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Outline

• Handover minimization problem (HMP)

• Generalized quadratic assignment problem (GQAP)

• GRASP with path-relinking for the GQAP

• HMP is a special case of GQAP

• Experiments with GRASP for GQAP on HMP on synthetic 
networks

• GRASP with evolutionary path-relinking for HMP with 
experiments

• Biased random-key genetic algorithm for HMP with 
experiments

• Concluding remarks
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Handover minimization



 UFRGS (July 6, 2012) Heuristics for handover minimization



 UFRGS (July 6, 2012) Heuristics for handover minimization



 UFRGS (July 6, 2012) Heuristics for handover minimization



 UFRGS (July 6, 2012) Heuristics for handover minimization

handover
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handover
(or handoff)
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RNC

• Each cell tower has associated with it 
an amount of traffic.

• Each cell tower is connected to a Radio 
Network Controller (RNC).

• Each RNC can have one or more cell 
towers connected to it.

• Each RNC can handle a given amount 
of traffic ... this limits the subsets of cell 
towers that can be connected to it.

• An RNC controls the cell towers 
connected to it.
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RNC

• Handovers can occur between towers

RNC RNC



 UFRGS (July 6, 2012) Heuristics for handover minimization

RNC

• Handovers can occur between towers
– connected to the same RNC

RNC RNC
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RNC

• Handovers can occur between towers
– connected to the same RNC
– connected to different RNCs

RNC RNC
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RNC

• Handovers between towers connected to different RNCs tend 
to fail more often than handovers between towers connected to 
the same RNC.

• Handover failure results in dropped call!

RNC RNC
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RNC

• If we minimize the number of handovers between towers 
connected to different RNCs we may be able to reduce the 
number of dropped calls.

RNC RNC
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RNC

• HANDOVER MINIMIZATION: Assign towers to RNCs such that 
RNC capacity is not violated and number of handovers between 
towers assigned to different RNCs is minimized.

RNC RNC



 UFRGS (July 6, 2012) Heuristics for handover minimization

RNC

• HANDOVER MINIMIZATION: Assign towers to RNCs such that 
RNC capacity is not violated and number of handovers between 
towers assigned to different RNCs is minimized.

RNC RNC

Node-capacitated graph partitioning problem
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Example

• 4 towers: t(1) = 25; t(2) = 15; t(3) = 35; t(4) = 25
• 2 RNCs: c(1) = 50; c(2) = 60
• Handover matrix:
 1 2 3 4

1 0 100 10 0

2 100 0 200 50

3 10 200 0 500

4 0 50 500 0

RNC RNC
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• 4 towers: t(1) = 25; t(2) = 15; t(3) = 35; t(4) = 25
• 2 RNCs: c(1) = 50; c(2) = 60
• Given this traffic profile and RNC capacities the feasible 

configurations are:
– RNC(1): { 1, 2 }; RNC(2): { 3, 4 }
– RNC(1): { 2, 3 }; RNC(2): { 1, 4 }
– RNC(1): { 2, 4 }; RNC(2): { 1, 3 }
– RNC(1): { 1, 4 }; RNC(2): { 2, 3 }

 

RNC RNC



 UFRGS (July 6, 2012) Heuristics for handover minimization

• Total handover for each configuration:

 

RNC RNC

1 2 3 4

1 0 100 10 0

2 100 0 200 50

3 10 200 0 500

4 0 50 500 0
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• Total handover for each configuration:
– RNC(1): { 1, 2 }; RNC(2): { 3, 4 }: h(1,3) + h(1,4) + 

h(2,3) + h(2,4) = 10 + 0 + 200 + 50 = 260

 

RNC RNC

1 2 3 4

1 0 100 10 0

2 100 0 200 50

3 10 200 0 500

4 0 50 500 0
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• Total handover for each configuration:
– RNC(1): { 1, 2 }; RNC(2): { 3, 4 }: h(1,3) + h(1,4) + 

h(2,3) + h(2,4) = 10 + 0 + 200 + 50 = 260

– RNC(1): { 2, 3 }; RNC(2): { 1, 4 }: h(2,1) + h(2,4) + 
h(3,1) + h(3,4) = 100 + 50 + 10 + 500 = 660

 

RNC RNC

1 2 3 4

1 0 100 10 0

2 100 0 200 50

3 10 200 0 500

4 0 50 500 0
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• Total handover for each configuration:
– RNC(1): { 1, 2 }; RNC(2): { 3, 4 }: h(1,3) + h(1,4) + 

h(2,3) + h(2,4) = 10 + 0 + 200 + 50 = 260

– RNC(1): { 2, 3 }; RNC(2): { 1, 4 }: h(2,1) + h(2,4) + 
h(3,1) + h(3,4) = 100 + 50 + 10 + 500 = 660

– RNC(1): { 2, 4 }; RNC(2): { 1, 3 }: h(2,1) + h(2,3) + 
h(4,1) + h(4,3) = 100 + 200 + 0 + 500 = 800

 

RNC RNC

1 2 3 4

1 0 100 10 0

2 100 0 200 50

3 10 200 0 500

4 0 50 500 0
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• Total handover for each configuration:
– RNC(1): { 1, 2 }; RNC(2): { 3, 4 }: h(1,3) + h(1,4) + 

h(2,3) + h(2,4) = 10 + 0 + 200 + 50 = 260

– RNC(1): { 2, 3 }; RNC(2): { 1, 4 }: h(2,1) + h(2,4) + 
h(3,1) + h(3,4) = 100 + 50 + 10 + 500 = 660

– RNC(1): { 2, 4 }; RNC(2): { 1, 3 }: h(2,1) + h(2,3) + 
h(4,1) + h(4,3) = 100 + 200 + 0 + 500 = 800

– RNC(1): { 1, 4 }; RNC(2): { 2, 3 }: h(1,2) + h(1,3) + 
h(4,2) + h(4,3) = 100 + 10 + 50 + 500 = 660

 

RNC RNC

1 2 3 4

1 0 100 10 0

2 100 0 200 50

3 10 200 0 500

4 0 50 500 0
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• Total handover for each configuration:
– RNC(1): { 1, 2 }; RNC(2): { 3, 4 }: h(1,3) + h(1,4) + 

h(2,3) + h(2,4) = 10 + 0 + 200 + 50 = 260260

– RNC(1): { 2, 3 }; RNC(2): { 1, 4 }: h(2,1) + h(2,4) + 
h(3,1) + h(3,4) = 100 + 50 + 10 + 500 = 660

– RNC(1): { 2, 4 }; RNC(2): { 1, 3 }: h(2,1) + h(2,3) + 
h(4,1) + h(4,3) = 100 + 200 + 0 + 500 = 800

– RNC(1): { 1, 4 }; RNC(2): { 2, 3 }: h(1,2) + h(1,3) + 
h(4,2) + h(4,3) = 100 + 10 + 50 + 500 = 660

 

RNC RNC

1 2 3 4

1 0 100 10 0

2 100 0 200 50

3 10 200 0 500

4 0 50 500 0
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Optimal configuration:

 T(1) T(2) T(3) T(4)

RNC(1) RNC(2)

1 2 3 4

1 0 100 10 0

2 100 0 200 50

3 10 200 0 500

4 0 50 500 0
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G=(T,E)       Nodeset T are the towers; Edgeset: (i,j)∈E  iff h(i,j)+h(j,i) > 0
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Tower are assigned to RNCs indicated by distinct colors/shapes
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Mixed integer programming formulation

• T is the set of towers
• R is the set of RNCs

• x
e,k 

= 1 if edge e =(i,j) has both endpoints in RNC k

• y
i,k 

= 1 if tower i is assigned to RNC k
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Mixed integer programming formulation

Each tower can only be assigned to one RNC:
             
                 sum 

{k ∈ R}
 y

i,k 
= 1, for all i ∈  T
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Mixed integer programming formulation

Each e=(i,j) cannot be in RNC k if either of its endpoints 
is not assigned to RNC k:
             
                 x

e,k
 ≤ y

i,k 
, for all e=(i,j) ∈ E, k ∈  R

                 x
e,k

 ≤ y
j,k 

, for all e=(i,j) ∈ E, k ∈  R

                 x
e,k

  y
i,k 

+ y
j,k 
 1, for all e=(i,j) ∈ E, k ∈  R



 UFRGS (July 6, 2012) Heuristics for handover minimization

Mixed integer programming formulation

Each RNC k can only accommodate c
k
 units of traffic:

             
                 sum 

{i ∈ T}
 t

i 
y

i,k 
≤ c

k
, for all k ∈  R
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Mixed integer programming formulation

Minimize handover between towers assigned to 
different RNCs is equivalent to maximize handover 
between towers assigned to the same RNC.       
Objective function:
             

                      max { sum 
{ k ∈ R }   

{ sum 
{ e=(i,j) ∈ E }

 h(i,j) 
 
x

e,k  
}  }
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CPLEX MIP solver

Towers RNCs BKS CPLEX time (s)

20 10 7602 7602 18.80

30 15 18266 18266 25911.00

40 15 29700 29700 101259.91

100 15 19000 49270 1 day

100 25 36412 58637 1 day

100 50 60922 70740 1 day
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CPLEX MIP solver

Towers RNCs BKS CPLEX time (s)

20 10 7602 7602 18.80

30 15 18266 18266 25911.00

40 15 29700 29700 101259.91

100 15 19000 49270 1 day

100 25 36412 58637 1 day

100 50 60922 70740 1 day

We would like to solve instances with 1000 towers.
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CPLEX MIP solver

Towers RNCs BKS CPLEX time (s)

20 10 7602 7602 18.80

30 15 18266 18266 25911.00

40 15 29700 29700 101259.91

100 15 19000 49270 1 day

100 25 36412 58637 1 day

100 50 60922 70740 1 day

We would like to solve instances with 1000 towers.
Need heuristics!Need heuristics!



 UFRGS (July 6, 2012) Heuristics for handover minimization

Generalized quadratic 
assignment problem 
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Generalized quadratic assignment

Generalization of the quadratic assignment 
problem (QAP).

Multiple facilities can be assigned to a single 
location as long as the capacity of the location 
allows.
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N: set of n facilities M: set of m locations 

d
i
 : capacity demanded by facility i∊N   Q

j
 : capacity of location j∊M   
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i'

i

A
nxn

=(a
ii'
) : flow between facilities

N: set of n facilities M: set of m locations 
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i'

i

B
mxm

= (b
jj'
) : distance between locationsA

nxn
= (a

ii'
) : flow between facilities

N: set of n facilities M: set of m locations 

j'

j
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GQAP seeks a assignment, without violating the capacities of locations, 
that minimizes the sum of products of flows and distances.

The generalized quadratic assignment problem
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cost[Π ] =  sum(i=1,n) sum (i≠ k=1,n)  F[i,k]*D[π [i],π [k]]

The generalized quadratic assignment problem

Π
i

k

π [i]

π [k]
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GRASP with path-
relinking for GQAP
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Recent survey of GRASP with path-relinking

M.G.C. Resende and C.C. Ribeiro, Greedy 
randomized adaptive search procedures: 
Fundamentals, advances, and applications, in 
Handbook of Metaheuristics, 2nd Edition, M. 
Gendreau and J.-Y. Potvin (Eds.), Springer, pp.  
281-317, 2010.

http://www.research.att.com/~mgcr/doc/sgrasp2008a.pdf
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Choose z at random
from elite set (ES), 
do path-relinking
between y and z, 
and find p

stopping 
criterion

Construct greedy
randomized
solution x

Apply local 
search starting 
from x and find
local min y

GRASP with  path-relinking heuristic

Replace a solution
in ES by p if p 
is of high-quality
& sufficiently 
different from 
solutions in ES 

start

end
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Components

Construction of greedy randomized solution
 
Local search

Path-relinking
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GRASP construction
for GQAP
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N M

Suppose a number of assignments have already been made
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FF

CF

F

N M

N = F ∪ CF, where CF is the set of assigned facilities and 
F the set of facilities not yet assigned to some location
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FF

CF

F

N M

CL

L

M = L ∪ CL, where CL is the set of previously chosen locations and 
L the set of unselected locations.
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FF

CF

F

M

CL

L

Components of construction procedure:
●procedure to select a NEW location from set L;
●procedure to select a facility from set F;
●procedure to select a location from set CL;
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FF

CF

F

N M

CL

L

With probability P, randomly select a new location l from L, favoring those having 
high capacity and those close to all locations in CL, and move location l to CL.

Procedure to select a NEW location from set L

l
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FF

CF

F

N M

CL

L

The probability P is equal to 1− (|T|/|F|), where the set T consists of all unassigned 
facilities with demands less than or equal to the maximum available capacity of locations in CL.

T

Procedure to select a new location from set L

l
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FF

CF

F

N M

CL

L

With P = 1− (|T|/|F|): 
● if |T|is much less than|F|, then P tends to 1, which increases the need for a new location;
● if |T|tends to |F|, then  P tends to 0, which reduces the need for a new location;

T

Procedure to select a new location from set L

l
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FF

CF

F

N M

CL

L

Randomly select a facility f ∈ T favoring facilities that have high 
demand and high flows to other facilities.

T

Facility selection procedure

f
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FF

CF

F

N M

CL

L

1. Let set R to be all locations in CL having slack greater than or equal to 
demand of facility f;

T

Procedure to select a location from CL (step 1)

f

R
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FF

CF

F

N M

CL

L

2. Randomly select a location l ∈ R favoring those having high available
capacity and those close to high-capacity locations in CL;

T

Procedure to select a location from CL (step 2)

f
R

l
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FF

CF

F

N M

CL

L

Assign facility f to location l

T

Assignment procedure

f

l
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FF

CF

F

N M

CL

L

Update sets F, CF, and slack of location l

Assignment procedure

f

l
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Considerations about the construction 
procedure

The procedure is not guaranteed to produce a feasible 
solution.
To address this difficulty, the construction procedure 
is repeated a maximum number of times or until all 
facilities are assigned (i.e. until F=∅).

At start of construction, a location l is selected from 
the set L with probability proportional to its capacity.  
Location l is placed in CL.
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Local search for 
GQAP
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Local search
1-move and 2-move neighborhoods from solution p are 
used in our local search.
1-move: changing one facility-to-location assignment in p

i i
j j

k

N N MM

(i,j)

(i,k)

solution p 1-move neighbor of p
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Local search
1-move and 2-move neighborhoods from solution p are 
used in our local search.
1-move: changing one facility-to-location assignment in p
2-move: changing two facility-to-location assignment in p.

N N MM

i j ji

k k
t zt

(i,j) (i,z)

(t,k) (t,j)

solution p 2-move neighbor of p
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N M

Assignment representation

assignment = solution
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solution p

1-move neighborhood

2-move neighborhood Neighborhood 
of solution p
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Traditional local search approaches

Best improving approach: 
Evaluate all 1-move and 2-move neighborhood solutions and select the best 
improving solution

First improving approach:
1: From solution p, to evaluate its 1-move neighbors until the first 
improving solution q is found. 
2: If q does not exist, continue search in the 2-move neighborhood. 
3: If q does not exist in the 2-move neighborhood, stop. Otherwise, assign   
  p = q and go to step 1.
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Approximate local search

Tradeoff between best & first improvement: sample 
the neighborhood of solution p.

Neighborhoods can be very large for best 
improvement

Local search can take very long
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p

Approximate Local Search

2-move neighborhood

1-move neighborhood
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p

Approximate Local Search

1. Sample k improving solutions 
from 1-move and 2-move 
neighborhood of p and place them
in an elite set E.
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2. Select the best solution q 
from elite set E.

q

p

Approximate Local Search

1. Sample k improving solutions 
from 1-move and 2-move 
neighborhood of p and place them
in an elite set E.
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p = q

3. Update p = q

Approximate Local Search

1. Sample k improving solutions 
from 1-move and 2-move 
neighborhood of p and place them
in an elite set E.

2. Select the best solution q 
from elite set E.
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The search is repeated from 
current solution p until .... 

Previous
solution p

current
solution p

Approximate 
Local Search
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...until no improvement in 
the neighborhoods exists 

approximate local
minimum

Approximate 
Local Search
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Paper and java code

G.R. Mateus, R.M.A. Silva, and M.G.C. Resende, 
GRASP with path-relinking for the generalized 
quadratic assignment problem, J. of Heuristics 
17 (527-565) 2011

http://www.research.att.com/~mgcr/doc/gpr-gqap.pdf

We developed a Java implementation of the 
algorithm.
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Handover minimization is a special 
case of the GQAP

• Towers  Facilities
– tower traffic is facility demand

• RNCs  Locations
– RNC capacity is Location capacity

• Handovers between towers  Flows between 
facilities 

• Distance between each pair of RNC = 1
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Experiments with 
GRASP with PR for 
GQAP
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Random instance generator

• Input T (number of towers), R (number of RNCs), r (max 
handover distance), and lower and upper bounds on 
traffic, handover, and capacity slack.
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Random instance generator

• Input T (number of towers), R (number of RNCs), r (max 
handover distance), and lower and upper bounds on 
traffic, handover, and capacity slack.

• Generate T random points (towers) on the unit square.
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Random instance generator

• Input T (number of towers), R (number of RNCs), r (max 
handover distance), and lower and upper bounds on 
traffic, handover, and capacity slack.

• Generate T random points (towers) on the unit square.
• For each tower i, traffic[i] = randunif( l(t), u(t) )
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Random instance generator

• Input T (number of towers), R (number of RNCs), r (max 
handover distance), and lower and upper bounds on 
traffic, handover, and capacity slack.

• Generate T random points (towers) on the unit square.
• For each tower i, traffic[i] = randunif( l(t), u(t) )
• avg-traffic is sum of traffic[i]/T over all towers
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Random instance generator

• Input T (number of towers), R (number of RNCs), r (max 
handover distance), and lower and upper bounds on 
traffic, handover, and capacity slack.

• Generate T random points (towers) on the unit square.
• For each tower i, traffic[i] = randunif( l(t), u(t) )
• avg-traffic is sum of traffic[i]/T over all towers
• For each pair of towers {i, j}, if dist(i,j) < r, then 

handover[i,j] = [l(h) – u(h)]/r2 
× d2 + u(h)
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For each pair of towers {i, j}, if dist(i,j) < r, then 
handover[i,j] = [l(h) – u(h)]/r2 

× d2 + u(h)

l(h) = 10
u(h) = 20
r = 0.17
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Random instance generator

• Input T (number of towers), R (number of RNCs), r (max 
handover distance), and lower and upper bounds on 
traffic, handover, and capacity slack.

• Generate T random points (towers) on the unit square.
• For each tower i, traffic[i] = randunif( l(t), u(t) )
• avg-traffic is sum of traffic[i]/T over all towers
• For each pair of towers {i, j}, if dist(i,j) < r, then 

handover[i,j] = [l(h) – u(h)]/r2 
× d2 + u(h)

• For each RNC j, capacity[j] =                            
randunif( l(c), u(c) ) * avg-traffic, where u(c) > l(c) > 1.
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Three synthetic instances for experiments 
with GRASP with PR for GQAP

• Number of towers: 100 
• Number of RNCs: two instances with 15 and one 

with 15, 17, 19, 21, 23, 25, 27, and 29 
• Tower traffic bounds: [5, 50]
• Handover bounds: [5, 200]
• RNC capacity slack bounds: [1.05, 1.15]
• Three values of max handover distance: 0.1, 

0.17, and 0.25 
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15 RNCs
100 towers
r = 0.1
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28%
40%
49%

reductions

zooming in ...
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Solution with 1777 handovers15 RNCs
100 towers
r = 0.1

1.50 capacity multiplier
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1.00 capacity multiplier 1.10 capacity multiplier

1.25 capacity multiplier 1.50 capacity multiplier
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15 RNCs
100 towers
r = 0.25
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  7%
17%
26%

reduction
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1.00 capacity multiplier 1.10 capacity multiplier

1.25 capacity multiplier 1.50 capacity multiplier
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Solution with 70990 handovers
15 RNCs
100 towers
r = 0.25

1.50 capacity multiplier
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15-29 RNCs
100 towers
r = 0.17



 UFRGS (July 6, 2012) Heuristics for handover minimization

Each RNC has capacity 219.81



 UFRGS (July 6, 2012) Heuristics for handover minimization

Each RNC has capacity 219.81
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28020 handovers
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27952 handovers
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28020 handovers
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28260 handovers
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27952 
handovers

15 RNCs 

15 RNCs
100 towers
r = 0.17

Solution from run with 23 RNCs
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GRASP with evolutionary 
path-relinking for 
handover minimization
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GRASP with evolutionary path-relinking
•Algorithm maintains an elite set of diverse good-quality 
solutions found during search 
•Repeat

– build tower-to-RNC assignment ' using a randomized 
greedy algorithm

– apply local search to find local min assignment  near '
– select assignment ' from elite pool and apply path-relinking 

operator between ' and  and attempt to add result to 
elite set

• Apply evolutionary path-relinking to elite set once in while 
during search
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Randomized greedy construction

• Open one RNC at a time …
– use heuristic A to assign first tower to RNC
– while RNC can accommodate an unassigned tower

• use heuristic B to assign next tower to RNC

• If all available RNCs have been opened and some 
tower is still unassigned, open one or more 
artificial RNCs having capacity equal to the max 
capacity over all real RNCs
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Randomized greedy construction: 
Heuristic A to assign first tower to RNC

• Let H(i) = sum 
( j = 1,...,T )

 h(i,j) + h(j,i)                         

 
• Let  be the set of unassigned towers that fit in 

RNC                                                                     
        

• Choose tower i from  with probability 
proportional to its H(i) value and assign i to RNC
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Randomized greedy construction:        
Heuristic B to assign remaining towers to RNC

• Let g(i) = sum 
( j RNC )

 h(i,j) + h(j,i)                           

             
• Let  be the set of unassigned towers that fit in 

RNC                                                                     
    

• Select tower i from  with probability 
proportional to its g(i) value and assign i to RNC
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Local search

• Repeat until no improving reassignment of tower 
to RNC exists:
– Let { i, j, k } be such that tower i is assigned to RNC j, 

RNC k has available capacity to accommodate tower i 
and moving i from RNC j to RNC k reduces the 
number of handovers between towers assigned to 
different RNCs

– If { i, j, k } exists, then move tower i from RNC j to 
RNC k  
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Path-relinking

Intensification strategy exploring trajectories       
connecting elite solutions (Glover, 1996)

Originally proposed in the context of tabu search 
and scatter search.

Paths in the solution space leading to other elite 
solutions are explored in the search for better 
solutions.
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Recent survey paper on path-relinking

C.C. Ribeiro and M.G.C. Resende, Path-relinking 
intensification methods for stochastic local 
search algorithms, J. of Heuristics, vol. 18, pp. 
193-214, 2012.

http://www.research.att.com/~mgcr/doc/spr.pdf
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Path-relinking

Exploration of trajectories that connect high 
quality (elite) solutions:

initial
solution

guiding
solution

path in the neighborhood of solutions
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Path-relinking
Path is generated by selecting moves that 
introduce in the initial solution attributes of the 
guiding solution.
At each step, all moves that incorporate attributes 
of the guiding solution are evaluated and the best 
move is selected: 

initial
solution

guiding 
solution
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starting solution guiding solutionPR example

Example with two RNCs
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starting solution x guiding solution yPR example

|∆ (x,y)| = 5
Example with two RNCs



 UFRGS (July 6, 2012) Heuristics for handover minimization

starting solution guiding solutionPR example

Example with two RNCs
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starting solution guiding solutionPR example

Example with two RNCs
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starting solution guiding solutionPR example

Example with two RNCs
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starting solution guiding solutionPR example

Example with two RNCs
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starting solution guiding solutionPR example

Example with two RNCs
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starting solution guiding solutionPR example

Example with two RNCs
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starting solution guiding solutionPR example

Example with two RNCs
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starting solution guiding solutionPR example

Example with two RNCs
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starting solution guiding solutionPR example

Example with two RNCs
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starting solution guiding solutionPR example

Example with two RNCs
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starting solution guiding solutionPR example

Example with two RNCs
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starting solution guiding solutionPR example

Example with two RNCs
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starting solution guiding solutionPR example

Example with two RNCs
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starting solution guiding solutionPR example

Example with two RNCs
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starting solution guiding solutionPR example

Example with two RNCs



 UFRGS (July 6, 2012) Heuristics for handover minimization

starting solution guiding solutionPR example

Example with two RNCs



 UFRGS (July 6, 2012) Heuristics for handover minimization

starting solution guiding solutionPR example

Example with two RNCs
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starting solution guiding solutionPR example

Example with two RNCs
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starting solution guiding solutionPR example

Example with two RNCs
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starting solution guiding solutionPR example

Example with two RNCs
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starting solution guiding solutionPR example

Example with two RNCs
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starting solution guiding solutionPR example

Example with two RNCs
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starting solution guiding solutionPR example

Example with two RNCs
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starting solution guiding solutionPR example

Cannot improve
endpoint solutions
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starting solution guiding solutionPR example

Cannot improve
endpoint solutions

Can improve
endpoint solutions
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GRASP with path-relinking: 
Pool management

P is a set (pool, or set) of elite solutions.

Ideally, pool has a set of good diverse solutions.

Mechanisms are needed to guarantee that pool is 
made up of those kinds of solutions.
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GRASP with path-relinking: 
Pool management

Each iteration of first |P| GRASP iterations adds 
one solution to P (if different from others).

After that: solution x is promoted to P if:
x is better than best solution in P.
x is not better than best solution in P, but is better than 
worst and is sufficiently different from all solutions in P.
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GRASP with path-relinking: 
Pool management

GRASP with PR works best when paths in PR are 
long, i.e. when the symmetric difference between 
the initial and guiding solutions is large.

Given a solution to relink with an elite solution, 
which elite solution to choose?
Choose at random with probability proportional to the 
symmetric difference. 
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GRASP with path-relinking: 
Pool management

Solution quality and diversity are two goals of pool 
design.

Given a solution X to insert into the pool, which elite 
solution do we choose to remove?
Of all solutions in the pool with worse solution than X, select 
to remove the pool solution most similar to X, i.e. with the 
smallest symmetric difference from X.
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GRASP with path-relinking

Repeat
GRASP 
with
PR loop

1) Construct randomized greedy X
2) Y = local search to improve X
3) Path-relinking between Y and      
    pool solution Z
4) Update pool
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Evolutionary path-
relinking (EvPR)
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Evolutionary path-relinking
 

Evolutionary path-relinking “evolves” the pool, i.e. 
transforms it into a pool of diverse elements whose 
solution values are better than those of the original 
pool.
Evolutionary path-relinking can be used as 
1) an intensification procedure at certain points of the 
solution process;
2) a post-optimization procedure at the end of the solution 
process. 
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Evolutionary path-relinking proposed in

M.G.C. Resende and R.F. Werneck, A hybrid 
heuristic for the p-median problem, J. of 
Heuristics, vol. 10, pp. 59-88, 2004.
http://www.research.att.com/~mgcr/doc/hhpmedian.pdf

M.G.C. Resende, R. Martí, M. Gallego, and A. 
Duarte, GRASP and path relinking for the max-
min diversity problem,Computers & Operations 
Research, vol. 37, pp. 498-508, 2010.
http://www.research.att.com/~mgcr/doc/gpr-maxmindiv.pdf
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Evolutionary path-relinking (EvPR)

Start with current elite set.

Elite pool



 UFRGS (July 6, 2012) Heuristics for handover minimization

Evolutionary path-relinking (EvPR)

Start with current elite set.

While there is a pair {x,y} of pool solutions 
that has not yet been relinked:

Elite pool

x

y
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Evolutionary path-relinking (EvPR)

Start with current elite set.

While there is a pair {x,y} of pool solutions 
that has not yet been relinked:

Relink the pair
z = PR (x,y)

Elite pool

x

y

z
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Evolutionary path-relinking (EvPR)

Start with current elite set.

While there is a pair {x,y} of pool solutions 
that has not yet been relinked:

Relink the pair
z = PR (x,y)

and attempt to insert z into the pool,
replacing some other pool solution.

Elite pool

x

y

z
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GRASP with evolutionary path-relinking

As post-optimization During GRASP + PR

Repeat
GRASP 
with
PR loop

Evolutionary-PR

1) Construct greedy 
    randomized
2) Local search
3) Path-relinking
4) Update pool

Repeat
inner
loop

Evolutionary-PR

1) Construct greedy 
    randomized
2) Local search
3) Path-relinking
4) Update pool

Repeat
outer
loop

( Resende & Werneck, 2004, 2006 )
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Experiments with 
GRASP with evPR 
for HMP
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100 towers
15 RNCs
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100 towers : 15 RNCs
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100 towers : 25 RNCs
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100 towers : 25 RNCs
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100 towers : 50 RNCs
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100 towers : 50 RNCs
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200 towers : 15 RNCs
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200 towers : 15 RNCs
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200 towers : 25 RNCs
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200 towers : 25 RNCs
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200 towers : 50 RNCs
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200 towers : 50 RNCs



 UFRGS (July 6, 2012) Heuristics for handover minimization

Biased random-key 
genetic algorithms
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Genetic algorithms

Individual: solution

Adaptive methods that are used to solve search
and optimization problems.

Holland (1975)
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Genetic algorithms

Individual: solution
Population: set of fixed number of individuals
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Genetic algorithms evolve population applying
the principle of survival of the fittest.

Genetic algorithms
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Genetic algorithms evolve population applying
the principle of survival of the fittest.

A series of generations are produced by 
the algorithm. The most fit individual of last
generation is the solution. 

Genetic algorithms
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Genetic algorithms evolve population applying
the principle of survival of the fittest.

A series of generations are produced by 
the algorithm. The most fit individual of last
generation is the solution. 

Individuals from one generation are combined
to produce offspring that make up next 
generation.

Genetic algorithms
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Probability of selecting individual to mate
is proportional to its fitness: survival of the 
fittest.

a

b

Genetic algorithms
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a

b

Parents drawn from 
generation K

a

b

Combine
parents

c

c

Child in 
generation K+1

Probability of selecting individual to mate
is proportional to its fitness: survival of the 
fittest.

Genetic algorithms
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Evolution of solutions
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Evolution of solutions
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Evolution of solutions
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Evolution of solutions
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Evolution of solutions
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Evolution of solutions
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Evolution of solutions
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Evolution of solutions
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Genetic algorithms
with random keys
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Survey paper on BRKGA

                          http://www2.research.att.com/~mgcr/doc/srkga.pdf

J.F. Gonçalves and M.G.C.R., “Biased random-key 
genetic algorithms for combinatorial optimization,” 
J. of Heuristics, vol. 17, pp. 487-525, 2011.
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GAs and random keys

• Introduced by Bean (1994) 
for sequencing problems.
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GAs and random keys

• Introduced by Bean (1994) 
for sequencing problems.

• Individuals are strings of 
real-valued numbers 
(random keys) in the 
interval [0,1].

S = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
          s(1)   s(2)   s(3)   s(4)    s(5)
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GAs and random keys

• Introduced by Bean (1994) 
for sequencing problems.

• Individuals are strings of 
real-valued numbers 
(random keys) in the 
interval [0,1].

• Sorting random keys results 
in a sequencing order.

S = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
          s(1)   s(2)   s(3)   s(4)    s(5)

S' = ( 0.05, 0.19, 0.25, 0.67, 0.89 )
          s(4)   s(2)   s(1)   s(3)    s(5)
Sequence: 4 – 2 – 1 – 3 – 5 
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GAs and random keys

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = (                                              )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25                                      )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90                             )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90, 0.76                    )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90, 0.76, 0.05          )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90, 0.76, 0.05, 0.89 )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90, 0.76, 0.05, 0.89 )

If every random-key array corresponds
to a feasible solution: Mating always
produces feasible offspring.

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele to 
the child.
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GAs and random keys

Initial population is made up of P 
random-key vectors, each with N 
keys, each having a value 
generated uniformly at random in 
the interval (0,1].
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GAs and random keys
At the K-th generation, 
compute the cost of each 
solution ...  Elite solutions

Population K

Non-elite
solutions
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GAs and random keys
At the K-th generation, 
compute the cost of each 
solution and partition the 
solutions into two sets: 

 Elite solutions

Population K

Non-elite
solutions
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GAs and random keys
At the K-th generation, 
compute the cost of each 
solution and partition the 
solutions into two sets: 
elite solutions and non-elite 
solutions. 

 Elite solutions

Population K

Non-elite
solutions



 UFRGS (July 6, 2012) Heuristics for handover minimization

GAs and random keys
At the K-th generation, 
compute the cost of each 
solution and partition the 
solutions into two sets: 
elite solutions and non-elite 
solutions. Elite set should 
be smaller of the two sets 
and contain best solutions.

 Elite solutions

Population K

Non-elite
solutions
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GAs and random keys
Evolutionary dynamics

Population K Population K+1

 Elite solutions

Non-elite
solutions
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GAs and random keys
Evolutionary dynamics
– Copy elite solutions from population 

K to population K+1  Elite solutions

Population K+1Population K

 Elite solutions

Non-elite
solutions
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GAs and random keys
Evolutionary dynamics
– Copy elite solutions from population 

K to population K+1

– Add R random solutions (mutants) 
to population K+1

 Elite solutions

Mutant
solutions

Population K+1Population K

 Elite solutions

Non-elite
solutions
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Biased random key GA
Evolutionary dynamics
– Copy elite solutions from population 

K to population K+1

– Add R random solutions (mutants) 
to population K+1

– While K+1-th population < P
• RANDOM-KEY GA: Use any two 

solutions in population K to produce 
child in population K+1. Mates are 
chosen at random.

 Elite solutions

Mutant
solutions

X

Population K+1Population K

 Elite solutions

Non-elite
solutions

Mutant
solutions
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Biased random key GA
Evolutionary dynamics
– Copy elite solutions from population 

K to population K+1

– Add R random solutions (mutants) 
to population K+1

– While K+1-th population < P
• RANDOM-KEY GA: Use any two 

solutions in population K to produce 
child in population K+1. Mates are 
chosen at random.

• BIASED RANDOM-KEY GA: Mate elite 
solution with non-elite of population K 
to produce child in population K+1. 
Mates are chosen at random.

 Elite solutions

Mutant
solutions

X

Population K+1

BRKGA: Probability
child inherits
key of elite 
parent > 0.5Population K

 Elite solutions

Non-elite
solutions

Mutant
solutions
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Observations

• Random method: keys are randomly generated so 
solutions are always random vectors

• Elitist strategy:  best solutions are passed without change 
from one generation to the next

• Child inherits more characteristics of elite parent: 
one parent is always selected (with replacement) from the 
small elite set and probability that child inherits key of elite 
parent > 0.5 

• No mutation in crossover: mutants are used instead 
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Decoders
• A decoder is a deterministic algorithm that takes as input a random-key 

vector and returns a feasible solution of the optimization problem and 
its cost.

• Bean (1994) proposed decoders based on sorting the random-key 
vector to produce a sequence.

• A random-key GA searches the solution space indirectly by searching 
the space of random keys and using the decoder to evaluate fitness of 
the random key.

[0,1]N Solution space
of optimization
problem

decoder
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Framework for biased random-key genetic algorithms

Generate P vectors 
of random keys 

Decode each vector 
of random keys 

Stopping rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions 
to next population

Generate mutants in 
next population

Combine elite and
non-elite solutions
and add children to

next population

no

stop

yes



 UFRGS (July 6, 2012) Heuristics for handover minimization

Framework for biased random-key genetic algorithms

Generate P vectors 
of random keys 

Decode each vector 
of random keys 

Stopping rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions 
to next population

Generate mutants in 
next population

Combine elite and
non-elite solutions
and add children to

next population

stop

Problem independent

no yes



 UFRGS (July 6, 2012) Heuristics for handover minimization

Framework for biased random-key genetic algorithms

Generate P vectors 
of random keys 

Decode each vector 
of random keys 

Stopping rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions 
to next population

Generate mutants in 
next population

Combine elite and
non-elite solutions
and add children to

next population

stop

Problem independent

no yes

Problem dependent
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Paper on API for BRKGA

            http://www.research.att.com/~mgcr/doc/brkgaAPI.pdf

R.F. Toso and M.G.C. Resende, A C++ application
programming interface for biased random-key genetic 
algorithms, AT&T Labs Research Technical Report, 2012
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Specifying a biased random-key GA

• Encoding is always done the same way, i.e. with a vector of 
N random-keys (parameter N must be specified)

• Decoder that takes as input a vector of N random-keys and 
outputs the corresponding solution of the combinatorial 
optimization problem and its cost (this is usually a heuristic)

• Parameters:
– Size of population

– Size of elite partition

– Size of mutant set

– Child inheritance probability

– Stopping criterion
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N random-keys (parameter N must be specified)

• Decoder that takes as input a vector of N random-keys and 
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optimization problem and its cost (this is usually a heuristic)
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Specifying a biased random-key GA
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• Encoding is always done the same way, i.e. with a vector of 
N random-keys (parameter N must be specified)

• Decoder that takes as input a vector of N random-keys and 
outputs the corresponding solution of the combinatorial 
optimization problem and its cost (this is usually a heuristic)

• Parameters:
– Size of population:  a function of N, say N or 2N

– Size of elite partition: 15-25% of population

– Size of mutant set

– Child inheritance probability

– Stopping criterion

Specifying a biased random-key GA
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• Encoding is always done the same way, i.e. with a vector of 
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• Decoder that takes as input a vector of N random-keys and 
outputs the corresponding solution of the combinatorial 
optimization problem and its cost (this is usually a heuristic)

• Parameters:
– Size of population:  a function of N, say N or 2N

– Size of elite partition: 15-25% of population

– Size of mutant set: 5-15% of population

– Child inheritance probability

– Stopping criterion

Specifying a biased random-key GA
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• Encoding is always done the same way, i.e. with a vector of 
N random-keys (parameter N must be specified)

• Decoder that takes as input a vector of N random-keys and 
outputs the corresponding solution of the combinatorial 
optimization problem and its cost (this is usually a heuristic)

• Parameters:
– Size of population:  a function of N, say N or 2N

– Size of elite partition: 15-25% of population

– Size of mutant set: 5-15% of population

– Child inheritance probability: > 0.5, say 0.7

– Stopping criterion

Specifying a biased random-key GA
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• Encoding is always done the same way, i.e. with a vector of 
N random-keys (parameter N must be specified)

• Decoder that takes as input a vector of N random-keys and 
outputs the corresponding solution of the combinatorial 
optimization problem and its cost (this is usually a heuristic)

• Parameters:
– Size of population:  a function of N, say N or 2N

– Size of elite partition: 15-25% of population

– Size of mutant set: 5-15% of population

– Child inheritance probability: > 0.5, say 0.7

– Stopping criterion: e.g. time, # generations, solution quality,              
# generations without improvement

Specifying a biased random-key GA
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A simple BRKGA 
for HMP
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Encoding

Each solution is encoded as a vector of |T| random 
keys, where |T| is the number of towers
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Decoding

Decoder takes input a vector of |T| random keys and 
outputs a tower-to-RNC assignment:
1) sort vector resulting in ordering of towers
2) scan towers in order …

– place tower in RNC with available capacity with which the 
tower has greatest number of handovers with other towers 
already assigned to RNC

– if RNC with available capacity does not exist, open a new 
artificial RNC with capacity max { c

i
 | i  open RNCs } 

3) apply move-based local search (like one used in GRASP) 
to produce local minimum
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Another BRKGA 
for HMP
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Encoding

Each solution is encoded as a vector of 2 |T| 
random keys, where |T| is the number of towers
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Decoding
Decoder takes input a vector of 2 |T| random keys and 
outputs a tower-to-RNC assignment:
1) sort first |T| keys resulting in ordering of towers
2) scan towers in order …

– place tower in RNC with available capacity as indicated by 
mapping (0,1] to [1, 2, .., |RNCs|] from second |T| keys

– scan unassigned towers in order and place them in RNC with 
available capacity maximizing handover count with tower 
assigned there

– if RNC with available capacity does not exist, assign tower to 
RNC with maximum handover count w.r.t. to tower

3) apply move-based local search (like one used in GRASP) 
to produce local minimum



 UFRGS (July 6, 2012) Heuristics for handover minimization

Experiments with 
BRKGA-1 for HMP
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BRKGA: 100 towers : 14 RNCs
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BRKGA: 100 towers : 14 RNCs Generation: 1
Handovers: 25872



 UFRGS (July 6, 2012) Heuristics for handover minimization

BRKGA: 100 towers : 14 RNCs Generation: 5
Handovers: 25086
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BRKGA: 100 towers : 14 RNCs Generation: 29
Handovers: 23524
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BRKGA: 100 towers : 14 RNCs Generation: 241
Handovers: 22544
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BRKGA: 100 towers : 14 RNCs Generation: 777
Handovers: 21766
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BRKGA: 100 towers : 14 RNCs Generation: 1616
Handovers: 21336
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BRKGA: 100 towers : 14 RNCs Generation: 3894
Handovers: 21022
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BRKGA: 100 towers : 14 RNCs Generation: 13502
Handovers: 20806
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BRKGA: 100 towers : 14 RNCs Generation: 23221
Handovers: 20288
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BRKGA: 100 towers : 14 RNCs Generation: 51359
Handovers: 20186
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BRKGA: 100 towers : 14 RNCs Generation: 56324
Handovers: 19750
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100 trials for each
heuristic stopping 
when target solution
was found or after 
800s
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Parallel decoding in BRKGA
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Concluding remarks

• We described the handover minimization problem 
(HMP).

• Objective of handover minimization is to reduce number 
of dropped calls in a cellular network.

• The HMP is a special case of the generalized quadratic 
assignment problem (GQAP).

• We described three randomized heuristics for the HMP 
and applied them on synthetic instances of the problem 
and one real instance. 
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Concluding remarks

• We described the handover minimization problem 
(HMP).

• Objective of handover minimization is to reduce number 
of dropped calls in a cellular network.

• The HMP is a special case of the generalized quadratic 
assignment problem (GQAP).

• We described three randomized heuristics for the the 
HMP and applied them on synthetic instances of the 
problem and one real instance. GRASP with evolutionary 
PR turns out to be the best (w.r.t to solution quality x 
solution time) so far ... 
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Thanks!

These slides as well as related technical reports are 
available at                                                               
                                                                                
                   http://www.research.att.com/~mgcr
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Thanks!

Technical report:  L.F. Morán-Mirabal, J.L. González-
Velarde, MGCR, & R.M.A. Silva, “Randomized 
heuristics for handover minimization in mobiity 
networks” will be shortly available online at              
                                                                                
                                                                                
                    http://www.research.att.com/~mgcr
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