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Summary

• Biased random-key genetic algorithms
• Applications in telecommunications

– Routing in IP networks
– Designing survivable IP networks with composite links
– Three-layer metropolitan network design 

– Redundant server location for content distribution
– Routing & wavelength assignment in optical networks

• Concluding remarks
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Biased random-key 
genetic algorithms



 Spring School on Adv. in OR --- May 3, 2011 BRKGA with applications in telecom

Genetic algorithms

Individual: solution

Adaptive methods that are used to solve search
and optimization problems.

Holland (1975)
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Genetic algorithms

Individual: solution
Population: set of fixed number of individuals
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Genetic algorithms evolve population applying
the principle of survival of the fittest.

Genetic algorithms
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Genetic algorithms evolve population applying
the principle of survival of the fittest.

A series of generations are produced by 
the algorithm. The most fit individual of last
generation is the solution. 

Genetic algorithms
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Genetic algorithms evolve population applying
the principle of survival of the fittest.

A series of generations are produced by 
the algorithm. The most fit individual of last
generation is the solution. 

Individuals from one generation are combined
to produce offspring that make up next 
generation.

Genetic algorithms
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Probability of selecting individual to mate
is proportional to its fitness: survival of the 
fittest.

a

b

Genetic algorithms
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a

b

Parents drawn from 
generation K

a

b

Combine
parents

c

c

Child in 
generation K+1

Probability of selecting individual to mate
is proportional to its fitness: survival of the 
fittest.

Genetic algorithms
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Evolution of solutions
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Evolution of solutions
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Evolution of solutions
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Genetic algorithms
with random keys
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GAs and random keys

• Introduced by Bean (1994) 
for sequencing problems.
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GAs and random keys

• Introduced by Bean (1994) 
for sequencing problems.

• Individuals are strings of 
real-valued numbers 
(random keys) in the 
interval [0,1].

S = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
          s(1)   s(2)   s(3)   s(4)    s(5)
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GAs and random keys

• Introduced by Bean (1994) 
for sequencing problems.

• Individuals are strings of 
real-valued numbers 
(random keys) in the 
interval [0,1].

• Sorting random keys results 
in a sequencing order.

S = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
          s(1)   s(2)   s(3)   s(4)    s(5)

S' = ( 0.05, 0.19, 0.25, 0.67, 0.89 )
          s(4)   s(2)   s(1)   s(3)    s(5)
Sequence: 4 – 2 – 1 – 3 – 5 
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GAs and random keys

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = (                                              )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25                                      )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90                             )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90, 0.76                    )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90, 0.76, 0.05          )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90, 0.76, 0.05, 0.89 )

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele to 
the child.
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GAs and random keys

a = ( 0.25, 0.19, 0.67, 0.05, 0.89 )
b = ( 0.63, 0.90, 0.76, 0.93, 0.08 )
c = ( 0.25, 0.90, 0.76, 0.05, 0.89 )

If every random-key array corresponds
to a feasible solution: Mating always
produces feasible offspring.

• Mating is done using 
parametrized uniform 
crossover   (Spears & DeJong , 1990)

• For each gene, flip a biased 
coin to choose which 
parent passes the allele to 
the child.
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GAs and random keys

Initial population is made 
up of P chromosomes, each 
with N genes, each having 
a value (allele) generated 
uniformly at random in the 
interval [0,1].
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GAs and random keys
At the K-th generation, 
compute the cost of each 
solution and partition the 
solutions into two sets: 
elite solutions, non-elite 
solutions. Elite set should 
be smaller of the two sets 
and contain best solutions.

 Elite solutions

Population K

Non-elite
solutions



 Spring School on Adv. in OR --- May 3, 2011 BRKGA with applications in telecom

GAs and random keys
Evolutionary dynamics

Population K Population K+1

 Elite solutions

Non-elite
solutions
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GAs and random keys
Evolutionary dynamics
– Copy elite solutions from population 

K to population K+1  Elite solutions

Population K+1Population K

 Elite solutions

Non-elite
solutions
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GAs and random keys
Evolutionary dynamics
– Copy elite solutions from population 

K to population K+1

– Add R random solutions (mutants) 
to population K+1

 Elite solutions

Mutant
solutions

Population K+1Population K

 Elite solutions

Non-elite
solutions
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Biased random key GA
Evolutionary dynamics
– Copy elite solutions from population 

K to population K+1

– Add R random solutions (mutants) 
to population K+1

– While K+1-th population < P
• BIASED RANDOM KEY GA: Mate 

elite solution with non elite to 
produce child in population K+1. 
Mates are chosen at random.

 Elite solutions

Mutant
solutions

X

Population K+1

Probability
child inherits
allele of elite 
parent > 0.5Population K

 Elite solutions

Non-elite
solutions

Mutant
solutions
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Observations

• Random method: keys are randomly generated so 
solutions are always random vectors

• Elitist strategy:  best solutions are passed without 
change from one generation to the next

• Child inherits more characteristics of elite parent: 
one parent is always selected (with replacement) 
from the small elite set and probability that child 
inherits key of elite parent > 0.5 

• No mutation in crossover: mutants are used 
instead 
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Time (ibm t41 secs)

solution
n100-i2-m100-b100 (opt = 23)

BRKGA solutions Random multi-start solutions

Optimal value
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Random-keys vs biased random-keys

• How do random-key GAs (Bean, 1994) and 
biased random-key GAs differ?
– A random-key GA selects both parents at random 

from the entire population for crossover: some pairs 
may not have any elite solution

– A biased random-key GA always has an elite parent 
during crossover 

– Parametrized uniform crossover makes it more likely 
that child inherits characteristics of elite parent in 
biased random-key GA while it does not in random-
key GA (survival of the fittest)
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Compare BRKGA with two variants of
RKGA using time-to-target plots.

Run each heuristic many times 
(independently, i.e. with different 
random seeds). Stop when optimal is
found.

Plot CDF for each heuristic.
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BRKGA – Biased random-key GA
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BRKGA – Biased random-key GA
RKGA – Bean's random-key GA
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BRKGA – Biased random-key GA
RKGA – Bean's random-key GA
RKGA-ord – Bean's random-key GA 
    with probability of child inheriting 
    allele of most fit parent > 0.5 

220 node network monitor location example

200 runs
200 runs

84 runs
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Decoders
• A decoder is a deterministic algorithm that takes as input a random-key 

vector and returns a feasible solution of the optimization problem and 
its cost.

• Bean (1994) proposed decoders based on sorting the random-key 
vector to produce a sequence.

• A random-key GA searches the solution space indirectly by searching 
the space of random keys and using the decoder to evaluate fitness of 
the random key.

[0,1]N Solution space
of optimization
problem

decoder
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Decoders

[0,1]N Solution space
of optimization
problem

decoder

Search solution
space indirectly

• A decoder is a deterministic algorithm that takes as input a random-key 
vector and returns a feasible solution of the optimization problem and 
its cost.

• Bean (1994) proposed decoders based on sorting the random-key 
vector to produce a sequence.

• A random-key GA searches the solution space indirectly by searching 
the space of random keys and using the decoder to evaluate fitness of 
the random key.
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Decoders
• A decoder is a deterministic algorithm that takes as input a random-key 

vector and returns a feasible solution of the optimization problem and 
its cost.

• Bean (1994) proposed decoders based on sorting the random-key 
vector to produce a sequence.

• A random-key GA searches the solution space indirectly by searching 
the space of random keys and using the decoder to evaluate fitness of 
the random key.
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Decoders
• A decoder is a deterministic algorithm that takes as input a random-key 

vector and returns a feasible solution of the optimization problem and 
its cost.

• Bean (1994) proposed decoders based on sorting the random-key 
vector to produce a sequence.

• A random-key GA searches the solution space indirectly by searching 
the space of random keys and using the decoder to evaluate fitness of 
the random key.

[0,1]N Solution space
of optimization
problem

decoder

Search solution
space indirectly
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Framework for biased random-key genetic algorithms

Generate P vectors 
of random keys 

Decode each vector 
of random keys 

Stopping rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions 
to next population

Generate mutants in 
next population

Combine elite and
non-elite solutions
and add children to

next population

no

stop

yes
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Framework for biased random-key genetic algorithms

Generate P vectors 
of random keys 

Decode each vector 
of random keys 

Stopping rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions 
to next population

Generate mutants in 
next population

Combine elite and
non-elite solutions
and add children to

next population

stop

Problem independent

no yes
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Framework for biased random-key genetic algorithms

Generate P vectors 
of random keys 

Decode each vector 
of random keys 

Stopping rule
satisfied?

Sort solutions by
their costs

Classify solutions as
elite or non-elite

Copy elite solutions 
to next population

Generate mutants in 
next population

Combine elite and
non-elite solutions
and add children to

next population

stop

Problem independent

no yes

Problem dependent
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Specifying a biased random-key GA

• Encoding is always done the same way, i.e. with a vector of 
N random-keys (parameter N must be specified)

• Decoder that takes as input a vector of N random-keys and 
outputs the corresponding solution of the combinatorial 
optimization problem and its cost (this is usually a heuristic)

• Parameters:
– Size of population

– Size of elite partition

– Size of mutant set

– Child inheritance probability

– Stopping criterion
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Specifying a biased random-key algorithm

• Encoding is always done the same way, i.e. with a vector of 
N random-keys (parameter N must be specified)

• Decoder that takes as input a vector of N random-keys and 
outputs the corresponding solution of the combinatorial 
optimization problem and its cost (this is usually a heuristic)

• Parameters:
– Size of population:  a function of N, say N or 2N

– Size of elite partition

– Size of mutant set

– Child inheritance probability

– Stopping criterion
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Specifying a biased random-key algorithm

• Encoding is always done the same way, i.e. with a vector of 
N random-keys (parameter N must be specified)

• Decoder that takes as input a vector of N random-keys and 
outputs the corresponding solution of the combinatorial 
optimization problem and its cost (this is usually a heuristic)

• Parameters:
– Size of population:  a function of N, say N or 2N

– Size of elite partition: 15-25% of population

– Size of mutant set

– Child inheritance probability

– Stopping criterion
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Specifying a biased random-key algorithm

• Encoding is always done the same way, i.e. with a vector of 
N random-keys (parameter N must be specified)

• Decoder that takes as input a vector of N random-keys and 
outputs the corresponding solution of the combinatorial 
optimization problem and its cost (this is usually a heuristic)

• Parameters:
– Size of population:  a function of N, say N or 2N

– Size of elite partition: 15-25% of population

– Size of mutant set: 5-15% of population

– Child inheritance probability

– Stopping criterion
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Specifying a biased random-key algorithm

• Encoding is always done the same way, i.e. with a vector of 
N random-keys (parameter N must be specified)

• Decoder that takes as input a vector of N random-keys and 
outputs the corresponding solution of the combinatorial 
optimization problem and its cost (this is usually a heuristic)

• Parameters:
– Size of population:  a function of N, say N or 2N

– Size of elite partition: 15-25% of population

– Size of mutant set: 5-15% of population

– Child inheritance probability: > 0.5, say 0.7

– Stopping criterion
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Specifying a biased random-key algorithm

• Encoding is always done the same way, i.e. with a vector of 
N random-keys (parameter N must be specified)

• Decoder that takes as input a vector of N random-keys and 
outputs the corresponding solution of the combinatorial 
optimization problem and its cost (this is usually a heuristic)

• Parameters:
– Size of population:  a function of N, say N or 2N

– Size of elite partition: 15-25% of population

– Size of mutant set: 5-15% of population

– Child inheritance probability: > 0.5, say 0.7

– Stopping criterion: e.g. time, # generations, solution quality,              
# generations without improvement
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genetic algorithms for combinatorial optimization,” 
J. of Heuristics, published online 31 August 2010.
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Applications in 
telecom
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Applications in telecom

• Routing in IP networks
• Design of survivable IP networks
• Host placement for path-disjoint monitoring
• Routing and wavelength assignment in optical 

networks
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OSPF routing in IP 
networks
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The Internet

• The Internet is composed of 
many (inter-connected) 
autonomous systems (AS).

• An AS is a network controlled 
by a single entity, e.g. ISP, 
university, corporation, 
country, ...
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Routing

• A packet is sent from a origination router S to a 
destination router T.

• S and T may be in
– same AS:  
– different ASes: 
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Routing

• A packet is sent from a origination router S to a 
destination router T.

• S and T may be in
– same AS:  IGP routing
– different ASes: 
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Routing

• A packet is sent from a origination router S to a 
destination router T.

• S and T may be in
– same AS:  IGP routing
– different ASes: BGP routing
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IGP Routing

• IGP (interior gateway 
protocol) routing is 
concerned with 
routing within an AS.

S

T

AS
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• IGP (interior gateway 
protocol) routing is 
concerned with 
routing within an AS.
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IGP Routing

• IGP (interior gateway 
protocol) routing is 
concerned with 
routing within an AS.

• Routing decisions are 
made by AS operator.

S

T

AS
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BGP Routing

• BGP (border gateway 
protocol) routing deals 
with routing between 
different ASes.

AS

AS

AS



 Spring School on Adv. in OR --- May 3, 2011 BRKGA with applications in telecom

BGP Routing

• BGP (border gateway 
protocol) routing deals 
with routing between 
different ASes.

AS

AS

AS

Peering points

Peering points



 Spring School on Adv. in OR --- May 3, 2011 BRKGA with applications in telecom
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protocol) routing deals 
with routing between 
different ASes.
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BGP Routing
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different ASes.

S

T

AS

AS

AS

Peering points

Peering points



 Spring School on Adv. in OR --- May 3, 2011 BRKGA with applications in telecom

BGP Routing

• BGP (border gateway 
protocol) routing deals 
with routing between 
different ASes.

S

T

AS

AS

AS

Peering points

Peering points

Ingress point
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BGP Routing

• BGP (border gateway 
protocol) routing deals 
with routing between 
different ASes.
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BGP Routing

• BGP (border gateway 
protocol) routing deals 
with routing between 
different ASes.

S

T

AS

AS

AS

Peering points

Peering points

Ingress point

Egress point



 Spring School on Adv. in OR --- May 3, 2011 BRKGA with applications in telecom

BGP Routing

• BGP (border gateway 
protocol) routing deals 
with routing between 
different ASes.

• AS operators choose 
egress point and route 
in AS from ingress 
point to egress point.

S

T

AS

AS

AS

Peering points

Peering points

Ingress point

Egress point
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IGP Routing
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OSPF routing

• Given a network G = (N,A), where N is the set of 
routers and A is the set of links. 
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OSPF routing

• Given a network G = (N,A), where N is the set of 
routers and A is the set of links. 

• The OSPF (open shortest path first) routing 
protocol assumes each link a has a weight w(a) 
assigned to it so that a packet from a source 
router s to a destination router t is routed on a 
shortest weight path from s to t.
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OSPF routing
• Given a network G = (N,A), where N is the set of 

routers and A is the set of links. 
• The OSPF (open shortest path first) routing 

protocol assumes each link a has a weight w(a) 
assigned to it so that a packet from a source 
router s to a destination router t is routed on a 
shortest weight path from s to t.

s
t
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s
t

OSPF routing
• Given a network G = (N,A), where N is the set of 

routers and A is the set of links. 
• The OSPF (open shortest path first) routing 

protocol assumes each link a has a weight w(a) 
assigned to it so that a packet from a source 
router s to a destination router t is routed on a 
shortest weight path from s to t.
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s
t

Traffic splitting

OSPF routing
• Given a network G = (N,A), where N is the set of 

routers and A is the set of links. 
• The OSPF (open shortest path first) routing 

protocol assumes each link a has a weight w(a) 
assigned to it so that a packet from a source 
router s to a destination router t is routed on a 
shortest weight path from s to t.
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OSPF routing
• By setting OSPF weights appropriately, one can do traffic 

engineering, i.e. route traffic so as to optimize some 
objective (e.g. minimize congestion, maximize 
throughput, etc.).

● Some recent papers on this topic:
– Fortz & Thorup (2000, 2004)
– Ramakrishnan & Rodrigues (2001)
– Sridharan, Guérin, & Diot (2002)
– Fortz, Rexford, & Thorup (2002)
– Ericsson, Resende, & Pardalos (2002)
– Buriol, Resende, Ribeiro, & Thorup (2002, 2005)
– Reis, Ritt, Buriol, & Resende (2011)
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● By setting OSPF weights appropriately, one can do 
traffic engineering, i.e. route traffic so as to optimize 
some objective (e.g. minimize congestion, maximize 
throughput, etc.).

• Some recent papers on this topic:

– Fortz & Thorup (2000, 2004)

– Ramakrishnan & Rodrigues (2001)

– Sridharan, Guérin, & Diot (2002)

– Fortz, Rexford, & Thorup (2002)

– Ericsson, Resende, & Pardalos (2002)

– Buriol, Resende, Ribeiro, & Thorup (2002, 2005)

– Reis, Ritt, Buriol & Resende (2011)

OSPF routing
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Packet routing

router

router

router

router

router

When packet arrives at router,
router must decide where to
send it next.

Packet’s final 
destination.

Routing consists in finding a
link-path from source to 
destination.

D1

D2

D3

D4

R1

R2

R3

R4 Routing table
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OSPF routing

• Assign an integer weight ∈ [1, wmax ] to each link 
in AS.   In general, wmax = 65535=216 −1.

• Each router computes tree of shortest weight 
paths to all other routers in the AS, with itself as 
the root, using Dijkstra’s algorithm.
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OSPF routing
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D1

D2

D3

D4

R1

R1, R2

R2

R3

Routing table
Routing table is filled
with first hop routers
for each possible destination.
In case of multiple shortest 
paths, flow is evenly split.

D5

D6

R1

R3

321
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4
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First hop routers.

Destination routers

OSPF routing
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OSPF weight setting

• OSPF weights are assigned by network operator.
– CISCO assigns, by default, a weight proportional to the 

inverse of the link bandwidth (Inv Cap).
– If all weights are unit, the weight of a path is the number of 

hops in the path.

• We propose two BRKGA to find good OSPF weights.
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Minimization of congestion

• Consider the directed capacitated network G = (N,A,c), 
where N  are routers, A  are links, and ca is the capacity 
of link a ∈ A.

• We use the measure of Fortz & Thorup (2000) to 
compute congestion:

                   Φ = Φ1(l1) + Φ2(l2) + … + Φ|A|(l|A|) 
    where la  is the load on link a ∈ A, 

              Φa(la) is piecewise linear and convex,

              Φa(0) = 0, for all a ∈ A.
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Piecewise linear and convex Φa(la) 
link congestion measure 
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OSPF weight setting problem

• Given a directed network G = (N, A ) with link 
capacities ca ∈ A  and demand matrix D = (ds,t ) 
specifying a demand to be sent from node s  to   
node t :
– Assign weights wa ∈ [1, wmax ] to each link a ∈ A, 

such that the objective function Φ is minimized 
when demand is routed according to the OSPF 
protocol.
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BRKGA for OSPF routing in IP networks                     

M. Ericsson, M.G.C.R., & P.M. Pardalos, “A genetic 
algorithm for the weight setting problem in OSPF 
routing,” J. of Combinatorial Optimization, vol. 6, pp. 
299-333, 2002.

http://www2.research.att.com/~mgcr/doc/gaospf.pdf
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BRKGA for OSPF routing in IP networks                    
Ericsson, R., & Pardalos (J. Comb. Opt., 2002)

• Chromosome:
– A vector X of N random keys, where N is the number of links. The 

i-th random key corresponds to the i-th link weight.

• Decoder:
– For i = 1,N:  set w(i) = ceil ( X(i) × w

max
 )

– Compute shortest paths and route traffic according to OSPF.
– Compute load on each link, compute link congestion, add up all 

link congestions to compute network congestion.
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cost
GA solutions

Tier-1 ISP backbone network (90 routers, 274 links)

generation

LP lower 
bound
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Improved BRKGA for OSPF routing in IP networks             

        

L.S. Buriol, M.G.C.R., C.C. Ribeiro, and M. Thorup, “A 
hybrid genetic algorithm for the weight setting problem 
in OSPF/IS-IS routing,” Networks, vol. 46, no. 1, pp. 36-
56, 2005.

http://www2.research.att.com/~mgcr/doc/hgaospf.pdf
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Improved BRKGA for OSPF routing in IP networks          
Buriol, R., Ribeiro, and Thorup (Networks, 2005)

 Elite solutions

• Chromosome:
– A vector X of N random keys, where N is the number of links. 

The i-th random key corresponds to the i-th link weight.

• Decoder:

– For i = 1,N:  set w(i) = ceil ( X(i) × w
max

 )

– Compute shortest paths and route traffic according to OSPF.
– Compute load on each link, compute link congestion, add up 

all link congestions to compute network congestion.
– Apply fast local search to improve weights.
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Decoder has a local search phase

Elite

Non-elite X Local search
Pop \ 

{ Elite } \ 
{ Mutants }
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Fast local search

• Let A* be the set of five arcs a ∈ A  having 
largest Φa values.

• Scan arcs a ∈ A* from largest to smallest Φa:

 Increase arc weight, one unit at a time, in the range  

      [wa , wa + (wmax – wa )/4 ]
 If total cost Φ is reduced, restart local search.
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Effect of decoder with fast local search 
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R., and Pardalos 
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Improved: Buriol, R., 
Ribeiro, and Thorup 
(2005)

LP lower bound



 Spring School on Adv. in OR --- May 3, 2011 BRKGA with applications in telecom

Effect of decoder with fast local search 
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t ime (sec o n ds)

Improved BRKGA:
  finds solutions faster

  finds better solutions
Original: Ericsson, 
R., and Pardalos 
(2002)

Improved: Buriol, R., 
Ribeiro, and Thorup 
(2005)

LP lower bound
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DEFT routing in IP 
networks
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DEFT routing

• Proposed by Dahai Xu, Mung Chiang, and 
Jennifer Rexford, DEFT: Distributed 
Exponentially-weighted Flow spliTting, INFOCOM 
2007

• Flow is routed on all links that lead to the 
destination. An exponential penalty  is used to 
assign less flow to links that are on longer paths.
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DEFT routing

• Consider each forward link 
(u,v) outgoing a given node u. 

• Denote by w
u,v

 the real-valued 

weight of link (u,v) and dt(u) as 
the distance of node u from 
target t.

• The gap ht(u,v) between u and 
v is calculated as:                     
                                                

    ht(u,v) =   dt(v) + w
u,v
– dt(u)  

                                    
                                    
                 

u

x

v

y

t

dt(v)

dt(u)
w

u,v
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DEFT routing

• Exponential function:                                                                  
                         if dt(u) > dt(v) then Γ[ht(u,v)] = exp[–ht(u,v)],      
                                              otherwise Γ[ht(u,v)] = 0                
                             

• The total flow ft(u) out of node u and destined to node t is split 
according to:                                                                              
                           ft(u,v) = ft(u) Γ[ht(u,v)]/Σ

(u,j)∈E
Γ[ht(u,j)]
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BRKGA for DEFT weight setting                     

R. Reis, M. Ritt, L.S. Buriol, and M.G.C.R., “A biased 
random-key genetic algorithm for OSPF and DEFT 
routing to minimize network congestion,” International 
Transactions in Operational Research, vol. 18, pp. 401-
423, 2011.

Tech report version:

http://www.research.att.com/~mgcr/doc/brkga-deft-ospf.pdf
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BRKGA for DEFT weight setting
Reis, Ritt, Buriol, and R. (ITOR, 2011) 

• Similar to improved BRKGA for OSPF weight 
setting
– Decoder with fast local search

• Decoder is the only difference
– weights are set as in improved BRKGA for OSPF
– shortest paths and gaps are determined, penalties 

defined, and flows computed
– fast local search is adapted for DEFT
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Experiments

• 6 instances with 7 different demand matrices
• Results are averages over 3 random seeds
• Stopping criterion: 2000 generations or 500 

generations without improvement
• Each run takes about 1 hour on a SGI Altrix 

(1.6Ghz Itanium 2 processor)
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OSPF vs. DEFT
Two level hierarchy with 50 nodes

hier50a
148 links

Hier50b
212 links
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OSPF vs. DEFT
Two level hierarchy with 100 nodes

Hier100
280 links

Hier100a
360 links
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OSPF vs. DEFT

Tier-1 ISP
90 nodes, 274 links

Waxman
50 nodes, 
169 links
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Survivable IP 
network design
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Survivable IP network design                   

L.S. Buriol, M.G.C.R., and M. Thorup, “Survivable IP 
network design with OSPF routing,” Networks, vol. 49, 
pp. 51-64, 2007.

Tech report version:

http://www.research.att.com/~mgcr/doc/gamult.pdf
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Survivable IP network design
Buriol, R., & Thorup (Networks, 2007)

• Given 
– directed graph G = (N,A), where 

N is the set of routers, A is the 
set of potential arcs where 
capacity can be installed, 

– a demand matrix D that for 
each pair (s,t) ∈ N×N, specifies 
the demand D(s,t) between s 
and t,

– a cost K(a) to lay fiber on arc a 

– a capacity increment C for the 
fiber.

• Determine 
– OSPF weight w(a) to assign to each 

arc a ∈ A,

– which arcs should be used to deploy 
fiber and how many units 
(multiplicities) M(a) of capacity C 
should be installed on each arc          
a ∈ A,

• such that all the demand can be routed 
on the network even when any single 
arc fails.

• Min total design cost = ∑
a∈A 

M(a)×K(a). 
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Survivable IP network design

 Elite solutions

• Chromosome:
– A vector X of N random keys, where N is the number of links. The 

i-th random key corresponds to the i-th link weight.

• Decoder:
– For i = 1,N:  set w(i) = ceil ( X(i) × w

max
 )

– For each failure mode:  route demand according to OSPF and for 
each arc a∈A determine the load on arc a. 

– For each arc a∈A, determine the multiplicity M(a) using the 
maximum load for that arc over all failure modes. 

– Network design cost = ∑
a∈A 

 M(a) ×  K(a)
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Computing the “fitness” of a solution
(single link failure case)

Determine load L(a)
 on each arc a ∈A.

For each arc a ∈A, set 
maxL(a) =  max{L(a), maxL(a)}

For each arc e ∈A,
compute M(a)

Route all demand
on shortest 
path graph

Determine load L(a)
 on each arc a ∈A.

For each arc a ∈A,
set maxL(a) = 

max{L(a),maxL(a)}

For each arc e ∈A,
remove arc e from 

network G.

Compute shortest
path graph on 

G \ {e}

Route all demand
on shortest 
path graph

For each arc  a ∈A, set 
M(a) = 1; maxL(a) = –∞ 

Any M(a)
changed?

yes

no, then stop
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Composite-link design
• In Buriol, Resende, and Thorup (2006)

– links were all of the same type,
– only the link multiplicity had to be determined.

● Now consider composite links. Given a load L(a) on arc a, we 
can compose several different link types that sum up to the 
needed capacity c(a) ≥ L(a):
– c(a) = ∑

t used in arc a 
M(t) × γ(t), where

– M(t) is the multiplicity of link type t
– γ(t) is the capacity of link type t
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Composite-link design
● In Buriol, Resende, and Thorup (2006)

– links were all of the same type,
– only the link multiplicity had to be determined.

• Now consider composite links. Given a load L(a) on arc a, we 
can compose several different link types that sum up to the 
needed capacity c(a) ≥ L(a):

– c(a) = ∑
t used in arc a 

M(t) × γ(t), where

– M(t) is the multiplicity of link type t

– γ(t) is the capacity of link type t
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Composite-link design

• Link types = { 1, 2, ..., T }
• Capacities = { c(1), c(2), ..., c(T) } : c(i) < c(i+1)
• Prices / unit length = { p(1), p(2), ..., p(T) }: p(i) < p(i+1)
● Assumptions:

– [p(T)/c(T)] < [p(T–1)/c(T–1)] < ··· < [p(1)/c(1)], i.e. price 
per unit of capacity is smaller for links with greater capacity

– c(i) = α × c(i–1), for α ∈ N, α > 1, i.e. capacities are 
multiples of each other by powers of α
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Composite-link design

• Link types = { 1, 2, ..., T }
• Capacities = { c(1), c(2), ..., c(T) } : c(i) < c(i+1)
• Prices / unit length = { p(1), p(2), ..., p(T) }: p(i) < p(i+1)
• Assumptions:

– [p(T)/c(T)] < [p(T–1)/c(T–1)] < ··· < [p(1)/c(1)], i.e. price 
per unit of capacity is smaller for links with greater capacity

– c(i) = α × c(i–1), for α ∈ N, α > 1, i.e. capacities are 
multiples of each other by powers of α
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Composite-link design
• Link types = { 1, 2, ..., T }
• Capacities = { c(1), c(2), ..., c(T) } : c(i) < c(i+1)
• Prices / unit length = { p(1), p(2), ..., p(T) }: p(i) < p(i+1)
• Assumptions:

– [p(T)/c(T)] < [p(T–1)/c(T–1)] < ··· < [p(1)/c(1)]: economies of 
scale

– c(i) = α × c(i–1), for α ∈ N, α > 1,  e.g.                       
c(OC192) = 4 × c(OC48);  c(OC48) = 4 × c(OC12);       
c(OC12) = 4 × c(OC3);

OC3 OC192OC48OC12

155 Mb/s 10 Gb/s 2.5 Gb/s 622 Mb/s α = 4 
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Survivable composite link IP network design

 Elite solutions

• Chromosome:
– A vector X of N random keys, where N is the number of links. The 

i-th random key corresponds to the i-th link weight.

• Decoder:
– For i = 1,N:  set w(i) = ceil ( X(i) × w

max
 )

– For each failure mode:  route demand according to OSPF and for 
each arc i∈A determine the load on arc i. 

– For each arc i∈A, determine the multiplicity M(t,i) for each link 
type t using the maximum load for that arc over all failure modes. 

– Network design cost = ∑
i∈A 

 ∑
t used in arc i 

M(t,i) ×  p(t)
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Computing the “fitness” of a solution
(single link failure case)

Set k = T

Input 
load L

Use as many as 
possible ( L/c(k) ) of 

type k links without 
exceeding the load L

Compute cost π(k) of
satisfying remaining
load with link type k

 Set k = k – 1

Let k*=argmin { π(k) }

yes

no

Update load: 
L = L – L/c(k)

Release links of types
k*– 1, ..., 1 and use

 L/c(k*) of type k* links

done

k = 0 ?
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• Load on link: L =1090
• 3 link types: T = { 1, 2, 3 }
• Capacities: C = { 1, 4, 16 }

• Prices: P = { 50, 90, 100 }

An example
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• L = 1090
• T = { 1, 2, 3 }
• C = { 1, 4, 16 }
• P = { 50, 90, 100 }

• P(1) < P(2) < P(3)
• C(3) = 4 C(2)  
• C(2) = 4 C(1)
• P/C = { 50, 22.5, 6.25 }
• P(1)/C(1) > P(2)/C(2) > 

P(3)/C(3)

An example
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• L = 1090
• T = { 1, 2, 3 }
• C = { 1, 4, 16 }
• P = { 50, 90, 100 }

• K = |T| = 3
• L = 1090
• M(3) = floor[1090/16] = 

68 links of type 3

• (3) = 6900
• L = 1090 – 1088 = 2

An example
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• L = 1090
• T = { 1, 2, 3 }
• C = { 1, 4, 16 }
• P = { 50, 90, 100 }

• (3) = 6900; M(3) = 68

• K = |T| = 2
• L = 2
• M(2) = floor[2/4] = 0 

links of type 2
• (2) = 90
• L = 2 – 0 = 2

An example
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• L = 1090
• T = { 1, 2, 3 }
• C = { 1, 4, 16 }
• P = { 50, 90, 100 }

• (3) = 6900; M(3) = 68
• (2) = 90; M(2) = 0 

• K = |T| = 1
• L = 2
• M(1) = floor[2/1] = 2 

links of type 1
• (1) = 100
• L = 2 – 2 = 0

An example
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• L = 1090
• T = { 1, 2, 3 }
• C = { 1, 4, 16 }
• P = { 50, 90, 100 }

• (3) = 6900
• (2) = 90 ::: minimum
• (1) = 100

• Use M(3) = 68 and 
M(2) = ceil (2/4) = 1

• and M(1) = 0

 

An example
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• L = 1090
• T = { 1, 2, 3 }
• C = { 1, 4, 16 }
• P = { 50, 90, 100 }

• (3) = 6900
• (2) = 90 ::: minimum
• (1) = 100

• Use M(3) = 68 and 
M(2) = ceil (2/4) = 1

• and M(1) = 0

Indeed, cost of 
M=(0,1,68) = 6990 
is less than cost of 
M=(1,0,68) = 7000

 

An example
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Experimental results

● Use a “real” network with 54 routers and 278 arcs.
● Three link types used: { 1, 2, 3 }
● c(2) = 4 c(1);   c(3) = 16 c(1)
● p(2)/c(2) = 0.95 p(1)/c(1);   p(3)/c(3) = 0.90 p(1)/c(1)
● All four heuristics tested.  Min cost k types was tested 

for k=1 and k=2.
● GA was run 100, 200, 300, ..., 1000 generations and 

costs were recorded for each heuristic.
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Experimental results

● Use a “real” network with 54 routers and 278 arcs.
● Three link types used: { 1, 2, 3 }
● c(2) = 4 c(1);   c(3) = 16 c(1)
● p(2)/c(2) = 0.95 p(1)/c(1);   p(3)/c(3) = 0.90 p(1)/c(1)
● All four heuristics tested.  Min cost k types was tested 

for k=1 and k=2.
● GA was run 100, 200, 300, ..., 1000 generations and 

costs were recorded for each heuristic.
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min multiplicities

min cost 1 type
min capacitymin cost 2 typesmin cost
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Three-layer metropolitan 
network design problem
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Summary

• Three-layer metropolitan network design problem
• Biased random-key genetic algorithms (BRKGAs)
• BRKGA for 3-layer metro network design
• Implementation details
• An example of metropolitan network design by 

BRKGA
• Concluding remarks
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Problem data

• Graph representing network
– Set of nodes: central offices and demand points
– Set of edges: (i, j) where i,j are nodes

• Loops (i,i) are allowed
• Parallel edges may exist
• Two types: FIBER (1 GigE and 16 GigE) and           

ROADM (reconfigurable optical add-drop multiplexor)

• Matrix of peer-to-peer traffic
• Vectors of traffic to and from VPLS-PE (backbone)
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• Previously deployed equipment
– S-c: switch deployed on customer premises; connects 

to a small Ethernet switch (S-0) or medium Ethernet 
switch (S-1) via simple path

– VPLS-PE (Virtual Private LAN Service – Provider Edge): 
gateway to IP common backbone

Problem data
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Equipment to be deployed

• S-0: aggregates up to 19 S-c switches
– Connects to an S-1 via two node/edge disjoint paths

• S-1: aggregates up to 360 S-c and S-0 switches
– Connects to a pair of S-2 Ethernet switches via node/edge 

disjoint paths
– Two models of S-1 Ethernet switches

• S-2: aggregates up to 14 S-1 Ethernet switches
– Connects to at least two other S-2s via disjoint paths
– Two models of S-2 Ethernet switches
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Connection cost: S-c to S-1 on fiber

S-1
fiber cost per mile

1 GigE card cost (function of distance)

distance ≤ 35 miles
S-c
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Connection cost: S-c to S-1 on fiber/ROADM

S-1

1 GigE card cost (function of distance)

ROADM

MUXponder + card

S-c
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Connection cost: S-c to S-1 on fiber/ROADM

fiber cost per mile

ROADM

ROADM cost: hop-on, pass-through ×
number of hops, hop-off

distance ≤ 35 miles

distance ≤ 35 miles

S-c S-1
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Connection cost: S-1 to S-2 on fiber

fiber cost per mile

10 GigE card cost (function of distance)

distance ≤ 45 miles
S-1 S-2



 Spring School on Adv. in OR --- May 3, 2011 BRKGA with applications in telecom

Connection cost: S-2 to S-2 on fiber

S-2
fiber cost per mile

10 GigE card cost (function of distance)

distance ≤ 45 miles
S-2
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Connection cost: S-2 to VPLS-PE on fiber

fiber cost per mile

10 GigE card cost (function of distance)

distance ≤ 45 miles
S-2 VPLS-PE
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Connection cost: S-1 to S-2 on fiber/ROADM

S-2S-1

 fiber cost per mile

10 GigE card cost (function of distance)

ROADM

ROADM cost: hop-on, pass-through ×
number of hops, hop-off

Transponder + card

distance ≤ 45 miles

distance ≤ 45 miles
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Connection cost: S-2 to S-2 on fiber/ROADM

S-2S-2

 fiber cost per mile

10 GigE card cost (function of distance)

ROADM

ROADM cost: hop-on, pass-through ×
number of hops, hop-off

Transponder + card

distance ≤ 45 miles

distance ≤ 45 miles
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Connection cost: S-2 to VPLS-PE on fiber/ROADM

VPLS-PES-2

 fiber cost per mile

10 GigE card cost (function of distance)

ROADM

ROADM cost: hop-on, pass-through ×
number of hops, hop-off

Transponder + card

distance ≤ 45 miles

distance ≤ 45 miles
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Target topology
Determine:

– What equipment to deploy in 
each central office

• Observing limits (max S-0, 
S-1, S-2, ...) of each central 
office

– How to establish links 
connecting equipment

• Obeying topology and 
diversity

• Maximum length of fiber 
connection

• Supporting traffic to and 
from demand points
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Target topology

Determine:
– What equipment to deploy in 

each central office

• Observing limits (max S-0, 
S-1, S-2, ...) of each central 
office

– How to establish links 
connecting equipment

• Obeying topology and 
diversity

• Maximum length of fiber 
connection

• Supporting traffic to and 
from demand points

Objective:
– Minimize equipment and 

connection costs
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Key decisions

• Nodes that will host S-1s



 Spring School on Adv. in OR --- May 3, 2011 BRKGA with applications in telecom

Key decisions

• Nodes that will host S-1s
• Nodes that will host S-2s



 Spring School on Adv. in OR --- May 3, 2011 BRKGA with applications in telecom

Key decisions

• Nodes that will host S-1s
• Nodes that will host S-2s
• Connection of S-c to S-0 or S-1s



 Spring School on Adv. in OR --- May 3, 2011 BRKGA with applications in telecom

Key decisions

• Nodes that will host S-1s
• Nodes that will host S-2s
• Connection of S-c to S-0 or S-1s
• Connection of S-0 to S-1s



 Spring School on Adv. in OR --- May 3, 2011 BRKGA with applications in telecom

Key decisions

• Nodes that will host S-1s
• Nodes that will host S-2s
• Connection of S-c to S-0 or S-1s
• Connection of S-0 to S-1s
• Connection of S-1s to S-2s



 Spring School on Adv. in OR --- May 3, 2011 BRKGA with applications in telecom

Key decisions

• Nodes that will host S-1s
• Nodes that will host S-2s
• Connection of S-c to S-0 or S-1s
• Connection of S-0 to S-1s
• Connection of S-1s to S-2s
• Interconnection of S-2s and VPLS-PE
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Computational challenges

• Large scale (problems can have hundreds of 
nodes and links)

• Non-linearity of costs
• Solution turnaround should be minutes/hours 

rather than days/weeks
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• Large scale (problems can have hundreds of 
nodes and links)

• Non-linearity of costs
• Solution turnaround should be minutes/hours 

rather than days/weeks

Too large, non-linear, for integer programming
solution.
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Computational challenges

• Large scale (problems can have hundreds of 
nodes and links)

• Non-linearity of costs
• Solution turnaround should be minutes/hours 

rather than days/weeks

Too large, non-linear, for integer programming
Solution: heuristics needed: BRKGA
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Encoding

• Central offices are V* = {1, ..., n}: where equipment can be located

• Solution is encoded as a real 2n-vector X of 
random keys in [0,1), where n = |V*| 

• The first n elements of X correspond to S-1 locations
• The last n elements of X correspond to S-2 locations

X =
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Decoding vector of random keys

• Decoder takes as input a vector of random keys X with 
2n keys 

• Initial equipment placement is done with random keys:
– Location i in {1, ..., n} hosts an S-1 if X[i] ≥ 0.5
– Location j in {1, ..., n} hosts an S-2 if X[j+n] ≥ 0.5

• If #S-2 not even, add S-2 at j = argmax { X[j]:  X[j] < 0.5 }

X =
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Decoder

Assign S-1s &
S-2s to central
offices according to
random-vector X

Link S-c to least
cost S-1 using
feasible connection 

All S-c 
assigned?

Open extra 
S-1

no

Link S-1s to least
cost S-2 pair using
feasible connections 

All S-1s 
assigned?

Open extra 
S-2 pair

Interconnect 
S-2s in ring 

Connect least-cost
pair of S-2s to 
VPLS-PE 

start

end

yes

yes

no
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Decoding vector of random keys: S-c to S-1

• Place preassigned S-1s in their nodes

• Place new S-1 in node i iff random key X[i] ≥ 0.5 and no 
preassigned S-1 is already in node i

• For all S-c with demand
– Compute min-cost of path to each assigned S-1 node
– If no feasible path exists, save S-c for processing later
– Else, assign S-c to node associated with min cost path
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Decoding vector of random keys: S-c to S-1

• For all nodes i such that X[i] < 0.5
– Compute min-cost path to all unassigned S-c's

• Repeat until all S-c's are assigned:
– Greedy algorithm: Place new S-1 in node that can 

accommodate maximum number of yet unassigned S-c's
– Assign those S-c's to that S-1

• Remove S-1s that do not receive S-c demand
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Decoding vector of random keys: S-1 to S-2 pair

• Place preassigned S-2s in their nodes

• Place new S-2 in node i iff random key X[n+i] ≥ 0.5 and no 
preassigned S-2 is already in node i

• Pair up S-2s
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Decoding vector of random keys: S-1 to S-2 pair

• For each S-1 compute cost to connect to each S-2 pair using node 
disjoint paths

• If possible, assign S-1 to least cost S-2 pair;                    
Otherwise, save S-1 for processing later

• Apply greedy algorithm to deploy new S-2 pairs (rank pairs by 
number of yet unassigned S-1's that can be assigned to pair)

• Remove S-2's that do not receive S-1 traffic 
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Decoding vector of random keys: interconnect S-2s

• Let q  be the number of S-2s deployed
• Create ring with S-2s

• For every permutation 
 
= {

1
, 

2
, ..., 

q
}

– Compute tour v[
1
], v[

2
], ..., v[

q
]  where links between 

v[
i
] and v[

+i 1
] are feasible min-cost node disjoint paths

• Deploy links corresponding to min-cost permutation
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Decoding vector of random keys: interconnecting S-2s and 
the VPLS-PE 

• Let q  be the number of S-2s deployed
• For each S-2, compute cost to connect with VPLS-PE 

(assume link has to accommodate all traffic in network)
• Connect least-cost S-2:VPLS-PE pair (first path)
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Decoding vector of random keys: interconnecting S-2s and 
the VPLS-PE 

• For each remaining S-2, compute cost to connect 
with VPLS-PE using path that is node disjoint with first 
path

• Connect least-cost S-2:VPLS-PE pair 
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Decoding vector of random keys: interconnecting S-2s and 
the VPLS-PE with express lanes 

• Repeat until all unassigned S-2 nodes have been 
tested
– For each unassigned S-2, compute cost to connect with 

VPLS-PE using path that is node disjoint with previous 
paths

– Connect least-cost S-2:VPLS-PE pair if total cost is reduced 
(express lane) 
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Computing least-
cost routes
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Key heuristic: s–t path-finding

• Dijkstra-based min-cost (“shortest”) s–t path:
– Input: graph G=(V,E), source node s, target node t
– Complication: two-layer graph (FIBER/ROADM)

• Let's recall Dijkstra's algorithm...
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s
t

T

“unreachable”Step: initialization

Dijkstra's single-source shortest path algorithm



 Spring School on Adv. in OR --- May 3, 2011 BRKGA with applications in telecom

s
t

T

“unreachable”Step: update reachability

3.0

6.0

14.0

Dijkstra's single-source shortest path algorithm
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s
t

T

“unreachable”Step: augment SP tree

3.0

6.0

14.0

Dijkstra's single-source shortest path algorithm
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Dijkstra's single-source shortest path algorithm

s
t

T

“unreachable”Step: update reachability

3.0

6.0

14.0

3.0 + 1.0

3.0 + 9.0
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Key heuristic: s–t path-finding

• Each node i has reachability and a label
• Set label(s) = FIBER
• Change “update reachability” step:
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• If edge (u,v) analyzed is FIBER:
– If label(u) = FIBER, we're continuing on FIBER

• Extension cost is c
f
 * length(u,v)

                                          (fiber utilization)

– If label(u) = ROADM, we're dropping out of ROADM
• Extension cost is c

f
 * length(u,v) + c

t
 + c

i

                      (fiber utilization + transponder + interface)

– If extension cost is worthwhile, update reachability 
and set label(v) = FIBER

Key heuristic: s–t path-finding
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• If edge (u,v) analyzed is ROADM:
– If label(u) = ROADM, we're continuing on ROADM

• Extension cost is c
p
 (passthrough cost only)

– If label(u) = FIBER, we're hoping into the ROADM
• Extension cost is c

t
 + c

i
 + c

c

                        (transponder + interface + common costs)

– If extension cost is worthwhile, update reachability 
and set label(v) = ROADM

Key heuristic: s–t path-finding
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• Observations:
– It's a heuristic...
– But: we have observed that it works nicely

• Avoids ROADM whenever possible
• When into ROADM, tends to keep going on ROADM

– Running time: O(|E| + |V| log |V|) per shortest 
path if implemented with Fibonacci heaps.

– Easy to avoid nodes and their incident edges: just 
remove them from the heap when initializing

• Application: connect S-1 to {S-2-A, S-2-B}

Key heuristic: s–t path-finding
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Implementation 
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Implementation and next steps

• Implementation is ongoing
• C++, OpenMP, highly modularized

– BRKGA framework (Toso & Resende, 2010)
– Decoder tailored for this problem

• Instance input
• Decoder heuristics
• Solution output (including GraphViz output)
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Example 
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Instance:
78 nodes (65 accept S-1/2)
52 nodes are S-c
296 directed edges (242 fiber,

        78 artificial loops, 54 ROADMs)

BRKGA ran for 960 iterations
Population size: 40
20% elite, 60% mutants
70% elite inheritance prob
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First feasible 
solution: iteration 19 

Instance:
78 nodes (65 accept S-1/2)
52 nodes are S-c's
296 directed edges (242 fiber,

        78 artificial loops, 54 ROADMs)

BRKGA ran for 960 iterations
Population size: 40
20% elite, 60% mutants
70% elite inheritance prob
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Elite set first full of
feasible solutions: 
iteration 53

Instance:
78 nodes (65 accept S-1/2)
52 nodes are S-c's
296 directed edges (242 fiber,

        78 artificial loops, 54 ROADMs)

BRKGA ran for 960 iterations
Population size: 40
20% elite, 60% mutants
70% elite inheritance prob
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Iteration 30
Cost = 0.9369
10 S-2
9 S-1
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Iteration 60
Cost = 0.7212
8 S-2
9 S-1
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Iteration 120
Cost = 0.5380
8 S-2
6 S-1
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Iteration 240
Cost = 0.3636
4 S-2
6 S-1
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Iteration 480
Cost = 0.0921
4 S-2
5 S-1
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Iteration 960
Cost = 0.0000
4 S-2
5 S-1
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Concluding remarks

• Introduced metropolitan network design problem
• Proposed to use the BRKGA framework 
• A multi-step decoder is proposed and for each 

step a simple heuristic is described
• Proposed a new variant of Dijkstra's algorithm to 

compute least-cost routes
• A C++ OpenMP implementation is tested on a 

small network
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Concluding remarks

• Ongoing work
– Add S-0 switch to design
– Deploy flexible penalization to deal better with 

infeasibilities
– Improve heuristics, in particular, least-cost routing 

and S-2 ring design
– Add connectivity to VPLS-PE
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Host Placement for 
Path-Disjoint 
Monitoring
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Reference:
L. Breslau, I. Diakonikolas, N. Duffield, Y. Gu,       

M. Hajiaghayi, D.S. Johnson, H. Karloff, 
M.G.C.R., and S. Sen, “Disjoint-path facility 
location: Theory and practice,” Proceedings of the 
Thirteenth Workshop of Algorithm Engineering and 
Experiments (ALENEX11), SIAM, San Francisco, pp. 60-74, 
January 22, 2011               

       
      

Tech report version:

http://www2.research.att.com/~mgcr/doc/monitoring-alenex.pdf
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Network monitoring 
with tomography
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 IP Monitoring
• Internet Service Providers need to monitor the 

performance of customer traffic within their 
networks.

• More specifically, ISPs want to measure:
– Unidirectional reachability
– Packet loss rate
– Packet delay along the edge-to-edge paths followed 

by customer traffic
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– Unidirectional reachability
– Packet loss rate
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 IP Monitoring
• Traffic entails both the links followed by traffic 

and the treatment of packets within the routers 
that move them from link to to link.  

• Flow follows fine-grained paths differentiated 
from others by, e.g.
– Class of service
– Application class
– Virtual private network (VPN) ownership
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 IP Monitoring
• Tools such as traceroute or 

ping suffer from one or 
both of the following 
limitations:
– They measure roundtrip 

performance; want to measure
one-way performance
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 IP Monitoring
• Tools such as traceroute or 

ping suffer from one or 
both of the following 
limitations:
– They measure roundtrip 

performance; want to measure
one-way performance

measure round-trip:
hard to infer one-way 
performance



 Spring School on Adv. in OR --- May 3, 2011 BRKGA with applications in telecom

 IP Monitoring
• Tools such as traceroute or 

ping suffer from one or 
both of the following 
limitations:
– They measure roundtrip 

performance;
– Their probes may not follow 

the customer paths, either 
because they transit different 
links, or experience different 
router treatment.

customer
path
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 IP Monitoring
• Tools such as traceroute or 

ping suffer from one or 
both of the following 
limitations:
– They measure roundtrip 

performance;
– Their probes may not follow 

the customer paths, either 
because they transit different 
links, or experience different 
router treatment.

customer
path

probe path
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 IP Monitoring
• In principle, edge routers 

could be equipped to 
launch and receive probes 
that follow customer 
traffic:
– Could impact network 

performance
– Very costly to deploy 

networkwide

Edge router
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 IP Monitoring
• In principle, edge routers 

could be equipped to 
launch and receive probes 
that follow customer 
traffic:
– Could impact network 

performance
– Very costly to deploy 

networkwide

Edge router

Probe 
equipment



 Spring School on Adv. in OR --- May 3, 2011 BRKGA with applications in telecom

 IP Monitoring
• Breslau et al. (2006) proposed a lightweight 

approach to measurement of customer traffic 
paths in VPNs.

Customer
site #1 Customer

site #2

Monitor

Edge router
Edge router
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 IP Monitoring
• Breslau et al. (2006) proposed a lightweight 

approach to measurement of customer traffic 
paths in VPNs.

Customer
site #1 Customer

site #2

Monitor

Edge router
Edge router

Want to monitor 
performance of path.
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 IP Monitoring
• Breslau et al. (2006) proposed a lightweight 

approach to measurement of customer traffic 
paths in VPNs.

Customer
site #1 Customer

site #2

Monitor

Edge router
Edge router

Want to monitor 
performance of path.

Generic Routine Encapsulation 
(GRE) tunnels  enable steering 
packets on path to be monitored
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 IP Monitoring
• Breslau et al. (2006) proposed a lightweight 

approach to measurement of customer traffic 
paths in VPNs.

Customer
site #1 Customer

site #2

Monitor

Edge router
Edge router

Want to monitor 
performance of path.

Circuit performance of (b1,b2)
seen at M is a composition of 
the performances of (M,b1),       
(b1,b2), and (b2,M).  

M

b1

b2
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 IP Monitoring
• Breslau et al. (2006) proposed a lightweight 

approach to measurement of customer traffic 
paths in VPNs.

Customer
site #1 Customer

site #2

Monitor

Edge router
Edge router

Want to monitor 
performance of path.

To estimate performance of     
(b1,b2) we need to factor out the
one-way performances of hop-on 
(M,b1) and hop-off (b2,M): Same 
problem as before.

M

b1

b2
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 IP Monitoring

Monitor

M

b1

b2

Hop-on 
path

Hop-off 
path

B = “branch nodes” ⊆  V.   We want to measure performance 
(e.g. loss rate) on some directed paths between vertices in B

branch node

branch node
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 IP Monitoring

Monitor

M

b1

b2

Hop-on 
path

Hop-off 
path

IDEA:  Establish a monitoring node M.  For some pairs b1, b2 ∈ B, 
send packet M to b1 to b2 to M. 

branch node

branch node
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 IP Monitoring

Monitor

M

b1

b2

Hop-on 
path

Hop-off 
path

We can measure the “overall” loss rate.  Must factor out the hop-on 
and hop-off.  How?

branch node

branch node
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 IP Monitoring

Monitor

M

b1

b2

Hop-on 
path

Hop-off 
path

Want “disjoint” paths for independence.  Must estimate loss rates 
for hop-on path and hop-off path to factor them out.

branch node

branch node
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 Estimating hop-on path loss

m1

Monitor

M

b

Hop-on 
path

Find two “monitoring” nodes m1 and m2 and send packets from M 
to b and from b to m1 and m2. 

monitoring node

branch node

m2 monitoring node
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 Estimating hop-on path loss

m1

Monitor

M

b

Hop-on 
path

What fraction of packets arrive at: 1) both m1 and m2? (p11);           
 2) m1, but not m2? (p10);            3) m2, but not m1? (p01)

monitoring node

branch node

m2 monitoring node
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 Estimating hop-on path loss

M

b

m1

Monitor If the three paths are arc-disjoint, 
estimate nonloss rate  on hop-on path 
M → b as follows:
p11 =   
p10 =   (1−)
p01 =  (1−) 
p11 + p10 =  
p11 + p01 =  
Therefore:
 = (p11+p10)(p11+p01) / p11

m2



 

nonloss rates
on each path
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 Estimating hop-off path loss

M

b

Monitor To estimate loss rate on hop-off path     
b → M, send packet M → b → M.
Since we have already loss rate estimate 
 for hop-on path M → b, we can 
estimate loss rate for b → M from 
roundtrip loss rate,

if path M → b                                
           is arc-disjoint from              
                               path b → M.



hop-on

hop-off
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 Simple lemma

a

LEMMA: 
If weight (u,v) = weight (v,u) > 0 for all 
u,v ∈ V, then for all nodes a, b, c, 
shortest a → b and b→ c  paths are 
(directed) arc disjoint.

PROOF (by contradiction):
Suppose shortest paths are 
a → P → Q → b and b → P → Q → c
clearly  v ≥ y + z
hence   z ≤ v − y
and       z < v + y   because y > 0.
So  b → Q → c is shorter than             
b → P → Q → c     !!!
 

P Q

c

ba
x y

v

z

u
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 Consequence of simple lemma

In practice, all or almost all arc weights 
are symmetric.  If so, all paths in 
 

M

b1

b2

are arc disjoint.
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 Consequence of simple lemma

In practice, all or almost all arc weights 
are symmetric.  If so, all paths in 
 

are arc disjoint.

M

b

hop-on
hop-off
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 Consequence of simple lemma

In 
 The M → b and b → m1 paths are 

arc disjoint, as are the                     
M → b and b → m2 paths.

How about b→ m1 and  b → m2 
path?

Not disjoint in general. 

M

b

m1 m2
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Minimum 
monitoring set 

problem
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 Monitor placement
GOAL:  Choose a small subset S of 
given set M of potential monitoring 
nodes such that

for every b ∈ B, there exist          
m1, m2 ∈ S ( m1≠ m2 ) such that

every shortest b → m1 path is 
vertex-disjoint from every shortest   
b → m2 path
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 Monitor placement
GOAL:  Choose a small subset S of 
given set M of potential monitoring 
nodes such that

for every b ∈ B, there exist          
m1, m2 ∈ S ( m1≠ m2 ) such that

every shortest b → m1 path is 
vertex-disjoint from every shortest   
b → m2 path

Why every shortest path?

Because OSPF routing 
protocol will choose a 
shortest path, but we do not 
know which one.
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 Monitor placement
GOAL:  Choose a small subset S of 
given set M of potential monitoring 
nodes such that

for every b ∈ B, there exist          
m1, m2 ∈ S ( m1≠ m2 ) such that

every shortest b → m1 path is 
vertex-disjoint from every shortest   
b → m2 path

Why every shortest path?

Because OSPF routing 
protocol will choose a 
shortest path, but we do not 
know which one.

Obs: weights need not be 
symmetric.
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Two monitors and 
three GRE tunnels
make up the multicast
overlay topology.

Probe is dispatched 
from m1 to b via T1,
multicast routing at b
send copies back to m1
via T2 and to m2 via T3.

IP Monitoring
Gu et al. (2008) propose a technique based on network 

tomography to infer unidirectional performance on the hop-
on and hop-off paths.

Monitor

Edge router

m1

b

m2Monitor

GRE tunnel T1

GRE tunnel T2

GRE tunnel T3
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It is worth noting that
native multicast support
is by now a standard 
router capability.

After a relatively slow 
start, multicast services 
are now readily available
in provider backbones.

IP Monitoring
Gu et al. (2008) propose a technique based on network 

tomography to infer unidirectional performance on the hop-
on and hop-off paths.

Monitor

Edge router

m1

b

m2Monitor

GRE tunnel T1

GRE tunnel T2

GRE tunnel T3
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Minimum monitoring set problem
We wish to perform the tomographic 

inference of hop-on and hop-off 
performance for each provider edge 
router:
Deploy a set of N measurement 

hosts {M
1
, M

2
, ..., M

N
} such that 

for each provider edge router b, 
there are two measurement 
hosts M

i
 and M

j
 such that the 

physical paths (b, M
i
) and  (b, M

j
) 

are disjoint.
One objective is to minimize N.

paths are given and
are fixed
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performance for each provider edge 
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Set covering with pairs

• Set covering with pairs (SCP) was introduced by 
Hassin & Segev (2005):
– GIVEN a ground set X of elements and a set Y of 

cover items, and for each x ∈X a set P
x 
of pairs of 

items in Y that cover x.  A subset Y' ⊆ Y covers X if 
for each     x ∈X one of the pairs in P

x 
 is contained in 

Y', FIND a minimum-size covering subset.

• SCP is NP-hard and, unless P = NP, is hard to 
approximate.
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Minimum monitoring set problem

• The MMS problem is a special case of SCP.  We 
prove that:
– Let R(w,u) be the set of all routes from w to u
– MMS is at least as hard to approximate as SCP, even if:

• Each set R(w,u) is the set of all shortest paths from w to u;
• Each set R(w,u) contains only one item, and that is a shortest 

path from w to u

• However, if we allow arbitrary disjoint paths, then 
using dynamic programming, the problem can be 
solved in O( |V|+|E|) time.
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Another application: Redundant 
content distribution

Suppose nodes b
1
, b

2
, ... want some 

content (e.g. video).

We want a small set S of servers 
such that:

for every b
i 
 there exist m

1
, m

2 
∈ S 

both of which can provide content 
to b

i

and all paths m
1
 → b are disjoint 

with all paths m
2
 → b  
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Another application: Redundant 
content distribution

Suppose nodes b
1
, b

2
, ... want some 

content (e.g. video).

We want a small set S of servers 
such that:

for every b
i 
 there exist m

1
, m

2 
∈ S 

both of which can provide content 
to b

i

and all paths m
1
 → b are disjoint 

with all paths m
2
 → b  

b

m
1

m
2

store content

consumes content
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Algorithms for 
minimum 

monitoring set 
problem
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Algorithms for MMS problem

• Exact integer programming model
• Dynamic programming for arbitrary paths variant
• Greedy heuristic
• Genetic algorithm (heuristic)
• Double hitting set heuristic (DHS)
• Lower bound derived from DHS
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Algorithms for MMS problem

• Exact integer programming model
• Dynamic programming for arbitrary paths variant
• Greedy heuristic
• Genetic algorithm (heuristic)
• Double hitting set heuristic (DHS)
• Lower bound derived from DHS
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Integer  programming
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Integer programming model

for every potential monitoring 
node v ∈ M, M, let binary variable       
               
               x

v 
= 1 iff node v is chosen
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Integer programming model

for every potential monitoring 
node v ∈ M, M, let binary variable       
               
               x

v 
= 1 iff node v is chosen

for each pair {u,v} of potential 
monitoring nodes (u < v) define      
continuous variable y

u,v 
 such that

 

               y
u,v 

≤   x
u 
 

                              yy
u,v u,v 

≤≤   x   x
v v 
                                                  

yy
u,vu,v
  00    then    x  then    x

u u 
= x= x

v v 
= 1 = 1       
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for each branch node b that is not for each branch node b that is not 
a potential monitoring node:a potential monitoring node:

Σ Σ yy
u,v u,v 

≥≥   1  (summed over all              1  (summed over all           

      pairs {u,v} that cover b (u < v) )      pairs {u,v} that cover b (u < v) )
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Greedy algorithm
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Greedy algorithm for MMS problem
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• initialize partial cover S = { }
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Greedy algorithm for MMS problem

• initialize partial cover S = { }
• while S is not a cover do:

– find m  M \ S such that S  {m} covers a maximum 
number of additional branch nodes (break ties by vertex 
index) and set S = S  {m}
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Greedy algorithm for MMS problem

• initialize partial cover S = { }
• while S is not a cover do:

– find m  M \ S such that S  {m} covers a maximum 
number of additional branch nodes (break ties by vertex 
index) and set S = S  {m}

– if no m  M \ S yields an increase in coverage, then 
choose a pair {m

1
,m

2
}

 
 M \ S that yields a maximum 

increase in coverage and set S = S  {m
1
}  {m

2
}
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Greedy algorithm for MMS problem

• initialize partial cover S = { }
• while S is not a cover do:

– find m  M \ S such that S  {m} covers a maximum 
number of additional branch nodes (break ties by vertex 
index) and set S = S  {m}

– if no m  M \ S yields an increase in coverage, then 
choose a pair {m

1
,m

2
}

 
 M \ S that yields a maximum 

increase in coverage and set S = S  {m
1
}  {m

2
}

– if no pair exists, then the problem is infeasible
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BRKGA for the 
MMS problem
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BRKGA for the MMS problem
• Chromosome: 

– A vector X of N random 0-1values (random keys), where 
N is the number of potential monitoring nodes. The i-th 
random key corresponds to the i-th monitoring node.

• Decoder: 
– For i = 1,N:  if X(i) = 1, add i-th monitoring node to 

solution
– If solution is feasible, i.e. all customer nodes are covered: 

STOP
– Else, apply greedy algorithm to cover uncovered branch 

nodes.
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BRKGA for the MMS problem

• Size of population: N (number of monitoring nodes)
• Size of elite set: 15% of N
• Size of mutant set: 10% of N
• Biased coin probability: 70%
• Stop after N generations without improvement of 

best found solution
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generations

solution
n100-i2-m100-b100 (opt = 23)
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Time (ibm t41 secs)

solution
n100-i2-m100-b100 (opt = 23)

BRKGA solutions Random multi-start solutions

Optimal value
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Lower bound
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Lower bound on OPT

• OPT for monitor placement ≥ OPT for the 2nd 
hitting set problem

• We can solve the 2nd hitting set instance 
optimally using CPLEX  

• On our test instances, bounds are quite tight
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Experimental results
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Experimental results

• 560 synthetic instances, with 25, 50, 100, 190, 220, 250, 300, 
and 558 nodes and varying sizes of potential monitoring nodes 
and branch nodes.
– Largest 2-connected component in any of the synthetic instances 

contained 34% of the nodes and the largest instance had only 10% 
of the nodes.

• 65 real-world instances derived from five large scale Tier 1 ISP 
backbone  networks and using real OSPF weights.  These 
networks ranged in size from a little more than 100 routers to 
nearly 1000 routers.
– Largest 2-connected component had at least 84% of the nodes.
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Experimental results

• Integer program (CPLEX) could only solve instances with up 
to 100 nodes.  This is in contrast to “classical” set covering 
where much larger instance are solved easily.

• On the other hand, the 2nd hitting set problem could be 
easily solved to optimality using CPLEX.  Lower bounds 
were produced for all test instances.

• DHS and GREEDY are both much faster than GA.  On some 
of the largest instances (about 1000 routers) DHS and 
GREEDY took one hour while GA took 10 days. GA can be 
sped up with trivial parallel implementation.
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Synthetic networks

• CPLEX solved 324 of 560 instances to OPT
• Heuristics found optimal solutions for some of 

those instances:
– Greedy algorithm: 59/324 = 18.2%
– Double hitting set algorithm: 65/324 = 20.0%
– Genetic algorithm: 318/324 = 98.1%
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Synthetic networks

• CPLEX computed lower bounds for all 560 
instances

• Heuristics matched the lower bound for some of 
those instances:
– Greedy algorithm: 236/560 = 42.1%
– Double hitting set algorithm: 363/560 = 64.8 %
– Genetic algorithm: 394/560 = 70.4%
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Synthetic networks: comparing 
heuristic solutions

• Double hitting set (DHS) vs Greedy
– DHS better than Greedy:  456/560 = 81.4%

– DHS equal to Greedy: 90/560 = 16.1%

– Greedy better than DHS: 14/560 = 2.5%

• Genetic algorithm (GA) vs DHS
– GA better than DHS: 68/560 = 12.1%

– GA equal to DHS: 482/560 = 86.1%

– DHS better than GA: 10/560 = 1.8%

• GA vs Greedy
– GA better than Greedy: 487/560 = 87.0%

– GA equal to Greedy: 73/560 = 13.0%

– Greedy better than GA: 0/560 = 0%
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Synthetic networks

• CPLEX found optimal solutions for instances with 
fewer than 100 routers

• Only 20-30% of branch nodes need to be 
monitoring nodes.

•  Greedy algorithm did not perform well.  
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Real networks

• CPLEX could not solve any instance to optimality.  
• Lower bounds were computed for all 65 instances.
• Heuristics matched lower bounds for some of the 

instances:
– Greedy: 27/65 = 41.5%
– GA: 48/65 = 73.8%
– DHS: 54/65 = 83.%
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Real networks: comparing heuristic 
solutions

• Double hitting set (DHS) vs Greedy
– DHS better than Greedy:  9/65 = 13.9%

– DHS equal to Greedy: 54/65 = 83.1%

– Greedy better than DHS: 2/65 = 3.1%

• Genetic algorithm (GA) vs DHS
– GA better than DHS: 6/65 = 9.2%

– GA equal to DHS: 54/65 = 83.1%

– DHS better than GA: 5/65 = 7.7%

• GA vs Greedy
– GA better than Greedy: 12/65 = 18.5%

– GA equal to Greedy: 48/65 = 73.8%

– Greedy better than GA: 5/65 = 7.7%
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Real networks

• Too large for CPLEX

• Only 15-20% of branch nodes need to be monitoring nodes.

• Greedy algorithm did perform well.  It found a solution equal to LB in 
27 of the 65 instances. Matched HH on 54 instances and GA on 48.
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Concluding remarks
• We constructed a number of network test instances to 

capture the topology and routing of large internetworks;

• We demonstrated algorithms that provide a feasible 
combination of accuracy and execution times;

• We showed that solutions derived from our methods provide 
a useful saving in the number of measurement nodes 
compared with the naive approach of using each branch 
point as a measurement node:  Networks having a large 
number of branch nodes need only 10-30% of branch points 
to be measurement nodes.
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Routing and 
wavelength assignment 

in optical networks



Routing and wavelength assignment (RWA)

•  Objective: Route a set of connections (called lightpaths) and 
assign a wavelength to each of them.

•  Two lightpaths may use the same wavelength, provided they 
do not share any common link.

•  Connections whose paths share a common link in the network 
are assigned to different wavelengths (wavelength clash 
constraints).

•  If no wavelength converters are available, the same 
wavelength must be assigned along the entire route 
(wavelength continuity constraints).



• Variants of RWA are characterized by different optimization criteria, 
traffic patterns, and whether wavelength conversion is available or 
not. 

• We consider the min-RWA offline variant:
– Connection requirements are known beforehand.

– No wavelength conversion is possible. 

– Objective is to minimize the number of wavelengths used for routing all 
connections.

– Asymmetric traffic matrices and bidirectional links.

– NP-hard (Erlebach and Jansen, 2001)

Routing and wavelength assignment (RWA)
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Heuristic of N. Skorin-Kapov (EJOR, 2007)

• Associates the min-RWA with the bin packing problem.
– Wavelengths are associated with bins.
– The capacity of a bin is defined as its number of arcs.
– The size of a connection is defined as the number of arcs in its 

shortest path.

• Developed RWA heuristics based on the following classical bin 
packing heuristics:
– First Fit (FF)
– Best Fit (BF)
– First Fit Decreasing (FFD)
– Best Fit Decreasing (BFD)



Heuristic of N. Skorin-Kapov (EJOR, 2007)

• Associates the min-RWA with the bin packing problem.
– Wavelengths are associated with bins.
– The capacity of a bin is defined as its number of arcs.
– The size of a connection is defined as the number of arcs in its 

shortest path.

• Developed RWA heuristics based on the following classical bin 
packing heuristics:
– First Fit (FF)
– Best Fit (BF)
– First Fit Decreasing (FFD)
– Best Fit Decreasing (BFD):  state of the art heuristic for RWA
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Efficient implementation of BFD-RWA                

T.F. Noronha, M.G.C.R., and C.C. Ribeiro,

“Efficient implementations of heuristics for routing and 
wavelength assignment,” in “Experimental Algorithms,” 

7th International Workshop (WEA 2008), C.C. McGeoch 
(Ed.), LNCS,  vol. 5038, pp. 169-180, Springer, 2008.

Tech report version:

http://www.research.att.com/~mgcr/doc/impl_rwa_heur.pdf



BRKGA with applications in telecom

BFD-RWA 
N. Skorin-Kapov (2007); Noronha, R., and Ribeiro (2008)

• Input: 

• A directed graph G representing the network topology.
• A set T of connection requests.

• The value d  of of the maximum number of arcs in each route. It is set to be the 
maximum of the square root of the number of links in the network and the 
diameter of G.

• Starts with only one copy of G (called G
1
).

• Connections are selected according to non-increasing order of the lengths of their 
shortest paths in G

i
.  Ties are broken at random.

• The connection is assigned wavelength i , and the arcs along path are deleted from G
i
. 

• If no existing bin can accommodate the connection with fewer than d  arcs, a new bin is 
created.



 Spring School on Adv. in OR --- May 3, 2011 BRKGA with applications in telecom

BRKGA for RWA: GA-RWA               

T.F. Noronha, M.G.C.R., and C.C. Ribeiro, “A biased 
random-key genetic algorithm for routing and 
wavelength assignment,” J. of Global Optimization, 
published online 24 September 2010.

Tech report version:

http://www.research.att.com/~mgcr/doc/garwa-full.pdf



BRKGA for RWA: GA-RWA
Noronha, R., and Ribeiro (2010)

• Encoding of solution: A vector X of |T| random keys in the 
range [0,1], where T is the set of connection request node 
pairs.

• Decoding: 
– 1) Sort the connection in set T in non-increasing order of c(i) = 

SP(i) ×10 + X[i], for each connection i ∈ T.
– 2) Apply BFD-RWA in the order determined in step 1. 



BRKGA for RWA: GA-RWA
Noronha, R., and Ribeiro (2010)

• Encoding of solution: A vector X of |T| random keys in the 
range [0,1], where T is the set of connection request node 
pairs.

• Decoding: 
– 1) Sort the connection in set T in non-increasing order of c(i) = 

SP(i) ×10 + X[i], for each connection i ∈ T.
– 2) Apply BFD-RWA in the order determined in step 1. 

Since there are many ties connection pairs with
The same SP(i) value, in the original algorithm of 
Skorin-Kapov, ties are broken at random.  In the
BRKGA, the algorithm “learns” how to break ties.



Experiments

• Compare multi-start version of Skorin-Kapov's 
heuristic (MS-RWA) with GA-RWA.

• Make 200 independent runs of each heuristic on 
each heuristic on five instances, stopping when 
target solution was found (target was set to be 
best solution found by MS-RWA after 10,000 
multi-start iterations.  Plot CDF for each heuristic. 
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Concluding 
remarks
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Concluding remarks
• A small modification of Bean's RKGA results in a BRKGA.

• Though small, this modification, leads to significant 
performance improvements.

• BRKGA are true metaheuristics: they coordinate simple 
heuristics and produce better solutions than the simple 
heuristics alone.

• Problem independent module of a BRKGA needs to be 
implemented once and can be reused for a wide range of 
problems.  User can focus on problem dependent module.

• BRKGA heuristics are highly parallelizable.
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Concluding remarks
• BRKGA have been applied in a wide range of application 

areas, including scheduling, packing, cutting, tollbooth 
assignment, ...

• We have had only a small glimpse at BRKGA applications to 
problems arising in telecommunications.

• The BRKGAs described in this talk are all state-of-the-art 
heuristics for these applications

• We are currently working on a number of tree-based 
applications in telecommunications, including degree-
constrained spanning tree problem and regenerator 
location.
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The End
These slides and all of the papers cited in this talk 

can be downloaded from my homepage:

http://www.research.att.com/~mgcr
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