics are coordinated by GA
– Multiple populations evolve and exchange information
– Modified fitness function
– Parallel fitness evaluations
– Some non-random starting solutions added to 

starting populations
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Some remarks
• Extensive computational experiments carried out.
• Highlights:

– Layers improves only Bottom-Left
– Left-Bottom improves Bottom-Left with layers
– LB and BL with layers and 4 non-random starting 

solutions is best strategy
– BRKGA finds better solutions than state of the art 

heuristics for a large number of instances
– Several new best known solutions produced by the 

BRKGA
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Some remarks
We have extended this to 3D packing:                                                       
J.F. Gonçalves and M.G.C.R., “A parallel multi-population biased 
random-key genetic algorithm for a container loading problem,” 
Computers & Operations Research, vol. 29, pp. 179-190, 2012.

Tech report: http://www.research.att.com/~mgcr/doc/brkga-pack3d.pdf
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OSPF routing in IP 
networks
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The Internet

• The Internet is composed of 
many (inter-connected) 
autonomous systems (AS).

• An AS is a network controlled 
by a single entity, e.g. ISP, 
university, corporation, 
country, ...
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Routing

• A packet is sent from a origination router S to a 
destination router T.

• S and T may be in
– same AS:  
– different ASes: 
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• A packet is sent from a origination router S to a 
destination router T.

• S and T may be in
– same AS:  IGP routing
– different ASes: 

Routing
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• A packet is sent from a origination router S to a 
destination router T.

• S and T may be in
– same AS:  IGP routing
– different ASes: BGP routing

Routing
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IGP Routing

• IGP (interior gateway 
protocol) routing is 
concerned with 
routing within an AS.

S

T

AS



 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

• IGP (interior gateway 
protocol) routing is 
concerned with 
routing within an AS.

S

T

AS

IGP Routing



 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

• IGP (interior gateway 
protocol) routing is 
concerned with 
routing within an AS.

S

T

AS

IGP Routing



 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

• IGP (interior gateway 
protocol) routing is 
concerned with 
routing within an AS.

S

T

AS

IGP Routing



 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

• IGP (interior gateway 
protocol) routing is 
concerned with 
routing within an AS.

S

T

AS

IGP Routing



 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

• IGP (interior gateway 
protocol) routing is 
concerned with 
routing within an AS.

S

T

AS

IGP Routing



 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

• IGP (interior gateway 
protocol) routing is 
concerned with 
routing within an AS.

• Routing decisions are 
made by AS operator.

S

T

AS

IGP Routing
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BGP Routing

• BGP (border gateway 
protocol) routing deals 
with routing between 
different ASes.

AS

AS

AS
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BGP Routing

• BGP (border gateway 
protocol) routing deals 
with routing between 
different ASes.

AS

AS

AS

Peering points

Peering points
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BGP Routing

• BGP (border gateway 
protocol) routing deals 
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different ASes.
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BGP Routing
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protocol) routing deals 
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BGP Routing

• BGP (border gateway 
protocol) routing deals 
with routing between 
different ASes.
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BGP Routing

• BGP (border gateway 
protocol) routing deals 
with routing between 
different ASes.

s

t

AS

AS

AS

Peering points

Peering points

Ingress point

Egress point
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IGP Routing
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OSPF routing

• Given a network G = (N,A), where N is the set of 
routers and A is the set of links. 
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• Given a network G = (N,A), where N is the set of 
routers and A is the set of links. 

• The OSPF (open shortest path first) routing 
protocol assumes each link a has a weight w(a) 
assigned to it so that a packet from a source 
router s to a destination router t is routed on a 
shortest weight path from s to t.

OSPF routing
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• Given a network G = (N,A), where N is the set of 
routers and A is the set of links. 

• The OSPF (open shortest path first) routing 
protocol assumes each link a has a weight w(a) 
assigned to it so that a packet from a source 
router s to a destination router t is routed on a 
shortest weight path from s to t.

s
t

OSPF routing
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s
t

OSPF routing
• Given a network G = (N,A), where N is the set of 

routers and A is the set of links. 
• The OSPF (open shortest path first) routing 

protocol assumes each link a has a weight w(a) 
assigned to it so that a packet from a source 
router s to a destination router t is routed on a 
shortest weight path from s to t.
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s
t

Traffic splitting

OSPF routing
• Given a network G = (N,A), where N is the set of 

routers and A is the set of links. 
• The OSPF (open shortest path first) routing 

protocol assumes each link a has a weight w(a) 
assigned to it so that a packet from a source 
router s to a destination router t is routed on a 
shortest weight path from s to t.
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OSPF routing
• By setting OSPF weights appropriately, one can do traffic 

engineering, i.e. route traffic so as to optimize some 
objective (e.g. minimize congestion, maximize 
throughput, etc.).

● Some recent papers on this topic:
– Fortz & Thorup (2000, 2004)
– Ramakrishnan & Rodrigues (2001)
– Sridharan, Guérin, & Diot (2002)
– Fortz, Rexford, & Thorup (2002)
– Ericsson, Resende, & Pardalos (2002)
– Buriol, Resende, Ribeiro, & Thorup (2002, 2005)
– Reis, Ritt, Buriol, & Resende (2011)
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● By setting OSPF weights appropriately, one can do 
traffic engineering, i.e. route traffic so as to optimize 
some objective (e.g. minimize congestion, maximize 
throughput, etc.).

• Some recent papers on this topic:

– Fortz & Thorup (2000, 2004)

– Ramakrishnan & Rodrigues (2001)

– Sridharan, Guérin, & Diot (2002)

– Fortz, Rexford, & Thorup (2002)

– Ericsson, Resende, & Pardalos (2002)

– Buriol, Resende, Ribeiro, & Thorup (2002, 2005)

– Reis, Ritt, Buriol & Resende (2011)

OSPF routing
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Packet routing

router

router

router

router

router

When packet arrives at router,
router must decide where to
send it next.

Packet’s final 
destination.

Routing consists in finding a
link-path from source to 
destination.

D1

D2

D3

D4

R1

R2

R3

R4 Routing table
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OSPF routing

• Assign an integer weight  [1, wmax ] to each link 
in AS.   In general, wmax = 65535=216 −1.

• Each router computes tree of shortest weight 
paths to all other routers in the AS, with itself as 
the root, using Dijkstra’s algorithm.
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OSPF routing
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Destination routers

Routing table is filled
with first hop routers
for each possible destination.

D5

D6

R1

R3



 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

OSPF routing

321

35
1

2

4
6

D1

D2

D3

D4

R1

R1

R2

R3

root

First hop routers.

Routing table

Destination routers

Routing table is filled
with first hop routers
for each possible destination.

D5

D6

R1

R3



 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

OSPF routing

321

35
1

2

4
6

D1

D2

D3

D4

R1

R1

R2

R3

root

First hop routers.

Routing table

Destination routers

Routing table is filled
with first hop routers
for each possible destination.

D5

D6

R1

R3



 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

OSPF routing
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D1

D2

D3

D4

R1

R1, R2

R2

R3

Routing table
Routing table is filled
with first hop routers
for each possible destination.
In case of multiple shortest 
paths, flow is evenly split.

D5

D6

R1

R3

321
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4
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First hop routers.

Destination routers

OSPF routing
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OSPF weight setting

• OSPF weights are assigned by network operator.
– CISCO assigns, by default, a weight proportional to the 

inverse of the link bandwidth (Inv Cap).
– If all weights are unit, the weight of a path is the number of 

hops in the path.

• We propose two BRKGA to find good OSPF weights.
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Minimization of congestion

• Consider the directed capacitated network G = (N,A,c), 
where N  are routers, A  are links, and ca is the capacity 
of link a  A.

• We use the measure of Fortz & Thorup (2000) to 
compute congestion:

                   = 1(l1) + 2(l2) + … + |A|(l|A|) 
    where la  is the load on link a  A, 

              a(la) is piecewise linear and convex,

              a(0) = 0, for all a  A.
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Piecewise linear and convex a(la) 
link congestion measure 
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OSPF weight setting problem

• Given a directed network G = (N, A ) with link 
capacities ca  A  and demand matrix D = (ds,t ) 
specifying a demand to be sent from node s  to   
node t :
– Assign weights wa [1, wmax ] to each link a  A, 

such that the objective function  is minimized 
when demand is routed according to the OSPF 
protocol.
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BRKGA for OSPF routing in IP networks                     

M. Ericsson, M.G.C.R., & P.M. Pardalos, “A genetic 
algorithm for the weight setting problem 
in OSPF routing,” J. of Combinatorial Optimization, 
vol. 6, pp. 299–333, 2002.

Tech report version:

              http://www2.research.att.com/~mgcr/doc/gaospf.pdf
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BRKGA for OSPF routing in IP networks                    
Ericsson, R., & Pardalos (J. Comb. Opt., 2002)

• Encoding:
– A vector X of N random keys, where N is the number of links. The 

i-th random key corresponds to the i-th link weight.
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• Decoding:
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Ericsson, R., & Pardalos (J. Comb. Opt., 2002)

• Encoding:
– A vector X of N random keys, where N is the number of links. The 

i-th random key corresponds to the i-th link weight.

• Decoding:
– For i = 1, …, N:  set w(i) = ceil ( X(i)  w

max
 )
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BRKGA for OSPF routing in IP networks                    
Ericsson, R., & Pardalos (J. Comb. Opt., 2002)

• Encoding:
– A vector X of N random keys, where N is the number of links. The 

i-th random key corresponds to the i-th link weight.

• Decoding:
– For i = 1, …, N:  set w(i) = ceil ( X(i)  w

max
 )

– Compute shortest paths and route traffic according to OSPF.
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BRKGA for OSPF routing in IP networks                    
Ericsson, R., & Pardalos (J. Comb. Opt., 2002)

• Encoding:
– A vector X of N random keys, where N is the number of links. The 

i-th random key corresponds to the i-th link weight.

• Decoding:
– For i = 1, …, N:  set w(i) = ceil ( X(i)  w

max
 )

– Compute shortest paths and route traffic according to OSPF.
– Compute load on each link, compute link congestion, add up all 

link congestions to compute network congestion.
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cost
GA solutions

Tier-1 ISP backbone network (90 routers, 274 links)

generation

LP lower 
bound
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Improved BRKGA for OSPF routing in IP networks             

        

L.S. Buriol, M.G.C.R., C.C. Ribeiro, and M. Thorup, “A 
hybrid genetic algorithm for the weight 
setting problem in OSPF/IS-IS routing,” 
Networks, vol. 46, pp. 36–56, 2005.

Tech report version: 

            http://www2.research.att.com/~mgcr/doc/hgaospf.pdf
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Improved BRKGA for OSPF routing in IP networks          
Buriol, R., Ribeiro, and Thorup (Networks, 2005)

 Elite solutions

• Encoding:
– A vector X of N random keys, where N is the number of links. 

The i-th random key corresponds to the i-th link weight.
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Improved BRKGA for OSPF routing in IP networks          
Buriol, R., Ribeiro, and Thorup (Networks, 2005)

 Elite solutions

• Encoding:
– A vector X of N random keys, where N is the number of links. 

The i-th random key corresponds to the i-th link weight.

• Decoder:

– For i = 1, …, N:  set w(i) = ceil ( X(i)  w
max

 )

– Compute shortest paths and route traffic according to OSPF.
– Compute load on each link, compute link congestion, add up 

all link congestions to compute network congestion.
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Improved BRKGA for OSPF routing in IP networks          
Buriol, R., Ribeiro, and Thorup (Networks, 2005)

 Elite solutions

• Encoding:
– A vector X of N random keys, where N is the number of links. 

The i-th random key corresponds to the i-th link weight.

• Decoder:

– For i = 1, …, N:  set w(i) = ceil ( X(i)  w
max

 )

– Compute shortest paths and route traffic according to OSPF.
– Compute load on each link, compute link congestion, add up 

all link congestions to compute network congestion.
– Apply fast local search to improve weights.
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 Elite solutions

Mutant
solutions

X

Population K+1

Population K

 Elite solutions

Non-elite
solutions

Mutant
solutions

Local search

Decoder has a local search phase

Biased coin flip crossover
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Fast local search

• Let A* be the set of five arcs a  A  having 
largest a values.
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Fast local search

• Let A* be the set of five arcs a  A  having 
largest a values.

• Scan arcs a  A* from largest to smallest a:
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Fast local search

• Let A* be the set of five arcs a  A  having 
largest a values.

• Scan arcs a  A* from largest to smallest a:

 Increase arc weight, one unit at a time, in the range  

      [wa , wa  (wmax – wa )/4 ]
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Fast local search

• Let A* be the set of five arcs a  A  having 
largest a values.

• Scan arcs a  A* from largest to smallest a:

 Increase arc weight, one unit at a time, in the range  

      [wa , wa  (wmax – wa )/4 ]
 If total cost  is reduced, restart local search.
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Effect of decoder with fast local search 

1 0

1 0 0

1 0 0 0

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0

c
o

s
t

t ime (sec o n d s )

Original: Ericsson, 
R., and Pardalos 
(2002)

Improved: Buriol, R., 
Ribeiro, and Thorup 
(2005)

LP lower bound
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Effect of decoder with fast local search 

1 0

1 0 0

1 0 0 0

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0

c
o

s
t

t ime (sec o n d s )

Improved BRKGA:
  Finds solutions faster

  Finds better solutions
Original: Ericsson, 
R., and Pardalos 
(2002)

Improved: Buriol, R., 
Ribeiro, and Thorup 
(2005)

LP lower bound
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Handover minimization
in mobility networks
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handover
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handover
(or handoff)
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RNC

• Each cell tower has associated with it 
an amount of traffic.

• Each cell tower is connected to a Radio 
Network Controller (RNC).

• Each RNC can have one or more cell 
towers connected to it.

• Each RNC can handle a given amount 
of traffic ... this limits the subsets of cell 
towers that can be connected to it.

• An RNC controls the cell towers 
connected to it.
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RNC

• Handovers can occur between towers

RNC RNC
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RNC

• Handovers can occur between towers
– connected to the same RNC

RNC RNC
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RNC

• Handovers can occur between towers
– connected to the same RNC
– connected to different RNCs

RNC RNC
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RNC

• Handovers between towers connected to different RNCs tend 
to fail more often than handovers between towers connected to 
the same RNC.

• Handover failure results in dropped call!

RNC RNC
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RNC

• If we minimize the number of handovers between towers 
connected to different RNCs we may be able to reduce the 
number of dropped calls.

RNC RNC
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RNC

• HANDOVER MINIMIZATION: Assign towers to RNCs such that 
RNC capacity is not violated and number of handovers between 
towers assigned to different RNCs is minimized.

RNC RNC
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RNC

• HANDOVER MINIMIZATION: Assign towers to RNCs such that 
RNC capacity is not violated and number of handovers between 
towers assigned to different RNCs is minimized.

RNC RNC

Node-capacitated graph partitioning problem
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Example

• 4 towers: t(1) = 25; t(2) = 15; t(3) = 35; t(4) = 25
• 2 RNCs: c(1) = 50; c(2) = 60
• Handover matrix:
 1 2 3 4

1 0 100 10 0
2 100 0 200 50
3 10 200 0 500
4 0 50 500 0

RNC RNC
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• 4 towers: t(1) = 25; t(2) = 15; t(3) = 35; t(4) = 25
• 2 RNCs: c(1) = 50; c(2) = 60
• Given this traffic profile and RNC capacities the feasible 

configurations are:
– RNC(1): { 1, 2 }; RNC(2): { 3, 4 }
– RNC(1): { 2, 3 }; RNC(2): { 1, 4 }
– RNC(1): { 2, 4 }; RNC(2): { 1, 3 }
– RNC(1): { 1, 4 }; RNC(2): { 2, 3 }

 

RNC RNC
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• Total handover for each configuration:

 

RNC RNC

1 2 3 4
1 0 100 10 0
2 100 0 200 50
3 10 200 0 500
4 0 50 500 0
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• Total handover for each configuration:
– RNC(1): { 1, 2 }; RNC(2): { 3, 4 }: h(1,3) + h(1,4) + 

h(2,3) + h(2,4) = 10 + 0 + 200 + 50 = 260

 

RNC RNC

1 2 3 4
1 0 100 10 0
2 100 0 200 50
3 10 200 0 500
4 0 50 500 0
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• Total handover for each configuration:
– RNC(1): { 1, 2 }; RNC(2): { 3, 4 }: h(1,3) + h(1,4) + 

h(2,3) + h(2,4) = 10 + 0 + 200 + 50 = 260

– RNC(1): { 2, 3 }; RNC(2): { 1, 4 }: h(2,1) + h(2,4) + 
h(3,1) + h(3,4) = 100 + 50 + 10 + 500 = 660

 

RNC RNC

1 2 3 4
1 0 100 10 0
2 100 0 200 50
3 10 200 0 500
4 0 50 500 0
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• Total handover for each configuration:
– RNC(1): { 1, 2 }; RNC(2): { 3, 4 }: h(1,3) + h(1,4) + 

h(2,3) + h(2,4) = 10 + 0 + 200 + 50 = 260

– RNC(1): { 2, 3 }; RNC(2): { 1, 4 }: h(2,1) + h(2,4) + 
h(3,1) + h(3,4) = 100 + 50 + 10 + 500 = 660

– RNC(1): { 2, 4 }; RNC(2): { 1, 3 }: h(2,1) + h(2,3) + 
h(4,1) + h(4,3) = 100 + 200 + 0 + 500 = 800

 

RNC RNC

1 2 3 4
1 0 100 10 0
2 100 0 200 50
3 10 200 0 500
4 0 50 500 0
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• Total handover for each configuration:
– RNC(1): { 1, 2 }; RNC(2): { 3, 4 }: h(1,3) + h(1,4) + 

h(2,3) + h(2,4) = 10 + 0 + 200 + 50 = 260

– RNC(1): { 2, 3 }; RNC(2): { 1, 4 }: h(2,1) + h(2,4) + 
h(3,1) + h(3,4) = 100 + 50 + 10 + 500 = 660

– RNC(1): { 2, 4 }; RNC(2): { 1, 3 }: h(2,1) + h(2,3) + 
h(4,1) + h(4,3) = 100 + 200 + 0 + 500 = 800

– RNC(1): { 1, 4 }; RNC(2): { 2, 3 }: h(1,2) + h(1,3) + 
h(4,2) + h(4,3) = 100 + 10 + 50 + 500 = 660

 

RNC RNC

1 2 3 4
1 0 100 10 0
2 100 0 200 50
3 10 200 0 500
4 0 50 500 0
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• Total handover for each configuration:
– RNC(1): { 1, 2 }; RNC(2): { 3, 4 }: h(1,3) + h(1,4) + 

h(2,3) + h(2,4) = 10 + 0 + 200 + 50 = 260260

– RNC(1): { 2, 3 }; RNC(2): { 1, 4 }: h(2,1) + h(2,4) + 
h(3,1) + h(3,4) = 100 + 50 + 10 + 500 = 660

– RNC(1): { 2, 4 }; RNC(2): { 1, 3 }: h(2,1) + h(2,3) + 
h(4,1) + h(4,3) = 100 + 200 + 0 + 500 = 800

– RNC(1): { 1, 4 }; RNC(2): { 2, 3 }: h(1,2) + h(1,3) + 
h(4,2) + h(4,3) = 100 + 10 + 50 + 500 = 660

 

RNC RNC

1 2 3 4
1 0 100 10 0
2 100 0 200 50
3 10 200 0 500
4 0 50 500 0
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Optimal configuration:

 T(1) T(2) T(3) T(4)

RNC(1) RNC(2)

1 2 3 4
1 0 100 10 0
2 100 0 200 50
3 10 200 0 500
4 0 50 500 0
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 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

G=(T,E)       Nodeset T are the towers; Edgeset: (i,j)∈E  iff h(i,j)+h(j,i) > 0
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 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Tower are assigned to RNCs indicated by distinct colors/shapes
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Mixed integer programming formulation

• T is the set of towers
• R is the set of RNCs

• x
e,k 

= 1 if edge e =(i,j) has both endpoints in RNC k

• y
i,k 

= 1 if tower i is assigned to RNC k



 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Mixed integer programming formulation

Each tower can only be assigned to one RNC:
             
                 sum 

{k ∈ R}
 y

i,k 
= 1, for all i ∈  T
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Mixed integer programming formulation

Each e=(i,j) cannot be in RNC k if either of its endpoints 
is not assigned to RNC k:
             
                 x

e,k
 ≤ y

i,k 
, for all e=(i,j) ∈ E, k ∈  R

                 x
e,k

 ≤ y
j,k 

, for all e=(i,j) ∈ E, k ∈  R

                 x
e,k

  y
i,k 

+ y
j,k 
 1, for all e=(i,j) ∈ E, k ∈  R
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Mixed integer programming formulation

Each RNC k can only accommodate c
k
 units of traffic:

             
                 sum 

{i ∈ T}
 t

i 
y

i,k 
≤ c

k
, for all k ∈  R
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Mixed integer programming formulation

Minimize handover between towers assigned to 
different RNCs is equivalent to maximize handover 
between towers assigned to the same RNC.       
Objective function:
             

                      max { sum 
{ k ∈ R }   

{ sum 
{ e=(i,j) ∈ E }

 h(i,j) 
 
x

e,k  
}  }

 

                 



 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

CPLEX MIP solver

Towers RNCs BKS CPLEX time (s)

20 10 7602 7602 18.80
30 15 18266 18266 25911.00
40 15 29700 29700 101259.91

100 15 19000 49270 1 day
100 25 36412 58637 1 day
100 50 60922 70740 1 day
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CPLEX MIP solver

Towers RNCs BKS CPLEX time (s)

20 10 7602 7602 18.80
30 15 18266 18266 25911.00
40 15 29700 29700 101259.91

100 15 19000 49270 1 day
100 25 36412 58637 1 day
100 50 60922 70740 1 day

We would like to solve instances with 1000 towers.
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CPLEX MIP solver

Towers RNCs BKS CPLEX time (s)

20 10 7602 7602 18.80
30 15 18266 18266 25911.00
40 15 29700 29700 101259.91

100 15 19000 49270 1 day
100 25 36412 58637 1 day
100 50 60922 70740 1 day

We would like to solve instances with 1000 towers.We would like to solve instances with 1000 towers.
Need heuristics!Need heuristics!
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A simple BRKGA 
for HMP
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Encoding

Each solution is encoded as a vector of |T| random 
keys, where |T| is the number of towers
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Decoding

Decoder takes input a vector of |T| random keys and 
outputs a tower-to-RNC assignment:
1) sort vector resulting in ordering of towers
2) scan towers in order …

– place tower in RNC with available capacity with which the 
tower has greatest number of handovers with other towers 
already assigned to RNC

– if RNC with available capacity does not exist, open a new 
artificial RNC with capacity max { c

i
 | i  open RNCs } 

3) apply tower move local search to produce local 
minimum
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Another BRKGA 
for HMP
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Encoding

Each solution is encoded as a vector of 2 |T| 
random keys, where |T| is the number of towers
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Decoding
Decoder takes input a vector of 2 |T| random keys and outputs 
a tower-to-RNC assignment:

1) sort first |T| keys resulting in ordering of towers

2) scan towers in order …
– place tower in RNC with available capacity as indicated by mapping 

[0,1) to [1, 2, .., |RNCs|] from second |T| keys

– scan unassigned towers in order and place them in RNC with 
available capacity maximizing handover count with tower assigned 
there

– if RNC with available capacity does not exist, assign tower to RNC 
with maximum handover count w.r.t. to tower

3) apply tower move local search to produce local minimum
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Experiments with 
BRKGA-1 for HMP
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BRKGA: 100 towers : 14 RNCs
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BRKGA: 100 towers : 14 RNCs Generation: 56324
Handovers: 19750
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Generation: 56324
Handovers: 19750

Generation: 1
Handovers: 25872
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BRKGA for bound 
constrained global 

optimization
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Bound-constrained global optimization

Find  

x* = argmin{ f(x) | l x u }, 
where f: Rn →  R, and l, x, u Rn
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● Given a nonlinear system: f
1
(x) = 0, …, f

r
(x)=0

● Formulate the optimization problem:

Find x∗ = argmin{F (x) = ∑
i=1...r

 f
i
2(x) ∣ l x u}

● Since F (x) ≥ 0 for all l x u, then 
F (x) = 0 ⇔ f

i
 (x) = 0 for all i  ∈ {1, . . . , r}

● Hence if ∃ l x* u ∋ F (x∗) = 0 ⇒ x∗ is a global 
minimizer of problem and x∗ is a root of the system of 
equations: f

1
(x) = 0, ..., f

r
(x)=0.

System of nonlinear equations
Hirsch, Pardalos, M.G.C.R. (2006)
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Suppose the k-th root (roots are denoted x
1
 , . . . , x

k
 ) has been found.

Then solve new problem, with the modified objective function given by:

F(x)= ∑
i=1..r

 f
i
2(x) + ∑

j=1..k
 e -∥x-x(j)∥


(∥x-x

j
∥)

where



()=1 if ; 0, otherwise

 is a large constant, and  is a small constant.

This has the effect of creating an area of repulsion near solutions that have 
already been found by the heuristic.

System of nonlinear equations
Hirsch, Pardalos, M.G.C.R. (2006)
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BRKGA for bound-
constrained global 

optimization
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Encoding & Decoder of BRKGA for global optimization

● A solution is encoded as a vector  = ( 



n
) of size 

n, where 
i
 is a random number in the interval [0,1], for 

i=1,...,n. The i-th component of corresponds to the i-th 
dimension of hyper-rectangle S.

● A decoder takes as input the vector of random keys 
and returns a solution x S with 

x
i
 = l

i
 + 

i
 . ( u

i
 - l

i
 ), for i=1,...,n. 

During all decoder process, the solutions fitness are 
→calculated by the objective function f: S  R of global 

optimization problem.
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Computational environment

Computer with a 1.66GHz Intel Core 2 processor 
with 1 GB of Memory
Ubuntu version 4.3.2-1ubuntu11  
C language, gcc compiler version 4.3.2
Random-number generator:  Mersenne Twister 
algorithm (Matsumoto and Nishimura, 1998)
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Robot kinematics 
problem



 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Robot kinematics application

● First described by Tsai and Morgan (1985).

● Considered a “challenging problem” in Floudas et al. (1999).

● Given a 6-revolute manipulator (rigid-bodies, or links, connected 
together by joints), with the first link designated the base, and the 
last link designated the hand of the robot: Determine the possible 
positions of the hand, given that the joints are movable.

● Problem is reduced to solving a system of eight nonlinear equations 
in eight unknowns.
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Robot kinematics application
Find x = (x

1
 , x

2
 , . . . , x

8
 ) such that:

● f
1
 (x) = 4.731 · 10−3 x

1
 x

3
 − 0.3578x

2
x

3
 − 0.1238x

1
 + x

7
 

                                               − 1.637 · 10−3 x
2
 − 0.9338x

4
 − 0.3571 = 0

● f
2
 (x) = 0.2238x

1
x

3
 + 0.7623x

2
x

3
 + 0.2638x

1
− x

7
 − 0.07745x

2
 

                                                                          − 0.6734x
4
 − 0.6022 = 0

● f
3
 (x) = x

6
 x

8
 + 0.3578x

1
 + 4.731 · 10−3 x

2
 = 0

● f
4
 (x) = − 0.7623x

1
 + 0.2238x

2
 + 0.3461 = 0

● f
5
 (x) = x

1
2 + x

2
2 − 1 = 0

● f
6
 (x) = x

3
2 + x

4
2 − 1 = 0

● f
7
 (x) = x

5
2 + x

6
2 − 1 = 0

● f
8
 (x) = x

7
2 + x

8
2 − 1 = 0
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● Size of chromosome: 8
● Size of population: 10
● Size of elite partition: 20% of population
● Size of mutant set: 10% of population
● Child inheritance probability: 0.7
● Stopping criterion: at any time during a run, we say that the heuristic has 

solved the problem if GAP = | F(x) – F(x*)|  with  = 0.0001, 

where x is the current best solution found by the heuristic and 

x* is the known global minimum solution.

Parameters of biased random-key GA for 
robot kinematics application
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Robot kinematics application

● We ran BRKGA five times (a different starting 
random seed for each run) with  = 1,  = 1010 

● In each case, BRKGA heuristic was able to find all 
16 known roots.  

● The average CPU time needed to find the 16 roots 
was 3623.27 seconds.

● The next table illustrates one of these solutions: 
the 16 roots were found in 4013.27 seconds by 
running BRKGA heuristic with seed=270001.
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x1 x2 x3 x4 x5 x6 x7 x8
4.95 s 0.1658 −0.9851 0.7153 −0.6950 −0.9975 0.0638 −0.5251 −0.8557

0.1644 −0.9864 0.7185 −0.6956 −0.9980 0.0638 −0.5278 −0.8494
7.5 s 0.1619 −0.9851 0.7182 −0.6946 −0.9979 −0.0616 −0.5232 0.8503

0.1644 −0.9864 0.7185 −0.6956 −0.9980 −0.0638 −0.5278 0.8494
13.19 s 0.1731 −0.9827 0.7181 −0.6946 0.9973 −0.0686 −0.5195 0.8544

0.1644 −0.9864 0.7185 −0.6956 0.9980 −0.0638 −0.5278 0.8494
5.95 s 0.6729 0.7394 −0.6480 −0.7641 −0.9623 −0.2706 −0.4333 0.9027

0.6716 0.7410 −0.6516 −0.7586 −0.9625 −0.2711 −0.4376 0.8992
6.86 s 0.6736 0.7383 −0.6505 −0.7553 0.9634 0.2696 −0.4333 −0.9010

0.6716 0.7410 −0.6516 −0.7586 0.9625 0.2711 −0.4376 −0.8992
6.53 s 0.6792 0.7328 −0.6555 −0.7553 0.9612 −0.27613 −0.4343 0.9027

0.6716 0.7410 −0.6516 −0.7586 0.9625 −0.2711 −0.4376 0.8992
11.05 s 0.6768 0.7358 0.9502 −0.3132 −0.9623 0.2708 0.4002 −0.9162

0.6716 0.7410 0.9519 −0.3064 −0.9638 0.2666 0.4046 −0.9145
15.24 s 0.6674 0.7427 0.9508 −0.3132 0.9661 −0.2620 0.4002 0.9156

0.6716 0.7410 0.9519 −0.3064 0.9638 −0.2666 0.4046 0.9145
9.16 s 0.6792 0.7362 −0.6564 −0.7553 −0.9617 0.2745 −0.4343 −0.9008

0.6716 0.7410 −0.6516 −0.7586 −0.9625 0.2711 −0.4376 −0.8992
98.98 s 0.6707 0.7462 0.953 −0.3041 0.9644 0.2631 0.4079 −0.9107

0.6716 0.7410 0.9519 −0.3064 0.9638 0.2666 0.4046 −0.9145
135.02 s 0.6646 0.749 0.9551 −0.3015 −0.9652 −0.2625 0.4101 0.9114

0.6716 0.7410 0.9519 −0.3064 −0.9638 −0.2666 0.4046 0.9145
354.76 s 0.1604 −0.9891 −0.9505 −0.3167 −0.9979 −0.0581 0.4111 0.909

0.1644 −0.9864 −0.9471 −0.3210 −0.9982 −0.0594 0.4110 0.9116
360.76 s 0.168 −0.9844 −0.9514 −0.3167 0.9998 −0.0602 0.4098 0.9124

0.1644 −0.9864 −0.9471 −0.3210 0.9982 −0.0594 0.4110 0.9116
409.27 s 0.1606 −0.9855 −0.9481 −0.3183 −0.9976 0.0554 0.4138 −0.9076

0.1644 −0.9864 −0.9471 −0.3210 −0.9982 0.0594 0.4110 −0.9116
1204.24 s 0.1712 −0.9850 −0.9427 −0.3275 0.9976 0.0621 0.4052 −0.9143

0.1644 −0.9864 −0.9471 −0.3210 0.9982 0.0594 0.4110 −0.9116
1369.81 s 0.1718 −0.9837 0.7178 −0.6947 0.9943 0.0687 −0.5246 −0.8519

0.1644 −0.9864 0.7185 −0.6956 0.9980 0.0638 −0.5278 −0.8494

9.79321 10­5

7.19678 10­5

9.54526 10­5

9.76283 10­5

6.49664 10­5

9.23596 10­5

9.68334 10­5

9.81702 10­5

9.1171 10­5

8.55693 10­5

9.82556 10­5

9.32723 10­5

9.70348 10­5

7.28536 10­5

8.21721 10­5

8.63659 10­5

Known roots x=(x1,...,x8) of system in [−1, 1]8 described in Floudas et al. [1999], Kearfott [1987].



 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

x1 x2 x3 x4 x5 x6 x7 x8
4.95 s 0.1658 −0.9851 0.7153 −0.6950 −0.9975 0.0638 −0.5251 −0.8557

0.1644 −0.9864 0.7185 −0.6956 −0.9980 0.0638 −0.5278 −0.8494
7.5 s 0.1619 −0.9851 0.7182 −0.6946 −0.9979 −0.0616 −0.5232 0.8503

0.1644 −0.9864 0.7185 −0.6956 −0.9980 −0.0638 −0.5278 0.8494
13.19 s 0.1731 −0.9827 0.7181 −0.6946 0.9973 −0.0686 −0.5195 0.8544

0.1644 −0.9864 0.7185 −0.6956 0.9980 −0.0638 −0.5278 0.8494
5.95 s 0.6729 0.7394 −0.6480 −0.7641 −0.9623 −0.2706 −0.4333 0.9027

0.6716 0.7410 −0.6516 −0.7586 −0.9625 −0.2711 −0.4376 0.8992
6.86 s 0.6736 0.7383 −0.6505 −0.7553 0.9634 0.2696 −0.4333 −0.9010

0.6716 0.7410 −0.6516 −0.7586 0.9625 0.2711 −0.4376 −0.8992
6.53 s 0.6792 0.7328 −0.6555 −0.7553 0.9612 −0.27613 −0.4343 0.9027

0.6716 0.7410 −0.6516 −0.7586 0.9625 −0.2711 −0.4376 0.8992
11.05 s 0.6768 0.7358 0.9502 −0.3132 −0.9623 0.2708 0.4002 −0.9162

0.6716 0.7410 0.9519 −0.3064 −0.9638 0.2666 0.4046 −0.9145
15.24 s 0.6674 0.7427 0.9508 −0.3132 0.9661 −0.2620 0.4002 0.9156

0.6716 0.7410 0.9519 −0.3064 0.9638 −0.2666 0.4046 0.9145
9.16 s 0.6792 0.7362 −0.6564 −0.7553 −0.9617 0.2745 −0.4343 −0.9008

0.6716 0.7410 −0.6516 −0.7586 −0.9625 0.2711 −0.4376 −0.8992
98.98 s 0.6707 0.7462 0.953 −0.3041 0.9644 0.2631 0.4079 −0.9107

0.6716 0.7410 0.9519 −0.3064 0.9638 0.2666 0.4046 −0.9145
135.02 s 0.6646 0.749 0.9551 −0.3015 −0.9652 −0.2625 0.4101 0.9114

0.6716 0.7410 0.9519 −0.3064 −0.9638 −0.2666 0.4046 0.9145
354.76 s 0.1604 −0.9891 −0.9505 −0.3167 −0.9979 −0.0581 0.4111 0.909

0.1644 −0.9864 −0.9471 −0.3210 −0.9982 −0.0594 0.4110 0.9116
360.76 s 0.168 −0.9844 −0.9514 −0.3167 0.9998 −0.0602 0.4098 0.9124

0.1644 −0.9864 −0.9471 −0.3210 0.9982 −0.0594 0.4110 0.9116
409.27 s 0.1606 −0.9855 −0.9481 −0.3183 −0.9976 0.0554 0.4138 −0.9076

0.1644 −0.9864 −0.9471 −0.3210 −0.9982 0.0594 0.4110 −0.9116
1204.24 s 0.1712 −0.9850 −0.9427 −0.3275 0.9976 0.0621 0.4052 −0.9143

0.1644 −0.9864 −0.9471 −0.3210 0.9982 0.0594 0.4110 −0.9116
1369.81 s 0.1718 −0.9837 0.7178 −0.6947 0.9943 0.0687 −0.5246 −0.8519

0.1644 −0.9864 0.7185 −0.6956 0.9980 0.0638 −0.5278 −0.8494

9.79321 10­5

7.19678 10­5

9.54526 10­5

9.76283 10­5

6.49664 10­5

9.23596 10­5

9.68334 10­5

9.81702 10­5

9.1171 10­5

8.55693 10­5

9.82556 10­5

9.32723 10­5

9.70348 10­5

7.28536 10­5

8.21721 10­5

8.63659 10­5

Known roots x=(x1,...,x8) of system in [−1, 1]8 described in Floudas et al. [1999], Kearfott [1987].
Roots x=(x1,...,x8) of system in [−1, 1]8 found by running BRKGA with seed=270001. For each root, 
the time (seconds) and the value of obj. function F(x) are shown in the first column.
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Chemical 
reaction 

engineering
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Non-Isothermal CSTR (continuously stirred tank reactors) problem 

Originally described in Kubicek et al. (1980)

This problem concerns a model of two continuous non-
adiabatic stirred tank reactors. These reactors are in 
series, in steady state, with a recycle component, and 
have an exothermic first-order irreversible reaction.  

When certain variables are eliminated, the model results 
in a system of two nonlinear equations ...
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1 and 2 represent the dimensionless temperatures in the two reactors in 
the domain [0,1]2.

Parameters , D, 1, and 1 are set to 1000, 22, 2, and 2, respectively. The 
recycle ratio parameter R takes on values in the set ={0.935, 0.940, ... , 
0.995}, whose number of known solutions varies between 1 and 7. 

Non-Isothermal CSTR (continuously stirred tank reactors) problem 
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● Size of chromosome: 8
● Size of population: 100
● Size of elite partition: 20% of population
● Size of mutant set: 10% of population
● Child inheritance probability: 0.7
● Stopping criterion: at any time during a run, we say that the heuristic has 

solved the problem if GAP = | F(x) – F(x*)|  with  = 0.000001, 

where x is the current best solution found by the heuristic and 

x* is the known global minimum solution.

Parameters of BRKGA for Non-Isothermal CSTR 
problem
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For each value of the parameter R given in the set , we ran the 
BRKGA heuristic 5 times, each time searching for all of roots.

R #sols. C-GRASP
avg.#found

C-GRASP
avg. time

BRKGA
avg.#found

BRKGA
avg. time

0.935 1 1.00 0.60s 1.00 0.822s
0.940 1 1.00 0.77s 1.00 0.635s
0.945 3 3.00 0.19s 3.00 0.876s
0.950 5 4.99 1.11s 4.65 1.760s
0.955 5 5.00 1.69s 5.00 2.342s
0.960 7 6.96 2.41s 6.87 2.375s
0.965 5 4.95 1.81s 4.78 2.054s
0.970 5 4.99 1.34s 4.82 1.732s
0.975 5 4.96 1.83s 4.76 2.012s
0.980 5 4.98 1.90s 4.92 2.759s
0.985 5 4.99 2.23s 4.95 4.310s
0.990 1 1.00 0.01s 1.00 0.018s
0.995 1 1.00 0.01s 1.00 0.034s
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Automotive 
engineering 

problem
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● Kinematic synthesis mechanism for automotive steering.  
● This problem was originally described in Pramanik (2002).
● The Ackerman steering mechanism is a four-bar mechanism for 

steering four-wheel vehicles. When a vehicle turns, the steered 
wheels need to be angled so that they are both 90o with respect to a 
certain line. This means that the wheels will have to be at different 
angles with respect to the non-steered wheels. The Ackerman design 
arranges the wheels automatically by moving the steering pivot 
inward.  

● Pramanik states that “the Ackerman design reveals progressive 
deviations from ideal steering with increasing ranges of motion.”

● Pramanik instead considers a six-member mechanism.  This 
produces the system of equations given ...

Automotive steering problem
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x
1
, x

2
, and x

3
 are, respectively, the normalized steering pivot rod radius, the normalized 

tire pivot radius, and the normalized 'length' direction distance from the steering rod 
pivot point to the tire pivot.

We want to find x
1
, x

2
, x

3 
such that 

F(x) = G
0
(Ψ

0
,φ

0
)2+ G

1
(Ψ

1
,φ

1
)2+ G

2
(Ψ

2
,φ

2
)2+ G

3
(Ψ

3
,φ

3
)2 is minimized, where 

i = 0, 1, 2, 3

= 0
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● Size of chromosome: 8
● Size of population: 100
● Size of elite partition: 20% of population
● Size of mutant set: 10% of population
● Child inheritance probability: 0.7
● Stopping criterion: at any time during a run, we say that the heuristic has 

solved the problem if GAP = | F(x) – F(x*)|  with  = 0.000001, 

where x is the current best solution found by the heuristic and 

x* is the known global minimum solution.  Here, we know F(x*) = 0.

Parameters of biased random-key GA for 
automotive steering problem
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When the angles 
i
 and 

i
 are given as:

This system had two roots in the domain [0.06, 1]3.

Using BRKGA, we solved the problem 10 times.

Each time, BRKGA found the two roots of the system .
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Computing two roots of system

root 1 = (0.0968218, 0.146321, 0.0631119) 

root 2 = (0.128868, 0.254157, 0.144998) 
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Literature survey
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Literature

• BRKGAs have been applied in a wide range of 
areas.

• The following is a sampling of some papers that 
appeared in the literature applying BRKGAs.
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Survey

• Survey: Gonçalves and R. (2011) 

J.F. Gonçalves and M.G.C.R., “Biased random-key 
genetic algorithms for combinatorial optimization,” 
J. of Heuristics, vol.17, pp. 487-525, 2011.
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Telecommunications

• Routing: Ericsson, R., Pardalos (2002), Buriol et al. (2002, 2005), 
Reis et al. (2011), Noronha, R.,  Ribeiro (2007, 2008, 2011), 
Heckeler et al. (2011)

• Design: Andrade et al. (2006), Buriol, R., Thorup (2007)

• Network monitoring: Breslau et al. (2011)

• Regenerator location: Duarte et al. (2011)

• Fiber installation in optical networks: Goulart et al. (2011)

• Path-based recovery in flexgrid optical networks: Castro et al. 
(2012)
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Telecommunications (cont'd)

• Handover minimization: Morán-Mirabal et al. (2012)

• Survivable IP/MPLS-over-WSON multi-layer network: Ruiz et al. 
(2011), Pedrola et al. (2011)

• Survey: R. (2012) 
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Scheduling

• Job-shop scheduling: Gonçalves, Mendes, R. (2005), 
Gonçalves and R. (2012)

• Single machine scheduling: Valente et al. (2006), Valente 
and Gonçalves (2008)

• Resource constrained project scheduling: Gonçalves, 
Mendes, R. (2008, 2009), Gonçalves, R., Mendes (2011)

• Selection and scheduling of observations on Earth 
observing satellites: Tangpattanakul, Josefowiez, Lopez 
(2012)
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Production planning

• Assembly line balancing: Gonçalves and Almeida (2002)

• Manufacturing cell formation: Gonçalves and R. (2004)

• Single machine scheduling: Valente et al. (2006), Valente 
and Gonçalves (2008)

• Assembly line worker assignment and balancing: 
Moreira et al. (2010)

• Lot sizing and scheduling with capacity constraints 
and backorders: Gonçalves and Sousa (2011)
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Network optimization

• Concave minimum cost flow: Fontes and Gonçalves 
(2007)

• Robust shortest path: Coco, Noronha, Santos (2012)

• Tree of hubs location: Pessoa, Santos, R. (2012)

• Hop-constrained trees in nonlinear cost flow 
networks: Fontes and Gonçalves (2012)

• Capacitated arc routing: Martinez, Loiseau, R. (2011)
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Power systems

• Unit commitment: Roque, Fontes, Fontes (2010, 2011)

• Multi-objective unit commitment: Roque, Fontes, Fontes 
(2012)
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Packing

• 2D orthogonal packing: Gonçalves and R. (2011)

• 3D container loading: Gonçalves and R. (2012a)

• 2D/3D bin packing: Gonçalves and R. (2012b)
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Covering

• Steiner triple systems: R. et al. (2012)

• Covering by pairs: Breslau et al. (2011)
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Transportation

• Tollbooth assignment: Buriol. et al. (2009, 2010)
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Auctions

• Combinatorial auctions: Andrade et al. (2012)
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Automatic parameter tuning

• GRASP with path-relinking: Festa et al. (2010)

• GRASP with evolutionary path-relinking: Morán-Mirabal, 
González-Velarde, R. (2012)
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Continuous global optimization

• Bound-constrained optimization: Silva, Pardalos, R. 
(2012)
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Software

• C++ API: Toso and R. (2012)



 CLAIO/SBPO 2012 ✤ September 2012 BRKGA tutorial

Reference

Tech report version:

        

         http://www.research.att.com/~mgcr/doc/srkga.pdf

J.F. Gonçalves and M.G.C.R., “Biased random-key 
genetic algorithms for combinatorial optimization,” 
J. of Heuristics, vol.17, pp. 487-525, 2011.
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These slides and all of the papers cited in this 
tutorial can be downloaded from my homepage:

http://www.research.att.com/~mgcr
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