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Summary

• Biased random-key genetic algorithms
• Applications in telecommunications

– Routing in IP networks
– Design of survivable IP networks with composite links
– Redundant server location for content distribution
– Regenerator location
– Routing & wavelength assignment in optical networks

• Concluding remarks
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Biased random-key 
genetic algorithms
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Genetic algorithms

Individual: solution

Adaptive methods that are used to solve search
and optimization problems.

Holland (1975)
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Genetic algorithms

Individual: solution
Population: set of fixed number of individuals
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Genetic algorithms evolve population applying
the principle of survival of the fittest.

Genetic algorithms
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Genetic algorithms evolve population applying
the principle of survival of the fittest.

A series of generations are produced by 
the algorithm. The most fit individual of last
generation is the solution. 

Genetic algorithms
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Genetic algorithms evolve population applying
the principle of survival of the fittest.

A series of generations are produced by 
the algorithm. The most fit individual of last
generation is the solution. 

Individuals from one generation are combined
to produce offspring that make up next 
generation.

Genetic algorithms
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Probability of selecting individual to mate
is proportional to its fitness: survival of the 
fittest.

a

b

Genetic algorithms



 Optimization 2011 ✤ July 26, 2011 BRKGA with applications in telecom

a

b

Parents drawn from 
generation K

a

b

Combine
parents

c

c

Child in 
generation K+1

Probability of selecting individual to mate
is proportional to its fitness: survival of the 
fittest.

Genetic algorithms



 Optimization 2011 ✤ July 26, 2011 BRKGA with applications in telecom

Evolution of solutions
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Evolution of solutions
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Genetic algorithms
with random keys
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GAs and random keys

• Introduced by Bean (1994) 
for sequencing problems.
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GAs and random keys

• Introduced by Bean (1994) 
for sequencing problems.

• Individuals are strings of 
real-valued numbers 
(random keys) in the 
interval [0,1].

S = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
          s(1)   s(2)   s(3)   s(4)    s(5)
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GAs and random keys

• Introduced by Bean (1994) 
for sequencing problems.

• Individuals are strings of 
real-valued numbers 
(random keys) in the 
interval [0,1].

• Sorting random keys results 
in a sequencing order.

S = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
          s(1)   s(2)   s(3)   s(4)    s(5)

S' = ( 0.05, 0.19, 0.25, 0.67, 0.89 )
          s(4)   s(2)   s(1)   s(3)    s(5)
Sequence: 4 – 2 – 1 – 3 – 5 
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GAs and random keys

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = (                                              )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25                                      )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90                             )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90, 0.76                    )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90, 0.76, 0.05          )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele to 
the child.
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GAs and random keys
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b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90, 0.76, 0.05, 0.89 )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90, 0.76, 0.05, 0.89 )

If every random-key array corresponds
to a feasible solution: Mating always
produces feasible offspring.

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele to 
the child.
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GAs and random keys

Initial population is made up of P 
random-key vectors, each with N 
keys, each having a value 
generated uniformly at random in 
the interval (0,1].
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GAs and random keys
At the K-th generation, 
compute the cost of each 
solution ...  Elite solutions

Population K

Non-elite
solutions
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GAs and random keys
At the K-th generation, 
compute the cost of each 
solution and partition the 
solutions into two sets: 

 Elite solutions

Population K

Non-elite
solutions
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GAs and random keys
At the K-th generation, 
compute the cost of each 
solution and partition the 
solutions into two sets: 
elite solutions and non-elite 
solutions. 

 Elite solutions

Population K

Non-elite
solutions
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GAs and random keys
At the K-th generation, 
compute the cost of each 
solution and partition the 
solutions into two sets: 
elite solutions and non-elite 
solutions. Elite set should 
be smaller of the two sets 
and contain best solutions.

 Elite solutions

Population K

Non-elite
solutions
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GAs and random keys
Evolutionary dynamics

Population K Population K+1

 Elite solutions

Non-elite
solutions
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GAs and random keys
Evolutionary dynamics
– Copy elite solutions from population 

K to population K+1  Elite solutions

Population K+1Population K

 Elite solutions

Non-elite
solutions
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GAs and random keys
Evolutionary dynamics
– Copy elite solutions from population 

K to population K+1

– Add R random solutions (mutants) 
to population K+1

 Elite solutions

Mutant
solutions

Population K+1Population K

 Elite solutions

Non-elite
solutions
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Biased random key GA
Evolutionary dynamics
– Copy elite solutions from population 

K to population K+1

– Add R random solutions (mutants) 
to population K+1

– While K+1-th population < P
• RANDOM-KEY GA: Use any two 

solutions in population K to produce 
child in population K+1. Mates are 
chosen at random.

 Elite solutions

Mutant
solutions

X

Population K+1Population K

 Elite solutions

Non-elite
solutions

Mutant
solutions
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Biased random key GA
Evolutionary dynamics
– Copy elite solutions from population 

K to population K+1

– Add R random solutions (mutants) 
to population K+1

– While K+1-th population < P
• RANDOM-KEY GA: Use any two 

solutions in population K to produce 
child in population K+1. Mates are 
chosen at random.

• BIASED RANDOM-KEY GA: Mate elite 
solution with non-elite of population K 
to produce child in population K+1. 
Mates are chosen at random.

 Elite solutions

Mutant
solutions

X

Population K+1

BRKGA: Probability
child inherits
key of elite 
parent > 0.5Population K

 Elite solutions

Non-elite
solutions

Mutant
solutions
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Observations

• Random method: keys are randomly generated so 
solutions are always random vectors

• Elitist strategy:  best solutions are passed without change 
from one generation to the next

• Child inherits more characteristics of elite parent: 
one parent is always selected (with replacement) from the 
small elite set and probability that child inherits key of elite 
parent > 0.5 

• No mutation in crossover: mutants are used instead 
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Decoders
• A decoder is a deterministic algorithm that takes as input a random-key 

vector and returns a feasible solution of the optimization problem and 
its cost.

• Bean (1994) proposed decoders based on sorting the random-key 
vector to produce a sequence.

• A random-key GA searches the solution space indirectly by searching 
the space of random keys and using the decoder to evaluate fitness of 
the random key.

[0,1]N Solution space
of optimization
problem

decoder
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Decoders

[0,1]N Solution space
of optimization
problem

decoder

Search solution
space indirectly

• A decoder is a deterministic algorithm that takes as input a random-key 
vector and returns a feasible solution of the optimization problem and 
its cost.

• Bean (1994) proposed decoders based on sorting the random-key 
vector to produce a sequence.

• A random-key GA searches the solution space indirectly by searching 
the space of random keys and using the decoder to evaluate fitness of 
the random key.
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vector and returns a feasible solution of the optimization problem and 
its cost.
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Decoders
• A decoder is a deterministic algorithm that takes as input a random-key 

vector and returns a feasible solution of the optimization problem and 
its cost.

• Bean (1994) proposed decoders based on sorting the random-key 
vector to produce a sequence.

• A random-key GA searches the solution space indirectly by searching 
the space of random keys and using the decoder to evaluate fitness of 
the random key.

[0,1]N Solution space
of optimization
problem

decoder

Search solution
space indirectly



 Optimization 2011 ✤ July 26, 2011 BRKGA with applications in telecom

Framework for biased random-key genetic algorithms

Generate P vectors 
of random keys 

Decode each vector 
of random keys 

Stopping rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions 
to next population

Generate mutants in 
next population

Combine elite and
non-elite solutions
and add children to

next population

no

stop

yes
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Framework for biased random-key genetic algorithms

Generate P vectors 
of random keys 

Decode each vector 
of random keys 

Stopping rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions 
to next population

Generate mutants in 
next population

Combine elite and
non-elite solutions
and add children to

next population

stop

Problem independent

no yes
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Framework for biased random-key genetic algorithms

Generate P vectors 
of random keys 

Decode each vector 
of random keys 

Stopping rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions 
to next population

Generate mutants in 
next population

Combine elite and
non-elite solutions
and add children to

next population

stop

Problem independent

no yes

Problem dependent
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Specifying a biased random-key GA

• Encoding is always done the same way, i.e. with a vector of 
N random-keys (parameter N must be specified)

• Decoder that takes as input a vector of N random-keys and 
outputs the corresponding solution of the combinatorial 
optimization problem and its cost (this is usually a heuristic)

• Parameters:
– Size of population

– Size of elite partition

– Size of mutant set

– Child inheritance probability

– Stopping criterion
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• Encoding is always done the same way, i.e. with a vector of 
N random-keys (parameter N must be specified)

• Decoder that takes as input a vector of N random-keys and 
outputs the corresponding solution of the combinatorial 
optimization problem and its cost (this is usually a heuristic)

• Parameters:
– Size of population:  a function of N, say N or 2N

– Size of elite partition

– Size of mutant set

– Child inheritance probability

– Stopping criterion

Specifying a biased random-key GA
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• Encoding is always done the same way, i.e. with a vector of 
N random-keys (parameter N must be specified)

• Decoder that takes as input a vector of N random-keys and 
outputs the corresponding solution of the combinatorial 
optimization problem and its cost (this is usually a heuristic)

• Parameters:
– Size of population:  a function of N, say N or 2N

– Size of elite partition: 15-25% of population

– Size of mutant set

– Child inheritance probability

– Stopping criterion

Specifying a biased random-key GA
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• Encoding is always done the same way, i.e. with a vector of 
N random-keys (parameter N must be specified)

• Decoder that takes as input a vector of N random-keys and 
outputs the corresponding solution of the combinatorial 
optimization problem and its cost (this is usually a heuristic)

• Parameters:
– Size of population:  a function of N, say N or 2N

– Size of elite partition: 15-25% of population

– Size of mutant set: 5-15% of population

– Child inheritance probability

– Stopping criterion

Specifying a biased random-key GA
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• Encoding is always done the same way, i.e. with a vector of 
N random-keys (parameter N must be specified)

• Decoder that takes as input a vector of N random-keys and 
outputs the corresponding solution of the combinatorial 
optimization problem and its cost (this is usually a heuristic)

• Parameters:
– Size of population:  a function of N, say N or 2N

– Size of elite partition: 15-25% of population

– Size of mutant set: 5-15% of population

– Child inheritance probability: > 0.5, say 0.7

– Stopping criterion

Specifying a biased random-key GA
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• Encoding is always done the same way, i.e. with a vector of 
N random-keys (parameter N must be specified)

• Decoder that takes as input a vector of N random-keys and 
outputs the corresponding solution of the combinatorial 
optimization problem and its cost (this is usually a heuristic)

• Parameters:
– Size of population:  a function of N, say N or 2N

– Size of elite partition: 15-25% of population

– Size of mutant set: 5-15% of population

– Child inheritance probability: > 0.5, say 0.7

– Stopping criterion: e.g. time, # generations, solution quality,              
# generations without improvement

Specifying a biased random-key GA
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Applications in 
telecommunications
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Applications in telecommunications

• Routing in IP networks
• Design of survivable IP networks
• Redundant server location for content distribution
• Regenerator location
• Routing and wavelength assignment in optical networks
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OSPF routing in IP 
networks
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The Internet

• The Internet is composed of 
many (inter-connected) 
autonomous systems (AS).

• An AS is a network controlled 
by a single entity, e.g. ISP, 
university, corporation, 
country, ...



 Optimization 2011 ✤ July 26, 2011 BRKGA with applications in telecom



 Optimization 2011 ✤ July 26, 2011 BRKGA with applications in telecom

Routing

• A packet is sent from a origination router S to a 
destination router T.

• S and T may be in
– same AS:  
– different ASes: 
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• A packet is sent from a origination router S to a 
destination router T.

• S and T may be in
– same AS:  IGP routing
– different ASes: 

Routing
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• A packet is sent from a origination router S to a 
destination router T.

• S and T may be in
– same AS:  IGP routing
– different ASes: BGP routing

Routing
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IGP Routing

• IGP (interior gateway 
protocol) routing is 
concerned with 
routing within an AS.

S

T

AS
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• IGP (interior gateway 
protocol) routing is 
concerned with 
routing within an AS.

• Routing decisions are 
made by AS operator.

S

T

AS

IGP Routing
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BGP Routing

• BGP (border gateway 
protocol) routing deals 
with routing between 
different ASes.

AS

AS

AS
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BGP Routing

• BGP (border gateway 
protocol) routing deals 
with routing between 
different ASes.

AS

AS

AS

Peering points

Peering points
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BGP Routing

• BGP (border gateway 
protocol) routing deals 
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different ASes.
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BGP Routing

• BGP (border gateway 
protocol) routing deals 
with routing between 
different ASes.

s

t

AS

AS

AS

Peering points

Peering points

Ingress point

Egress point
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IGP Routing
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OSPF routing

• Given a network G = (N,A), where N is the set of 
routers and A is the set of links. 
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• Given a network G = (N,A), where N is the set of 
routers and A is the set of links. 

• The OSPF (open shortest path first) routing 
protocol assumes each link a has a weight w(a) 
assigned to it so that a packet from a source 
router s to a destination router t is routed on a 
shortest weight path from s to t.

OSPF routing
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• Given a network G = (N,A), where N is the set of 
routers and A is the set of links. 

• The OSPF (open shortest path first) routing 
protocol assumes each link a has a weight w(a) 
assigned to it so that a packet from a source 
router s to a destination router t is routed on a 
shortest weight path from s to t.

s
t

OSPF routing
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s
t

OSPF routing
• Given a network G = (N,A), where N is the set of 

routers and A is the set of links. 
• The OSPF (open shortest path first) routing 

protocol assumes each link a has a weight w(a) 
assigned to it so that a packet from a source 
router s to a destination router t is routed on a 
shortest weight path from s to t.
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s
t

Traffic splitting

OSPF routing
• Given a network G = (N,A), where N is the set of 

routers and A is the set of links. 
• The OSPF (open shortest path first) routing 

protocol assumes each link a has a weight w(a) 
assigned to it so that a packet from a source 
router s to a destination router t is routed on a 
shortest weight path from s to t.
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OSPF routing
• By setting OSPF weights appropriately, one can do traffic 

engineering, i.e. route traffic so as to optimize some 
objective (e.g. minimize congestion, maximize 
throughput, etc.).

● Some recent papers on this topic:
– Fortz & Thorup (2000, 2004)
– Ramakrishnan & Rodrigues (2001)
– Sridharan, Guérin, & Diot (2002)
– Fortz, Rexford, & Thorup (2002)
– Ericsson, Resende, & Pardalos (2002)
– Buriol, Resende, Ribeiro, & Thorup (2002, 2005)
– Reis, Ritt, Buriol, & Resende (2011)
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● By setting OSPF weights appropriately, one can do 
traffic engineering, i.e. route traffic so as to optimize 
some objective (e.g. minimize congestion, maximize 
throughput, etc.).

• Some recent papers on this topic:

– Fortz & Thorup (2000, 2004)

– Ramakrishnan & Rodrigues (2001)

– Sridharan, Guérin, & Diot (2002)

– Fortz, Rexford, & Thorup (2002)

– Ericsson, Resende, & Pardalos (2002)

– Buriol, Resende, Ribeiro, & Thorup (2002, 2005)

– Reis, Ritt, Buriol & Resende (2011)

OSPF routing
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Packet routing

router

router

router

router

router

When packet arrives at router,
router must decide where to
send it next.

Packet’s final 
destination.

Routing consists in finding a
link-path from source to 
destination.

D1
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D4

R1

R2
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R4 Routing table



 Optimization 2011 ✤ July 26, 2011 BRKGA with applications in telecom

OSPF routing

• Assign an integer weight  [1, wmax ] to each link 
in AS.   In general, wmax = 65535=216 −1.

• Each router computes tree of shortest weight 
paths to all other routers in the AS, with itself as 
the root, using Dijkstra’s algorithm.
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Routing table
Routing table is filled
with first hop routers
for each possible destination.
In case of multiple shortest 
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OSPF weight setting

• OSPF weights are assigned by network operator.
– CISCO assigns, by default, a weight proportional to the 

inverse of the link bandwidth (Inv Cap).
– If all weights are unit, the weight of a path is the number of 

hops in the path.

• We propose two BRKGA to find good OSPF weights.
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Minimization of congestion

• Consider the directed capacitated network G = (N,A,c), 
where N  are routers, A  are links, and ca is the capacity 
of link a  A.

• We use the measure of Fortz & Thorup (2000) to 
compute congestion:

                   = 1(l1) + 2(l2) + … + |A|(l|A|) 
    where la  is the load on link a  A, 

              a(la) is piecewise linear and convex,

              a(0) = 0, for all a  A.
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OSPF weight setting problem

• Given a directed network G = (N, A ) with link 
capacities ca  A  and demand matrix D = (ds,t ) 
specifying a demand to be sent from node s  to   
node t :
– Assign weights wa [1, wmax ] to each link a  A, 

such that the objective function  is minimized 
when demand is routed according to the OSPF 
protocol.
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BRKGA for OSPF routing in IP networks                     

M. Ericsson, M.G.C.R., & P.M. Pardalos, “A genetic 
algorithm for the weight setting problem in OSPF 
routing,” J. of Combinatorial Optimization, vol. 6, pp. 
299–333, 2002.

Tech report version:

              http://www2.research.att.com/~mgcr/doc/gaospf.pdf
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BRKGA for OSPF routing in IP networks                    
Ericsson, R., & Pardalos (J. Comb. Opt., 2002)

• Encoding:
– A vector X of N random keys, where N is the number of links. The 

i-th random key corresponds to the i-th link weight.
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• Encoding:
– A vector X of N random keys, where N is the number of links. The 
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BRKGA for OSPF routing in IP networks                    
Ericsson, R., & Pardalos (J. Comb. Opt., 2002)

• Encoding:
– A vector X of N random keys, where N is the number of links. The 

i-th random key corresponds to the i-th link weight.

• Decoding:
– For i = 1, …, N:  set w(i) = ceil ( X(i)  w

max
 )

– Compute shortest paths and route traffic according to OSPF.
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BRKGA for OSPF routing in IP networks                    
Ericsson, R., & Pardalos (J. Comb. Opt., 2002)

• Encoding:
– A vector X of N random keys, where N is the number of links. The 

i-th random key corresponds to the i-th link weight.

• Decoding:
– For i = 1, …, N:  set w(i) = ceil ( X(i)  w

max
 )

– Compute shortest paths and route traffic according to OSPF.
– Compute load on each link, compute link congestion, add up all 

link congestions to compute network congestion.
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cost
GA solutions

Tier-1 ISP backbone network (90 routers, 274 links)

generation

LP lower 
bound
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Improved BRKGA for OSPF routing in IP networks             

        

L.S. Buriol, M.G.C.R., C.C. Ribeiro, and M. Thorup, “A 
hybrid genetic algorithm for the weight setting problem 
in OSPF/IS-IS routing,” Networks, vol. 46, pp. 36–56, 
2005.

Tech report version: 

            http://www2.research.att.com/~mgcr/doc/hgaospf.pdf
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Improved BRKGA for OSPF routing in IP networks          
Buriol, R., Ribeiro, and Thorup (Networks, 2005)

 Elite solutions

• Encoding:
– A vector X of N random keys, where N is the number of links. 

The i-th random key corresponds to the i-th link weight.
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Improved BRKGA for OSPF routing in IP networks          
Buriol, R., Ribeiro, and Thorup (Networks, 2005)

 Elite solutions

• Encoding:
– A vector X of N random keys, where N is the number of links. 

The i-th random key corresponds to the i-th link weight.

• Decoder:

– For i = 1, …, N:  set w(i) = ceil ( X(i)  w
max

 )

– Compute shortest paths and route traffic according to OSPF.
– Compute load on each link, compute link congestion, add up 

all link congestions to compute network congestion.
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Improved BRKGA for OSPF routing in IP networks          
Buriol, R., Ribeiro, and Thorup (Networks, 2005)

 Elite solutions

• Encoding:
– A vector X of N random keys, where N is the number of links. 

The i-th random key corresponds to the i-th link weight.

• Decoder:

– For i = 1, …, N:  set w(i) = ceil ( X(i)  w
max

 )

– Compute shortest paths and route traffic according to OSPF.
– Compute load on each link, compute link congestion, add up 

all link congestions to compute network congestion.
– Apply fast local search to improve weights.
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 Elite solutions

Mutant
solutions

X

Population K+1

Population K

 Elite solutions

Non-elite
solutions

Mutant
solutions

Local search

Decoder has a local search phase

Biased coin flip crossover
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Fast local search

• Let A* be the set of five arcs a  A  having 
largest a values.
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Fast local search

• Let A* be the set of five arcs a  A  having 
largest a values.

• Scan arcs a  A* from largest to smallest a:

 Increase arc weight, one unit at a time, in the range  

      [wa , wa  (wmax – wa )/4 ]
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Fast local search

• Let A* be the set of five arcs a  A  having 
largest a values.

• Scan arcs a  A* from largest to smallest a:

 Increase arc weight, one unit at a time, in the range  

      [wa , wa  (wmax – wa )/4 ]
 If total cost  is reduced, restart local search.
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Effect of decoder with fast local search 
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LP lower bound
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Survivable IP 
network design
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Survivable IP network design                   

L.S. Buriol, M.G.C.R., and M. Thorup, “Survivable IP 
network design with OSPF routing,” Networks, vol. 49, 
pp. 51–64, 2007.

Tech report version:

          http://www2.research.att.com/~mgcr/doc/gamult.pdf
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N is the set of routers, A is the 
set of potential arcs where 
capacity can be installed, 

– a demand matrix D that for 
each pair (s,t)  NN, specifies 
the demand D(s,t) between s 
and t,

– a cost K(a) to lay fiber on arc a 

– a capacity increment C for the 
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Survivable IP network design
Buriol, R., & Thorup (Networks, 2007)

• Given 
– directed graph G = (N,A), where 

N is the set of routers, A is the 
set of potential arcs where 
capacity can be installed, 

– a demand matrix D that for 
each pair (s,t)  NN, specifies 
the demand D(s,t) between s 
and t,

– a cost K(a) to lay fiber on arc a 

– a capacity increment C for the 
fiber.

• Determine 
– OSPF weight w(a) to assign to each 

arc a  A,

– which arcs should be used to deploy 
fiber and how many units 
(multiplicities) M(a) of capacity C 
should be installed on each arc          
a  A,
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Survivable IP network design
Buriol, R., & Thorup (Networks, 2007)

• Given 
– directed graph G = (N,A), where 

N is the set of routers, A is the 
set of potential arcs where 
capacity can be installed, 

– a demand matrix D that for 
each pair (s,t)  NN, specifies 
the demand D(s,t) between s 
and t,

– a cost K(a) to lay fiber on arc a 

– a capacity increment C for the 
fiber.

• Determine 
– OSPF weight w(a) to assign to each 

arc a  A,

– which arcs should be used to deploy 
fiber and how many units 
(multiplicities) M(a) of capacity C 
should be installed on each arc          
a  A,

• such that all the demand can be routed 
on the network even when any single 
arc fails.
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Survivable IP network design
Buriol, R., & Thorup (Networks, 2007)

• Given 
– directed graph G = (N,A), where 

N is the set of routers, A is the 
set of potential arcs where 
capacity can be installed, 

– a demand matrix D that for 
each pair (s,t)  NN, specifies 
the demand D(s,t) between s 
and t,

– a cost K(a) to lay fiber on arc a 

– a capacity increment C for the 
fiber.

• Determine 
– OSPF weight w(a) to assign to each 

arc a  A,

– which arcs should be used to deploy 
fiber and how many units 
(multiplicities) M(a) of capacity C 
should be installed on each arc          
a  A,

• such that all the demand can be routed 
on the network even when any single 
arc fails.

• Min total design cost = 
aA 

M(a)K(a). 
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Survivable IP network design

 Elite solutions

• Encoding:
– A vector X of N random keys, where N is the number of links. The 

i-th random key corresponds to the i-th link weight.
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– For each failure mode:  route demand according to OSPF and for 
each arc aA determine the load on arc a. 
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Survivable IP network design

 Elite solutions

• Encoding:
– A vector X of N random keys, where N is the number of links. The 

i-th random key corresponds to the i-th link weight.

• Decoder:
– For i = 1, …, N:  set w(i) = ceil ( X(i)  w

max
 )

– For each failure mode:  route demand according to OSPF and for 
each arc aA determine the load on arc a. 

– For each arc aA, determine the multiplicity M(a) using the 
maximum load for that arc over all failure modes. 



 Optimization 2011 ✤ July 26, 2011 BRKGA with applications in telecom

Survivable IP network design

 Elite solutions

• Encoding:
– A vector X of N random keys, where N is the number of links. The 

i-th random key corresponds to the i-th link weight.

• Decoder:
– For i = 1, …, N:  set w(i) = ceil ( X(i)  w

max
 )

– For each failure mode:  route demand according to OSPF and for 
each arc aA determine the load on arc a. 

– For each arc aA, determine the multiplicity M(a) using the 
maximum load for that arc over all failure modes. 

– Network design cost = 
aA 

 M(a) K(a)
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Computing the “fitness” of a solution
(single link failure case)

Determine load L(a)
 on each arc a A.

For each arc a A, set 
maxL(a) =  max{L(a), maxL(a)}

For each arc e A,
compute M(a)

Route all demand
on shortest 
path graph

Determine load L(a)
 on each arc a A.

For each arc a A,
set maxL(a) = 

max{L(a),maxL(a)}

For each arc e A,
remove arc e from 

network G.

Compute shortest
path graph on 

G \ {e}

Route all demand
on shortest 
path graph

For each arc  a A, set 
M(a) = 1; maxL(a) = – 

Any M(a)
changed?

yes

no, then stop
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Composite-link design

• In Buriol, R., and Thorup (2006)
– links were all of the same type,
– only the link multiplicity had to be determined.

● Now consider composite links. Given a load L(a) on arc a, we 
can compose several different link types that sum up to the 
needed capacity c(a) L(a):
– c(a) = 

tused in arc a 
M(t) (t), where

– M(t) is the multiplicity of link type t
– (t) is the capacity of link type t
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● In Buriol, Resende, and Thorup (2006)
– links were all of the same type,
– only the link multiplicity had to be determined.

• Now consider composite links. Given a load L(a) on arc a, we 
can compose several different link types that sum up to the 
needed capacity c(a) L(a):

– c(a) = 
tused in arc a 

M(t) (t), where

– M(t) is the multiplicity of link type t

– (t) is the capacity of link type t

Composite-link design
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D.V. Andrade, L.S. Buriol,  M.G.C.R., and M. Thorup, 
“Survivable composite-link IP network design with OSPF 
routing,” The Eighth INFORMS Telecommunications 
Conference, Dallas, Texas, April 2006.

Tech report:

                       
http://www2.research.att.com/~mgcr/doc/composite.pdf

Composite-link design
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• Link types = { 1, 2, ..., T }
• Capacities = { c(1), c(2), ..., c(T) } : c(i) < c(i+1)
• Prices / unit length = { p(1), p(2), ..., p(T) }: p(i) < p(i+1)
● Assumptions:

– [p(T)/c(T)] < [p(T–1)/c(T–1)] < ··· < [p(1)/c(1)], i.e. price 
per unit of capacity is smaller for links with greater capacity

– c(i) =   c(i–1), for N, 1, i.e. capacities are 
multiples of each other by powers of 

Composite-link design
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• Link types = { 1, 2, ..., T }
• Capacities = { c(1), c(2), ..., c(T) } : c(i) < c(i+1)
• Prices / unit length = { p(1), p(2), ..., p(T) }: p(i) < p(i+1)
• Assumptions:

– [p(T)/c(T)] < [p(T–1)/c(T–1)] < ··· < [p(1)/c(1)]: economies of 
scale

– c(i) =   c(i–1), for N, 1,  e.g.                       
c(OC192) = 4 c(OC48);  c(OC48) = 4 c(OC12);       
c(OC12) = 4 c(OC3);

OC3 OC192OC48OC12
155 Mb/s 10 Gb/s 2.5 Gb/s 622 Mb/s  

Composite-link design
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Survivable composite link IP network design

 Elite solutions

• Encoding:
– A vector X of N random keys, where N is the number of links. The 

i-th random key corresponds to the i-th link weight.
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– For each arc iA, determine the multiplicity M(t,i) for each link 
type t using the maximum load for that arc over all failure modes. 
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Survivable composite link IP network design

 Elite solutions

• Encoding:
– A vector X of N random keys, where N is the number of links. The 

i-th random key corresponds to the i-th link weight.

• Decoder:
– For i = 1, …, N:  set w(i) = ceil ( X(i)  w

max
 )

– For each failure mode:  route demand according to OSPF and for 
each arc iA determine the load on arc i. 

– For each arc iA, determine the multiplicity M(t,i) for each link 
type t using the maximum load for that arc over all failure modes. 

– Network design cost = 
iA 

 
tused in arc i 

M(t,i) p(t)
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Computing the “fitness” of a solution
(single link failure case)

Set k = T

Input 
load L

Use as many as 
possible ( L/c(k) of 

type k links without 
exceeding the load L

Compute cost (k) of
satisfying remaining
load with link type k

 Set k = k – 1

Let k*=argmin { (k) }

yes

no

Update load: 
L = L – L/c(k)

Release links of types
k*– 1, ..., 1 and use

 L/c(k*)of type k* links

done

k = 0 ?
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Redundant content 
distribution
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Reference:
    L. Breslau, I. Diakonikolas, N. Duffield,        

Y. Gu, M. Hajiaghayi, D.S. Johnson,           
H. Karloff, M.G.C.R., and S. Sen, “Disjoint-
path facility location: Theory and practice,” 
Proceedings of the Thirteenth Workshop on 
Algorithm Engineering and Experiments 
(ALENEX11), SIAM, San Francisco,          
pp. 60–74, January 22, 2011               

       
      

Tech report version:

http://www2.research.att.com/~mgcr/doc/monitoring-alenex.pdf
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Redundant content distribution (RCD)

• Suppose a number of users located at nodes in a 
network demand content.
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Redundant content distribution

• Suppose a number of users located at nodes in a 
network demand content.

• Copies of content are stored throughout the 
network in data warehouses. 

• Content is sent from data warehouse to user on 
routes determined by OSPF.

• Problem: Locate minimum number of 
warehouses in network such all users get their 
content even in presence of edge failures. 
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Redundant content distribution

ts

Traffic from node s to node t flows on paths defined by OSPF.
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Redundant content distribution

ts

We don't know on which path a particular packet will flow.
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Redundant content distribution

ts

We say traffic from node s to node t is interrupted if any edge
in one of the paths from s to t fails. 

X
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We say traffic from source nodes s
a
 and s

b
 to 

node t is interrupted if any common edge
in one of the paths from s

a
 to t and s

b
 to t fails. 

ts
a

s
b

X
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If all paths from source node s
a
 to node t are 

disjoint from all paths from node s
b
 to t, then 

traffic to t will never be interrupted for any single 
edge failure. 

ts
a

s
b
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Redundant content distribution

Suppose nodes b
1
, b

2
, ... want some 

content (e.g. video).

We want the smallest set S of 
servers such that:

for every b
i 
 there exist m

1
, m

2 
 S 

both of which can provide content 
to b

i

and all paths m
1
  b are disjoint 

with all paths m
2
  b  

b
1

m
1

m
2

m
3

b
2

m
4

b
3

b
4
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Redundant content distribution
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We want the smallest set S of 
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Redundant content distribution

• Given: 
– A directed network G = (V, E);
– A set of nodes B  E where content-demanding 

users are located; 
– A set of nodes M  E where content warehouses can 

be located; 

– The set of all OSPF paths from m to b, for m
 
 M and 

b  B.
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Redundant content distribution

• Compute: 
– The set of triples { m

1
, m

2
, b }i, i = 1, 2, …, T, such 

that all paths from m
1
 to b and from m

2 
to b are 

disjoint, where m
1
, m

2 
 M and b  B.

– Note that if BM ∅, then some triples will be of 
the type { b, b, b }, where bBM, i.e. a data 
warehouse that is co-located with a user can provide 
content to the user by itself.
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Redundant content distribution

• Solve the covering by pairs problem: 
– Find a smallest-cardinality set M* M such that for all 

b  B, there exists a triple { m
1
, m

2
, b } in the set of 

triples such that m
1
, m

2 
 M*.
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• initialize partial cover M* = { }
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– find m  M \ M* such that M*  {m} covers a maximum 
number of additional user nodes (break ties by vertex 
index) and set M* = M*  {m}
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Greedy algorithm for covering by pairs

• initialize partial cover M* = { }
• while M* is not a cover do:

– find m  M \ M* such that M*  {m} covers a maximum 
number of additional user nodes (break ties by vertex 
index) and set M* = M*  {m}

– if no m  M \ M* yields an increase in coverage, then 
choose a pair {m

1
,m

2
}

 
 M \ M* that yields a maximum 

increase in coverage and set M* = M*  {m
1
}  {m

2
}
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Greedy algorithm for covering by pairs

• initialize partial cover M* = { }
• while M* is not a cover do:

– find m  M \ M* such that M*  {m} covers a maximum 
number of additional user nodes (break ties by vertex 
index) and set M* = M*  {m}

– if no m  M \ M* yields an increase in coverage, then 
choose a pair {m

1
,m

2
}

 
 M \ M* that yields a maximum 

increase in coverage and set M* = M*  {m
1
}  {m

2
}

– if no pair exists, then the problem is infeasible
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BRKGA for 
redundant content 

distribution
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BRKGA for the RCD problem
• Encoding: 

– A vector X of N keys randomly generated in the real 
interval (0,1], where N = |M| is the number of potential 
data warehouse nodes. The i-th random key corresponds 
to the i-th potential data warehouse node.
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BRKGA for the RCD problem
• Encoding: 

– A vector X of N keys randomly generated in the real 
interval (0,1], where N = |M| is the number of potential 
data warehouse nodes. The i-th random key corresponds 
to the i-th potential data warehouse node.

• Decoder: 
– For i = 1, …, N:  if ½X(i) > , add i-th data warehouse 

node to solution
– If solution is feasible, i.e. all users are covered: STOP
– Else, apply greedy algorithm to cover uncovered user 

nodes.
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BRKGA for the RCD problem

• Size of population: N (number of monitoring nodes)
• Size of elite set: 15% of N
• Size of mutant set: 10% of N
• Biased coin probability: 70%
• Stop after N generations without improvement of 

best found solution
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Another application: Host placement 
for end-to-end monitoring
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Another application: Host placement 
for end-to-end monitoring

• Internet service provider (ISP) delivers virtual private 
network (VPN) service to customers.

• The ISP agrees to send traffic between locations specified 
by the customer and promises to provide certain level of 
service on the connections.

• A key service quality metric is packet loss rate.
• We want to minimize the number of monitoring equipment 

placed in the network to measure packet loss rate: This is a 
type of covering by pairs problem.
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Time (ibm t41 secs)

solution
n100-i2-m100-b100 (opt = 23)

BRKGA solutions Random multi-start solutions

Optimal value
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Real-world instance derived from a proprietary Tier-1
Internet Service Provider (ISP) backbone network using 
OSPF for routing.
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Size of network:  about 1000 nodes, where almost all can
store content and about 90% have content-demanding users.
Over 45 million triples.
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Regenerator location 
problem
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Reference

A. Duarte, R. Martí, M.G.C.R., and R.M.A. Silva, “Randomized 
heuristics for the regenerator location problem,” AT&T Labs 
Research Technical Report, Florham Park, NJ, July 13, 2010.

Tech report version:

http://www.research.att.com/~mgcr/doc/gpr-regenloc.pdf



 Optimization 2011 ✤ July 26, 2011 BRKGA with applications in telecom

Signal regeneration

• Telecommunication systems use optical signals to 
transmit information



 Optimization 2011 ✤ July 26, 2011 BRKGA with applications in telecom

Signal regeneration

• Telecommunication systems use optical signals to 
transmit information

• Strength of signal deteriorates and loses power as it gets 
farther from source



 Optimization 2011 ✤ July 26, 2011 BRKGA with applications in telecom

Signal regeneration

• Telecommunication systems use optical signals to 
transmit information

• Strength of signal deteriorates and loses power as it gets 
farther from source

• Signal must be regenerated periodically to reach 
destination: Regenerators



 Optimization 2011 ✤ July 26, 2011 BRKGA with applications in telecom

Signal regeneration

• Telecommunication systems use optical signals to 
transmit information

• Strength of signal deteriorates and loses power as it gets 
farther from source

• Signal must be regenerated periodically to reach 
destination: Regenerators

• Regenerators are expensive: minimize the number of 
regenerators in the network



 Optimization 2011 ✤ July 26, 2011 BRKGA with applications in telecom

Regenerator location problem (RLP)

• Given:
– Graph G=(V,E), where V are vertices, E are edges, 

where edge (i,j) has a real-valued length d(i,j) > 0
– D is the maximum length that a signal can travel 

before it must regenerated
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Regenerator location problem (RLP)

• Find:
– Paths that connect all pairs of nodes in VV 
– Nodes where it is necessary to locate single 

regenerators 

• Minimize number of deployed regenerators 
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Regenerator location problem (RLP)

• Path between {s,t}  E
– { (s,v[1]), (v[1],v[2]), ...,(v[k],t) } is formed by one or 

more path segments

• Path segment is sequence of consecutive edges
–  { (v[i],v[i+1]), (v[i+1],v[i+2]), ...,(v[q-1],v[q]) } in the 

path satisfying the condition                                   
          d(v[i],v[i+1]) + d(v[i+1],v[i+2])+ + (v[q-1],v[q])  D
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Regenerator location problem (RLP)

• If total length of path is no more than D, then 
path consists of a single path segment

• Otherwise, it consists of one or more segments
– Regenerators will be located in the internal nodes of 

the path
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Regenerator location problem (RLP)

1

2 3

4

5

6

7

60

70

60

90

40
40

150

90

90
70

D = 100

7-node graph with D = 100
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Regenerator location problem (RLP)

1

2 3

4

5

6

7

60

70

60

90

40
40

150

90

90
70

D = 100

(1) Note that:
– D(1,5) = 150 > 100 = D
– Edge (1,5) cannot be part of 

any path
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Regenerator location problem (RLP)

1

2 3

4

5

6

7

60

70

60

90

40
40

150

90

90
70

D = 100

(2) Note that:
– Shortest path from 1 to 3 is     

 { (1,2), (2,3) } with total 
length                                      
     60 + 70 = 130 > 100 = D

– Must be decomposed into two 
path segments { (1,2) } and      
{ (2,3) }  with a regenerator in 
node 2
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Regenerator location problem (RLP)

1

2 3

4

5

6

7

60

70

60

90

40
40

150

90

90
70

D = 100

(3) Note that:
– Shortest feasible path from 1 

to 5 is { (1,2), (2,3), (3,5) } 
with total length                     
60 + 70 + 90 = 220 >             
                              100 = D

– Must be decomposed into 
three path segments { (1,2) },  
{ (2,3) }, and { (3,5) } with 
regenerators in   nodes 2     
and 3
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Regenerator location problem (RLP)

1

2 3

4

5

6

7

60

70

60

90

40
40

150

90

90
70

D = 100

(4) Note that:
– Shortest feasible path from 5 

to 7 is { (5,6), (6,7) } with total 
length 40 + 40 = 80              
                              100 = D

– No regenerator is needed to 
connect nodes 5 and 7
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Regenerator location problem (RLP)

1

2 3

4

5

6

7

60

70

60

90

40
40

150

90

90
70

D = 100

(5) Note that:
– Placing regenerator in       

nodes 2 and 7 allows for 
communication between all 
pairs of nodes in the graph
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Communication graph (Chen et al., 2010)

1

2 3

4

5

6

7

60

70

60

90

40
40

150

90

90
70

G = (V,E)

• Given weighted graph G
– Delete all edges having 

length greater than D
– For all non-adjacent nodes, 

add an edge between them 
of length equal to the 
corresponding shortest path 
in G if it is less than D

– Disregard all length info
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Communication graph (Chen et al., 2010)

1

2 3
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G = (V,E)

1

2 3

4

5

6

7

M = (V,E')
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Communication graph (Chen et al., 2010)

1
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M = (V,E')

• If M is complete, then 
there is no need for 
regenerators
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Communication graph (Chen et al., 2010)

1

2 3

4

5

6

7

M = (V,E')

• If M is complete, then 
there is no need for 
regenerators

• If M is not connected, 
then the problem is 
infeasible
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Communication graph (Chen et al., 2010)

1

2 3

4

5

6

7

M = (V,E')

• If M is complete, then 
there is no need for 
regenerators

• If M is not connected, 
then the problem is 
infeasible

• Otherwise, one or 
more regenerators are 
needed
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Greedy algorithm (Chen et al., 2010)
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Greedy algorithm (Chen et al., 2010)
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• Works on communication graph M

• Input: set of nodes not directly 
connected (NDC) in M and builds a set 
R of regenerator nodes
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M = (V,E')

• Works on communication graph M

• Input: set of nodes not directly 
connected (NDC) in M and builds a set 
R of regenerator nodes

• At each step the procedure determines a 
node u* whose inclusion in R enables 
the connection of the largest number 
g(u*) of yet unconnected pairs X(u*)      
in M
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Greedy algorithm (Chen et al., 2010)

1

2 3

4

5

6

7

M = (V,E')

• Works on communication graph M

• Input: set of nodes not directly 
connected (NDC) in M and builds a set 
R of regenerator nodes

• At each step the procedure determines a 
node u* whose inclusion in R enables 
the connection of the largest number 
g(u*) of yet unconnected pairs X(u*)      
in M

• Node u* is added to R and M is updated
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Greedy algorithm (Chen et al., 2010)

1

2 3

4

5

6

7

M = (V,E')

u X(u) g(u)

1  0
2 { (1,3),(1,4),(1,7),(3,7),

(4,7) }
5

3 { (4,5),(2,5) } 2
4 { (2,6),(3,6) } 2
5 { (3,7),(3,6) } 2
6 { (4,7),(4,5) } 2
7 { (2,6),(2,5) } 2
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Greedy algorithm (Chen et al., 2010)

1

2 3

4

5

6

7

M = (V,E')

u X(u) g(u)

1  0
2 { (1,3),(1,4),(1,7),(3,7),

(4.7) }
5

3 { (4,5),(2,5) } 2
4 { (2,6),(3,6) } 2
5 { (3,7),(3,6) } 2
6 { (4,7),(4,5) } 2
7 { (2,6),(2,5) } 2Add regenerator to node 2



 Optimization 2011 ✤ July 26, 2011 BRKGA with applications in telecom

Greedy algorithm (Chen et al., 2010)

1

2 3

4

5

6

7

M = (V,E')

u X(u) g(u)

1  0
2 { (1,3),(1,4),(1,7),(3,7),

(4.7) }
5

3 { (4,5),(2,5) } 2
4 { (2,6),(3,6) } 2
5 { (3,7),(3,6) } 2
6 { (4,7),(4,5) } 2
7 { (2,6),(2,5) } 2Update M to account for regenerator 

in node 2
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Greedy algorithm (Chen et al., 2010)

1

2 3

4

5

6

7

M = (V,E')

u X(u) g(u)

1  0
- - -
3 { (1,5),(2,5),(4,5) } 3
4 { (1,6),(2,6),(3,6) } 3
5 { (3,6) } 1
6 { (4,5) } 1
7 { (1,5),(1,6),(2,5),(2,6),(3,6),(4,5) } 6
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Greedy algorithm (Chen et al., 2010)

1

2 3

4

5

6

7

M = (V,E')

u X(u) g(u)

1  0
- - -
3 { (1,5),(2,5),(4,5) } 3
4 { (1,6),(2,6),(3,6) } 3
5 { (3,6) } 1
6 { (4,5) } 1
7 { (1,5),(1,6),(2,5),(2,6),(3,6),(4,5) } 6

Add regenerator to node 7
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Greedy algorithm (Chen et al., 2010)

1

2 3

4

5

6

7

M = (V,E')
Update M to account for regenerator 
in node 7

u X(u) g(u)

1  0
- - -
3 { (1,5),(2,5),(4,5) } 3
4 { (1,6),(2,6),(3,6) } 3
5 { (3,6) } 1
6 { (4,5) } 1
7 { (1,5),(1,6),(2,5),(2,6),(3,6),(4,5) } 6
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Greedy algorithm (Chen et al., 2010)

1

2 3

4

5

6

7

M = (V,E')
Since M is complete, all pairs can 
communicate and solution R = {2,7}
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BRKGA for the 
regenerator location 
problem
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Encoding

Solutions are encoded as vectors Y of n = |V| random 
keys, each in the real interval [0,1)

Random key Y[i] corresponds to node i  V
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and a vector of random keys Y

Outputs a set of regenerator nodes R  V
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Decoding 

Takes as input a communication graph M = (V,E') 
and a vector of random keys Y

Outputs a set of regenerator nodes R  V

Sorting Y implies an ordering of V
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Decoding Scan V in order implied by Y

while come pair in V  V cannot 
communicate (M = (V, E') is not 
complete):

     Add next vertex v in order into R

     

     Compute set X of pairs that do     
         not communicate that would if

         v becomes a regenerator 

     Add X to E'

end while

return R

1

2 3

4

5

6

7

M = (V,E')
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Decoding Scan V in order implied by Y

while come pair in V  V cannot 
communicate (M = (V, E') is not 
complete):

     Add next vertex v in order into R

     

     Compute set X of pairs that do     
         not communicate that would if

         v becomes a regenerator 

     Add X to E'

end while

return R

1

2 3

4

5

6

7

X = (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7)



 Optimization 2011 ✤ July 26, 2011 BRKGA with applications in telecom

Decoding Scan V in order implied by Y

while come pair in V  V cannot 
communicate (M = (V, E') is not 
complete):

     Add next vertex v in order into R

     

     Compute set X of pairs that do     
         not communicate that would if

         v becomes a regenerator 

     Add X to E'

end while

return R

1

2 3

4

5

6

7

X = (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7)

i = 1
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Decoding Scan V in order implied by Y

while come pair in V  V cannot 
communicate (M = (V, E') is not 
complete):

     Add next vertex v in order into R

     

     Compute set X of pairs that do     
         not communicate that would if

         v becomes a regenerator 

     Add X to E'

end while

return R

1

2 3

4

5

6

7

X = (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7)

i = 2
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Decoding Scan V in order implied by Y

while come pair in V  V cannot 
communicate (M = (V, E') is not 
complete):

     Add next vertex v in order into R

     

     Compute set X of pairs that do     
         not communicate that would if

         v becomes a regenerator 

     Add X to E'

end while

return R

1

2 3

4

5

6

7

X = (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7)

i = 3
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Decoding Scan V in order implied by Y

while come pair in V  V cannot 
communicate (M = (V, E') is not 
complete):

     Add next vertex v in order into R

     

     Compute set X of pairs that do     
         not communicate that would if

         v becomes a regenerator 

     Add X to E'

end while

return R

1

2 3

4

5

6

7

X = (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7)

i = 4
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Decoding Scan V in order implied by Y

while come pair in V  V cannot 
communicate (M = (V, E') is not 
complete):

     Add next vertex v in order into R

     

     Compute set X of pairs that do     
         not communicate that would if

         v becomes a regenerator 

     Add X to E'

end while

return R

1

2 3

4

5

6

7

M is complete!

R = { 1, 2, 3, 4 }
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Decoding Scan V in order implied by Y

while come pair in V  V cannot 
communicate (M = (V, E') is not 
complete):

     Add next vertex v in order into R

     

     Compute set X of pairs that do     
         not communicate that would if

         v becomes a regenerator 

     Add X to E'

end while

return R

1

2 3

4

5

6

7

M is complete!

R = { 1, 2, 3, 4 } local search
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Routing and 
wavelength assignment 

in optical networks
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assign a wavelength to each of them.
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Routing and wavelength assignment (RWA)

•  Objective: Route a set of connections (called lightpaths) and 
assign a wavelength to each of them.

•  Two lightpaths may use the same wavelength, provided they 
do not share any common link.

•  Connections whose paths share a common link in the network 
are assigned to different wavelengths (wavelength clash 
constraint).

•  If no wavelength converters are available, the same 
wavelength must be assigned along the entire route 
(wavelength continuity constraint).



• Variants of RWA are characterized by different optimization criteria, 
traffic patterns, and whether wavelength conversion is available or 
not. 
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traffic patterns, and whether wavelength conversion is available or 
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• We consider the min-RWA offline variant:
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– No wavelength conversion is possible. 

– Objective is to minimize the number of wavelengths used for routing all 
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• Variants of RWA are characterized by different optimization criteria, 
traffic patterns, and whether wavelength conversion is available or 
not. 

• We consider the min-RWA offline variant:
– Connection requirements are known beforehand.

– No wavelength conversion is possible. 

– Objective is to minimize the number of wavelengths used for routing all 
connections.

– Asymmetric traffic matrices and bidirectional links.

– NP-hard (Erlebach and Jansen, 2001)

Routing and wavelength assignment (RWA)
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Heuristic of N. Skorin-Kapov (EJOR, 2007)

• Associates the min-RWA with the bin packing problem.
– Wavelengths are associated with bins.
– The capacity of a bin is defined as its number of arcs.
– The size of a connection is defined as the number of arcs in its 

shortest path.



Heuristic of N. Skorin-Kapov (EJOR, 2007)

• Associates the min-RWA with the bin packing problem.
– Wavelengths are associated with bins.
– The capacity of a bin is defined as its number of arcs.
– The size of a connection is defined as the number of arcs in its 

shortest path.

• Developed RWA heuristics based on the following classical bin 
packing heuristics:
– First Fit (FF)
– Best Fit (BF)
– First Fit Decreasing (FFD)
– Best Fit Decreasing (BFD)



Heuristic of N. Skorin-Kapov (EJOR, 2007)

• Associates the min-RWA with the bin packing problem.
– Wavelengths are associated with bins.
– The capacity of a bin is defined as its number of arcs.
– The size of a connection is defined as the number of arcs in its 

shortest path.

• Developed RWA heuristics based on the following classical bin 
packing heuristics:
– First Fit (FF)
– Best Fit (BF)
– First Fit Decreasing (FFD)
– Best Fit Decreasing (BFD):  state of the art heuristic for RWA
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Efficient implementation of BFD-RWA                

T.F. Noronha, M.G.C.R., and C.C. Ribeiro,

“Efficient implementations of heuristics for routing and 
wavelength assignment,” in “Experimental Algorithms,” 

7th International Workshop (WEA 2008), C.C. McGeoch 
(Ed.), LNCS,  vol. 5038, pp. 169-180, Springer, 2008.

Tech report version:

http://www.research.att.com/~mgcr/doc/impl_rwa_heur.pdf



BRKGA with applications in telecom

BFD-RWA 
N. Skorin-Kapov (2007); Noronha, R., and Ribeiro (2008)

• Input: 

• A directed graph G representing the network topology.

• A set T of connection requests.

• The value d  of of the maximum number of arcs in each route. It is set to be the 
maximum of the square root of the number of links in the network and the 
diameter of G.

• Starts with only one copy of G (called G
1
).

• Connections are selected according to non-increasing order of the lengths of their 
shortest paths in G

i
.  Ties are broken at random.

• The connection is assigned wavelength i , and the arcs along path are deleted from G
i
. 

• If no existing bin can accommodate the connection with fewer than d  arcs, a new bin is 
created.
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BRKGA for RWA: GA-RWA               

T.F. Noronha, M.G.C.R., and C.C. Ribeiro, “A biased 
random-key genetic algorithm for routing and 
wavelength assignment,” J. of Global Optimization,     
vol. 50, pp. 503–518, 2011.

Tech report version:

                  http://www.research.att.com/~mgcr/doc/garwa-full.pdf
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BRKGA for RWA: GA-RWA
Noronha, R., and Ribeiro (2011)

• Encoding of solution: A vector X of |T| random keys in the 
range [0,1), where T is the set of connection request node 
pairs.

• Decoding: 
– 1) Sort the connection in set T in non-increasing order of       

c(i) = SP(i) 10 + X[i], for each connection i  T.
– 2) Apply BFD-RWA in the order determined in step 1. 

Since there are many ties connection pairs with
The same SP(i) value, in the original algorithm of 
Skorin-Kapov, ties are broken at random.  In the
BRKGA, the algorithm “learns” how to break ties.



Experiments

• Compare multi-start version of Skorin-Kapov's 
heuristic (MS-RWA) with GA-RWA.

• Make 200 independent runs of each heuristic of 
each heuristic on five instances, stopping when 
target solution was found (target was set to be 
best solution found by MS-RWA after 10,000 
multi-start iterations.  

• Plot CDF (runtime distribution) for each heuristic. 
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Concluding remarks
• A small modification of Bean's RKGA results in a BRKGA.

• Though small, this modification, leads to significant 
performance improvements.

• BRKGA are true metaheuristics: they coordinate simple 
heuristics and produce better solutions than the simple 
heuristics alone.

• Problem independent module of a BRKGA needs to be 
implemented once and can be reused for a wide range of 
problems.  User can focus on problem dependent module.

• BRKGA heuristics are highly parallelizable.  Calls to decoder 
are independent.
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Concluding remarks
• BRKGA have been applied in a wide range of application 

areas, including scheduling, packing, cutting, tollbooth 
assignment, ...

• We have had only a small glimpse at BRKGA applications to 
problems arising in telecommunications.

• The BRKGAs described in this talk are all state-of-the-art 
heuristics for these applications

• We are currently working on a number of other applications 
in telecommunications, including the degree-constrained  
and the capacitated spanning tree problems and a 
metropolitan network design problem. 
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These slides and all of the papers cited in this talk 
can be downloaded from my homepage:

http://www2.research.att.com/~mgcr


