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Summary

• Steiner triple covering problem
• Biased random-key genetic algorithms (BRKGA)
• BRKGA for Steiner triple covering problem
• Implementation issues
• Experimental results
• Concluding remarks
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Steiner triple 
covering problem
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Kirkman school girl problem [Kirkman, 1850]

Fifteen young ladies in a school walk out three 
abreast for seven days in succession: 

It is required to arrange them daily, so that no two 
shall walk twice abreast.
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Kirkman school girl problem [Kirkman, 1850]

Sunday Monday Tuesday Wednesday Thursday Friday Saturday

01, 06, 11 01, 02, 05 02, 03, 06 05, 06, 09 03, 05, 11 05, 07, 13 04, 11, 13 

02, 07, 12 03, 04, 07 04, 05, 08 07, 08, 11 04, 06, 12 06,08, 14 05, 12, 14

03, 08, 13 08, 09, 12 09, 10, 13 01, 12, 13 07, 09, 15 02, 09, 11 02, 08, 15

04, 09, 14 10, 11, 14 11, 12, 15 03, 14, 15 01, 08, 10 03, 10, 12 01, 03, 09

05, 10, 15 06, 13, 15 01, 07, 14 02, 04, 10 02, 13, 14 01, 04, 15 06, 07, 10

If girls are numbered 01, 02, ..., 15, a solution is:

Ball, Rouse, and Coxeter (1974) 



 MIC 2011 ✤ July 28, 2011 BRKGA for Steiner triple covering

Steiner triple system

A Steiner triple system on a set X of n elements is a 
collection B of 3-sets (triples) such that, for any two 
elements x and y in X, the pair {x, y} appears in 
exactly one triple in B.
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Steiner triple system

A Steiner triple system on a set X of n elements is a 
collection B of 3-sets (triples) such that, for any two 
elements x and y in X, the pair {x, y} appears in 
exactly one triple in B.

First studied by Kirkman in 1847.  Then by Steiner in 1853 and 
hence the name.
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Steiner triple system

A Steiner triple system on a set X of n elements is a 
collection B of 3-sets (triples) such that, for any two 
elements x and y in X, the pair {x, y} appears in 
exactly one triple in B.

The school girl problem has the additional constraint that the 
collection of |B| = 7  5 = 35 triples be divided into seven sets of 
five triples, one for each day, such that each girl appears exactly once 
in the set of five triples for that day. 
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Steiner triple system

A Steiner triple system on a set X of n elements is a 
collection B of 3-sets (triples) such that, for any two 
elements x and y in X, the pair {x, y} appears in 
exactly one triple in B.

A Steiner triple system exists for a set X if and only if either              
|X|= 6k+1 or |X|=6k+3 for some k > 0     [ Kirkman, 1847 ] 
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Steiner triple system

A Steiner triple system on a set X of n elements is a 
collection B of 3-sets (triples) such that, for any two 
elements x and y in X, the pair {x, y} appears in 
exactly one triple in B.

One non-isomorphic Steiner triple system exists for |X| = 7 and 9. 
This number grows quickly after that.  For |X| = 19, there are over 
1010 non-isomorphic Steiner triple systems. 
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Steiner triple system

A Steiner triple system on a set X of n elements is a 
collection B of 3-sets (triples) such that, for any two 
elements x and y in X, the pair {x, y} appears in 
exactly one triple in B.

A Steiner triple system can be represented by a binary matrix A with 
one column for each element in X and a row for each triple in B. In 
this matrix A(i,j) = 1 if and only if element j is in triple i.

Each row i of A has exactly 3 entries with A(i,j) = 1.
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1-width of a binary matrix

The 1-width of a binary matrix A is the minimum 
number of columns that can be chosen from A such 
that every row has at least one “1” in the selected 
columns.

The 1-width of a binary matrix A is the solution of the set 
covering problem:  min ∑j  xj

  subject to Ax  1
m 

, x
j 
 { 0, 1 }
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Recursive procedure to generate Steiner 
triple systems

Let  A
3
 be the 1  3 matrix of all ones.  A recursive 

procedure described by Hall (1967) can generate 
Steiner triple systems for which n  3k or                    
n 15  3k-1, for k 1, 2, ...
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Recursive procedure to generate Steiner 
triple systems

Let  A
3
 be the 1  3 matrix of all ones.  A recursive 

procedure described by Hall (1967) can generate 
Steiner triple systems for which n  3k or                    
n 15  3k-1, for k 1, 2, ...

Starting from A
3
, the procedure can generate A

9
, A

27
, A

81
, A

243
, A

729
, …

Starting from A
15

 [Fulkerson et al., 1974], the procedure can generate 

A
45

, A
135

, A
405

, ...
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Solving Steiner triple covering

Fulkerson, Nemhauser, and Trotter (1974) were first to 
point out that the Steiner triple covering problem was a 
computationally challenging set covering problem.
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Solving Steiner triple covering

Fulkerson, Nemhauser, and Trotter (1974) were first to 
point out that the Steiner triple covering problem was a 
computationally challenging set covering problem.

They solved stn9 (A
9
), stn15 (A

15
), and stn27 (A

27
) to optimality, but not 

stn45 (A
45

), which was solved in 1979 by Ratliff.

Mannino and Sassano (1995) solved stn81 and recently Ostrowski et al. 
(2009; 2010) solved stn135 in 126 days of CPU and stn243 in 51 hours. 
Independently, Ostergard and Vaskelainen (2010) also solved stn135.
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Heuristics for Steiner triple covering (stn81 and stn135)

• Feo and R. (1989) proposed a GRASP, finding a cover of 
size 61 for stn81, later shown to be optimal by Mannino 
and Sassano (1995).
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Heuristics for Steiner triple covering (stn81 and stn135)

• Feo and R. (1989) proposed a GRASP, finding a cover of 
size 61 for stn81, later shown to be optimal by Mannino 
and Sassano (1995).

• Karmarkar, Ramakrishnan, and R. (1991) found a cover 
of size 105 for stn135 with an interior point algorithm. 
In the same paper, they used a GRASP to find a better 
cover of size 104.  Mannino and Sassano (1995) also 
found a cover of this size.



 MIC 2011 ✤ July 28, 2011 BRKGA for Steiner triple covering

Heuristics for Steiner triple covering (stn81 and stn135)

• Feo and R. (1989) proposed a GRASP, finding a cover of 
size 61 for stn81, later shown to be optimal by Mannino 
and Sassano (1995).

• Karmarkar, Ramakrishnan, and R. (1991) found a cover 
of size 105 for stn135 with an interior point algorithm. 
In the same paper, they used a GRASP to find a better 
cover of size 104.  Mannino and Sassano (1995) also 
found a cover of this size.

• Odijk and van Maaren (1998) found a cover of size 103, 
which was shown to be optimal by Ostrowski et al. and 
Ostergard and Vaskelainen in 2010.
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Heuristics for Steiner triple covering (stn243)

• The GRASP in Feo and R. (1989) as well as the interior 
point method in Karmarkar, Ramakrishnan, and R. 
(1991) produced covers of size 204 for stn243. 
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Heuristics for Steiner triple covering (stn243)

• The GRASP in Feo and R. (1989) as well as the interior 
point method in Karmarkar, Ramakrishnan, and R. 
(1991) produced covers of size 204 for stn243. 

• Karmarkar, Ramakrishnan, and R. (1991) used the 
GRASP of Feo and R. (1989) to improve the best known 
cover to 203.
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Heuristics for Steiner triple covering (stn243)

• The GRASP in Feo and R. (1989) as well as the interior 
point method in Karmarkar, Ramakrishnan, and R. 
(1991) produced covers of size 204 for stn243. 

• Karmarkar, Ramakrishnan, and R. (1991) used the 
GRASP of Feo and R. (1989) to improve the best known 
cover to 203.

• Mannino and Sassano (1995) improved it further to 
202.
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Heuristics for Steiner triple covering (stn243)

• The GRASP in Feo and R. (1989) as well as the interior 
point method in Karmarkar, Ramakrishnan, and R. 
(1991) produced covers of size 204 for stn243. 

• Karmarkar, Ramakrishnan, and R. (1991) used the 
GRASP of Feo and R. (1989) to improve the best known 
cover to 203.

• Mannino and Sassano (1995) improved it further to 
202.

• Odijk and van Maaren (1998) found a cover of size 198, 
which was shown to be optimal by Ostrowski et al. 
(2009; 2010).
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Heuristics for Steiner triple covering (stn405 and stn729)

• No results have been previously presented for stn405. 
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Heuristics for Steiner triple covering (stn405 and stn729)

• No results have been previously presented for stn405. 
• Ostrowski et al. (2010) report that the best solution 

found by CPLEX 9 on stn729 after two weeks of CPU 
time was 653.
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Heuristics for Steiner triple covering (stn405 and stn729)

• No results have been previously presented for stn405. 
• Ostrowski et al. (2010) report that the best solution 

found by CPLEX 9 on stn729 after two weeks of CPU 
time was 653.

• Using their enumerate-and-fix heuristic, they were able 
to find a better cover of size 619.
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Best known solutions to date
instance n m BKS opt? reference

stn9 9 12 5 yes Fulkerson et al. (1974)

stn15 15 35 9 yes Fulkerson et al. (1974)

stn27 27 117 18 yes Fulkerson et al. (1974)

stn45 45 330 30 yes Ratliff (1979)

stn81 81 1080 61 yes Mannino and Sassano (1995)

stn135 135 3015 103 yes Ostrowski et al. (2009; 2010) and 
Ostergard and Vaskelainen (2010)

stn243 243 9801 198 yes Ostrowski et al. (2009; 2010)

stn405 405 27270 335 ? This paper.

stn729 729 88452 617 ? This paper.
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Biased random-key 
genetic algorithms
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Genetic algorithms

Individual: solution

Adaptive methods that are used to solve search
and optimization problems.

Holland (1975)
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Genetic algorithms

Individual: solution
Population: set of fixed number of individuals
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Genetic algorithms evolve population applying
the principle of survival of the fittest.

Genetic algorithms
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Genetic algorithms evolve population applying
the principle of survival of the fittest.

A series of generations are produced by 
the algorithm. The most fit individual of last
generation is the solution. 

Genetic algorithms
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Genetic algorithms evolve population applying
the principle of survival of the fittest.

A series of generations are produced by 
the algorithm. The most fit individual of last
generation is the solution. 

Individuals from one generation are combined
to produce offspring that make up next 
generation.

Genetic algorithms
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Probability of selecting individual to mate
is proportional to its fitness: survival of the 
fittest.

a

b

Genetic algorithms
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a

b

Parents drawn from 
generation K

a

b

Combine
parents

c

c

Child in 
generation K+1

Probability of selecting individual to mate
is proportional to its fitness: survival of the 
fittest.

Genetic algorithms
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Evolution of solutions
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Evolution of solutions
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Evolution of solutions
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Evolution of solutions
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Evolution of solutions
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Evolution of solutions
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Evolution of solutions
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Evolution of solutions
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Genetic algorithms
with random keys
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GAs and random keys

• Introduced by Bean (1994) 
for sequencing problems.
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GAs and random keys

• Introduced by Bean (1994) 
for sequencing problems.

• Individuals are strings of 
real-valued numbers 
(random keys) in the 
interval [0,1].

S = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
          s(1)   s(2)   s(3)   s(4)    s(5)
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GAs and random keys

• Introduced by Bean (1994) 
for sequencing problems.

• Individuals are strings of 
real-valued numbers 
(random keys) in the 
interval [0,1].

• Sorting random keys results 
in a sequencing order.

S = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
          s(1)   s(2)   s(3)   s(4)    s(5)

S' = ( 0.05, 0.19, 0.25, 0.67, 0.89 )
          s(4)   s(2)   s(1)   s(3)    s(5)
Sequence: 4 – 2 – 1 – 3 – 5 
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GAs and random keys

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = (                                              )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25                                      )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90                             )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90, 0.76                    )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90, 0.76, 0.05          )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90, 0.76, 0.05, 0.89 )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90, 0.76, 0.05, 0.89 )

If every random-key array corresponds
to a feasible solution: Mating always
produces feasible offspring.

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele to 
the child.
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GAs and random keys

Initial population is made 
up of P chromosomes, each 
with N genes, each having 
a value (allele) generated 
uniformly at random in the 
interval [0,1].



 MIC 2011 ✤ July 28, 2011 BRKGA for Steiner triple covering

GAs and random keys
At the K-th generation, 
compute the cost of each 
solution and partition the 
solutions into two sets: 
elite solutions, non-elite 
solutions. Elite set should 
be smaller of the two sets 
and contain best solutions.

 Elite solutions

Population K

Non-elite
solutions
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GAs and random keys
Evolutionary dynamics

Population K Population K+1

 Elite solutions

Non-elite
solutions
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GAs and random keys
Evolutionary dynamics
– Copy elite solutions from population 

K to population K+1  Elite solutions

Population K+1Population K

 Elite solutions

Non-elite
solutions



 MIC 2011 ✤ July 28, 2011 BRKGA for Steiner triple covering

GAs and random keys
Evolutionary dynamics
– Copy elite solutions from population 

K to population K+1

– Add R random solutions (mutants) 
to population K+1

 Elite solutions

Mutant
solutions

Population K+1Population K

 Elite solutions

Non-elite
solutions
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Biased random key GA
Evolutionary dynamics
– Copy elite solutions from population 

K to population K+1

– Add R random solutions (mutants) 
to population K+1

– While K+1-th population < P
• BIASED RANDOM KEY GA: Mate 

elite solution with non elite to 
produce child in population K+1. 
Mates are chosen at random.

 Elite solutions

Mutant
solutions

X

Population K+1

Probability
child inherits
allele of elite 
parent > 0.5Population K

 Elite solutions

Non-elite
solutions

Mutant
solutions
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Observations

• Random method: keys are randomly generated so 
solutions are always random vectors

• Elitist strategy:  best solutions are passed without 
change from one generation to the next

• Child inherits more characteristics of elite parent: 
one parent is always selected (with replacement) 
from the small elite set and probability that child 
inherits key of elite parent > 0.5 

• No mutation in crossover: mutants are used 
instead 
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Decoders
• A decoder is a deterministic algorithm that takes as input a random-key 

vector and returns a feasible solution of the optimization problem and 
its cost.

• Bean (1994) proposed decoders based on sorting the random-key 
vector to produce a sequence.

• A random-key GA searches the solution space indirectly by searching 
the space of random keys and using the decoder to evaluate fitness of 
the random key.

[0,1]N Solution space
of optimization
problem

decoder
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Decoders

[0,1]N Solution space
of optimization
problem

decoder

Search solution
space indirectly

• A decoder is a deterministic algorithm that takes as input a random-key 
vector and returns a feasible solution of the optimization problem and 
its cost.

• Bean (1994) proposed decoders based on sorting the random-key 
vector to produce a sequence.

• A random-key GA searches the solution space indirectly by searching 
the space of random keys and using the decoder to evaluate fitness of 
the random key.
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Decoders
• A decoder is a deterministic algorithm that takes as input a random-key 

vector and returns a feasible solution of the optimization problem and 
its cost.

• Bean (1994) proposed decoders based on sorting the random-key 
vector to produce a sequence.

• A random-key GA searches the solution space indirectly by searching 
the space of random keys and using the decoder to evaluate fitness of 
the random key.

[0,1]N Solution space
of optimization
problem

decoder

Search solution
space indirectly
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Decoders
• A decoder is a deterministic algorithm that takes as input a random-key 

vector and returns a feasible solution of the optimization problem and 
its cost.

• Bean (1994) proposed decoders based on sorting the random-key 
vector to produce a sequence.

• A random-key GA searches the solution space indirectly by searching 
the space of random keys and using the decoder to evaluate fitness of 
the random key.

[0,1]N Solution space
of optimization
problem

decoder

Search solution
space indirectly
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Framework for biased random-key genetic algorithms

Generate P vectors 
of random keys 

Decode each vector 
of random keys 

Stopping rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions 
to next population

Generate mutants in 
next population

Combine elite and
non-elite solutions
and add children to

next population

no

stop

yes
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Framework for biased random-key genetic algorithms

Generate P vectors 
of random keys 

Decode each vector 
of random keys 

Stopping rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions 
to next population

Generate mutants in 
next population

Combine elite and
non-elite solutions
and add children to

next population

stop

Problem independent

no yes
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Framework for biased random-key genetic algorithms

Generate P vectors 
of random keys 

Decode each vector 
of random keys 

Stopping rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions 
to next population

Generate mutants in 
next population

Combine elite and
non-elite solutions
and add children to

next population

stop

Problem independent

no yes

Problem dependent
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Specifying a biased random-key GA

• Encoding is always done the same way, i.e. with a vector of 
N random-keys (parameter N must be specified)

• Decoder that takes as input a vector of N random-keys and 
outputs the corresponding solution of the combinatorial 
optimization problem and its cost (this is usually a heuristic)

• Parameters:
– Size of population

– Size of elite partition

– Size of mutant set

– Child inheritance probability

– Stopping criterion
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Specifying a biased random-key algorithm

• Encoding is always done the same way, i.e. with a vector of 
N random-keys (parameter N must be specified)

• Decoder that takes as input a vector of N random-keys and 
outputs the corresponding solution of the combinatorial 
optimization problem and its cost (this is usually a heuristic)

• Parameters:
– Size of population:  a function of N, say N or 2N

– Size of elite partition

– Size of mutant set

– Child inheritance probability

– Stopping criterion
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Specifying a biased random-key algorithm

• Encoding is always done the same way, i.e. with a vector of 
N random-keys (parameter N must be specified)

• Decoder that takes as input a vector of N random-keys and 
outputs the corresponding solution of the combinatorial 
optimization problem and its cost (this is usually a heuristic)

• Parameters:
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Specifying a biased random-key algorithm

• Encoding is always done the same way, i.e. with a vector of 
N random-keys (parameter N must be specified)

• Decoder that takes as input a vector of N random-keys and 
outputs the corresponding solution of the combinatorial 
optimization problem and its cost (this is usually a heuristic)

• Parameters:
– Size of population:  a function of N, say N or 2N

– Size of elite partition: 15-25% of population

– Size of mutant set: 5-15% of population

– Child inheritance probability: > 0.5, say 0.7

– Stopping criterion



 MIC 2011 ✤ July 28, 2011 BRKGA for Steiner triple covering

Specifying a biased random-key algorithm

• Encoding is always done the same way, i.e. with a vector of 
N random-keys (parameter N must be specified)

• Decoder that takes as input a vector of N random-keys and 
outputs the corresponding solution of the combinatorial 
optimization problem and its cost (this is usually a heuristic)

• Parameters:
– Size of population:  a function of N, say N or 2N

– Size of elite partition: 15-25% of population

– Size of mutant set: 5-15% of population

– Child inheritance probability: > 0.5, say 0.7

– Stopping criterion: e.g. time, # generations, solution quality,              
# generations without improvement
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Reference

Tech report version:

        
         http://www2.research.att.com/~mgcr/doc/srkga.pdf

J.F. Gonçalves and M.G.C.R., “Biased random-key 
genetic algorithms for combinatorial optimization,” 
J. of Heuristics, published online 31 August 2010.
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Encoding a solution to a vector of random keys

A solution is encoded as an n-vector X = (X
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of random keys where n is the number of columns 
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Encoding a solution to a vector of random keys

A solution is encoded as an n-vector X = (X
1
, X

2
, ..., X

n
) 

of random keys where n is the number of columns 
of matrix A.  
Each key is a randomly generated number in the 
real interval [0,1).
The j-th component of X corresponds to the j-th  
column of A.
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Decoding a solution from a vector of random keys

Decoder takes as input an n-vector X = (X
1
, X

2
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n
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random keys and returns a cover J*  {1, 2, ..., n } 
corresponding to the indices of the columns of A 
selected to cover the rows of A.
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Decoding a solution from a vector of random keys

Decoder takes as input an n-vector X = (X
1
, X

2
, ..., X

n
) of 

random keys and returns a cover J*  {1, 2, ..., n } 
corresponding to the indices of the columns of A 
selected to cover the rows of A.

Let Y = (Y
1
, Y

2
, ..., Y

n
) be a binary vector where Yj = 1 if 

and only if j  J*. 
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Decoding a solution from a vector of random keys

Decoder has three phases:

Phase I: For j = 1, 2, ..., n, set Yj = 1 if X
j
≥½,  set Yj = 0 

otherwise.
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Decoding a solution from a vector of random keys

Decoder has three phases:

Phase I: For j = 1, 2, ..., n, set Yj = 1 if X
j
≥½,  set Yj = 0 

otherwise.

The indices implied by the binary vector can correspond to either a 
feasible or infeasible cover.

If cover is feasible, Phase II is skipped.
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Decoding a solution from a vector of random keys

Decoder has three phases:

Phase II: If J* is not a valid cover, build a cover with 
a greedy algorithm for set covering (Johnson, 1974) 
starting from the partial cover J*.
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Decoding a solution from a vector of random keys

Decoder has three phases:

Phase II: If J* is not a valid cover, build a cover with 
a greedy algorithm for set covering (Johnson, 1974) 
starting from the partial cover J*.

Greedy algorithm: While J* is not a valid cover, select to add in J* the 
smallest index j  {1,2,...,n} \ J* for which the inclusion of j in J* 
covers the maximum number of yet-uncovered rows.
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Decoder has three phases:

Phase III: Local search attempts to remove 
superfluous columns from cover J*.
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Decoding a solution from a vector of random keys

Decoder has three phases:

Phase III: Local search attempts to remove 
superfluous columns from cover J*.

Local search: While there is some element j  J* such that J* \ { j } is 
still a valid cover, then such element having the smallest index is 
removed from J*.
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Implementation 
issues
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Implementation issues

• BRKGA framework (R. and Toso, 2010), a C++ 
framework for biased random-key genetic 
algorithms.
– Object oriented
– Multi-threaded: parallel decoding using OpenMP
– General-purpose framework: implements all problem 

independent components and provides a simple hook 
for chromosome decoding

– Chromosome correcting
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Implementation issues

Chromosome correcting: decoder not only returns 
the cover J* but also modifies the vector X of random 
keys such that it decodes directly into J* with the 
application of only the first phase of the decoder:
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Implementation issues

Chromosome correcting: decoder not only returns 
the cover J* but also modifies the vector X of random 
keys such that it decodes directly into J* with the 
application of only the first phase of the decoder:

X
j
 is unchanged if  X

j
 ≥½  and  j J* or if  X

j
½  and  j J*

X
j
 changes to 1−X

j
 if  X

j
  ½  and  j J* or if  X

j
 ≥½  and  j J*
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Experimental
results
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Experiments: objectives

• Investigate effectiveness of BRKGA to find 
optimal covers for instances with known 
optimum.

• For the two instances (stn405 and stn729) for 
which optimal solutions are not known, attempt 
to produce better covers than previously found.

• Investigate effectiveness of parallel 
implementation.
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Experiments: instances

We use the set of instances: stn9, stn15, stn27, 
stn45, stn81, stn135, stn243, stn405, stn729

Instances can be downloaded from:  

http://www2.research.att.com/~mgcr/data/steiner-triple-covering.tar.gz
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Experiments: computing environment

Computer: server with four 2.4 GHz Quad-core Intel Xeon 
E7330 processors with 128 Gb of memory, running CentOS 5 
Linux.  Total of 16 processors.
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Experiments: computing environment

Computer: server with four 2.4 GHz Quad-core Intel Xeon 
E7330 processors with 128 Gb of memory, running CentOS 5 
Linux.  Total of 16 processors.

Compiler: g++ version 4.1.2 20080704 with flags -O3 -fopenmp

Random number generator:  Mersenne Twister (Matsumoto & 
Nishimura, 1998)
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Experiments: multi-population GA

We evolve 3 populations simultaneously (but sequentially).
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populations if not already present there. 
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Experiments: multi-population GA

We evolve 3 populations simultaneously (but sequentially).

Every 100 generations the best two solutions from each 
population replaces the worst solutions of the other two 
populations if not already present there. 

Parallel processing is only done when calling the decoder. Up to 
16 chromosomes are decoded in parallel.
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Experiments: other parameters

Population size:  10n, where n is the number of columns of A
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Experiments: other parameters

Population size:  10n, where n is the number of columns of A

Population partition: ⌈1.5n⌉ elite solutions; 1–⌈1.5n⌉=⌊8.5n⌋ non-
elite solutions

Mutants:  ⌊5.5n⌋ are created at each generation

Probability child inherits gene of elite/non-elite parent: biased coin 
60% : 40%

Stopping rule:  we use different stopping rules for each of the three 
types of experiments
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Experiments on instances with known optimal covers

For each instance: ran GA independently 100 times, stopping 
when an optimal cover was found.
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Experiments on instances with known optimal covers

For each instance: ran GA independently 100 times, stopping 
when an optimal cover was found.
On all 100 runs for each instance, the algorithm found an optimal 
cover.

On the smallest instances (stn9, stn15, stn27) an optimal cover was 
always found in the initial population.
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Experiments on instances with known optimal covers

For each instance: ran GA independently 100 times, stopping 
when an optimal cover was found.
On all 100 runs for each instance, the algorithm found an optimal 
cover.

On the smallest instances (stn9, stn15, stn27) an optimal cover was 
always found in the initial population.

On stn81 an optimal cover was found in the initial population in 99 
of the 100 runs. In the remaining run, an optimal cover was found in 
the second iteration.
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Instance stn45 
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Optimal cover found in initial population in 54/100 runs
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Largest number of iterations in 100 runs was 12
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Time per 1000 generations: 4.70s (real), 70.55s (user), 2.73s (sys)
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Instance stn135  
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Most difficult instance of those with known optimal cover
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9 of the 100 runs found an optimal cover in less than 1000 iterations
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39 of the 100 runs required over 10,000 iterations
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No run required fewer than 23 iterations
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 Longest run took 75,741 iterations
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Time per 1000 generations: 19.91s (real), 316.70s (user), 0.85s (sys)
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 Instance stn243
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 Appears to be much easier than stn135
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 39/100 runs required fewer than 100 generations 
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 95/100 runs required fewer than 200 generations 
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 The longest of the 100 runs took 341 generations 
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Time per 1000 generations: 68.60s (real), 1095.19s (user), 0.79s (sys)
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Simulation of random multi-start on stn243

To show that success of BRKGA to consistently find covers of 
size 198 on stn243 was not due to the decoder alone ...
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the decoder. 
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Simulation of random multi-start on stn243

To show that success of BRKGA to consistently find covers of 
size 198 on stn243 was not due to the decoder alone ...

We conducted 100 independent runs simulating a random multi-start 
algorithm.

Each run consisted of 1000 generations with three populations, each with 
an elite set of size 1 and a mutant set of size 999.

At each iteration 2997 random solutions are generated, each evaluated with 
the decoder. 

Mating never takes place since elite and mutants make up the entire 
population.
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Simulation of random multi-start on stn243

To show that success of BRKGA to consistently find covers of 
size 198 on stn243 was not due to the decoder alone ...

About 300 million solutions were generated.
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size 198 on stn243 was not due to the decoder alone ...

About 300 million solutions were generated.

The random multi-start was far from finding an optimal cover of size 198.
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Simulation of random multi-start on stn243

To show that success of BRKGA to consistently find covers of 
size 198 on stn243 was not due to the decoder alone ...

About 300 million solutions were generated.

The random multi-start was far from finding an optimal cover of size 198.

It found covers of size 202 in 9/100 runs and of size 203 in the remaining 
91/100.
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Experiments on the two largest instances

For instances stn405 and stn729: ran GA and stopped after 5000 
generations without improvement.

For both instances, GA found improved solutions …
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generations without improvement.
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For stn405 … three runs found covers of size 335.

Run 1 found the cover after 203 generations.

Run 2 … after 5165 generations.

Run 3 … after 2074 generations.
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Experiments on the two largest instances

For instances stn405 and stn729: ran GA and stopped after 5000 
generations without improvement.

For both instances, GA found improved solutions …

For stn405 … three runs found covers of size 335.

Run 1 found the cover after 203 generations.

Run 2 … after 5165 generations.

Run 3 … after 2074 generations.

Time per 1000 generations: 796.82s (real), 12723.40s (user), 11.67s (sys)
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Indices of 405 – 335 = 70 zeroes of covers of size 335 for stn405
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Experiments on the two largest instances

For instances stn405 and stn729: ran GA and stopped after 5000 
generations without improvement.

For both instances, GA found improved solutions …

For stn729 … one run found a cover of size 617 after 1601 generations.
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Experiments on the two largest instances

For instances stn405 and stn729: ran GA and stopped after 5000 
generations without improvement.

For both instances, GA found improved solutions …

For stn729 … one run found a cover of size 617 after 1601 generations.

Time per 1000 generations: 6099.40s (real), 93946.68s (user), 498.00s (sys)
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Indices of 729 – 617 = 112 zeroes of cover of size 617 for stn729



 MIC 2011 ✤ July 28, 2011 BRKGA for Steiner triple covering

Computing covers with a parallel implementation

The BRKGA does decoding in parallel.  Decoding is the major 
computational bottleneck of the BRKGA.

There are other tasks that are not done in parallel, including …
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computational bottleneck of the BRKGA.

There are other tasks that are not done in parallel, including …
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each generation with corresponding calls to random number 
generator;

Crossover at each generation to produce offspring;

Periodic exchange of elite solutions among multiple populations;

Sorting of population by fitness values;
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Computing covers with a parallel implementation

The BRKGA does decoding in parallel.  Decoding is the major 
computational bottleneck of the BRKGA.

There are other tasks that are not done in parallel, including …

Generation of random key vectors in initial population and mutants at 
each generation with corresponding calls to random number 
generator;

Crossover at each generation to produce offspring;

Periodic exchange of elite solutions among multiple populations;

Sorting of population by fitness values;

Copying elite solutions to next generation.
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Computing covers with a parallel implementation

The BRKGA does decoding in parallel.  Decoding is the major 
computational bottleneck of the BRKGA.

There are other tasks that are not done in parallel ... 

Consequently 100% efficiency (linear speedup) cannot be expected.
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Computing covers with a parallel implementation

The BRKGA does decoding in parallel.  Decoding is the major 
computational bottleneck of the BRKGA.

There are other tasks that are not done in parallel ... 

Consequently 100% efficiency (linear speedup) cannot be expected.

Nevertheless, we observe significant speedup.
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Computing covers with a parallel implementation

To illustrate the parallel efficiency of the BRKGA we carried out the 
following experiment on instance stn243 …

On each of five processor configurations (single processor, two, 
four, eight, and 16 processors) …

We made 10 independent runs of the BRKGA, stopping when 
an optimal cover of size 198 was found. 
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Speedup with 16 processors is almost 11-fold.
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Parallel efficiency is  t
1
 / [ p – t

p
 ], where p is the number 

of processors and t
k
 is the real time using k processors.
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Log fit suggests that with 64 processors we can still expect
a 32-fold speedup.
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Concluding
remarks
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Introduced a biased random-key genetic algorithm for the Steiner 
triple covering problem.
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Concluding remarks

Introduced a biased random-key genetic algorithm for the Steiner 
triple covering problem.

The parallel, multi-population, implementation of the BRKGA not only 
found optimal covers for all instances with known optimal solution …

It also found new best known covers for two recently introduced 
instances … of size 335 for stn405 and 617 for stn729

The parallel implementation achieved a speedup of 10.8 with 16 
processors and is expected to achieve a speedup of about 32 with 64 
processors
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Concluding remarks

We have recently proposed BRKGAs for …

Set covering by pairs;

Set covering with general costs;

Set k-covering with general costs.
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The End
These slides and all of my papers cited in this talk 
can be downloaded from the homepage:

http://www2.research.att.com/~mgcr
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