
 November 14, 2011 C-GRASP Python/C library

INFORMS Annual Meeting

A Python/C library for
bound-constrained global
optimization with
Continuous GRASP

Mauricio G. C. Resende
AT&T Labs Research
mgcr@research.att.com

Joint work with
Ricardo M. A. Silva (UFPE)
Panos M. Pardalos (Univ. of Florida)
Michael J. Hirsch (Raytheon Company)

 November 14, 2011 C-GRASP Python/C library

Summary

 Continuous GRASP

 The libcgrpp library
 An example

 November 14, 2011 C-GRASP Python/C library

Paper is available

R.M.A. Silva, M.G.C.R., P.M. Pardalos, and M.J. Hirsch, “A Python/C library for
bound-constrained global optimization with continuous GRASP,” AT&T Labs
Research Technical Report, Florham Park, 2011 (To appear in Optimization
Letters, 2012).

http://www2.research.att.com/~mgcr/doc/cgrasp-gnu.pdf

 November 14, 2011 C-GRASP Python/C library

Continuous
GRASP
(C-GRASP)

 November 14, 2011 C-GRASP Python/C library

C-GRASP

● C-GRASP is a metaheuristic to finding optimal or
near-optimal solutions to

● Min f(x) subject to: L  x  U
● where x, L, U ∈ Rn

● and f(x) is continuous but can, for example, have
discontinuities, be non-differentiable, be the output of
a simulation, etc.

 November 14, 2011 C-GRASP Python/C library

C-GRASP

C-GRASP is based on the discrete optimization
metaheuristic GRASP
● M.J. Hirsch, C.N. Meneses, P.M. Pardalos, and M.G.C. Resende,

“Global optimization by continuous GRASP,” Optimization Letters,
vol. 1, pp. 201-212, 2007.

● M.J. Hirsch, P.M. Pardalos, and M.G.C. Resende, “Speeding up
continuous GRASP,” European J. of Operational Research, vol.
205, pp. 507-521, 2010.

● M.J. Hirsch, “GRASP-based heuristics for continuous global
optimization problems,” Ph.D. Thesis, Dept. of Ind. & Syst. Eng.,
University of Florida, Gainesville, Florida, 2006.

 November 14, 2011 C-GRASP Python/C library

C-GRASP
C-GRASP is a multi-start procedure, i.e. a major
loop is repeated until some stopping criterion is
satisfied.
In each major iteration

● x is initialized with a solution randomly selected from
the box defined by vectors L and U.

● a number of minor iterations are carried out, where
each minor iterations consists of a construction
phase and a local improvement phase.

● Minor iterations are done on a dynamic grid and
stops when the grid has a pre-specified density.

 November 14, 2011 C-GRASP Python/C library

C-GRASP
f* = ∞
while (stopping criterion not satisfied) do

 x = random[L,U]; h = h(start);

 while (h ≥ h(end)) do

 x = ConstructGreedyRandomized(x)

 x = LocalImprovement(x)

 if (f(x) < f*) then { x* = x; f* = f(x) }

 if (x did not improve this iteration) then { h = h/2 }

 end while

end while

return x*

 November 14, 2011 C-GRASP Python/C library

C-GRASP line search

x

current solution

 November 14, 2011 C-GRASP Python/C library

C-GRASP line search

x

current solution

direction

 November 14, 2011 C-GRASP Python/C library

C-GRASP line search

x

current solution

direction

upper bound

lower bound

 November 14, 2011 C-GRASP Python/C library

C-GRASP line search

x

current solution

upper bound

lower bound

h

 November 14, 2011 C-GRASP Python/C library

C-GRASP line search

x

upper bound

lower bound

h

Evaluate f(x) at each

Line search returns x* =argmin{ f(x) }

 November 14, 2011 C-GRASP Python/C library

C-GRASP greedy randomized construction
unset = {1, 2, 3, ..., n }; x = x0

for (k = 1, 2, ..., n) do
 for (all i ∈ unset) do
 z

i
 = line search in direction e

i
 = (0,0,...,1,....,0)

 end for
 RCL = { i ∈ unset | f(z

i
) < CUTOFF }

 Select at random i* ∈ RCL
 Set x

i*
 = z

i*
; unset = unset \ {i*}

end for

i-th component

 November 14, 2011 C-GRASP Python/C library

C-GRASP local improvement

x

 November 14, 2011 C-GRASP Python/C library

C-GRASP local improvement

x

 November 14, 2011 C-GRASP Python/C library

C-GRASP local improvement

x

 November 14, 2011 C-GRASP Python/C library

C-GRASP local improvement

x

Sample projected point y on circle and evaluate f(y)
If f(y) < f(x) then set x = y, translate grid to intersect x
and restart local search from x
If max-points are examined without improvement: x is h-local min

y

 November 14, 2011 C-GRASP Python/C library

C-GRASP local improvement

x

Sample projected point y on circle and evaluate f(y)
If f(y) < f(x) then set x = y, translate grid to intersect x
and restart local search from x
If max-points are examined without improvement: x is h-local min

 November 14, 2011 C-GRASP Python/C library

C-GRASP
M.J. Hirsch, P.M. Pardalos, and M.G.C. Resende, “Sensor
registration in a sensor network by continuous GRASP,” IEEE
Military Communications Conference (MILCOM), 2006.

– Sensor registration is the process of removing (accounting for) non-
random errors, or biases, in sensor data.

– We solve the sensor registration problem when some data is not
seen by all sensors, and the correspondence of data seen by the
different sensors is not known.

– We outperform previous methods in the literature and have been
granted two U.S. Patents.

 November 14, 2011 C-GRASP Python/C library

C-GRASP

M.J. Hirsch, C.N. Meneses, P.M. Pardalos, M.A. Ragle, and
M.G.C. Resende, “A continuous GRASP to determine the
relationship between drugs and adverse reactions,” in “Data
Mining, Systems Analysis and Optimization in Biomedicine,” O.
Seref, O.Erhun Kundakcioglu, and P.M. Pardalos (eds.), AIP
Conference Proceedings, vol. 953, pp. 106-121, Springer,
2008.

– We formulate the drug-reaction relationship problem as a
continuous global optimization problem

 November 14, 2011 C-GRASP Python/C library

C-GRASP

M.J. Hirsch, P.M. Pardalos, and M.G.C. Resende, “Solving
systems of nonlinear equations with continuous GRASP,”
Nonlinear Analysis: Real World Applications, vol. 10, pp. 2000-
2006, 2009.

– We formulate a system of nonlinear equations as nonlinear function
which has min value zero. After finding a root, we add a barrier
around the root and resolve to find the next root.

 November 14, 2011 C-GRASP Python/C library

C-GRASP

E.G. Birgin, E.M. Gozzi, M.G.C. Resende, and R.M.A. Silva,
“Continuous GRASP with a local active-set method for bound-
constrained global optimization,” J. of Global Optimization, vol.
48, pp. 289-310, 2010.

– We adapt C-GRASP for global optimization of functions for which
gradients can be computed. To to this, we use GENCAN (Birgin and
Martínez, 2002), an active-set method for bound-constrained local
minimization as the local improvement procedure.

 November 14, 2011 C-GRASP Python/C library

C-GRASP

M.J. Hirsch, P.M. Pardalos, and M.G.C. Resende, “Correspondence of
projected 3D points and lines using a continuous GRASP,”
International Transactions in Operational Research, vol. 18, pp. 493-
511, 2011.

– Computer vision application

 November 14, 2011 C-GRASP Python/C library

C-GRASP

D.G. Macharet, A. Alves Neto, V.F. da Camara Neto, and M.F.M.
Campos, “Nonholonomic path planning optimization for Dubins'
vehicles,” 2011 IEEE International Conference on Robotics and
Automation, Shanghai, China, 2011.

– Path planning for robotic vehicles

 November 14, 2011 C-GRASP Python/C library

C-GRASP

A. L. Guedes, F.D. Moura Neto, and G.M. Platt, “Double azeotropy:
Calculations with Newton-like and continuous GRASP (C-GRASP),”
International J. of Math. Modelling and Numerical Opt., vol. 2, pp.
387-404, 2011.

– Chemical engineering application

 November 14, 2011 C-GRASP Python/C library

The libcgrpp
library

 November 14, 2011 C-GRASP Python/C library

libcgrpp library: features

● libcgrpp is a GNU-style dynamic shared Python/C
library of C-GRASP

● Implemented as embedded Python-in-C to take
advantage of the simplicity offered by the Python
language in implementing complex multi-modal
functions

 November 14, 2011 C-GRASP Python/C library

● Functions can be implemented using the
extensive standard library of Python and any non-
standard module or library, such as SymPy.

● Functions implemented in Python are loaded
automatically without the need to recompile any
code.

libcgrpp library: features

 November 14, 2011 C-GRASP Python/C library

libcgrpp library: dependencies

The libcgrpp library requires that the following
packages be installed:
● Python programming language package (version ≥ 2.7).
● GNU Libtool library.

 November 14, 2011 C-GRASP Python/C library

libcgrpp library: downloads

Full distribution of the libcgrpp library is available at

 http://www2.research.att.com/~mgcr/src/cgrasp

as the gzipped tar file cgraspp-0.0.1.tar.gz containing the
following directory structure:

http://www2.research.att.com/~mgcr/src/cgrasp

 November 14, 2011 C-GRASP Python/C library

Files Description
cgrasp.c Embedded Python-in-C code of C-GRASP
cgrasp.h Header file
mt19937ar.c C version of Mersenne Twister random # gen
mt19937ar.h Header file
simclist.c Library for handling lists
simclist.h Header file
cgrasparser.py Parser for parameter input file
AUTHORS Author names and email addresses
ChangeLog Changes made to package
configure Script to configure package
COPYING GNU General Public License
INSTALL Installation instructions
Makefile Makefile to build executable
NEWS User visible changes to package
README Purpose and instructions
THANKS Thanks to contributors

 November 14, 2011 C-GRASP Python/C library

libcgrpp library: function module implementation

● Objective function is implemented in Python.
● Consider the Ackley function:

A
n
(x) = - 20e - 0.2[(1/n) (∑(i=1..n) x_i^2)]^1/2 - e (1/n) ∑(i=1..n) cos(2x_i) + 20 + e

● A Python implementation of this function is:
from math import *
def f(x):

sum1 = sum(x[i]**2 for i in range(len(x)))
sum2 = sum(cos(2*pi*x[i]) for i in range(len(x)))
r = 1.0/len(x)
return -20.0*exp(-0.2*sqrt(r*sum1))-exp(r*sum2)+20.0+e

 November 14, 2011 C-GRASP Python/C library

libcgrpp library: input file formats
The input file (parsing by an embbeded pyparsing parser) must contain the entries:

● -md <module-name> : defines the name of the python module containing the multimodal
function(s) to be minimized.

● -ft <function-name> : defines the name of the Python function that implements the multimodal
function to be minimized.

● -ds <n> : sets the function dimension to the positive integer <n>.
● -ov <d> or -it <n> or -fe <n> -ov <d> or -it <n> or -fe <n> : sets the target optimal objective function value to the real

number <d> or sets the number of iterations to the positive integer value <n> or sets the
number of function evaluations to the positive integer value <n>.

● -ep <d> : sets to the positive real number <d> the parameter  of optimality gap equation:
GAP = |f(x) – f(x*) |≤ , if f(x*)=0, otherwise, GAP ≤ |f(x*) |

OBS: Note that this entry can only be used in conjunction with -ov <d>.
● -sd <n> : sets the seed of the pseudo-random generator to the positive integer <n>.
● -hs <d> : sets the starting grid discretization density hs to the positive real no. <d>.
● -he <d> : sets the ending grid discretization density he to the positive real.

● -ro <d> : sets the local improv. parameter 
lo

to the positive real # <d> such that 0 < <d> ≤ 1.

 November 14, 2011 C-GRASP Python/C library

libcgrpp library: input file formats (cont.)
● -ls <n> : turns local improvement procedure on (off) if <n> is equal to 1(0);
● -mp <n> : sets the parameter MaxPointsToExamine in the local improvement procedure to the

positive integer <n>;
● -of <file-name> : defines the name of the output file to which the solution is written.

● -dm <l> <u> [list-of-exceptions] : sets bounds of the hyper-rectangle S = {x = (x
1
 , . . . , x

n
) ∈

Rn : l ≤ x ≤ u}, such that l
i
 = <l> and u

i
 = <u> for all (i = 1, . . . , n) dimensions.

– Ex: -dm –10 10 sets the lower and upper bounds for all dimensions to –10 and 10;
● Exceptions are used to specify bounds for dimensions for which bounds are different from

<l> or <u>. They are expressed as follows:
● <i> <lo> <up>, with 1 ≤ <i> ≤ n and <lo> ≤ <up>: sets the lower l

i
 and upper u

i

bounds of i-th dimension to <lo> and <up>, respectively. Ex: the exception 3 -12 20
sets the lower and upper bounds of the third dimension to −12 and 20, respectively.

● <i>:<j> <lo> <up>, with 1 ≤ <i> ≤ <j> ≤ n and <lo> ≤ <up>: sets the lower bounds k
to <lo>, and the upper bounds uk to <up>, for all dimensions k = i, . . . , j. Ex: the
exception 7:10 -13 17 sets the lower and upper bounds of 7th to the 10th
dimensions to −13 and 17, respectively;

● combinations between formats above described.

 November 14, 2011 C-GRASP Python/C library

libcgrpp library: input file format example
The example input file:

-hs 0.5 -he 0.0001 -ro 0.01 -ls 1 -mp 100 -of output.file -sd 270001

-md ackley -ft f -ds 5 -ov 0 -ep 0.001 -dm -10 10 1 -5 3 4:5 -13 7

specifies that C-GRASP will try to find a solution

x ∈ S = {x = (x1 , . . . , x5) ∈ ℝ5

with (−5, −10, −10, −13, −13) ≤ x ≤ (3, 10, 10, 7, 7)},

such that function f of python module (ackley.py) that implements the
Ackley function will be such that

GAP = |A
5
(x) − 0| ≤ 0.001,

using the following parameters:
hs = 0.5, he = 0.0001, 

lo
= 0.01, seed = 270001,

and MaxPointsToExamine = 100.

 November 14, 2011 C-GRASP Python/C library

Using the libcgrpp library in a C/C++ program
To use the function double cgrasp(int, **char) of the libcgrpp library in
a C program (which we shall call userprog.c):
1. Put #include <cgrasp.h> in the source code of the C program

userprog.c:
#include <cgrasp.h>
…
double x;
…
void main(int argc, char **argv){
 …
 x = cgrasp(argc,argv);
 …
}

 November 14, 2011 C-GRASP Python/C library

Using the libcgrpp library in a C/C++ program (cont.)

To run the program, type:

 <program_name> <input_file_name>

 (Example: ./userprog input)

 November 14, 2011 C-GRASP Python/C library

libcgrpp library: output file formats

The program produces two kinds of output:
● STDERR (terminal): occasional error messages.
● STDOUT (terminal, unless redirected to a file with >) and FILE (file name

specified by the “-of” option in the input file):
1.Summary of the execution, including information about the instance

itself as well as the execution parameters;
2.For each objective function improvement, a line is printed with the

following format: h=<value>, h_e=<value>
 o-iteration: <value> // outer loop

 i-iteration: <value> // internal loop

 November 14, 2011 C-GRASP Python/C library

libcgrpp library: output file formats
The program produces two kinds of output:
● STDERR (terminal): occasional error messages.
● STDOUT (terminal, unless redirected to a file with >) and FILE (file name

specified by the “-of” option in the input file):
3.For each objective function improvement, a line is printed with the

following format: <responsible> :
 <keyword> <value>

● The procedure responsible for the improvement can be the
construction procedure or the local search procedure or random

● Keywords are self-descriptive: CPU time (in seconds) of improvement
or best value or improved solution

 November 14, 2011 C-GRASP Python/C library

libcgrpp library: output file formats (cont.)

The program produces two kinds of output:
● STDERR (terminal): occasional error messages.
● STDOUT (terminal, unless redirected to a file with >) and FILE (file name

specified by the “-of” option in the input file):
4.Total CPU time (in seconds) in the following format:

time: <value>
5.Total function evaluations in the following format:

evaluations: <value>
6.Value of the overall best solution found in the following format:

optimum: <value>

 November 14, 2011 C-GRASP Python/C library

libcgrpp library: output file example (cont.)

Consider as an example the output generated by the
algorithm to find a solution x  [−10, 10]2, such that
the Booth function:
BO(x) = (x

1
 + 2x

2
 − 7)2 + (2x

1
 + x

2
 − 5)2 ≤  = 0.001

using the following parameters:
hs = 0.5, he = 0.0001, 

lo
= 0.01, seed = 270001,

and MaxPointsToExamine = 100.

 November 14, 2011 C-GRASP Python/C library

libcgrpp library: output file example (cont.)h=0.500000, h_e=0.000100

o-iteration: 0

i-iteration: 1912224224

random:

time: 0.000000

evaluations: 1

best value: 127.067622

solution: 6.046783 -5.067851

h=0.500000, h_e=0.000100

h=0.500000, h_e=0.000100

o-iteration: 0

i-iteration: 1

construction:

time: 0.000000

evaluations: 80

best value: 77.292449

solution: 7.546783 -2.067851

h=0.500000, h_e=0.000100

o-iteration: 0

i-iteration: 1

local search:

time: 0.000000

evaluations: 226

best value: 0.103908

solution: 1.042637 2.824020

0
1

1

inner iteration
objective
function
value

evaluations

 November 14, 2011 C-GRASP Python/C library

libcgrpp library: output file example (cont.)h=0.250000, h_e=0.000100

o-iteration: 0

i-iteration: 3

construction:

time: 0.000000

evaluations: 567

best value: 0.061733

solution: 1.042637 3.074020

h=0.250000, h_e=0.000100

o-iteration: 0

i-iteration: 3

local search:

time: 0.000000

evaluations: 736

best value: 0.002220

solution: 0.965009 3.026204

h=0.062500, h_e=0.000100

o-iteration: 0

i-iteration: 6

local search:

time: 0.010000

evaluations: 2170

best value: 0.000361

solution: 1.013926 2.987302

1
0

1
3

3
6

inner iteration
objective
function
value

evaluations

 November 14, 2011 C-GRASP Python/C library

libcgrpp library: output file example (cont.)
h=0.031250, h_e=0.000100

o-iteration: 0

i-iteration: 8

local search:

time: 0.020000

evaluations: 4309

best value: 0.000159

solution: 0.990671 3.008178

h=0.015625, h_e=0.000100

o-iteration: 0

i-iteration: 10

local search:

time: 0.020000

evaluations: 8382

best value: 0.000015

solution: 1.001818 2.997228

time: 0.020000

dimension: 2

epsilon: 0.000100

seed: 270001

h_s: 0.500000

h_e: 0.000100

ro: 0.010000

LS option: 1

LS max points: 100.000000

output file: booth.out

0
1

3
1

3
6

8

10

inner iteration
objective
function
value

evaluations

 November 14, 2011 C-GRASP Python/C library

An example

 November 14, 2011 C-GRASP Python/C library

Application of of C-GRASP for this example was first described in

M.J. Hirsch, P.M. Pardalos, and M.G.C.R, “Solving systems of nonlinear
equations with continuous GRASP,” Nonlinear Analysis: Real World
Applications, vol. 10, pp. 2000-2006, 2009.

 November 14, 2011 C-GRASP Python/C library

Computational environment

Computer with a 1.66GHz Intel Core 2 processor
with 1 GB of Memory
Ubuntu version 4.3.2-1ubuntu11
C language, gcc compiler version 4.3.2
Random-number generator: Mersenne Twister
algorithm (Matsumoto and Nishimura, 1998)

 November 14, 2011 C-GRASP Python/C library

Robot kinematics
application

 November 14, 2011 C-GRASP Python/C library

Robot kinematics application

● First described by Tsai and Morgan (1985).

● Given a 6-revolute manipulator (rigid-bodies, or links, connected
together by joints), with the first link designated the base, and the
last link designated the hand of the robot: Determine the possible
positions of the hand, given that the joints are movable.

● Problem is reduced to solving a system of eight nonlinear equations
in eight unknowns.

● Considered a “challenging problem” in Floudas et al. (1999).

 November 14, 2011 C-GRASP Python/C library

Robot kinematics application
Find x = (x

1
 , x

2
 , . . . , x

8
) such that:

● f
1
 (x) = 4.731 · 10−3 x

1
 x

3
 − 0.3578x

2
x

3
 − 0.1238x

1
 + x

7

 − 1.637 · 10−3 x
2
 − 0.9338x

4
 − 0.3571 = 0

● f
2
 (x) = 0.2238x

1
x

3
 + 0.7623x

2
x

3
 + 0.2638x

1
− x

7
 − 0.07745x

2

 − 0.6734x
4
 − 0.6022 = 0

● f
3
 (x) = x

6
 x

8
 + 0.3578x

1
 + 4.731 · 10−3 x

2
 = 0

● f
4
 (x) = − 0.7623x

1
 + 0.2238x

2
 + 0.3461 = 0

● f
5
 (x) = x

1
2 + x

2
2 − 1 = 0

● f
6
 (x) = x

3
2 + x

4
2 − 1 = 0

● f
7
 (x) = x

5
2 + x

6
2 − 1 = 0

● f
8
 (x) = x

7
2 + x

8
2 − 1 = 0

 November 14, 2011 C-GRASP Python/C library

Robot kinematics application

We form the optimization problem:

Find x∗ = argmin{F (x) = Σ
i=1..8

 f
i
2(x) ∣ x ∈ [-1,1]8 }.

● Since F (x) ≥ 0 for all x ∈ [-1,1]8, then F (x) = 0 ⇔ f
i
 (x) = 0 for

all i ∈ {1, . . . , 8}.
● Hence ∃ x∗ ∈ [-1,1]8 ∋ F (x∗) = 0 ⇒ x∗ is a global minimizer of

problem and x∗ is a root of the system of equations:
f
1
 (x), . . . , f

8
 (x).

● There are 16 known roots to this system. Solving problem 16
times using C-GRASP with different starting solutions gives no
guarantee of finding all 16 roots.

 November 14, 2011 C-GRASP Python/C library

Robot kinematics application
● Suppose the k-th root (roots are denoted x

1
 , . . . , x

k
) has been

found.
● Then C-GRASP will restart, with the modified objective function

given by:
● F(x)= ∑

i=1..8
 f

i
2(x) + ∑

j=1..k
 e -∥x-x(j)∥


(∥x-x

j
∥)

where
● 


()=1 if ; 0, otherwise

 is a large constant, and  is a small constant.
● This has the effect of creating an area of repulsion near

solutions that have already been found by the heuristic.

 November 14, 2011 C-GRASP Python/C library

Robot kinematics application: C source code

#include <cgrasp.h>
double main(int argc, char **argv){
 double res;
 res = cgrasp(argc,argv);
 return res;
}

 November 14, 2011 C-GRASP Python/C library

Robot kinematics application: function module
implementation in python (kinematics.py)

from math import *

def g(x):

beta = 10**10

ro = 1

roots = []

f = [0,0,0,0,0,0,0,0]

f[0] = 4.731*0.001*x[0]*x[2] - 0.3578*x[1]*x[2] - 0.1238*x[0] + x[6] - 1.637*0.001*x[1] - 0.9338*x[3] - 0.3571

f[1] = 0.2238*x[0]*x[2] + 0.7623*x[1]*x[2] + 0.2638*x[0] - x[6] - 0.07745*x[1] - 0.6734*x[3] – 0.6022

...

f[7] = x[6]**2 + x[7]**2 – 1

sum1 = sum(f[i]**2 for i in range(8))

sum2=0

if len(roots)>0:

for k in range(len(roots)):

dist = sqrt(sum((x[j]-roots[k][j])**2 for j in range(len(x))))

if dist <= ro:

sum2 = sum2 + exp(-dist)

return sum1 + beta*sum2

 November 14, 2011 C-GRASP Python/C library

Robot kinematics application: input file
● The input file:

-hs 0.5 -he 0.001 -ro 0.01 -ls 1 -mp 1000 -of kinematics.out -sd 270001
-md kinematics -ft g -ds 8 -ov 0 -ep 0.001 -dm -1 1

specifies that C-GRASP will try to find a solution

x ∈ S = {x = (x1 , . . . , x8) ∈ [-1,1]8}

such that function g of python module (kinematics.py) that implements the robot
kinematics problem will be such that

GAP = |g(x) − 0| ≤  = 0.001,

using the following parameters:

hs = 0.5, he = 0.001, 
lo

= 0.01, seed = 270001,

and MaxPointsToExamine = 1000.
● As roots are found, they are included in the roots list of kinematics.py module.

 November 14, 2011 C-GRASP Python/C library

Robot kinematics application

● We made ten independent runs of C-GRASP with
 = 1,  = 1010

● In each case, the heuristic was able to find all 16
known roots.

 November 14, 2011 C-GRASP Python/C library

Robot kinematics: output file of 1st run
h=0.500000, h_e=0.010000

o-iteration: 0

i-iteration: -980710944

random:

time: 0.000000

evaluations: 1

best value: 2.593753

solution: 0.604678 -0.506785 -0.168359 -0.190572 0.569999 0.764520 0.610387 0.812561

h=0.500000, h_e=0.010000

h=0.500000, h_e=0.010000

o-iteration: 0

i-iteration: 1

construction:

time: 0.000000

evaluations: 31

best value: 0.527528

solution: 0.604678 -0.506785 -0.668359 -0.690572 0.569999 -0.735480 0.110387 0.812561

h=0.250000, h_e=0.010000

o-iteration: 0

i-iteration: 2

construction:

time: 0.010000

evaluations: 1092

best value: 0.412249

solution: 0.604678 -0.756785 -0.668359 -0.690572 -0.680001 -0.485480 0.360387 0.812561

evaluations

cost

 November 14, 2011 C-GRASP Python/C library

h=0.250000, h_e=0.010000

o-iteration: 0

i-iteration: 2

local search:

time: 0.020000

evaluations: 2507

best value: 0.212264

solution: 0.485155 -0.828485 -0.752117 -0.583786 -0.858302 -0.347513 0.234342 0.812561

h=0.125000, h_e=0.010000

o-iteration: 0

i-iteration: 4

construction:

time: 0.040000

evaluations: 3689

best value: 0.173348

solution: 0.485155 -0.828485 -0.752117 -0.583786 -0.983302 -0.222513 0.359342 0.812561

h=0.125000, h_e=0.010000

o-iteration: 0

i-iteration: 4

local search:

time: 0.060000

evaluations: 5739

best value: 0.057780

solution: 0.321092 -0.875156 -0.875766 -0.426199 -0.925468 -0.200632 0.354109 0.888619

Robot kinematics: output file of 1st run (cont'd)

cost

evaluations

 November 14, 2011 C-GRASP Python/C library

h=0.062500, h_e=0.010000

o-iteration: 0

i-iteration: 6

construction:

time: 0.080000

evaluations: 7113

best value: 0.040999

solution: 0.383592 -0.937656 -0.875766 -0.426199 -0.987968 -0.138132 0.354109 0.888619

h=0.062500, h_e=0.010000

o-iteration: 0

i-iteration: 6

local search:

time: 0.090000

evaluations: 8498

best value: 0.017629

solution: 0.242929 -0.937656 -0.891891 -0.383381 -0.987968 -0.085540 0.387694 0.886060

h=0.062500, h_e=0.010000

o-iteration: 0

i-iteration: 7

construction:

time: 0.100000

evaluations: 8747

best value: 0.011326

solution: 0.242929 -0.937656 -0.954391 -0.320881 -0.987968 -0.085540 0.387694 0.886060

Robot kinematics: output file of 1st run (cont'd)

cost

evaluations

 November 14, 2011 C-GRASP Python/C library

h=0.062500, h_e=0.010000

o-iteration: 0

i-iteration: 7

local search:

time: 0.130000

evaluations: 12028

best value: 0.007878

solution: 0.208830 -0.937656 -0.938610 -0.324136 -0.987968 -0.081492 0.387416 0.908990

h=0.062500, h_e=0.010000

o-iteration: 0

i-iteration: 8

local search:

time: 0.150000

evaluations: 13831

best value: 0.007383

solution: 0.211682 -0.937656 -0.938610 -0.331521 -0.987968 -0.075448 0.376924 0.914949

h=0.031250, h_e=0.010000

o-iteration: 0

i-iteration: 10

construction:

time: 0.170000

evaluations: 15588

best value: 0.001883

solution: 0.211682 -0.968906 -0.938610 -0.331521 -0.987968 -0.075448 0.408174 0.914949

Robot kinematics: output file of 1st run (cont'd)

cost

evaluations

 November 14, 2011 C-GRASP Python/C library

h=0.031250, h_e=0.010000

o-iteration: 0

i-iteration: 10

local search:

time: 0.210000

evaluations: 18591

best value: 0.001588

solution: 0.175261 -0.968906 -0.939350 -0.331431 -0.987968 -0.057541 0.400847 0.921011

h=0.015625, h_e=0.010000

o-iteration: 0

i-iteration: 12

construction:

time: 0.240000

evaluations: 21116

best value: 0.001057

solution: 0.190886 -0.984531 -0.939350 -0.331431 -0.987968 -0.073166 0.400847 0.921011

h=0.015625, h_e=0.010000

o-iteration: 0

i-iteration: 12

local search:

time: 0.250000

evaluations: 22734

best value: 0.000624

solution: 0.171251 -0.984531 -0.939835 -0.330984 -0.987968 -0.063526 0.411416 0.912903

Robot kinematics: output file of 1st run (cont'd)

cost

evaluations

 November 14, 2011 C-GRASP Python/C library

time: 0.250000
dimension: 8
epsilon: 0.001000
seed: 270001
h_s: 0.500000
h_e: 0.010000
ro: 10.000000
LS option: 1
LS max points: 1000.00
output file: kinematics.out

Robot kinematics: output file of 1st run (cont'd)

cost

evaluations

 November 14, 2011 C-GRASP Python/C library

Robot kinematics: including a new root in the
function module in python (kinematics.py)

from math import *

def g(x):

beta = 10**10

ro = 1

roots = [[0.171251, -0.984531, -0.939835, -0.330984, -0.987968, -0.063526, 0.411416, 0.912903]]

f = [0,0,0,0,0,0,0,0]

f[0] = 4.731*0.001*x[0]*x[2] - 0.3578*x[1]*x[2] - 0.1238*x[0] + x[6] - 1.637*0.001*x[1] - 0.9338*x[3] - 0.3571

f[1] = 0.2238*x[0]*x[2] + 0.7623*x[1]*x[2] + 0.2638*x[0] - x[6] - 0.07745*x[1] - 0.6734*x[3] – 0.6022

...

f[7] = x[6]**2 + x[7]**2 – 1

sum1 = sum(f[i]**2 for i in range(8))

sum2=0

if len(roots)>0:

for k in range(len(roots)):

dist = sqrt(sum((x[j]-roots[k][j])**2 for j in range(len(x))))

if dist <= ro:

sum2 = sum2 + exp(-dist)

return sum1 + beta*sum2

 November 14, 2011 C-GRASP Python/C library

h=0.500000, h_e=0.010000

o-iteration: 0

i-iteration: 1562925536

random:

time: 0.000000

evaluations: 1

best value: 2.593753

solution: 0.604678 -0.506785 -0.168359 -0.190572 0.569999 0.764520 0.610387 0.812561

...

h=0.062500, h_e=0.010000

o-iteration: 0

i-iteration: 7

construction:

time: 0.190000

evaluations: 10036

best value: 0.052576

solution: 0.361938 -0.938890 -0.948696 -0.340600 0.892794 -0.208991 0.407803 0.879394

...

h=0.500000, h_e=0.010000

h=0.031250, h_e=0.010000

o-iteration: 1

i-iteration: 9

local search:

time: 0.920000

evaluations: 52826

best value: 0.000661

solution: 0.666316 0.744665 -0.644458 -0.756348 -0.960886 -0.265529 -0.436140 0.888684

Robot kinematics: output file of 2nd run

 November 14, 2011 C-GRASP Python/C library

time: 0.920000
dimension: 8
epsilon: 0.001000
seed: 270001
h_s: 0.500000
h_e: 0.010000
ro: 10.000000
LS option: 1
LS max points: 1000.000000
output file: kinematics1.out

Robot kinematics: output file of 2nd run

 November 14, 2011 C-GRASP Python/C library

Robot kinematics application

● We made ten independent runs of C-GRASP with
 = 1,  = 1010

● In each case, the heuristic was able to find all 16
known roots.

 November 14, 2011 C-GRASP Python/C library

THE END
Thanks!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68

