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Google Scholar Search:     "greedy randomized adaptive search" 
(http://scholar.google.com)

year cumul. papers year Cumul. papers
1990 1 2001 402
1991 7 2002 533
1992 11 2003 661
1993 16 2004 803
1994 34 2005 1,010
1995 54 2006 1,220
1996 89 2007 1,470
1997 126 2008 1,770
1998 196 2009 2,130
1999 256 2010 2,440
2000 308 2011 (to Apr. 26th) 3,400
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Annotated bibliographies of GRASP

• P. Festa and M.G.C. Resende, GRASP: An annotated bibliography, 
Essays and Surveys on Metaheuristics, C.C. Ribeiro and P. 
Hansen, Eds., Kluwer Academic Publishers, pp. 325-367, 2002

• P. Festa and M.G.C. Resende, An annotated bibliography of 
GRASP–Part I: Algorithms,  International Transactions in 
Operational Research, vol. 16, pp. 1-24, 2009.

• P. Festa and M.G.C. Resende, An annotated bibliography of 
GRASP–Part II: Applications,  International Transactions in 
Operational Research, vol. 16, pp. 131-172, 2009.
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Follow GRASP on Twitter:        http://twitter.com/graspheuristic
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Summary

Combinatorial optimization and a review of GRASP
Neighborhoods, local search, greedy randomized construction 
and diversification

Hybrid construction
Other greedy randomized constructions, reactive GRASP, 
long-term memory in construction, biased sampling, cost 
perturbation

Hybrid local search
Variable neighborhood descent, variable neighborhood search, 
short-term memory tabu search, simulated annealing, iterated 
local search, very large-scale neighborhood search
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Summary

Hybridization with path-relinking
Elite sets, forward, backward, back and forward, mixed, 
greedy randomized adaptive path-relinking, evolutionary path-
relinking 

Continuous GRASP for bound constrained global optimization

Concluding remarks
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Combinatorial 
Optimization
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Combinatorial Optimization

Combinatorial optimization: process of finding 
the best, or optimal, solution for problems with 
a discrete set of feasible solutions. 

 Applications: e.g. routing, scheduling, packing, 
inventory and production management, 
location, logic, and assignment of resources. 

Economic impact: e.g. transportation (airlines, 
trucking, rail, and shipping), forestry, 
manufacturing, logistics, aerospace, energy 
(electrical power, petroleum, and natural gas), 
agriculture, biotechnology, financial services, 
and telecommunications.
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Combinatorial Optimization

Given:
discrete set of solutions  X
objective function f(x): x ∈ X → R

Objective (minimization):
find x ∈ X : f(x) ≤ f(y), ∀ y ∈ X
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Combinatorial Optimization

Much progress in recent years on finding  
exact (provably optimal) solutions: dynamic 
programming, cutting planes, branch and 
cut, …
Many hard combinatorial optimization 
problems are still not solved exactly and 
require good solution methods.



 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Combinatorial Optimization

Approximation algorithms are guaranteed to 
find in polynomial-time a solution within a 
given factor of the optimal. 
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Combinatorial Optimization

Approximation algorithms are guaranteed to 
find in polynomial-time a solution within a 
given factor of the optimal. 
Sometimes the factor is too big, i.e. guaranteed 
solutions are far from optimal
Some optimization problems (e.g. max clique, 
covering by pairs) cannot have approximation 
schemes unless P=NP
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Combinatorial Optimization

Aim of heuristic methods for combinatorial 
optimization is to quickly produce good-
quality solutions, without necessarily 
providing any guarantee of solution quality. 
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Metaheuristics

Metaheuristics are heuristics to devise heuristics.   
                                                                              
                                                                              
                                                   
Examples: simulated annealing, genetic algorithms, 
tabu search, scatter search, ant colony 
optimization, variable neighborhood search, and 
GRASP.  
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Metaheuristics

Metaheuristics are high level procedures that 
coordinate simple heuristics, such as local search, 
to find solutions that are of better quality than 
those found by the simple heuristics alone.
Examples: simulated annealing, genetic algorithms, 
tabu search, scatter search, ant colony 
optimization, variable neighborhood search, and 
GRASP.  
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Metaheuristics

Metaheuristics are high level procedures that 
coordinate simple heuristics, such as local search, 
to find solutions that are of better quality than 
those found by the simple heuristics alone.
Examples: simulated annealing, genetic algorithms, 
tabu search, scatter search, ant colony 
optimization, variable neighborhood search, and 
GRASP.  



 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Review of GRASP:
Local Search
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Local Search

To define local search, one needs to specify a local 
neighborhood structure.
Given a solution x , the elements of the 
neighborhood N(x) of x are those solutions y  that 
can be obtained by applying an elementary 
modification (often called a move) to x.
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Local Search Neighborhoods

Consider x = (0,1,0) and the 1-flip neighborhood of a 0/1 
array.

x = (0,1,0)

(1,1,0) (0,0,0) (0,1,1)

N (x )
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Local Search Neighborhoods

Consider x = (2,1,3,4) and the 2-swap neighborhood of a 
permutation array.

x = (2,1,3,4)

(1,2,3,4) (3,1,2,4) (4,1,3,2)

N (x ) = C(4,2) = 6

(2,3,1,4) (2,4,3,1)

(2,1,4,3)
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Local Search

Given an initial solution x0, a neighborhood N(x), and  
function f(x) to be minimized:

x = x0 ;

while ( ∃ y ∈ N(x) | f(y) < f(x) ) {
x = y ; 

}
At the end, x is a local minimum of f(x) .

check for better solution in neighborhood of x

move to better
solution y Time complexity of local search

 can be exponential.
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Local Search
(ideal situation)

f (0,0,0) = 3

f (1,1,1) = 3

f (0,1,0) = 4

f (0,0,1) =  0

f (1,0,0) = 5

f (0,1,1) = 1

f (1,1,0) = 6

f (1,0,1) =  2

With any starting solution Local Search finds the global optimum.

global
minimum
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Local Search
(more realistic situation)

f (1,1,1) = 2

f (0,1,0) = 2

f (0,0,1) =  0

f (1,0,0) = 1

f (0,1,1) = 3

f (1,1,0) = 6

f (1,0,1) =  3

f (0,0,0) = 3 global
minimum

local
minima

local
minimum

But some starting solutions lead Local Search to a local minimum.
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Effectiveness of local search depends on several 
factors:

neighborhood structure
function to be minimized
starting solution

Local Search

usually pre-
determined

usually easier to
control
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Multi-start method

c* = ∞

repeat 

x = method()

if f(x) < c* then
     x* = x
     c* = f(x*)
endif
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Random multi-start

c* = ∞

repeat 

x = random_construction()

if f(x) < c* then
     x* = x
     c* = f(x*)
endif
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Example: probability of finding opt by random selection

Suppose x = (0/1, 0/1, 0/1, 0/1, 0/1) and let the 
unique optimum be x* = (1,0,0,1,1).
The prob of finding the opt at random is 1/32 = .
031 and the prob of not finding it is 31/32.
After k trials, the probability of not finding the opt is 
(31/32)k and hence the prob of find it at least once 
is 1− (31/32)k

For k = 5, p = .146;  for k = 10, p = .272; for k = 
20, p = .470; for k = 50, p = .796; for k = 100, p 
= .958; for k = 200, p = .998 
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Example: Probability of finding opt with K samplings 
on a  0−1 vector of size N 

                         N:            10         15            20              25          30
K:                                  
10                                 .010      .000         .000           .000       .000
100                               .093      .003         .000           .000       .000
1000                             .624      .030         .000           .000       .000
10000                         1.000      .263         .009           .000       .000
100000                       1.000      .953         .091           .003       .000
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Greedy algorithm



 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

The greedy algorithm

Constructs a solution, one element at a time:
Defines candidate elements.
Applies a greedy function to each candidate element.
Ranks elements according to greedy function value.
Add best ranked element to solution.

re
pe

at
  u

nt
il 

 d
on

e



 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

The greedy algorithm
An example: minimum weight spanning tree
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The greedy algorithm
An example: minimum weight spanning tree
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The greedy algorithm
An example: minimum weight spanning tree
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The greedy algorithm
Another example: Maximum clique 

Given graph G = (V, E), find largest subgraph of G 
such that all vertices are mutually adjacent.
greedy algorithm builds solution, one element (vertex) at a 
time
candidate set: unselected vertices adjacent to all selected 
vertices
greedy function: vertex degree with respect to other 
candidate set vertices.
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The greedy algorithm
Another example: Maximum clique 
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The greedy algorithm
Another example: Maximum clique 
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The greedy algorithm
Another example: Maximum clique 
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The greedy algorithm
Another example: Maximum clique 

0

0
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The greedy algorithm
Another example: Maximum clique 

global maximum
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The greedy algorithm
Another example: Maximum clique 
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The greedy algorithm
Another example: Maximum clique 
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The greedy algorithm
Another example: Maximum clique 
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The greedy algorithm
Another example: Maximum clique 

0 0

0
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The greedy algorithm
Another example: Maximum clique 

sub-optimal
clique
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Semi-greedy heuristic

A semi-greedy heuristic tries to get around 
convergence to non-global local minima.
repeat until solution is constructed
For each candidate element
apply a greedy function to element

Rank all elements according to their  greedy function values
Place well-ranked elements in a restricted candidate list (RCL)
Select an element from the RCL at random & add it to the solution
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Semi-greedy heuristic

Hart & Shogan (1987) propose two mechanisms for 
building the RCL:
Cardinality based:  place k best candidates in RCL
Value based:  place all candidates having greedy values better than 
α⋅best_value in RCL, where α ∈ [0,1].

Feo & Resende (1989) proposed semi-greedy 
construction as a basic component of GRASP.
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Hart-Shogan Algorithm

c* = ∞

repeat 

x = semi_greedy_construction()
if (x is infeasible) then

x = repair(x)
if f(x) < c* then
     x* = x
     c* = f(x*)
endif
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The semi-greedy algorithm
Maximum clique example 
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The semi-greedy algorithm
Maximum clique example 

Build clique, one node at a
time.

Candidates:  nodes adjacent
to clique.

Greedy function: degree
with respect to candidate
nodes.

RCL = 
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The semi-greedy algorithm
Maximum clique example 

Build clique, one node at a
time.

Candidates:  nodes adjacent
to clique.

Greedy function: degree
with respect to candidate
nodes.

RCL = 

Choose at random

Semi-greedy 
iteration 1
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The semi-greedy algorithm
Maximum clique example 

Build clique, one node at a
time.

Candidates:  nodes adjacent
to clique.

Greedy function: degree
with respect to candidate
nodes.

RCL = 

Choose at random

Clique of size 2

Semi-greedy 
iteration 1
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The semi-greedy algorithm
Maximum clique example 

Build clique, one node at a
time.

Candidates:  nodes adjacent
to clique.

Greedy function: degree
with respect to candidate
nodes.

RCL = 

Instead, choose at 
random

Semi-greedy 
iteration 2
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The semi-greedy algorithm
Maximum clique example 

Build clique, one node at a
time.

Candidates:  nodes adjacent
to clique.

Greedy function: degree
with respect to candidate
nodes.

RCL = 

Then, choose at 
random

Semi-greedy 
iteration 2
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The semi-greedy algorithm
Maximum clique example 

Build clique, one node at a
time.

Candidates:  nodes adjacent
to clique.

Greedy function: degree
with respect to candidate
nodes.

RCL = 

Then, choose at 
random

Optimal clique of 
size 3

Semi-greedy 
iteration 2
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GRASP
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GRASP: Basic algorithm

c* = ∞

repeat 

x = semi_greedy_construction()
if (x is infeasible) then
             x = repair(x)

if f(x) < c* then
     x* = x
     c* = f(x*)
endif

    x = local_search(x)

Semi-greediness
is more general
in GRASP



 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Construction phase: greediness + randomization
Builds a feasible solution combining greediness and 
randomization
Local search: search in the current neighborhood 
until a local optimum is found
Solutions generated by the construction procedure are not 
necessarily optimal:
Effectiveness of local search depends on: neighborhood structure, 
search strategy, and fast evaluation of neighbors, but also on the 
construction procedure itself.

GRASP: Basic algorithm
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GRASP Construction
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 Construction phase: RCL based

Evaluate incremental cost
of candidate element

Determine set C of candidate elements

Repeat while
there are
candidate
elements

For each  
candidate 
element:

Build RCL with best candidates, select one
at random and add it to solution.

restricted candidate list
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Construction phase: RCL based

Minimization problem
Basic construction procedure: 
Greedy function c(e): incremental cost associated with the 
incorporation of element e into the current partial solution 
under construction
cmin (resp. cmax): smallest (resp. largest) incremental cost
RCL made up by the elements with the smallest incremental 
costs.
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Construction phase
Cardinality-based construction:
p elements with the smallest incremental costs
Quality-based construction: 
Parameter α defines the quality of the elements in RCL.
RCL contains elements with incremental cost                          
cmin ≤ c(e) ≤ cmin + α (cmax –cmin)
α = 0 : pure greedy construction 

α = 1 : pure randomized construction

Select at random from RCL using uniform probability 
distribution
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α=0.2

α=0.4

α=0.6

α=0.8

Illustrative results: RCL parameter

weighted MAX-SAT instance, 1000 GRASP iterations 

Construction phase only
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α=0.2

α=0.6

α=0.8

α=1.0

Illustrative results: RCL parameter

weighted MAX-SAT instance, 1000 GRASP iterations

Construction + local search
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Hybrid construction 
schemes
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 Construction phase: sampled greedy
 [Resende & Werneck, 2004]

Evaluate incremental cost
of candidate element

Sample a small set C from the set of
candidate elements

Repeat while
there are
candidate
elements

For each   
element in
set C:

Select the element with the best 
incremental cost and add it to solution.
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 Construction phase: random+greedy
 [Resende & Werneck, 2004]

Determine set C of candidate elements

Determine set C of candidate elements

Repeat while
solution has
fewer than K
elements

For each   
element in
set C:

Select an element from the set C
at random and add it to solution.

Repeat while
there are
candidate
elements

Evaluate incremental cost
of candidate element

Select the element with the best 
incremental cost and add it to solution.
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W(    ) < W(   ) < W(  ) < W(  )

Construction with cost perturbation

Perturb with costs
increasing from
top to bottom.
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W(    ) < W(   ) < W(  ) < W(  )

Construction with cost perturbation

Greedy heuristic
generates two 
different spanning
trees.
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Reactive GRASP
Prais & Ribeiro (2000) 

When building RCL, what α to use?  
Fix a some value  0 ≤ α ≤ 1
Choose α at random (uniformly) at each GRASP iteration.
Another approach reacts to search ...
At each GRASP iteration, a value of the RCL parameter   α is 
chosen from a discrete set of values [α1, α2, ..., αm]. 

The probability that αk is selected is pk.
Reactive GRASP: adaptively changes the probabilities [p1, p2, ..., 
pm] to favor values of α that produce good solutions.
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Reactive GRASP                        Prais & Ribeiro (2000) 

Reactive GRASP for minimization ...
Initially pk = 1/m, for k = 1,...,m.  (α's are selected 
uniformly at random)
Define
 F(S*) be the best solution so far

A
k 
be the average value of the solutions obtained with αk

Every N
α 

GRASP iterations, compute

q
k 
 = F(S*) / A

k 
, for k = 1,...,m

p
k 
 = q

k 
/ sum(q

i
| i = 1,...,m)



 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Reactive GRASP                        Prais & Ribeiro (2000) 

Reactive GRASP for minimization ...
Initially pk = 1/m, for k = 1,...,m.  (α's are selected 
uniformly at random)
Define
 F(S*) be the best solution so far

A
k 
be the average value of the solutions obtained with αk

Every N
α 

GRASP iterations, compute

q
k 
 = F(S*) / A

k 
, for k = 1,...,m

p
k 
 = q

k 
/ sum(q

i
| i = 1,...,m)

The more suitable is 
α

k 
, the larger is q

k 
, and

consequently p
k 
, making

α
k 
 more likely to chosen.
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Hybrid local search in 
GRASP
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Local search within GRASP

Local search is usually implemented in 
GRASP as:

x = x0;

while ( there exists y ∈N(x) | f(y) < f(x) ) do
x = y; // y is first improving solution found in N(x)

end while
return x;
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Local search within GRASP

Another way to implement local 
search in GRASP is:

x = x0;

y = argmin { f(z) | z ∈N(x) };
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x = x0;

while ( ∃ y ∈N(x) |f(y) < f(x) ) do
x = y;

end while

return x;

x = x0;

y = argmin { f(z) | z ∈N(x) };

while ( f(y) < f(x) ) do
x = y;  

y = argmin { f(z) | z ∈N(x) };

end while

return x;

First improving is usually faster.
Premature convergence to low-quality local optimum is more likely to 
occur with best improving.     

 first improving                  best improving
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x = x0;

while ( ∃ y ∈N(x) |f(y) < f(x) ) do
x = y;

end while

return x;

x = x0;

y = argmin { f(z) | z ∈N(x) };

while ( f(y) < f(x) ) do
x = y;  

y = argmin { f(z) | z ∈N(x) };

end while

return x;

If search of N(x) is done deterministically, then repeated 
applications of local search starting from same x0 lead to same 
local minimum   

 first improving                  best improving
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x = x0;

while ( ∃ y ∈N(x) |f(y) < f(x) ) do
x = y;

end while

return x;

x = x0;

y = argmin { f(z) | z ∈N(x) };

while ( f(y) < f(x) ) do
x = y;  

y = argmin { f(z) | z ∈N(x) };

end while

return x;

If search of N(x) is done deterministically, then repeated 
applications of local search starting from same x0 lead to same 
local minimum   
Hashing can avoid repeating local search from previous x0 

{ Woodruff & Zemel (1993), Ribeiro et. al (1997), Martins et al. (2000) } 

 first improving                  best improving
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if ( f(x0) < CUTOFF) then

 x = x0;

 while ( ∃ y ∈N(x) |f(y) < f(x) ) do
x = y;

 end while

 return x;

end if

if ( f(x0) < CUTOFF) then

 x = x0;

 y = argmin { f(z) | z ∈N(x) };

 while ( f(y) < f(x) ) do

x = y;  

y = argmin { f(z) | z ∈N(x) };

 end while

 return x;

end if

Filtering to avoid application of local search to low quality 
solutions, only promising solutions are investigated: { Feo, 

Resende, & Smith (1994), Prais & Ribeiro (2000), Martins et. al (2000) }

 first improving                  best improving
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Local search within GRASP
As the name implies, local search, is confined to a localized region 
of the solution space.
To escape from local minima and broaden the search several 
alternatives have been proposed to replace local search in GRASP:
variable neighborhood descent (VND)
variable neighborhood search (VNS)
short-term memory tabu search (TS)
simulated annealing (SA)
iterated local search  (ILS)
very large-scale neighborhood search (VLSNS)



 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Local search within GRASP
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 GRASP VND local search
   

 Instead of using a single 
neighborhood, VND uses  K 
not necessarily related 
neighborhoods N

1
, N

2
, ..., N

K
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 GRASP VND local search
   

 Instead of using a single 
neighborhood, VND uses  K 
not necessarily related 
neighborhoods N

1
, N

2
, ..., N

K
.

x = x
0
; k = 1;

while (k ≤ K) do

     if (  s  N
k
(x) such that f(s) < f(x) ) then

          x = s; k = 1; break;

     endif

     k = k + 1;

endwhile

return x;
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 GRASP VND local search
   x = x

0
; k = 1;

while (k ≤ K) do                           scan all K neighborhoods

     if (  s  N
k
(x) such that f(s) < f(x) ) then

          x = s; k = 1; break;

     endif
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endwhile

return x;



 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

 GRASP VND local search
   x = x

0
; k = 1;

while (k ≤ K) do                           scan all K neighborhoods

     if (  s  N
k
(x) such that f(s) < f(x) ) then
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     endif
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endwhile

return x;



 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

 GRASP VND local search
   x = x

0
; k = 1;

while (k ≤ K) do                           scan all K neighborhoods

     if (  s  N
k
(x) such that f(s) < f(x) ) then

          x = s; k = 1; break;     found improving solution in N
k

     endif

     k = k + 1;                              x is a local mimimum of N
k

endwhile

return x;
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 GRASP VND local search
   x = x

0
; k = 1;

while (k ≤ K) do                           scan all K neighborhoods

     if (  s  N
k
(x) such that f(s) < f(x) ) then

          x = s; k = 1; break;     found improving solution in N
k

     endif

     k = k + 1;                              x is a local mimimum of N
k

endwhile

return x;               x is a local mimimum of N
k
, for k = 1,...,K
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 GRASP VND local search
   example: scheduling of multi-grouped units 

Input: Assignment of units to periods:
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 GRASP VND local search
   example: scheduling of multi-grouped units 

Local search:  Examine neighborhood of current 
solution.  If better solution found, make it current 
solution.
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 GRASP VND local search
   example: scheduling of multi-grouped units 

Three neighborhoods:  Swap units, move unit, swap 
periods.
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 GRASP VND local search
   example: scheduling of multi-grouped units 

Swap units neighborhood:  Swaps places of two 
units assigned to distinct periods.

solution
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Swap units neighborhood:  Swaps places of two 
units assigned to distinct periods.

solution

neighbor

 GRASP VND local search
   example: scheduling of multi-grouped units 
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Move unit neighborhood:  Moves unit from current 
period to available period. 

solution

 GRASP VND local search
   example: scheduling of multi-grouped units 
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Swap periods neighborhood:  Swap all units in 
period i with all units in  period j. 

solution

 GRASP VND local search
   example: scheduling of multi-grouped units 
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Swap periods neighborhood:  Swap all units in 
period i with all units in  period j. 

solution

Period i Period j

 GRASP VND local search
   example: scheduling of multi-grouped units 
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Swap periods neighborhood:  Swap all units in 
period i with all units in  period j. 

solution

neighbor

Period i Period j

 GRASP VND local search
   example: scheduling of multi-grouped units 
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GRASP VND local search

Move unit

Swap periods

improved

improved

improved

Swap units

start

yes

yes

yes

no

no

Local
minimum

no
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GRASP VND local search

Move unit

Swap periods

improved

improved

improved

Swap units

start

yes

yes

yes

no

no

Local
minimum

no

Neighborhoods are unrelated as
opposed to VNS where the are 
related
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GRASP VND local search

Move unit

Swap periods

improved

improved

improved

Swap units

start

yes

yes

yes

no

no

Local
minimum

no

1) Local min in one neighborhood
may not be local min in another 

2) Global min is a local min in 
all neighborhoods
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Examples of VND within GRASP

Martins et al. (1999): Steiner problem in graphs
Ribeiro and Souza (2002): degree constrained 
minimum spanning tree
Ribeiro et al. (2002): Steiner problem in graphs
Ribeiro and Vianna (2005): Phylogeny problem
Andrade and Resende (2006):  PBX phone 
migration
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Path-relinking (PR)
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Path-relinking

 Intensification strategy exploring trajectories       
connecting elite solutions (Glover, 1996)
Originally proposed in the context of tabu search 
and scatter search.
Paths in the solution space leading to other elite 
solutions are explored in the search for better 
solutions.
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Path-relinking

Exploration of trajectories that connect high 
quality (elite) solutions:

initial
solution

guiding
solution

path in the neighborhood of solutions
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Path-relinking
Path is generated by selecting moves that 
introduce in the initial solution attributes of the 
guiding solution.
At each step, all moves that incorporate attributes 
of the guiding solution are evaluated and the best 
move is selected: 

initial
solution

guiding 
solution
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starting solution guiding solutionPR example



 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

starting solution x guiding solution yPR example

|∆(x,y)| = 5
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starting solution guiding solutionPR example

Cannot improve
endpoint solutions
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starting solution guiding solutionPR example

Cannot improve
endpoint solutions

Can improve
endpoint solutions
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Forward path-relinking
Variants: trade-offs between computation time and 
solution quality
Forward PR adopts as initial solution the worse of the two 
input solutions and uses the better solution as the guide.

guiding 
solutionworse

solution

forward
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Backward path-relinking
Variants: trade-offs between computation time and 
solution quality
Backward PR usually does better: Better to start from the 
best of the two input solutions, neighborhood of the initial 
solution is explored more than of the guide!

guiding 
solutionbetter

solution

backward
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Back and forth path-relinking
Variants: trade-offs between computation time and 
solution quality
Explore both trajectories: twice as much time, often with only 
marginal improvements! 
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Truncated path-relinking

Variants: trade-offs between computation time and 
solution quality
Truncate the search, do not follow the full trajectory.

Truncate search here
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Truncated path-relinking

Variants: trade-offs between computation time and 
solution quality
Truncate the search, do not follow the full trajectory.

Truncate search here
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Mixed path-relinking
Variants: trade-offs between computation time and 
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)

I
G
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Mixed path-relinking
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Mixed path-relinking
Variants: trade-offs between computation time and 
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)

Advantage: explore around 
neighborhoods of both input 
solutions.
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Truncated mixed path-relinking
Variants: trade-offs between computation time and 
solution quality
Truncated mixed path-relinking 

Truncate search here
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Greedy randomized adaptive path-relinking 
  Faria, Binato, Resende, &  Falcão (2001, 2005) 

Incorporates semi-greediness into PR.
Standard PR selects moves greedily: samples one of 
exponentially many paths

guiding 
solutioninitial

solution
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Greedy randomized adaptive path-relinking 
  Faria, Binato, Resende, &  Falcão (2001, 2005)

Incorporates semi-greediness into PR.
graPR creates RCL with best moves: samples several 
paths

guiding 
solutioninitial

solution
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Incorporates semi-greediness into PR.
graPR creates RCL with best moves: samples several 
paths

guiding 
solutioninitial

solution

Greedy randomized adaptive path-relinking 
  Faria, Binato, Resende, &  Falcão (2001, 2005)
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Truncated mixed graPR
When applied to a given pair of
solutions truncated mixed PR
explores one of exponentially
many path segments each time
it is executed. 
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Truncated mixed graPR
With high probability, truncated 
mixed graPR explores different
path segments each time it is 
executed between the same pair 
of solutions.
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Truncated mixed graPR
With high probability, truncated 
mixed graPR explores different
path segments each time it is 
executed between the same pair 
of solutions.
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GRASP with path-relinking 
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GRASP with path-relinking

First proposed by Laguna and Martí (1999).
Maintains a set of elite solutions found during GRASP 
iterations.
After each GRASP iteration (construction and local 
search):
Use GRASP solution as initial solution. 
Select an elite solution uniformly at random: guiding solution.
Perform path-relinking between these two solutions.
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GRASP with path-relinking

Since 1999, there has been a lot of activity in 
hybridizing GRASP with path-relinking.
Survey by Resende & Ribeiro in MIC 2003 book of 
Ibaraki, Nonobe, and Yagiura (2005).
Main observation from experimental studies:  
GRASP with path-relinking outperforms pure 
GRASP.



 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

MAX-SAT (Festa, Pardalos, Pitsoulis, and Resende, 2006)
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3-index assignment (Aiex, Resende, Pardalos, & Toraldo, 2005)
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QAP (Oliveira, Pardalos, and Resende, 2004)
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Bandwidth packing (Resende and Ribeiro, 2003)
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Job shop scheduling (Aiex, Binato, & Resende, 2003)
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GRASP with path-relinking: 
Pool management

P is a set (pool) of elite solutions.
Ideally, pool has a set of good diverse solutions.
Mechanisms are needed to guarantee that pool is 
made up of those kinds of solutions.
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GRASP with path-relinking: 
Pool management

Each iteration of first |P| GRASP iterations adds 
one solution to P (if different from others).
After that: solution x is promoted to P if:
x is better than best solution in P.
x is not better than best solution in P, but is better than 
worst and is sufficiently different from all solutions in P.
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GRASP with path-relinking: 
Pool management

GRASP with PR works best when paths in PR are 
long, i.e. when the symmetric difference between 
the initial and guiding solutions is large.
Given a solution to relink with an elite solution, 
which elite solution to choose?
Choose at random with probability proportional to the 
symmetric difference. 
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GRASP with path-relinking: 
Pool management

Solution quality and diversity are two goals of pool 
design.
Given a solution X to insert into the pool, which elite 
solution do we choose to remove?
Of all solutions in the pool with worse solution than X, select 
to remove the pool solution most similar to X, i.e. with the 
smallest symmetric difference from X.



 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

GRASP with path-relinking

Repeat
GRASP 
with
PR loop

1) Construct randomized greedy X
2) Y = local search to improve X
3) Path-relinking between Y and      
    pool solution Z
4) Update pool
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Evolutionary path-
relinking (EvPR)
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Evolutionary path-relinking
 ( Resende & Werneck, 2004, 2006 )

Evolutionary path-relinking “evolves” the pool, i.e. 
transforms it into a pool of diverse elements whose 
solution values are better than those of the original 
pool.
Evolutionary path-relinking can be used 
as an intensification procedure at certain points of the 
solution process;
as a post-optimization procedure at the end of the solution 
process. 
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Evolutionary path-relinking (EvPR)

Each “population” of EvPR  starts with a
pool of elite solutions of size |P|.

Population P(0) is the current elite set.

Population P(0)
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Evolutionary path-relinking (EvPR)

All pairs of elite solutions (x,y) in K-th 
population P(K), such that x ∈ X ⊆ P(K) and 
y ∈ Y ⊆ P(K), are  path-relinked and the 
resulting z = PR(x,y)  is a candidate for
inclusion in population P(K+1).

Rules for inclusion into P(K+1) are the same
used for inclusion into any pool. 

X

Y



 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Evolutionary path-relinking (EvPR)

X

Y

All pairs of elite solutions (x,y) in K-th 
population P(K), such that x ∈ X ⊆ P(K) and 
y ∈ Y ⊆ P(K), are  path-relinked and the 
resulting z = PR(x,y)  is a candidate for
inclusion in population P(K+1). 

Rules for inclusion into P(K+1) are the same
used for inclusion into any pool. 
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Evolutionary path-relinking (EvPR)

If best solution in population P(K+1) has same 
objective function value as best solution in
population P(K), process stops.  

Else K=K+1 and repeat.

Population P(K)

Population P(K+1)
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GRASP with evolutionary path-relinking

As post-optimization During GRASP + PR

Repeat
GRASP 
with
PR loop

Evolutionary-PR

1) Construct greedy 
    randomized
2) Local search
3) Path-relinking
4) Update pool

Repeat
inner
loop

Evolutionary-PR

1) Construct greedy 
    randomized
2) Local search
3) Path-relinking
4) Update pool

Repeat
outer
loop

( Resende & Werneck, 2004, 2006 )
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GRASP with EvPR: Implementation ideas 
Truncated mixed graPR

In PR and EvPR, apply one iteration of graPR.
For (x,y), different calls to graPR(x,y) explore different paths. 
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GRASP with EvPR: Implementation ideas 
Make set X small and with best pool solutions.
Make set Y be entire pool.

X

Y

Use set X of size 1 or 2.

Speeds up EvPR.

Avoids unfruitful calls to graPR(x,y)
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GRASP with EvPR: Implementation ideas 
Make set X small and with best pool solutions.
Make set Y be entire pool.

X

Y

Use set X of size 1 or 2.

Speeds up EvPR.

Avoids unfruitful calls to graPR(x,y)
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GRASP
GRASP+PR

GRASP+EvPR

Weights uniformly distributed in interval [1,100]:  min sum cuts

Each heuristic was run 
200 times and time to 
target solution recorded.

Network migration scheduling



 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Each heuristic was run 
200 times and time to 
target solution recorded.

Network migration scheduling



 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Each heuristic was run 
200 times and time to 
target solution recorded.

Network migration scheduling
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GRASP + PR

GRASP + evPR

GRASP

Easier target: GRASP 
manages to find target 
solution.

Network migration scheduling
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GRASP + PR

GRASP + evPR

GRASP

Each heuristic was run
200 times and time to
target solution was
recorded.

Network migration scheduling
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GRASP + PR

GRASP + evPR

Easier target: Comparing GRASP
with path-relinking and GRASP with 
evolutionary path-relinking over 200
independent runs.

Network migration scheduling
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GRASP + PR

GRASP + evPR

Easier target: Comparing GRASP
with path-relinking and GRASP with 
evolutionary path-relinking over 200
independent runs.

Runs in which GRASP+evPR 
found target solution during 
first call to evPR.

Network migration scheduling
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GRASP + PRGRASP + evPR

Harder target: GRASP cannot
find target solution.

Comparing GRASP with PR and
GRASP with evPR over 200 
independent runs.

Network migration scheduling
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Examples of PR within GRASP

Laguna and Martí (1999): 2-layer straight line crossing 
minimization

Canuto et al. (2001): Prize-collecting Steiner problem in graphs

Resende and Ribeiro (2001): Bandwidth packing

Ribeiro et al. (2002):  Steiner problem in graphs

Resende and Werneck (2004,2006):  p-median problem & 
capacitated facility location

Aiex et al. (2005):  Three-index assignment

Resende and Ribeiro (2005):  Survey paper on GRASP & PR

Mateus, Resende, and Silva (2010): generalized QAP
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Continuous GRASP
(C-GRASP)
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C-GRASP

• C-GRASP is a metaheuristic to finding optimal or 
near-optimal solutions to
– Min f(x)  subject to: L  x  U
– where x, L, U ∈ Rn

– and f(x) is continuous but can have discontinuities, be 
non-differentiable, be the output of a simulation, etc.
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C-GRASP

• C-GRASP is based on the discrete optimization 
metaheuristic GRASP

• M.J. Hirsch, C.N. Meneses, P.M. Pardalos, and M.G.C. Resende, 
“Global optimization by continuous GRASP,” Optimization Letters, 
vol. 1,  pp. 201-212, 2007.

• M.J. Hirsch, P.M. Pardalos, and M.G.C. Resende, “Speeding up 
continuous GRASP,” European J. of Operational Research, vol. 
205, pp. 507-521, 2010.
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C-GRASP
• C-GRASP is a multi-start procedure, i.e. a major 

loop is repeated until some stopping criterion is 
satisfied.

• In each major iteration 
– x is initialized with a solution randomly selected from 

the box defined by vectors L and U.
– a number of minor iterations are carried out, where 

each minor iterations consists of a construction 
phase and a local improvement phase.

– Minor iterations are done on a dynamic grid and 
stops when the grid is too dense.
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C-GRASP
f* = ∞
while (stopping criterion not satisfied) do

 x = random[L,U]; h = h(start);

      while ( h ≥ h(end) ) do

            x = ConstructGreedyRandomized(x)

            x = LocalImprovement(x)

            if ( f(x) < f* ) then { x* = x; f* = f(x) }

            if ( x did not improve this iteration ) then { h = h/2 }

       end while

end while

return x*
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C-GRASP line search

x

current solution
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C-GRASP line search

x

current solution

direction
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C-GRASP line search

x

current solution

direction

upper bound

lower bound
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C-GRASP line search

x

current solution

upper bound

lower bound

h
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C-GRASP line search

x

upper bound

lower bound

h

Evaluate f(x) at each

Line search returns x* =argmin{ f(x) } 
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C-GRASP greedy randomized construction
unset = {1, 2, 3, ..., n }; x = x0

for ( k = 1, 2, ..., n ) do
      for ( all i ∈ unset ) do
         z

i
 = line search in direction e

i
 = (0,0,...,1,....,0)

    end for
 RCL = { i ∈ unset | f(z

i
) < CUTOFF }

      Select at random i* ∈ RCL
      Set x

i*
 = z

i*
;  unset = unset \ {i*}

end for

      

i-th component
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C-GRASP local improvement

x
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C-GRASP local improvement

x
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C-GRASP local improvement

x
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C-GRASP local improvement

x

Sample projected point y on circle and evaluate f(y)
If f(y) < f(x) then set x = y, translate grid to intersect x
and restart local search from x
If max-points are examined without improvement: x is h-local min  

y
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C-GRASP

• M.J. Hirsch, “GRASP-based heuristics for continuous 
global optimization problems,” Dept. of Industrial & 
Systems Engineering, University of Florida, Gainesville, 
Florida, 2006.
– Michael Hirsch's Ph.D. thesis.
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C-GRASP
• M.J. Hirsch, P.M. Pardalos, and M.G.C. Resende, “Sensor 

registration in a sensor network by continuous GRASP,” 
IEEE Military Communications Conference (MILCOM), 
2006.
– Sensor registration is the process of removing 

(accounting for) non-random errors, or biases, in sensor 
data.

– We solve the sensor registration problem when some 
data is not seen by all sensors, and the correspondence 
of data seen by the different sensors is not known.

– We outperform previous methods in the literature and 
have been granted a U.S. Patent.
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C-GRASP

• M.J. Hirsch, C.N. Meneses, P.M. Pardalos, M.A. Ragle, and 
M.G.C. Resende, “A continuous GRASP to determine the 
relationship between drugs and adverse reactions,” in “Data 
Mining, Systems Analysis and Optimization in Biomedicine,” 
O. Seref, O.Erhun Kundakcioglu, and P.M. Pardalos (eds.), 
AIP Conference Proceedings, vol. 953, pp. 106-121,  
Springer, 2008.
– We formulate the drug-reaction relationship problem as a 

continuous global optimization problem
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C-GRASP

• M.J. Hirsch, P.M. Pardalos, and M.G.C. Resende, 
“Solving systems of nonlinear equations with continuous 
GRASP,” Nonlinear Analysis: Real World Applications, 
vol. 10, pp. 2000-2006, 2009.
– We formulate a system of nonlinear equations as 

nonlinear function which has min value zero.  After 
finding a root, we add a barrier around the root and 
resolve to find the next root.
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C-GRASP

• E.G. Birgin, E.M. Gozzi, M.G.C. Resende, and R.M.A. Silva, 
“Continuous GRASP with a local active-set method for 
bound-constrained global optimization,” J. of Global 
Optimization, vol. 48, pp. 289-310, 2010.
– We adapt C-GRASP for global optimization of functions 

for which gradients can be computed. To to this, we use 
GENCAN (Birgin and Martínez, 2002), an active-set 
method for bound-constrained local minimization as the 
local improvement procedure.
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C-GRASP

• R.M.A. Silva, M.G.C. Resende, and P.M. Pardalos, 
“A C-GRASP Python/C library for bound-
constrained global optimization,” to appear in 
Optimization Letters, 2011.
–  We describe libcgrpp,a GNU-style dynamic 

shared Python/C library.
– The function to be minimized is encoded in Python 

and read by the library.
– Solver can be standalone or called from a C program.
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C-GRASP

• M.J. Hirsch, P.M. Pardalos, and M.G.C. Resende, 
“Correspondence of projected 3D points and 
lines using a continuous GRASP,” to appear in 
International Transactions in Operational 
Research, 2011.
– Computer vision application
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Concluding remarks
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Concluding remarks

We have given a review of classical GRASP
We then showed how the main components of GRASP 
(randomized construction and local search) can be replaced 
We showed how hybridization with path-relinking  and elite 
sets can add memory mechanisms to GRASP
We concluded describing C-GRASP, an adaptation of 
GRASP for bound-constrained global optimization.
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The End
These slides and all papers cited in this talk
can be downloaded from my homepage:
http://mauricioresende.com
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Summary of talk

• Data explosion
• Massive graphs arising from telephone call detail 

database
• Structure of call detail graph
• Searching for large cliques and bicliques
• Some experimental results
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Data explosion
(Abello, Pardalos, & R., Eds., “Handbook of Massive Data Sets,” Kluwer, 2001)

• Proliferation of massive data sets brings with it 
computational challenges 

• Data avalanche arises in a wide range of scientific and 
commercial applications

• Today’s data sets are of high dimension and are made 
up of huge numbers of observations: 
  More often they overwhelm rather than enlighten

• Outstripped the capabilities of traditional data 
measurement, data analysis, and data visualization tools
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Data explosion

• A variety of massive data sets can be modeled 
as a very large multi-digraph
 Special set of edge attributes represent special 

characteristics of application

• WWW: nodes are pages, edges are links 
pointing from one page to another

• Telephone call graph is another example …
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Call detail

• Every phone call placed on AT&T network 
generates a record (∼ 200 bytes) with:
 Originating & terminating numbers
 Start time & duration of call
 Other billing information

• The collection of these records is known as the 
Call Detail Database
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Call detail

• AT&T system (currently) generates:
 250 million records per day (on average)
 320 million records on busy day
 18 terabytes of data per year

• Data is accessed for:
 Billing & customer inquiries
 Marketing & traffic engineering
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Call detail graph

• G = (V , E ) is a directed graph:
 V  is the set of phone numbers
 E  is the set of phone calls

 (u,v ) ∈ E  implies that phone u  called phone v

• G  quickly grows into a huge graph
 Hundreds of millions of nodes and billions of edges
 Our goal is to work with one year of data (∼ 1 Tb)
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Structure of call detail graph

• Consider a 12-hour call detail graph
 123 million records: edges
 53 million phone numbers: nodes

 21 million source nodes
 22 million sink nodes
 10 million transmittal nodes

Source

Sink

T
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Connected components

3.6 million connected components

largest CC has
45 million vertices
and 80 million
edges

27,906 CC’s with
   6 vertices

2.8 million CC’s
with 2 vertices

979 CC’s with
11 vertices

598,519 CC’s
with 3 vertices
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Depth first search (DFS) tree

  
Pick a high out-degree node
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DFS trees in largest CC

 

TL

Largest DFS tree Smaller DFS trees

G ( TL) has 
10 million nodes &
19 million edges, i,e.
22% of the nodes &
24% of the edges of
the CC

18 million DFS trees

Most edges are within
trees.
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Subgraph induced by DFS tree nodes

 
 
 
 
• Most subgraphs induced by DFS tree nodes are 

very sparse:  |E | < log(|V |)
• Few are dense: |E | > sqrt(|V |) with at most 

32 nodes
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Dense subgraphs

• Dense subgraphs could be
 within G (DFS tree) 
 among different G (DFS tree)

• Counting edges:
 most are within G (DFS tree)
 leaves few edges between different G (DFS tree)
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Macro structure of call detail graph

 
dense sub-graph dense sub-graph

dense sub-graph

dense sub-graph

sparse sub-graph

community of 
interest?
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Searching for dense subgraphs

• We look for two types of subgraphs
 cliques or quasi-cliques
 bicliques or quasi-bicliques

clique quasi-clique biclique quasi-biclique
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Clique case

• We illustrate the approach with the clique case.
 We work on connected component of transmittal 

nodes (no cliques in sources or sinks)
 Breadth first search decomposition
 Peeling off vertices to focus in on large cliques
 Finding cliques in a subgraph
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Breadth first search decomposition

• Given a graph G  one can decompose its 
vertices into levels

level 0

level 1

level 3

level 4

level 5

There are no cliques spanning three or more levels.
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BFS: distribution of nodes per level

1 10 100 1000 10000 100000 1000000 10000000

0

3

6

9

12

15

18

level

number of nodes
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Edge ordering

• Use levels to order edges (k = 0,1,2,…)
 Edges in level k
 Edges from level k  to level k+1

level 0

level 1

level 3

level 4

level 5
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Chunking & peeling

• Start with all edges in E  (set is massive)
• Repeat

 Create a subgraph G’  with one or more chunks
 Find large clique (of size c’ ) in G’ 
 Peel from G  all vertices v  with deg(v ) < c’ 
 E = E (G)

chunk

chunk chunk
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Peeling

• Peeling is applied recursively

peel
peel

Clique of size 5

Clique of size 4
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Peeling with degree = 2
reduction from 3.4 M edges to 3.0 M edges 
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Peeling with degree = 14
reduction from 3.0 M edges to 18.3 K edges 
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Finding cliques

• GRASP for max clique
 multi-start 

 construct clique using randomized greedy algorithm
 attempt to improve clique using 2-exchange local search
 store all cliques found in construction & local search
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Greedy vertex choice

• Choose v ∈N (S )} with max degN (S ) {v ∈N (S )}.

S

N (S ) = nodes
adjacent to all
nodes in S
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(2,1) exchange local search

• for each vertex v  in clique S 
 while ∃ an edge (x, y ) ∈ E  with x  and y  adjacent 

to all vertices in S \ {v }
 remove v  from S  and add x  and y  to S:
               S = S \ {v } ∪ {x } ∪ {y }

x

v
y y

x

clique of size 3

clique of size 4
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Software platform
external & semi-external memory algorithms

Read data
Remove 

multiplicities & 
self loops

Decompose graph
into sources, 
transmitters &

sinks

Compute 
connected

components
For each CC:Find cliques
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Software platform
computing cliques

For each CC BFS decomposition
into K  levels

for k = 1,K −1

Work on graph
induced by nodes in
 levels k  and k + 1

GRASP & save
 maximal cliques

peel
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Mining for cliques
examples

• 12 hours of calls
 53M nodes, 170M edges
 3.6M connected components (only 302K had more 

than three nodes)
 255 self loops, 2.7M pairs, and 598K triplets

 Giant CC has 45M nodes
 Found cliques of size up to 30 nodes in giant CC.
 Found quasi-cliques of size 44 (90% density), 57 

(80%), 65 (70%), and 98 (50%) in giant CC.
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Concluding remarks

• We developed algorithms and systems for mining 
dense subgraphs is massive graphs.

• Subgraphs currently handled:
 Cliques and quasi-cliques
 Bicliques and quasi-bicliques

• We have explored data sets up to one week of calls, but 
aim to handle one year.

• Parallelization under way to speed up computations.
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Summary

• Antibandwidth
• Integer programming formulation
• GRASP construction
• Local search
• GRASP with evolutionary path-relinking
• Experimental results
• Concluding remarks
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Paper

A. Duarte, R. Martí, , M.G.C. Resende, and R.M.A. 
Silva, “GRASP with path relinking heuristics for the 
antibandwidth problem,” Networks, published 
online 22 December 2010.

Tech report:

http://www2.research.att.com/~mgcr/doc/gpr-antiband.pdf
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Antibandwidth problem

• Given an undirected graph G = (V,E), where
– V is the set of nodes (n = |V|)
– E is the set of edges (m = |E|)

• A labeling f of V is a one-to-one mapping of 
{1,2,...,n} onto V.
– Each vertex v ∈ V has a unique label f(v) ∈ {1,2,...,n}
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Antibandwidth problem

• Given an undirected graph G = (V,E), where
– V is the set of nodes (n = |V|)
– E is the set of edges (m = |E|)

• A labeling f of V is a one-to-one mapping of 
{1,2,...,n} onto V.
– Each vertex v ∈ V has a unique label f(v) ∈ {1,2,...,n}

undirected graph 
G = (V,E)



 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Antibandwidth problem

• Given an undirected graph G = (V,E), where
– V is the set of nodes (n = |V|)
– E is the set of edges (m = |E|)

• A labeling f of V is a one-to-one mapping of 
{1,2,...,n} onto V.
– Each vertex v ∈ V has a unique label f(v) ∈ {1,2,...,n}

1 3 4

2

5

6

undirected graph 
G = (V,E) with a
labeling f
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Antibandwidth problem

• Given an undirected graph G = (V,E), where
– V is the set of nodes (n = |V|)
– E is the set of edges (m = |E|)

• A labeling f of V is a one-to-one mapping of 
{1,2,...,n} onto V.
– Each vertex v ∈ V has a unique label f(v) ∈ {1,2,...,n}

6 4 5

1

3

2

undirected graph 
G = (V,E) with another
labeling f
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Antibandwidth problem

• Given G and f, the antibandwidth AB
f
(v) of node v 

is smallest difference between f(v) and the labels 
of all of the nodes adjacent to v, i.e.
– AB

f
(v) = min { |f(v)  − f(u)|: u ∈ N(v) }

– where N(v) is the set of nodes adjacent to v

6 4 5

1

3

2

undirected graph 
G = (V,E) with a
labeling f



 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Antibandwidth problem

• Given G and f, the antibandwidth AB
f
(v) of node v 

is smallest difference between f(v) and the labels 
of all of the nodes adjacent to v, i.e.
– AB

f
(v) = min { |f(v)  − f(u)|: u ∈ N(v) }

– where N(v) is the set of nodes adjacent to v
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undirected graph 
G = (V,E) with a
labeling f
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Antibandwidth problem

• Given G and f, the antibandwidth AB
f
(v) of node v 

is smallest difference between f(v) and the labels 
of all of the nodes adjacent to v, i.e.
– AB

f
(v) = min { |f(v)  − f(u)|: u ∈ N(v) }

– where N(v) is the set of nodes adjacent to v

6 4 5

1

3

2

undirected graph 
G = (V,E) with a
labeling f

6-1=5
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Antibandwidth problem

• Given G and f, the antibandwidth AB
f
(v) of node v 

is smallest difference between f(v) and the labels 
of all of the nodes adjacent to v, i.e.
– AB

f
(v) = min { |f(v)  − f(u)|: u ∈ N(v) }

– where N(v) is the set of nodes adjacent to v

6 4 5

1

3

2

undirected graph 
G = (V,E) with a
labeling f

6-1=5

4-1=3
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Antibandwidth problem

• Given G and f, the antibandwidth AB
f
(v) of node v 

is smallest difference between f(v) and the labels 
of all of the nodes adjacent to v, i.e.
– AB

f
(v) = min { |f(v)  − f(u)|: u ∈ N(v) }

– where N(v) is the set of nodes adjacent to v

6 4 5

1

3

2

undirected graph 
G = (V,E) with a
labeling f

6-1=5

4-1=3 5-1=4
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Antibandwidth problem

• Given G and f, the antibandwidth AB
f
(v) of node v 

is smallest difference between f(v) and the labels 
of all of the nodes adjacent to v, i.e.
– AB

f
(v) = min { |f(v)  − f(u)|: u ∈ N(v) }

– where N(v) is the set of nodes adjacent to v

6 4 5

1

3

2

undirected graph 
G = (V,E) with a
labeling f

6-1=5

4-1=3 5-1=4

2-1=1
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Antibandwidth problem

• Given G and f, the antibandwidth AB
f
(v) of node v 

is smallest difference between f(v) and the labels 
of all of the nodes adjacent to v, i.e.
– AB

f
(v) = min { |f(v)  − f(u)|: u ∈ N(v) }

– where N(v) is the set of nodes adjacent to v

6 4 5

1

3

2

undirected graph 
G = (V,E) with a
labeling f

6-1=5

4-1=3 5-1=4

2-1=1
      AB

f
(1) = min {5,3,4,1} = 1
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Antibandwidth problem

• Given G and f, the antibandwidth AB
f
(G) of f is 

smallest antibandwidth over all nodes in V, i.e.
– AB

f
(G) = min { AB

f
(v) : v ∈ V }

– where N(v) is the set of nodes adjacent to v

6 4 5

1

3

2

undirected graph 
G = (V,E) with a
labeling f
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Antibandwidth problem

• Given G and f, the antibandwidth AB
f
(G) of f is 

smallest antibandwidth over all nodes in V, i.e.
– AB

f
(G) = min { AB

f
(v) : v ∈ V }

– where N(v) is the set of nodes adjacent to v

6 4 5

1

3

2

AB
f
(G) = min { 1, 1, 1, 1,  2 } = 1

1

1

1
11

2
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Antibandwidth problem

• Given G, the antibandwidth AB(G) of G is largest 
antibandwidth over all possible labelings, i.e.
– AB(G) = max { AB

f
(G) : f ∈ Π

n
 }

– where Π
n
 is the set of all permutations of {1, 2, ..., n}

6 4 5

1

3

2

AB
f
(G) = min { 1, 1, 1, 1,  2 } = 1

1

1

1
11

2
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AB
f
(G) = min { 2, 2, 2, 2, 3 } = 2

Antibandwidth problem

• Given G, the antibandwidth AB(G) of G is largest 
antibandwidth over all possible labelings, i.e.
– AB(G) = max { AB

f
(G) : f ∈ Π

n
 }

– where Π
n
 is the set of all permutations of {1, 2, ..., n}

6 3 5

1

2

4

2

2

2
22

3
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AB(G) = 2

Antibandwidth problem

• Given G, the antibandwidth AB(G) of G is largest 
antibandwidth over all possible labelings, i.e.
– AB(G) = max { AB

f
(G) : f ∈ Π

n
 }

– where Π
n
 is the set of all permutations of {1, 2, ..., n}

6 3 5

1

2

4

2

2

2
22

3
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Antibandwidth problem

• NP-hard (Leung et al., 1984)
• Special cases can be solved in polynomial time, 

e.g. complements of intervals, arborescent 
comparability, and on threshold graphs (Raspaud 
et al., 2008)
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Antibandwidth problem

• Yixum and Jinjiang (2003) proposed the upper 
bound: min { floor( (n − δ + 1)/2), n − ∆ }, where
– δ is the smallest degree over all v ∈ V
– ∆ is the largest degree over all v ∈ V
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Antibandwidth problem

• Yixum and Jinjiang (2003) proposed the upper 
bound: min { floor( (n − δ + 1)/2), n − ∆ }, where
– δ is the smallest degree over all v ∈ V
– ∆ is the largest degree over all v ∈ V

2

2
3

deg = 2

4

3
δ = 2
∆ = 4
UB = min{ 2, 2 } = 2
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Antibandwidth problem

• Yixum and Jinjiang (2003) proposed the upper 
bound: min { floor( (n − δ + 1)/2), n − ∆ }, where
– δ is the smallest degree over all v ∈ V
– ∆ is the largest degree over all v ∈ V

δ = 2
∆ = 4
UB = min{ 2, 2 } = 2
AB

f
(G) = 2 is opt

AB(G) = 2

6 3 5

1

2

4
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Antibandwidth problem: IP formulation

• Let         be a binary variable that takes on the value 1 if 
and only if              , i.e. node i takes label k.

• Define                                   to be the label of node i. 
• Finally, let                                                                        

be the antibandwidth of labeling  f. 
• In the antibandwidth problem we want to determine the 

labeling  f * that maximizes b.

ikx
( )f i k=

( ) {1,2, , }il f i n= ∈ K

( ) min{| ( ) ( ) | : ( , ) }fb AB G f u f v u v E= = − ∈
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Antibandwidth problem: IP formulation

• Objective: maximize b
• Constraints:

– One label is assigned to each node: 

1

1, 1, ,
n

ik
i

x k n
=

= ∀ =∑ K
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Antibandwidth problem: IP formulation

• Objective: maximize b
• Constraints:

– One node is assigned to each label: 

1

1, 1, ,
n

ik
k

x i n
=

= ∀ =∑ K
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Antibandwidth problem: IP formulation

• Objective: maximize b
• Constraints:

– Each label l
i
 is a function of the binary variables x

ik
: 

1
, 1, ,

n

ik i
k

k x l i n
=

⋅ = ∀ =∑ K
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Antibandwidth problem: IP formulation

• Objective: maximize b
• Constraints:

–  Require that                                             : 

| |, ( , )i jb l l i j E≤ − ∈

min{| |: ( , ) }i jl l i jb E− ∈=
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Antibandwidth problem: IP formulation

• Objective: maximize b
• Constraints:

–  Binary variables       can only take values 0 or 1 : 

{0,1}, , 1, ,ikx i k n∈ ∀ = K

ikx
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Antibandwidth problem: IP formulation

• Objective: maximize b
• Constraints:

–  Labels       can only take on values {1, ..., n} : 

{1, 2, , }, 1, ,il n i n∈ ∀ =K K

il
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Antibandwidth problem: IP formulation

• Objective: maximize b
• Constraints                                       are 

nonlinear:
–  If                then
– Otherwise,
– Introduce two binary variables to indicate case:  

• If           then             and
• Otherwise,             and      

| |, ( , )i jb l l i j E≤ − ∈

i jl l≥ i jb l l≤ −
( )i jb l l≤ − −

i jl l≥ 0ijy = 1ijz =
1ijy = 0ijz =
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Antibandwidth problem: IP formulation

• Objective: maximize b
• Constraints                                       become:

    

| |, ( , )i jb l l i j E≤ − ∈

( ) 2 ( 1), ( , )i j ijb l l y n i j E− − ≤ − ∀ ∈

( ) 2 ( 1), ( , )i j ijb l l z n i j E+ − ≤ − ∀ ∈

1, ( , )ij ijy z i j E+ = ∀ ∈

1b ≥

theni jl l≥ 0ijy = 1ijz =

1ijy = 0ijz =theni jl l<
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Antibandwidth problem: IP formulation

    

( ) 2 ( 1), ( , )i j ijb l l y n i j E− − ≤ − ∀ ∈
( ) 2 ( 1), ( , )i j ijb l l z n i j E+ − ≤ − ∀ ∈

1, ( , )ij ijy z i j E+ = ∀ ∈

1b ≥

1
1, 1, ,

n

ik
i

x k n
=

= ∀ =∑ K

max b

1
1, 1, ,

n

ik
k

x i n
=

= ∀ =∑ K

1

, 1, ,
n

ik i
k

k x l i n
=

⋅ = ∀ =∑ K

{0,1}, ( , )ikx i k E∈ ∀ ∈

{1,2, }, 1, 2,il n i n∈ ∀ =K K

{0,1}, ( , )iky i k E∈ ∀ ∈
{0,1}, ( , )ikz i k E∈ ∀ ∈
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Antibandwidth problem: IP formulation

    

( ) 2 ( 1), ( , )i j ijb l l y n i j E− − ≤ − ∀ ∈
( ) 2 ( 1), ( , )i j ijb l l z n i j E+ − ≤ − ∀ ∈

1, ( , )ij ijy z i j E+ = ∀ ∈

1b ≥

1
1, 1, ,

n

ik
i

x k n
=

= ∀ =∑ K

max b

1
1, 1, ,

n

ik
k

x i n
=

= ∀ =∑ K

1

, 1, ,
n

ik i
k

k x l i n
=

⋅ = ∀ =∑ K

{0,1}, ( , )ikx i k E∈ ∀ ∈

{1,2, }, 1, 2,il n i n∈ ∀ =K K

{0,1}, ( , )iky i k E∈ ∀ ∈
{0,1}, ( , )ikz i k E∈ ∀ ∈

IP has O(n2) variables and O(n2) constraints 
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GRASP with evolutionary path-relinking

Repeat
inner
loop

Evolutionary-PR

1) Construct greedy randomized
2) Local search
3) Mixed path-relinking
4) Update pool

Repeat
outer
loop
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GRASP construction procedure

• We use the sampled greedy construction scheme 
of R. & Werneck (2004)

Select first node at random & label it n/2 

Select a small set C of unlabeled
nodes 

Select the node in C with the
best incremental value and label
it with its best label

For each
node c in C:

Evaluate  incremental
value of node c 
(determine best label
for c)

Repeat while
there are 
unlabeled nodes
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GRASP construction procedure:
Selecting a small set C of unlabeled nodes

• The set CL of candidate nodes is made up of nodes 
adjacent to labeled nodes

• The small set C of candidate nodes is a set of α×|CL| 
randomly sampled nodes from CL, where α is a random 
real number ∈ [0,1]

• The value of α does not change during construction

• Values of α ≈ 1 makes sampled greedy resemble a 
greedy construction, while values of α ≈ 0 makes it 
behave like a random construction
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GRASP construction procedure:
Determine the best label for a candidate node c

• Let       and      be, respectively, the smallest and largest 
assigned labels to the the nodes adjacent to c 

• The “best” label for c is

• The closest available label to     is assigned to c   

cl
)

cl
(

* argmax{min(| |,| |): 1, , }c cl l l l l l n= − − =
) (

K

*l
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GRASP construction procedure:
Determine the best label for a candidate node

• Let       and      be, respectively, the smallest and largest 
assigned labels to the the nodes adjacent to c 

• The “best” label for c is

• The closest available label to     is assigned to c   

cl
)

cl
(

* argmax{min(| |,| |): 1, , }u ul l l l l l n= − − =
) (

K

*l

3 Choose first node
at random and label
it n/2 = 6/2 = 3
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GRASP construction procedure

3

Candidate node

Best label for both
candidates is 6.

Label one of the
nodes with a 6
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GRASP construction procedure

6

3

Best label for both
candidates on left
is 1 and on right is 6.

Label node on right
with a 5 (closest
available label to 6)
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GRASP construction procedure

6

3

Candidate node

Best label for both
candidates on left
is 1 and on right is 6.

Label node on right
with a 5 (closest
available label to 6)
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GRASP construction procedure

6

3

5

Best label for both
candidates on left
is 1 and on right is 6.

Label node on right
with a 5 (closest
available label to 6)
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GRASP construction procedure

6

3

5

Candidate node

Best label for both
candidates is 1.

Label node on top
with a 1.
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GRASP construction procedure

1 6

3

5 Best label for both
candidates is 1.

Label node on top
with a 1.
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GRASP construction procedure

1 6

3

5

Candidate node

Best label for node on
left is 6 and for node
on bottom is 3.

Label node on bottom
with a 2.
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GRASP construction procedure

1 6

2

3

5

Candidate node

Best label for node on
left is 6 and for node
on bottom is 2 or 3.

Label node on bottom
with a 2.
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GRASP construction procedure

1 6

2

3

5
Remaining node must
be labeled with a 4.



 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

GRASP construction procedure

4 1 6

2

3

5 Remaining node must
be labeled with a 4.

AB
f
(G) = 1
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Local Search
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GRASP local search procedure

• Antibandwidth problem has a flat landscape:  
many solutions have same cost

• For a given labeling f, there may be multiple 
nodes u such that AB

f
(u) = AB

f
(G)

• Therefore, in local search, a move (swap of labels 
of a pair of nodes) that improves AB

f
(u) does not 

necessarily change the value of the solution 
AB

f
(G)
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GRASP local search procedure

• Nodes u  with unequal AB
f
(u) values but that are 

close to AB
f
(G) can be crucial in future iterations 

(swaps) of the local search, even though they 
cannot affect the value of the current labeling

• Define the set of crucial vertices of a labeling  f  
to be 

( ) () )( { : }f fC AB u A Gf u V Bβ= ∈ ≤ ⋅

(1 2)β≤ ≤
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GRASP local search procedure

• Given a labeling f,  operator move(u,v) assigns the label f (u) 
to node  v  and the label  f (v)  to node  u, resulting in a new 
labeling f '

• Local search scans nodes u in C(f ), changing their labels to 
increase their antibandwidths

• Let       and      be, respectively, the smallest and largest 
assigned labels to the the nodes adjacent to u

•  The best label for u is

ul
(

ul
)

* argmax{min(| |,| |): 1, , }u u ul l l l l l n= − − =
) (

K



 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

GRASP local search procedure

• Once we determine the best label l* for u, we determine the 
node v with this label to evaluate move(u,v)  

• We know that label l* is good for u, but we need to 
determine whether label f(u) is good for node v

• We extend the search for a good label for u not only to node 
v with label l*, but also to nodes with labels close to l*

• The set N'(u) of suitable swapping nodes for u depends on 
the relationship between l*,     , and ul

(
ul
)
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GRASP local search procedure

• If             then

• If             then

• If                  then  

*
u ul l<

(
* ( )'( ) { : ( ) }u fuN u v V l f ABv Gl= ∈ ≤ ≤ −

(

*
u ul l>

)
*'( ) { ( ) }: ( )u ufAN u v V lB Gl f v= ∈ + ≤ ≤

)

*
u u ul l l≤ ≤
( )

'( ) { ( ) ( ( )}: )u uf fAB GN u v V l f v l AB G= ∈ + ≤ ≤ −
) )
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GRASP local search procedure

• If             then

• If             then

• If                  then  

*
u ul l<

(
* ( )'( ) { : ( ) }u fuN u v V l f ABv Gl= ∈ ≤ ≤ −

(

*
u ul l>

)
*'( ) { ( ) }: ( )u ufAN u v V lB Gl f v= ∈ + ≤ ≤

)

*
u u ul l l≤ ≤
( )

'( ) { ( ) ( ( )}: )u uf fAB GN u v V l f v l AB G= ∈ + ≤ ≤ −
( )

If N'(u) = ∅, then AB
f
(u) cannot be increased in a single step

by changing the current label of u.
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GRASP local search procedure

6 4 5

1

2

3

a              2
b              1
c              2
d              1
e              1
f               1

a b d

e

f

c

AB
f
(G) = 1

v           AB
f
(v)
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GRASP local search procedure

6 4 5

1

2

3

a              2
b              1 crucial
c              2 
d              1 crucial
e              1 crucial
f               1 crucial

a b d

e

f

c

AB
f
(G) = 1

v           AB
f
(v)
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GRASP local search procedure

6 4 5

1

2

3 1         5              0    
2         4              1
3         3              2
4         2              3
5         1              4
6         0              5

a b d

e

f

c

AB
f
(G) = 1

| | | |u ul l l l l− −
) (

6 1b bl l= =
) (
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GRASP local search procedure

6 4 5

1

2

3 1         5              0    
2         4              1
3         3              2
4         2              3
5         1              4
6         0              5

a b d

e

f

c

AB
f
(G) = 1

| | | |u ul l l l l− −
) (

6 1b bl l= =
) (

* argmax{min(| |,| |): 1, , } 3u u ul l l l l l n= − − = =
) (

K



 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

GRASP local search procedure
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GRASP local search procedure

6 4 5
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2         4              1
3         3              2
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6         0              5
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) (

* argmax{min(| |,| |): 1, , } 3u u ul l l l l l n= − − = =
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*Since 1 then6u u ul l l≤ ≤ ==
( )

'( ) { : (( ) ( )} { , , })u f u fN AB G Au v V l B G d e ff v l= ∈ + ≤ ≤ =−
( )
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GRASP local search procedure

6 3 5

1

2

4

a b d

e

f

c

AB
f
(G) = 2

optimal!



 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

GRASP local search procedure

• Value of a move:
– Common practice is to define it as change in 

objective function value
– In antibandwidth, change in objective function 

provides little information

• Given node u and node v ∈C(u), we define value 
of move(u,v) to be the difference in the 
antibandwidth of u.
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GRASP local search procedure
• If f is the original labeling and f ' is the resulting 

labeling after move(u,v), then 

                  moveValue(u,v) = AB
f'
(u) − AB

f
(u) 

• Perform move(u,v) only if moveValue(u,v) > 0 
and AB

f'
(v) ≥ AB

f
(G) 

• Computation of AB
f
(G) is expensive: requires 

examination of all vertices in graph
– AB

f
(G) is not updated after each move, only when C(f) 

is computed (a la Glover & Laguna (1997))
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Define the crucial vertices set C(f) from labeling f: compute AB
f
(G)

 

 

GRASP local search procedure

Update labeling f

while C(f) is 
not empty 

 Randomly select and remove u from C(f)

while AB(G) is 
improving

Find the best label l(u) for u

Find the vertex v with f(v) = l(u)

Compute neighborhood N'(u)

while N'(u) is 
not empty and 
there is no 
improvement 

 
Select the best 
vertex v in N'(u) 

Remove v from 
N'(u) 
If OK, swap labels 
f(u) and f(v) 
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GRASP with evolutionary 
path-relinking 
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GRASP with evolutionary path-relinking

Repeat
inner
loop

pool ← evolutionary-PR(pool)

1) f ← construct greedy randomized
2) f ← local search(f)
3) If pool not empty: select f' from pool
3) f ← mixed path-relinking (f, f')
4) Attempt to update pool with f

Repeat
outer
loop

Initialize pool as empty set
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Mixed path-relinking
Variants: trade-offs between computation time and 
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)

I
G
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Mixed path-relinking
Variants: trade-offs between computation time and 
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)
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Mixed path-relinking
Variants: trade-offs between computation time and 
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)
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Mixed path-relinking
Variants: trade-offs between computation time and 
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)

G

I
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Mixed path-relinking
Variants: trade-offs between computation time and 
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)
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Mixed path-relinking
Variants: trade-offs between computation time and 
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)

Advantage: explore around 
neighborhoods of both input 
solutions.
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Pool management
• Pool has at most p (e.g. p = 10 elements) ordered from 

best {f(1)} to worst {f(p)}.
• Let AB

f(1)
(G) be the antibandwidth of the best labeling {f(1)} 

in the pool
• Labeling f is accepted to the pool if AB

f
(G) > AB

f(1)
(G) or if 

AB
f
(G) > AB

f(p)
(G) and ∆(f, pool) > δ, where

• If the pool is full and f is accepted into the pool: among all 
labelings f' such that AB

f'
(G) < AB

f
(G) we remove from the 

pool the labeling closest to f.

1
pool) min{ | ( ) ( ) | : pool}( ,

n
i

k
f k f k if

=

= − ∈∆ ∑
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Evolutionary path-relinking
 ( Resende & Werneck, 2004, 2006 )

• Evolutionary path-relinking “evolves” the pool, i.e. 
transforms it into a pool of diverse elements 
whose solution values are better than those of 
the original pool.

• Evolutionary path-relinking can be used 
– as an intensification procedure at certain points of the 

solution process;
– as a post-optimization procedure at the end of the 

solution process. 
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Evolutionary path-relinking (EvPR)

Start with the pool of elite solutions

We use a variant of EvPR introduced in 
Resende, Martí, Gallego, & Duarte (2008)
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Evolutionary path-relinking (EvPR)

While there exists a pair of pool solutions
that have not yet been relinked:
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Evolutionary path-relinking (EvPR)

While there exists a pair of pool solutions
that have not yet been relinked:                 
     Apply mixed path-relinking between pair



 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Evolutionary path-relinking (EvPR)

While there exists a pair of pool solutions
that have not yet been relinked:                 
     Apply mixed path-relinking between pair

Solution of path-relinking is candidate to 
enter the pool:  if accepted, it replaces 
closest solution with smaller antibandwidth
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Evolutionary path-relinking (EvPR)

While there exists a pair of pool solutions
that have not yet been relinked:                 
     Apply mixed path-relinking between pair

Solution of path-relinking is candidate to 
enter the pool:  if accepted, it replaces 
closest solution with smaller antibandwidth
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Evolutionary path-relinking (EvPR)

EvPR ends when all pairs of pool solutions
have been relinked and resulting labelings
are not accepted to enter the pool.                
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Preliminary 
experimental results
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Experiments

• Heuristics were coded in C and testing was done 
on a 3.0 GHz Pentium 4 PC with 3 Gb of 
memory

• CPLEX 11.1 was used to solve the integer 
program on a 1.6 GHz Itanium 2 computer with 
256 Gb of memory

• Four sets of test problems serve as our 
benchmark
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Experiments
• Test problems derived from the Harwell-Boeing Sparse 

Matrix Collection
– 12 small instances (having between 30 and 100 vertices) 
– 12 large instances (having between 400 and 900 

vertices)

• 2-dim meshes with optimal solutions known by 
construction (Raspaud et al., 2008)
– 12 small instances (having between 90 and 120 vertices)
– 12 large instances (having between 900 and 1200 

vertices)
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Experiments
• Test problems from the Harwell-Boeing Sparse Matrix 

Collection
– 12 small instances (having between 30 and 100 vertices) 
– 12 large instances (having between 400 and 900 

vertices)

• 2-dim meshes with optimal solutions known by 
construction (Raspaud et al., 2008)
– 12 small instances (having between 90 and 120 vertices)
– 12 large instances (having between 900 and 1200 

vertices)

All instances are available at 
http://www.uv.es/rmarti
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Integer programming: small Harwell-Boeing instances

name n m nz Iters 
million

B&B 
million

Time 
(secs)

Soln UB

bcspwr01 209 1607 4931 74.8 3.7 14641 17 17

bcspwr02 265 2510 7675 426.6 8.9 >24h 21 22

ibm32 276 1147 3792 27.5 0.5 5709 9 9

pores1 296 1034 3524 352.6 16.9 >24h 6 8

curtis54 410 3095 9740 219.2 7.0 >24h 10 13

will57 425 3434 10763 216.0 3.8 >24h 12 14

bcsstk01 496 2529 8320 219.9 4.9 >24h 6 11

dwt234 675 13969 42363 91.9 1.7 >24h 23 58

ash85 693 7530 23427 116.2 3.8 >24h 12 27

bcspwr03 712 14222 43204 75.3 1.7 >24h 22 57

impcol.b 739 3822 12691 148.8 2.5 >24h 5 11

nos4 794 10348 31976 99.6 2.8 >24h 10 48
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Integer programming: large Harwell-Boeing instances

name n m nz 
thous

Iters 
million

B&B 
nodes

Time 
(secs)

Soln UB

494bus 2654 245117 736 4.52 949 >24h 12 247

662bus 3798 439813 1321 1.35 408 >24h 16 331

685bus 4619 471193 1417 1.53 10 >24h 3 342

bcsstk06 8700 180541 559 5.97 406 >24h 1 210

bcsstk07 8700 180541 559 5.85 401 >24h 1 210

can445 4699 200153 608 3.35 321 >24h 1 221

can715 8095 514916 1557 1.89 16 >24h 1 357

dwt503 7033 256275 781 2.40 103 >24h 1 250

dwt592 6288 353313 1069 3.38 84 >24h 2 295

impcold 3809 182318 552 4.59 466 >24h 2 212

nos6 4605 457591 1377 2.37 48 >24h 4 337

sherman 4320 300004 905 3.16 107 >24h 5 272
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Experiments with GRASP

• For each of the 48 instances, we apply G+evPR 
and G+PR 30 times

• G+evPR: 25 iterations of inner loop and 4 
iterations of the outer loop (total of 100 GRASP 
iterations)

• G+PR: 250 iterations
• Size of elite set is 10
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Deviation w.r.t. best or optimum

minimum maximum average

Small grids
G+PR 2.9 % 5.9 % 3.8 %
G+evPR 2.2 % 4.8 % 3.4 %

Large grids
G+PR 2.4 % 3.8 % 3.3 %
G+evPR 2.2 % 3.6 % 3.0 %

Small H-B
G+PR 0.6 % 5.9 % 3.8 %
G+evPR 0.0 % 5.9 % 3.1 %

Large H-B
G+PR 1.0 % 3.9 % 2.7 %

G+evPR 0.0 % 3.4 % 2.1 %
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CPU time (seconds)

minimum maximum average
Small grids G+PR 2.4 2.7 2.6

G+evPR 4.0 5.4 4.7
Large grids G+PR 1009.0 1081.6 1046.8

G+evPR 2479.3 3281.1 2822.1
Small H-B G+PR 1.0 1.1 1.1

G+evPR 3.9 4.9 4.3
Large H-B G+PR 194.3 200.9 197.6

G+evPR 588.7 790.2 668.5
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Number of best (optimal) solutions

minimum maximum % best
Small grids G+PR 0 30 23%

G+evPR 0 30 25%
Large grids G+PR 0 0 0%

G+evPR 0 0 0%
Small H-B G+PR 0 30 51%

G+evPR 1 30 57%
Large H-B G+PR 0 30 12%

G+evPR 1 30 17%
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Number of best (optimal) solutions

minimum maximum % best
Small grids G+PR 0 30 23%

G+evPR 0 30 25%
Large grids G+PR 0 0 0%

G+evPR 0 0 0%
Small H-B G+PR 0 30 51%

G+evPR 1 30 57%
Large H-B G+PR 0 30 12%

G+evPR 1 30 17%

A minimum of 0 implies at least one instance (of the 12)
for which all 30 runs failed to find the best/opt
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Number of best (optimal) solutions

minimum maximum % best
Small grids G+PR 0 30 23%

G+evPR 0 30 25%
Large grids G+PR 0 0 0%

G+evPR 0 0 0%
Small H-B G+PR 0 30 51%

G+evPR 1 30 57%
Large H-B G+PR 0 30 12%

G+evPR 1 30 17%

A maximum of 30 implies at least one instance (of the 12)
for which all 30 runs found the best/opt
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Number of best (optimal) solutions

minimum maximum % best
Small grids G+PR 0 30 23%

G+evPR 0 30 25%
Large grids G+PR 0 0 0%

G+evPR 0 0 0%
Small H-B G+PR 0 30 51%

G+evPR 1 30 57%
Large H-B G+PR 0 30 12%

G+evPR 1 30 17%

%best = total number of runs that found best/opt / (12 × 30)
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Small Harwell-Boeing instances (solution values)

name IP CPLEX

G+PR G+evPR
max min avg max min avg

bcspwr01 17 17 16 16.13 17 16 16.40

bcspwr02 21 21 20 20.97 21 20 20.93

ibm32 9 9 8 8.30 9 8 8.27

pores1 6 6 6 6 6 6 6

curtis54 10 12 12 12 12 12 12

will57 12 13 12 12.3 13 12 12.43

bcsstk01 6 8 8 8 8 8 8

dwt234 23 51 49 49.5 51 49 49.67

ash85 12 21 19 19.87 22 19 20.30

bcspwr03 22 39 39 39 39 39 39

impcol.b 5 8 7 7.4 8 7 7.63

nos4 10 34 31 32.6 35 31 33.03
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Large Harwell-Boeing instances (solution values)

name IP CPLEX

G+PR G+evPR
max min avg max min avg

494bus 12 227 224 225.43 228 224 225.73

662bus 16 220 219 219.33 220 219 219.57

685bus 3 136 136 136.00 136 136 136.00

bcsstk06 1 32 31 31.2 33 31 31.57

bcsstk07 1 32 31 31.03 33 31 31.57

can445 1 82 75 78.2 85 78 80.67

can715 1 115 112 113.73 127 115 115.97

dwr503 1 53 51 51.97 58 51 53.73

dwr592 2 108 99 103.03 112 102 106.10

impcol.d 2 104 100 102.03 105 101 102.90

nos6 4 326 324 325.4 328 325 326.47

sherman 5 261 260 260.1 261 260 261.1
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 Concluding remarks
• We described a GRASP with evolutionary path-relinking for the 

antibandwidth problem.

• The antibandwidth problem has an important application in 
frequency assignment in cellular telephony.

• To complete the experiments, we will derive run time distributions 
for the heuristics.  Preliminary results indicate that G+PR and 
G+evPR have similar run time distributions.

• We will also conclude the CPLEX runs on the mesh instances.  
Preliminary results indicate that CPLEX cannot solve optimally 
even the smallest of the mesh instances.

• Our current G+evPR implementation can be made more efficient, 
resulting in a reduction in the number of path-relinking operations 
in the evolutionary path-relinking procedure.
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The End
These slides and a technical report
can be downloaded from my homepage:
http://www.research.att.com/~mgcr

http://www.research.att.com/~mgcr
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Summary

• Modeling hospital layout via quadratic assignment
• Modeling hospital layout via generalized quadratic 

assignment
• Generalized quadratic assignment problem (GQAP)
• GRASP with path-relinking for GQAP

– GRASP construction
– Local search
– Path-relinking

• Experimental results
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Hospital layout as a QAP [Elshafei, 1977]

• Assign N facilities (surgery, ICU, recovery, ...) to 
N locations in the hospital
– Each facility is assigned to a unique location
– Each location has only one facility assigned to it

• Given:
– Number of patients that move between each pair (i,j) 

of facilities (in some time period): P(i,j)
– Distance between each pair of locations: D(k,l)

• Minimize average distance traveled by patients
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Hospital layout as a QAP [Elshafei, 1977]

• assignment array π:  

– [π(i) = j ⇔ facility i is assigned to location j ] 
•  P[i,j] × D[π(i), π(j)]

– Total distance traveled by patients between facilities i 
and j that are assigned to locations π(i) and π(j), 
respectively
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Hospital layout as a QAP [Elshafei, 1977]

Find the assignment vector π from all possible 
permutations ∏

N
 of {1, 2, ..., N} that minimizes:

                Σ
i,j
 P[i,j] × D[π(i), π(j)]
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Hospital layout as a QAP [Elshafei, 1977]

Find the assignment vector π from all possible 
permutations ∏

N
 of {1, 2, ..., N} that minimizes:

                Σ
i,j
 P[i,j] × D[π(i), π(j)]

QAP's are one of the most computationally
difficult classes of combinatorial optimization 
problems: Instances of size N=20 are considered
challenging for exact methods.
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Hospital layout as a QAP [Elshafei, 1977]

Find the assignment vector π from all possible 
permutations ∏

N
 of {1, 2, ..., N} that minimizes:

                Σ
i,j
 P[i,j] × D[π(i), π(j)]

Heuristics are optimization methods that find good,
though not provably optimal solutions to combinatorial
optimization problems like the QAP.
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Hospital layout as a QAP [Elshafei, 1977]

Find an assignment vector π from all possible 
permutations ∏

N
 of {1, 2, ..., N} that minimizes:

                Σ
i,j
 P[i,j] × D[π(i), π(j)]

Since the 1990s, many effective heuristics have been
developed for the QAP. Examples: simulated annealing,
tabu search, genetic algorithms, ant colony
optimization, and GRASP. 



 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Hospital layout as a QAP [Elshafei, 1977]

The main drawback of the QAP model is that it 
assumes that it does not take into account that 
facilities have different dimensions and that they 
must be assigned to locations that can 
accommodate them.
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Hospital layout as a QAP [Elshafei, 1977]

The main drawback of the QAP model is that it 
assumes that it does not take into account that 
facilities have different dimensions and that they 
must be assigned to locations that can 
accommodate them.

The generalized QAP model addresses this.
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Hospital layout as a GQAP 

• The GQAP is similar to the QAP except that
– Facilities have an associated area
– Locations have an associated total available area

• Assign facilities to locations minimizing the 
average distance traveled by patients such that
– Sum of areas of facilities assigned to a location does 

not exceed the total available area of the location
– More than one facility can be assigned to a location.
– No facility can be be assigned to a location.
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Hospital layout as a GQAP 

First floor

Second floor

Third floor

Elevator
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Hospital layout as a GQAP 

First floor

Location 1
(400 m2)

Location 4
(600 m2)

Location 2
(1050 m2)

Location 3
(450 m2)

Elevator
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Hospital layout as a GQAP 

Second floor

Location 5
(250 m2)

Location 8
(875 m2)

Location 6
(1000 m2)

Location 7
(375 m2)

Elevator
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Hospital layout as a GQAP 

Third floor

Location 10
(175 m2)

Location 12
(525 m2)

Location 9
(750 m2)

Location 11
(1050 m2)

Elevator
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Hospital layout as a GQAP 

• Distances between locations on same floor are 
just the Euclidean distances between the centers 
of the locations.

• Distances between locations on different floors 
are the sums of the Euclidean distance between 
the center of the the first location to the elevator 
on that floor, the distance traveled by elevator 
(penalized), and the Euclidean distance between 
the elevator on the other floor and the center of 
the second location.
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Hospital layout as a GQAP 

First floor

Second floor

Third floor

Elevator

Distance between location on same floor
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Hospital layout as a GQAP 

First floor

Second floor

Third floor

Elevator

Distance between location on different floors
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Hospital layout as a GQAP 

First floor

Second floor

Third floor

Elevator

Distance between location on different floors
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Hospital layout as a GQAP 

First floor

Second floor

Third floor

Elevator

Distance between location on different floors
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Hospital layout as a GQAP 

ICU ::: quantity: 3  ::: area 135 m2

Pediatric ICU ::: quantity: 6  ::: area 110 m2

Operating room ::: quantity: 12  ::: area 90 m2

Radiology ::: quantity: 12  ::: area 65 m2

Physician's office ::: quantity: 15  ::: area 45 m2
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Hospital layout as a GQAP 

ICU ::: quantity: 3  ::: area 135 m2

Pediatric ICU ::: quantity: 6  ::: area 110 m2

Operating room ::: quantity: 12  ::: area 90 m2

Radiology ::: quantity: 12  ::: area 65 m2

Physician's office ::: quantity: 15  ::: area 45 m2

Inter-facility
traffic is given 
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Hospital layout as a GQAP 

• Applying GRASP with path-relinking heuristic, the 
following assignment was found in 1898.4 secs 
on a 2.6 Ghz machine.



 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Hospital layout as a GQAP 

Third floor

Elevator
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Hospital layout as a GQAP 

Third floor

Elevator
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Hospital layout as a GQAP 
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Hospital layout as a GQAP 
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Elevator
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Generalized quadratic 
assignment problem 
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Generalized quadratic assignment

•The GQAP is NP-hard.
•It is a generalization of the quadratic 
assignment problem (QAP).
•Multiple facilities can be assigned to a single 
location as long as the capacity of the location 
allows.
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N: set of n facilities M: set of m locations 

d
i
 : capacity demanded by facility i∊N   Q

j
 : capacity of location j∊M   
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i'

i

A
nxn

=(a
ii'
) : flow between facilities

N: set of n facilities M: set of m locations 



 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

i'

i

B
mxm

= (b
jj'
) : distance between locationsA

nxn
= (a

ii'
) : flow between facilities

N: set of n facilities M: set of m locations 

j'

j
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N: set of n facilities M: set of m locations 

i

C
nxm

=(c
ij
) : cost of assigning facility i∊N to location j∊M

j
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GQAP seeks a assignment, without violating the capacities of locations, 
that minimizes the sum of products of flows and distances in addition 
to a linear total cost of assignment.

The generalized quadratic assignment problem
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cost[Π] = sum(i=1,n)  c[i,π[i]] + 
                              sum(i=1,n) sum (i≠k=1,n)  F[i,k]*D[π[i],π[k]]

The generalized quadratic assignment problem

Π

i

k

π[i]

π[k]
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Solution method
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Paper

G.R. Mateus, R.M.A. Silva, and M.G.C. Resende, 
“GRASP with path-relinking for the generalized 
quadratic assignment problem,” J. of Heuristics, 
published online 1 September 2010.

Tech report: 

http://www2.research.att.com/~mgcr/doc/gpr-gqap.pdf
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Choose z at random
from elite set (ES), 
do path-relinking
between y and z, 
and find p

stopping 
criterion

Construct greedy
randomized
solution x

Apply local 
search starting 
from x and find
local min y

GRASP with  path-relinking

Replace a solution
in ES by p if p 
is of high-quality
& sufficiently 
different from 
solutions in ES 

start

end
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Components

• Construction of greedy randomized solution
• Local search
• Path-relinking
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GRASP construction
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N M

Suppose a number of assignments have already been made
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FF

CF

F

N M

N = F ∪ CF, where CF is the set of assigned facilities and 
F the set of facilities not yet assigned to some location
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FF

CF

F

N M

CL

L

M = L ∪ CL, where CL is the set of previously chosen locations and 
L the set of unselected locations.
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FF

CF

F

N M

CL

L

With probability 1− (|T|/|F|), randomly select a new location l from L, where the set T 
consists of all unassigned facilities with demands less than or equal to the maximum available 
capacity of locations in CL and move location l to CL

T

Procedure to select a new location from set L
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FF

CF

F

N M

CL

L

Favor locations in L that have high available capacity and that are close to all locations in CL 

T

Procedure to select a new location from set L
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FF

CF

F

N M

CL

L

Randomly select a facility f ∈ T favoring facilities that have high 
demand and high flows to other facilities.

T

Facility selection procedure

f
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FF

CF

F

N M

CL

L

1. Let set R to be all locations in CL having slack greater than or equal to 
demand of facility f;

T

Procedure to select a location from CL (step 1)

f

R
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FF

CF

F

N M

CL

L

2. Randomly select a location l ∈ R favoring those having high available
capacity and those close to high-capacity locations in CL;

T

Procedure to select a location from CL (step 2)

f
R

l
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FF

CF

F

N M

CL

L

Assign facility f to location l

T

Assignment procedure

f

l
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FF

CF

F

N M

CL

L

Update sets F, CF, and slack of location l

Assignment procedure

f

l



 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Considerations about the construction 
procedure

• The procedure is not guaranteed to produce a 
feasible solution.
• To address this difficulty, the construction 
procedure is repeated a maximum number of times or 
until all facilities are assigned (i.e. until F=∅).

• At start of construction, a location l from L is 
selected with probability proportional to its capacity.  
Location l is placed in CL.
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Local search
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Local search
1-move and 2-move neighborhoods from solution p are 
used in our local search.
1-move: changing one facility-to-location assignment in p

i i
j j

k

N N MM

(i,j)

(i,k)

solution p 1-move neighbor of p
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Local search
1-move and 2-move neighborhoods from solution p are 
used in our local search.
1-move: changing one facility-to-location assignment in p
2-move: changing two facility-to-location assignment in p.

N N MM

i j ji

k k
t zt

(i,j) (i,z)

(t,k) (t,j)

solution p 2-move neighbor of p
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N M

Assignment representation

assignment = solution
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solution p

1-move neighborhood

2-move neighborhood Neighborhood 
of solution p
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Traditional local search approaches

Best improving approach: 
Evaluate all 1-move and 2-move neighborhood solutions and select the best 
improving solution

First improving approach:
1: From solution p, to evaluate its 1-move neighbors until the first 
improving solution q is found. 
2: If q does not exist, continue search in the 2-move neighborhood. 
3: If q does not exist in the 2-move neighborhood, stop. Otherwise, assign   
  p = q and go to step 1.
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Approximate local search

Neighborhoods can be very large for best 
improvement

Local search can take very long

Tradeoff between best & first improvement: sample 
the neighborhood of solution p.
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solution p

1-move neighborhood

2-move neighborhood Approximate
Local Search
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p

Approximate Local Search

1. Sample k improving solutions 
from 1-move and 2-move 
neighborhood of p and place them
in an elite set E.
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2. Select the best solution q 
from elite set E.

q

p

Approximate Local Search

1. Sample k improving solutions 
from 1-move and 2-move 
neighborhood of p and place them
in an elite set E.
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p = q

3. Update p = q

Approximate Local Search

1. Sample k improving solutions 
from 1-move and 2-move 
neighborhood of p and place them
in an elite set E.

2. Select the best solution q 
from elite set E.
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The search is repeated from 
current solution p until .... 

Previous
solution p

current
solution p

Approximate 
Local Search
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...until no improvement in 
the neighborhoods exists 

approximate local
minimum

Approximate 
Local Search
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Path-relinking
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Path-relinking (Glover, 1996)

Exploration of trajectories that connect high quality 
(elite) solutions:

initial
solution

guiding
solution

path in the neighborhood of solutions
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Path-relinking
Path is generated by selecting moves that introduce 
in the initial solution attributes of the guiding 
solution.
At each step, all moves that incorporate attributes 
of the guiding solution are evaluated and the best 
move is selected: 

initial 
solution

guiding
solution
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Path is generated by selecting moves that introduce 
in the initial solution attributes of the guiding 
solution.
At each step, all moves that incorporate attributes of 
the guiding solution are evaluated and the best 
move is selected: 

initial 
solution

guiding
solution

Path-relinking
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Path is generated by selecting moves that introduce 
in the initial solution attributes of the guiding 
solution.
At each step, all moves that incorporate attributes 
of the guiding solution are evaluated and the best 
move is selected: 

initial 
solution

guiding
solution

Path-relinking
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Path is generated by selecting moves that introduce 
in the initial solution attributes of the guiding 
solution.
At each step, all moves that incorporate attributes of 
the guiding solution are evaluated and the best 
move is selected: 

initial 
solution

guiding
solution

Path-relinking
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Path is generated by selecting moves that introduce 
in the initial solution attributes of the guiding 
solution.
At each step, all moves that incorporate attributes of 
the guiding solution are evaluated and the best 
move is selected: 

initial 
solution

guiding
solution

Path-relinking
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Path is generated by selecting moves that introduce 
in the initial solution attributes of the guiding 
solution.
At each step, all moves that incorporate attributes of 
the guiding solution are evaluated and the best 
move is selected: 

initial 
solution

guiding
solution

Path-relinking
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Path is generated by selecting moves that introduce 
in the initial solution attributes of the guiding 
solution.
At each step, all moves that incorporate attributes of 
the guiding solution are evaluated and the best 
move is selected: 

initial 
solution

guiding
solution

Path-relinking
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Infeasibility in path-relinking for GQAP

N M

initial 
solution

guiding
solution(i,j)
(i,k)

i j

k

solution A

solution A 
feasible
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Infeasibility in path relinking for GQAP

N M

initial 
solution

guiding
solution(i,j)
(i,k)

i j

k

(i,k)

solution B 
infeasible

solution B
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Repair procedure

N MN M

initial 
solution

guiding
solution(i,j)

(i,k)
solution B

Non-fixed

Fixed
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Repair procedure

N MN M

initial 
solution

guiding
solution(i,j)

(i,k)
solution B

Non-fixed

Fixed
permanently assigned
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Repair procedure

N M

1. Set FT ⊆ non-Fixed: all facilities in solution B assigned to location k

kFT

solution B
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Repair procedure

N M

1. Set FT ⊆ non-Fixed: all facilities in solution B assigned to location k

kFT

solution B

2. Set T ⊆ FT: all facilities in B with demand ≤ maximum slack in M

maximum
slack in M

T
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Repair procedure

N M

1. Set FT ⊆ non-Fixed: all facilities in solution B assigned to location k

kFT

solution B

2. Set T ⊆ FT: all facilities in B with demand ≤ maximum slack in M

T

3. Randomly select a facility w ∈ T favoring those with higher demand

w

k

maximum
slack in Mk

maximum
slack in M
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N M

1. Set FT ⊆ non-Fixed: all facilities in solution B assigned to location k

kFT

solution B

2. Set T ⊆ FT: all facilities in B with demand ≤ maximum slack in M

T

3. Randomly select a facility w ∈ T favoring those with higher demand

w

4. Set R ⊆ M: all locations having slack ≥ demand of facility w

R

kkk

maximum
slack in M



 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

N M

kFT

solution B

T
w

R

5. Randomly select a location v ∈ R  (equal probability)

V

k

maximum
slack in M

1. Set FT ⊆ non-Fixed: all facilities in solution B assigned to location k
2. Set T ⊆ FT: all facilities in B with demand ≤ maximum slack in M
3. Randomly select a facility w ∈ T favoring those with higher demand
4. Set R ⊆ M: all locations having slack ≥ demand of facility w
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N M

kFT

T
w

RV

6. Assign facility w to location v

w

solution B 
feasible

1. Set FT ⊆ non-Fixed: all facilities in solution B assigned to location k
2. Set T ⊆ FT: all facilities in B with demand ≤ maximum slack in M
3. Randomly select a facility w ∈ T favoring those with higher demand
4. Set R ⊆ M: all locations having slack ≥ demand of facility w
5. Randomly select a location v ∈ R (equal probability)
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N M

k

solution B' 

initial 
solution

guiding
solution

solution B'repair 
procedure
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guiding
solution

...

... ...
initial 
solution

repair procedure
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guiding
solution

...

... ...
initial 
solution

repair procedure succeeds

guiding
solution

...

... ...
initial 
solution

or repair procedure fails

X

Possible outcomes
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guiding
solution

...

... ...
initial 
solution

repair procedure succeeds

guiding
solution

...

... ...
initial 
solution

or repair procedure fails

X

Possible outcomes

   Repeat the repair procedure on solution B a maximum number of 
times. If a feasible solution is not found, discard B and move to 
solution C

guiding
solution

... ...
initial 
solution

X
solution C

A

B
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guiding
solution

...

... ...
initial 
solution

repair procedure

initial 
solution

guiding
solution

So, instead of a path with feasible solution in one single step ... 
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guiding
solution

...

... ...
initial 
solution

repair procedure

initial 
solution

guiding
solution

initial 
solution

guiding
solution

We have now a path with eventual intermediate repair hops 

repair hops

So, instead of a path with feasible solution in one single step ... 
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Experimental results
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Test environment

Dell PE1950 computer with a dual quad core 2.66 
GHz Intel Xeon processors an 16 GB of Memory
Red Hat Linux version 5.1.19.6 
Java language, Javac compiler ver.1.6.0-05
Random-number generator:  Mersenne Twister 
algorithm (Matsumoto and Nishimura, 1998) from 
the COLT library 
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Test environment

Instances:
From Elloumi et al. (2003), Lee and Ma (2005), and Cordeau et al. (2006): 
10 to 50 facilities and  3 to 20 locations.

Experimental Design: 
For each instance we made 200 independent runs of GRASP-PR. Each run 
stopped when a solution value as good as the best in the literature was 
found. 

Statistics: 
Minimum, maximum, average times, and standard deviation. 
Time for 95% of the runs to find solutions as good as the literature. 
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Parameter tuning for GRASP-PR

Instance: 50-10-95 (Cordeau et al., 2006).
Strategies tested:
Path-relinking direction: forward (f) or backward (b);
Criteria to select a facility from set T in the repairing 
procedure: randomly (r) or greedily (g)
Criteria to select a solution from elite set in the 
approximate local search: randomly (r) or greedily (g).

Combinations: 23 = 8
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We chose to use f-r-g in
the remaining experiments: 
  
  > Forward PR
  
  > Random selection of facility
     in set T during repair in PR
  
  > Select best solution from
     elite set in approx. local
     search   
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Comparison with other algorithms

Elloumi et al. (2003)
Lee and Ma (2005)
Cordieu et al. (2006)
Hahn et al. (2007)
Pessoa et al. (2008)



 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Comparison with Elloumi et al (2003): 

Method(s): Three linearization methods (L1, L2, and L3),  three 
semidefinite programming formulations (S0, S1, and S2) and a 
Lagrangian decomposition (D0). 

Instances (Elloumi (1991) and Roupin (2004)): For each one of eight 
types [four configurations (A, B, C, and D) with two classes of 
instances], five instances with 10 facilities and three locations, and 
five instances with 20 facilities and five locations. Total of 80 
instances 

Comparison: GRASP-PR achieved the target values on all instances, 
with an AVERAGE performance improvement varying between a 
factor of 7.3  and over 5000 in relation to the BEST average time 
of the methods of Elloumi et al (2003)
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Comparison with Lee and Ma (2005):

Method(s): Three linearization methods (F-Y, K-B, and L3), based on 
the work of Frieze and Yadegar (1983), Kaufman and Broeckx (1978), 
and Padberg and Rijal (1996) and a branch and bound method (B&B) 
based on the work of Burkard (1991). 

Instances: Suite of test problems with 10 to 16 facilities and 3 to 8 
locations. Total of 25 instances.

Comparison: GRASP-PR found the target value on all 200 runs for 
each of the instances, with an AVERAGE performance improvement 
varying between a factor of 11.2  and 1004.6 in relation to the 
BEST average time of the methods of Lee and Ma (2005)
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Comparison with Cordeau et al. (2006): 

Method: memetic algorithm. 

Instances:  problems with 20 to 50 facilities and 6 to 20 locations. 
Total = 21 instances 

Comparison: GRASP-PR found the target value on all 200 runs for 
each of the instances, with an AVERAGE performance improvement 
varying between a factor of 1.5  and 59.2 in relation to the BEST 
average time of the memetic algorithm, except for instances 30-20-
95, 35-15-95, and 50-10-75. 
However, for the last two instances the FASTEST GRASP-PR running times 

were FAR LESS than those of the memetic algorithm. 

For instance 30-20-95, the GRASP-PR heuristic found the best solution found 
by the memetic algorithm but in 44 hours and 47 minutes.
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Comparison with Hahn et al. (2007):

Method(s): Level-1 reformulation-linearization technique (RLT) dual 
ascent procedure in a branch-and-bound scheme. 

Instances: Four instances from Elloumi et al. (2003), three instances 
from Lee and Ma (2005), and one instance from Cordeau et al. 
(2006). Total of eight instances. 

Comparison: GRASP-PR found the target value on all 200 runs for 
each of the instances, with an AVERAGE performance improvement 
varying between a factor of 8.8  and over 69,000 w.r.t. the BEST 
average time of the method of Hahn et al. (2007).
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Comparison with Pessoa et al. (2008): 

Method: Combination of Hahn et al. (2007) dual ascent procedure 
with the general-purpose volume algorithm of Barahona and Anbil 
(2000).

Instances: Four instances from Elloumi et al. (2003), three instances 
from Lee and Ma (2005), and 12 instances from Cordeau et al. 
(2006). Total of 24 instances. 

Comparison: GRASP-PR found the target value on all 200 runs for 
each of the instances, with an AVERAGE performance improvement 
varying between a factor of 132.7  and over 100,000 w.r.t. the 
BEST average time of the method of Pessoa et al. (2008), except 
for instance 30-20-95.
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Concluding remarks
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Concluding remarks
Reviewed hospital layout optimization via QAP 
Introduced hospital layout optimization via generalized QAP 

Described several heuristics that can be applied to solve 
this layout problem:
> Greedy

> Randomized greedy

> Local search

> Path-relinking

> GRASP

> GRASP with path-relinking
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The End
Slides and full paper can be downloaded from 
http://mauricioresende.com
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Summary

• Regenerator location problem (RLP)
• Solution construction procedures
• Local improvement procedure 
• GRASP for the RLP
• Experimental results
• Concluding remarks
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Regenerator location 
problem
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Reference

A. Duarte, R. Martí, M.G.C.R., and R.M.A. Silva, 
“Randomized heuristics for the regenerator location 
problem,” AT&T Labs Research Technical Report, Florham 
Park, NJ, July 13, 2010.

Tech report:

http://www2.research.att.com/~mgcr/doc/gpr-regenloc.pdf
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Signal regeneration

• Telecommunication systems use optical signals to 
transmit information
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Signal regeneration

• Telecommunication systems use optical signals to 
transmit information

• Strength of signal deteriorates and loses power 
as it gets farther from source

• Signal must be regenerated periodically to reach 
destination: Regenerators

• Regenerators are expensive: minimize the 
number of regenerators in the network
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Regenerator location problem (RLP)

• Given:
– Graph G=(V,E), where V are vertices, E are edges, 

where edge (i,j) has a real-valued length d(i,j) > 0
– D > 0 is the maximum length that a signal can travel 

before it must be regenerated
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Regenerator location problem (RLP)

• Find:
– Paths that connect all pairs of nodes in V×V 
– Set of nodes where it is necessary to locate single 

regenerators 

• Minimize number of deployed regenerators 
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Regenerator location problem (RLP)

• Path between {s,t} ∈ VV
– { (s,v[1]), (v[1],v[2]), ...,(v[k],t) } is formed by one or 

more path segments

• Path segment is sequence of consecutive edges
–  { (v[i],v[i+1]), (v[i+1],v[i+2]), ...,(v[q-1],v[q]) } in the 

path satisfying the condition                                   
          d(v[i],v[i+1]) + d(v[i+1],v[i+2])+⋯+ d(v[q-1],v[q]) ≤ D
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Regenerator location problem (RLP)

• Path between {s,t} ∈ VV
– { (s,v[1]), (v[1],v[2]), ...,(v[k],t) } is formed by one or 

more path segments

• Path segment is sequence of consecutive edges
–  { (v[i],v[i+1]), (v[i+1],v[i+2]), ...,(v[q-1],v[q]) } in the 

path satisfying the condition                                   
          d(v[i],v[i+1]) + d(v[i+1],v[i+2])+⋯+ d(v[q-1],v[q]) ≤ D

Path segment must not be longer than D
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Regenerator location problem (RLP)

• If total length of path is no more than D, then 
path consists of a single path segment

• Otherwise, it consists of two or more segments
– Regenerators will be located in the internal nodes of 

the path
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Regenerator location problem (RLP)

• If total length of path is no more than D, then 
path consists of a single path segment

• Otherwise, it consists of one or more segments
– Regenerators will be located in the internal nodes of 

the path

r

r

r

ts
dD

dD

dD dD
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Regenerator location problem (RLP)
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7

60

70

60

90

40
40

150

90

90
70

D = 100

7-node graph with D = 100



Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

Regenerator location problem (RLP)

1

2 3

4

5

6

7

60

70

60

90

40
40

150

90

90
70

D = 100

(1) Note that:
– D(1,5) = 150 > 100 = D
– Edge (1,5) cannot be part of 

any path
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Regenerator location problem (RLP)

1

2 3

4

5

6

7

60

70

60

90

40
40

150

90

90
70

D = 100

(2) Note that:
– Shortest path from 1 to 3 is     

 { (1,2), (2,3) } with total 
length                                      
     60 + 70 = 130 > 100 = D

– Must be decomposed into two 
path segments { (1,2) } and      
{ (2,3) }  with a regenerator in 
node 2



Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

Regenerator location problem (RLP)

1

2 3

4

5

6

7

60

70

60

90

40
40

150

90

90
70

D = 100

(3) Note that:
– Shortest feasible path from 1 

to 5 is { (1,2), (2,3), (3,5) } 
with total length                     
60 + 70 + 90 = 220 >             
                              100 = D

– Must be decomposed into 
three path segments { (1,2) },  
{ (2,3) }, and { (3,5) } with 
regenerators in   nodes 2     
and 3
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Regenerator location problem (RLP)

1

2 3

4

5

6

7

60

70

60

90

40
40

150

90

90
70

D = 100

(4) Note that:
– Shortest feasible path from 5 

to 7 is { (5,6), (6,7) } with total 
length 40 + 40 = 80 ≤             
                              100 = D

– No regenerator is needed to 
connect nodes 5 and 7
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Regenerator location problem (RLP)

1

2 3

4

5

6

7

60

70

60

90

40
40

150

90

90
70

D = 100

(5) Note that:
– Placing regenerators in       

nodes 2 and 7 allows for 
communication between all 
pairs of nodes in the graph
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Related work
• Yetginer & Karasan (2003): regenerator placement in 

context of traffic engineering with restoration

• Gouveia et al. (2003): network design problem that forbids 
path segments between components that are longer than a 
maximum length

• Chen & Raghavan (2007): introduce RLP & greedy 
heuristic 

• Chen et al. (2010): introduce branch & cut scheme and new 
heuristics; prove NP-hardness

• Flammini et al. (2009): prove NP-hardness
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Communication graph (Chen et al., 2010)

1

2 3

4

5

6

7

60

70

60

90

40
40

150

90

90
70

G = (V,E)
D = 100

• Given weighted graph G
– Delete all edges having 

length greater than D
– For all non-adjacent nodes, 

add an edge between them 
of length equal to the 
corresponding shortest 
path in G if it is no longer 
than D

– Disregard all length info
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Communication graph (Chen et al., 2010)

1

2 3

4

5

6

7

60

70

60

90

40
40

150

90

90
70

G = (V,E)
D = 100

1
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4

5

6

7

M = (V,E')
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Communication graph (Chen et al., 2010)

1

2 3

4

5

6

7

M = (V,E')

• If M is complete, then 
there is no need for 
regenerators

• If M is not connected, 
then the problem is 
infeasible

• Otherwise, one or 
more regenerators are 
needed
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Greedy algorithm (Chen et al., 2010)

1

2 3

4

5

6

7

M = (V,E')

• Works on communication graph M

• Input: set of nodes not directly 
connected (NDC) in M and builds a set 
R of regenerator nodes

• At each step the procedure determines a 
node u* whose inclusion in R enables 
the connection of the largest number 
g(u*) of yet unconnected pairs X(u*)      
in M

• Node u* is added to R and M is updated
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Greedy algorithm (Chen et al., 2010)

1

2 3

4

5

6

7

M = (V,E')

u X(u) g(u)

1 ∅ 0
2 { (1,3),(1,4),(1,7),(3,7),

(4,7) }
5

3 { (4,5),(2,5) } 2
4 { (2,6),(3,6) } 2
5 { (3,7),(3,6) } 2
6 { (4,7),(4,5) } 2
7 { (2,6),(2,5) } 2
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Greedy algorithm (Chen et al., 2010)

1

2 3

4

5

6

7

M = (V,E')

u X(u) g(u)

1 ∅ 0
2 { (1,3),(1,4),(1,7),(3,7),

(4.7) }
5

3 { (4,5),(2,5) } 2
4 { (2,6),(3,6) } 2
5 { (3,7),(3,6) } 2
6 { (4,7),(4,5) } 2
7 { (2,6),(2,5) } 2

Add regenerator to node 2
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Greedy algorithm (Chen et al., 2010)

1

2 3

4

5

6

7

M = (V,E')

u X(u) g(u)

1 ∅ 0
2 { (1,3),(1,4),(1,7),(3,7),

(4.7) }
5

3 { (4,5),(2,5) } 2
4 { (2,6),(3,6) } 2
5 { (3,7),(3,6) } 2
6 { (4,7),(4,5) } 2
7 { (2,6),(2,5) } 2

Update M to account for regenerator 
in node 2
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Greedy algorithm (Chen et al., 2010)

1

2 3

4

5

6

7

M = (V,E')

u X(u) g(u)

1 ∅ 0
- - -
3 { (1,5),(2,5),(4,5) } 3
4 { (1,6),(2,6),(3,6) } 3
5 { (3,6) } 1
6 { (4,5) } 1
7 { (1,5),(1,6),(2,5),(2,6),(3,6),(4,5) } 6
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Greedy algorithm (Chen et al., 2010)

1

2 3

4

5

6

7

M = (V,E')

u X(u) g(u)

1 ∅ 0
- - -
3 { (1,5),(2,5),(4,5) } 3
4 { (1,6),(2,6),(3,6) } 3
5 { (3,6) } 1
6 { (4,5) } 1
7 { (1,5),(1,6),(2,5),(2,6),(3,6),(4,5) } 6

Add regenerator to node 7
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Greedy algorithm (Chen et al., 2010)

1

2 3

4

5

6

7

M = (V,E')
Update M to account for regenerator 
in node 7

u X(u) g(u)

1 ∅ 0
- - -
3 { (1,5),(2,5),(4,5) } 3
4 { (1,6),(2,6),(3,6) } 3
5 { (3,6) } 1
6 { (4,5) } 1
7 { (1,5),(1,6),(2,5),(2,6),(3,6),(4,5) } 6
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Greedy algorithm (Chen et al., 2010)

1

2 3

4

5

6

7

M = (V,E')
Since M is complete, all pairs can 
communicate and solution R = {2,7}
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H1 heuristic (Chen et al., 2010)

Aim of H1 is find a spanning 
tree in M having the maximum 
number of leaves, thus 
minimizing the number of 
internal nodes.

Regenerators are assigned to 
the internal nodes.

1

2 3

4

5

6

7

Communication graph M
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H1 heuristic (Chen et al., 2010)

u* = argmin { deg(u): u ∈ V }

S ← { u* }    (spanning tree)

S ← V \ { u* } 

R ← ∅   (regenerators)
Call recursive function               
                         Tree(u*,S,S,R)

1

2 3

4

5

6

7

Communication graph M
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H1 heuristic (Chen et al., 2010)

u* = argmin { deg(u): u ∈ V }

S ← { u* }    (spanning tree)

S ← V \ { u* } 

R ← ∅   (regenerators)
Call recursive function               
                         Tree(u*,S,S,R)

1

2 3

4

5

6

7

Communication graph M
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H1 heuristic (Chen et al., 2010)

Tree(u,S,S,R)

U(u) ←  N(u) ∩ S

if (|S|> 0) then

   S ← S ∪ U(u)

   S ← V \ S

end if

while U(u) ≠ 0 do 

   Compute deg
S
(v) for all v ∈ U(u)

   u* ← argmax {  deg
S
(v): v ∈ U(u) }

   if  deg
S
(u*) > 0  then

      R ← R ∪ { u* } 

      Tree(u*,S,S,R)

   end if   

   U(u) ←  N(u) \ { u* }

end while

return                                          
 

1

2 3

4

5

6

7

u = 1; S = {1};  S = {2,3,4,5,6,7}
U(1) = { 2 }
S = {1,2};  S = {3,4,5,6,7}
deg

S
(2) = 3

u* = 2
R ← R ∪ { 2 } = { 2 } 
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H1 heuristic (Chen et al., 2010)

Tree(u,S,S,R)

U(u) ←  N(u) ∩ S

if (|S|> 0) then

   S ← S ∪ U(u)

   S ← V \ S

end if

while U(u) ≠ 0 do 

   Compute deg
S
(v) for all v ∈ U(u)

   u* ← argmax {  deg
S
(v): v ∈ U(u) }

   if  deg
S
(u*) > 0  then

      R ← R ∪ { u* } 

      Tree(u*,S,S,R)

   end if   

   U(u) ←  N(u) \ { u* }

end while

return                                          
 

1

2 3

4

5

6

7

u = 1; S = {1};  S = {2,3,4,5,6,7}
U(1) = { 2 }
S = {1,2};  S = {3,4,5,6,7}
deg

S
(2) = 3

u* = 2
R ← R ∪ { 2 } = { 2 } 
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H1 heuristic (Chen et al., 2010)

Tree(u,S,S,R)

U(u) ←  N(u) ∩ S

if (|S|> 0) then

   S ← S ∪ U(u)

   S ← V \ S

end if

while U(u) ≠ 0 do 

   Compute deg
S
(v) for all v ∈ U(u)

   u* ← argmax {  deg
S
(v): v ∈ U(u) }

   if  deg
S
(u*) > 0  then

      R ← R ∪ { u* } 

      Tree(u*,S,S,R)

   end if   

   U(u) ←  N(u) \ { u* }

end while

return                                          
 

1

2 3

4

5

6

7

u = 2; S = {1,2};  S = {3,4,5,6,7}
U(2) = { 3,4,7 }
S = {1,2,3,4,7}; S = {5,6}
deg

S
(3) = 1

deg
S
(4) = 1

deg
S
(7) = 2

u* = 7
R ← R ∪ { 7 } = { 2,7 } 
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H1 heuristic (Chen et al., 2010)

Tree(u,S,S,R)

U(u) ←  N(u) ∩ S

if (|S|> 0) then

   S ← S ∪ U(u)

   S ← V \ S

end if

while U(u) ≠ 0 do 

   Compute deg
S
(v) for all v ∈ U(u)

   u* ← argmax {  deg
S
(v): v ∈ U(u) }

   if  deg
S
(u*) > 0  then

      R ← R ∪ { u* } 

      Tree(u*,S,S,R)

   end if   

   U(u) ←  N(u) \ { u* }

end while

return                                          
 

1

2 3

4

5

6

7

u = 2; S = {1,2};  S = {3,4,5,6,7}
U(2) = { 3,4,7 }
S = {1,2,3,4,7}; S = {5,6}
deg

S
(3) = 1

deg
S
(4) = 1

deg
S
(7) = 2

u* = 7
R ← R ∪ { 7 } = { 2,7 } 
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H1 heuristic (Chen et al., 2010)

Tree(u,S,S,R)

U(u) ←  N(u) ∩ S

if (|S|>1) then

   S ← S ∪ U(u)

   S ← V \ S

end if

while U(u) ≠ 0 do 

   Compute deg
S
(v) for all v ∈ U(u)

   u* ← argmax {  deg
S
(v): v ∈ U(u) }

   if  deg
S
(u*) > 0  then

      R ← R ∪ { u* } 

      Tree(u*,S,S,R)

   end if   

   U(u) ←  N(u) \ { u* }

end while

return                                          
 

1

2 3

4

5

6

7

u = 7; S = {1,2,3,4,7};  S = {5,6}
U(7) = { 5,6 }
S = {1,2,3,4,5,6,7}; S = { }
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H1 heuristic (Chen et al., 2010)

Tree(u,S,S,R)

U(u) ←  N(u) ∩ S

if (|S|>1) then

   S ← S ∪ U(u)

   S ← V \ S

end if

while U(u) ≠ 0 do 

   Compute deg
S
(v) for all v ∈ U(u)

   u* ← argmax {  deg
S
(v): v ∈ U(u) }

   if  deg
S
(u*) > 0  then

      R ← R ∪ { u* } 

      Tree(u*,S,S,R)

   end if   

   U(u) ←  N(u) \ { u* }

end while

return                                          
 

1

2 3

4

5

6

7

u = 7; S = {1,2,3,4,7};  S = {5,6}
U(7) = { 5,6 }
S = {1,2,3,4,5,6,7}; S = { }
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H2 heuristic (Chen et al., 2010)

                                           1

2 3

4

5

6

7

Communication graph M

while M is not complete do

   Find lowest degree node u* in M
   Assign regenerator to neighbor v* of u*
       having max degree
   Update M adding links that can now 
       communicate because of v*
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H2 heuristic (Chen et al., 2010)

                                           1

2 3

4

5

6

7

Min degree node is {1}

while M is not complete do

   Find lowest degree node u* in M
   Assign regenerator to neighbor v* of u*
       having max degree
   Update M adding links that can now 
       communicate because of v*
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H2 heuristic (Chen et al., 2010)

                                           1

2 3

4

5

6

7

Min degree node is {1}
Max degree neighbor of {1} is {2}
Add regenerator to {2}

while M is not complete do

   Find lowest degree node u* in M
   Assign regenerator to neighbor v* of u*
       having max degree
   Update M adding links that can now 
       communicate because of v*
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H2 heuristic (Chen et al., 2010)

                                           1

2 3

4

5

6

7

Min degree node is {1}
Max degree neighbor of {1} is {2}
Add regenerator to {2}

while M is not complete do

   Find lowest degree node u* in M
   Assign regenerator to neighbor v* of u*
       having max degree
   Update M adding links that can now 
       communicate because of v*
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H2 heuristic (Chen et al., 2010)

                                           1

2 3

4

5

6

7

Min degree node is {1}
Max degree neighbor of {1} is {2}
Add regenerator to {2}
Update M: add { (1,3), (1,4), (1,7),
(3,7), (4,7) }

while M is not complete do

   Find lowest degree node u* in M
   Assign regenerator to neighbor v* of u*
       having max degree
   Update M adding links that can now 
       communicate because of v*
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H2 heuristic (Chen et al., 2010)

                                           1

2 3

4

5

6

7

Min degree node is {5}
Max degree neighbors of {5} are {3,7}

while M is not complete do

   Find lowest degree node u* in M
   Assign regenerator to neighbor v* of u*
       having max degree
   Update M adding links that can now 
       communicate because of v*
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H2 heuristic (Chen et al., 2010)

                                           1

2 3

4

5

6

7

Min degree node is {5} or {6}. Pick {5}.
Max degree neighbors of {5} is {7}.
Add regenerator to {7}

while M is not complete do

   Find lowest degree node u* in M
   Assign regenerator to neighbor v* of u*
       having max degree
   Update M adding links that can now 
       communicate because of v*
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H2 heuristic (Chen et al., 2010)

                                           1

2 3

4

5

6

7

Min degree node is {5}
Max degree neighbors of {5} are {3,7}
Add regenerator to {7}
Update M: add { (1,5), (1,6), (2,5),
(2,6), (3,6), (4,5) }

while M is not complete do

   Find lowest degree node u* in M
   Assign regenerator to neighbor v* of u*
       having max degree
   Update M adding links that can now 
       communicate because of v*
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H2 heuristic (Chen et al., 2010)

                                           1

2 3

4

5

6

7

M is complete!

R = { 2, 7 }

while M is not complete do

   Find lowest degree node u* in M
   Assign regenerator to neighbor v* of u*
       having max degree
   Update M adding links that can now 
       communicate because of v*
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GRASP heuristics
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GREEDY, H1, and H2 are greedy 
heuristics.

• In GREEDY: pick the node u* which maximizes 
the number of unconnected pairs that become 
connected if a regenerator is added at  u*.

• In H1: pick the node u* that maximizes deg
S
(v) 

for v ∈ U(u).
• In H2: pick the maximum degree node u* 

adjacent to the node v* of minimum degree in M.
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GRASP heuristics ( Feo & M.G.C.R., 1989, 1995 )

• GRASP constructs a solution, one regenerator at a time.

• Randomized greedy: instead of making the greedy choice, 
randomized greedy builds a restricted candidate set (RCL) of 
semi-greedy elements and selects one at random to add to 
the solution.  A real-valued parameter ∈ [0,1] controls the 
amount of randomness and greediness of the semi-greedy 
method. This is repeated until a solution is on hand.

• Local search: after solution is constructed, local 
improvement attempts to decrease the number of 
regenerators.



Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

GRASP heuristics ( Feo & M.G.C.R., 1989, 1995 )

• We propose randomized versions of GREEDY, H1, and 
H2, which we call, respectively, CG, C1, and C2.

• Local search (Chen et al., 2010) attempts to remove 
regenerators { i,j } from R and replace them with one not 
currently in R. 
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Local search

1

2 3

4

5

6

7

M = (V,E')
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Local search

1

2 3

4

5

6

7

M = (V,E')

Attempt to remove {3,5}
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Local search

1

2 3

4

5

6

7

M = (V,E')

Attempt to remove {3,5}

R' = R \ { 3, 5 } = { 2 }
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Local search

1

2 3

4

5

6

7

M = (V,E')

Attempt to remove {3,5}

R' = R \ { 3, 5 } = { 2 }

C = { 1, 3, 4, 5, 6, 7 } candidates

Analyze non-regen neighbors of { 3, 5 }:     
         u =  { 3, 4, 5, 6, 7} to be added to R'



Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

Local search

1

2 3

4

5

6

7

M = (V,E')

Attempt to remove {3,5}

R' = R \ { 3, 5 } = { 2 }

C = { 1, 3, 4, 5, 6, 7 } candidates

Analyze non-regen neighbors of { 3, 5 }:     
         u =  { 3, 4, 5, 6, 7} to be added to R'
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Local search

1

2 3

4

5

6

7

M = (V,E')

Attempt to remove {3,5}

R' = R \ { 3, 5 } = { 2 }

C = { 1, 3, 4, 5, 6, 7 } candidates

Analyze non-regen neighbors of { 3, 5 }:     
         u =  { 3, 4, 5, 6, 7} to be added to R'

For each u:  if N(u) ∩ R' = ∅ then 

                          C = C ∩ N(u)

                    endif

N(3) ∩ R' = { 2 }

N(4) ∩ R' = { 2 }

N(5) ∩ R' = ∅:  C = C ∩ {3,6,7} = {3,6,7}

N(6) ∩ R' = ∅:  C = C ∩ {4,5,7} = {7} 

N(7) ∩ R' = { 2 }
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Local search

1

2 3

4

5

6

7

M = (V,E')

Attempt to remove {3,5}

R' = R \ { 3, 5 } = { 2 }

C = { 1, 3, 4, 5, 6, 7 } candidates

Analyze non-regen neighbors of { 3, 5 }:     
         u =  { 3, 4, 5, 6, 7} to be added to R'

For each u:  if N(u) ∩ R' = ∅ then 

                          C = C ∩ N(u)

                    endif

C = {7}

Add { 7 } to R' = { 2, 7 }
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Experimental results
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Design
• We compare effectiveness & efficiency of the procedures 

proposed with those in Chen et al. (2010) 

• Use 280 instances shared with us by Chen et al. (2010), with 40, 
60, 80, and 100 nodes:
– 200 instances are M-graphs, generated directly
– 80 are instances in which edges are generated randomly and 

from which the corresponding M-graphs are computed 

• All methods implemented in Java SE 6 

• All experiments done on a 3 GHz Pentium 4 computer with 2 Gb 
of memory
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Design
• In each experiment we compute

– The overall best solution (BestValue) found for each instance 
by all executions of the methods considered

– The relative percentage deviation from BestValue for each 
method on each instance

– The average deviation (Dev) across all instances in each 
experiment

– For each method, the number of instances (#Best) in which 
the BestValue solution was obtained
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Design
• Tuning on a set of 20 instances randomly selected of size n = 80, 

100.

• We study the value of the RCL parameter  in constructive 
methods CG, C1, and C2

• We tested three values for : 0.3, 0.6, 0.9

• CG, C1, and C2 were each run independently 100 times on each 
instance
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Tuning the RCL parameter 
Value #Best % dev CPU (s)

CG
 = 0.3 7.00 7 25.77 12935.5
 = 0.6 5.65 13 5.92 10001.0

 = 0.9 5.35 19 0.45 7958.1

C1
 = 0.3 6.80 8 20.42 767.75

 = 0.6 6.10 10 10.79 747.25

 = 0.9 6.25 11 12.10 761.55

C2
 = 0.3 6.30 7 16.59 573.85

 = 0.6 6.10 11 10.64 562.40

 = 0.9 5.95 12 8.51 543.65
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Clearly, the best 
outcomes are for 
method CG with RCL 
parameter  = 0.9

However, CG's running 
times are longer than 
those of C1 and C2

Tuning the RCL parameter 
Value #Best % dev CPU (s)

CG
 = 0.3 7.00 7 25.77 12935.5
 = 0.6 5.65 13 5.92 10001.0

 = 0.9 5.35 19 0.45 7958.1

C1
 = 0.3 6.80 8 20.42 767.75

 = 0.6 6.10 10 10.79 747.25

 = 0.9 6.25 11 12.10 761.55

C2
 = 0.3 6.30 7 16.59 573.85

 = 0.6 6.10 11 10.64 562.40

 = 0.9 5.95 12 8.51 543.65



Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

Comparing constructive methods with local search

• On the same 20 instances from the previous experiment we 
compare the constructive methods with local search of Chen et al. 
(2010) with their GRASP counterparts

• Chen et al. methods are: Greedy+LS, H1+LS, and H2+LS

• GRASP methods are CG+LS, C1+LS, and C2+LS and are run for 
50 iterations

• We use the best value of  for each method according to the 
previous experiment (corresponding to minimum % deviation)

• RCL parameter  was set to 0.9, 0.6, and 0.9 for CG, C1, and C2, 
respectively

• We report Value, #Best, %dev, and CPU time 
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Comparing constructive methods with local search

 Value #Best %dev CPU(s)

Greedy+LS 5.65 11 8.96 176.20

H1+LS 5.70 11 9.96 48.95

H2+LS 5.55 14 7.50 14.05

GC(0.9)+LS 5.25 18 1.45 8193.05

C1(0.6)+LS 5.15 20 0.00 2238.25

C2(0.9)+LS 5.25 18 1.70 1093.55
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Comparing constructive methods with local search

Three new GRASP methods 
improve upon previous 
methods based on 
construction with local 
search

Since GRASP is a multi-
start method and previous 
methods are deterministic 
and run only once, GRASP 
running times are higher

Value #Best %dev CPU(s)

Greedy+LS 5.65 11 8.96 176.20

H1+LS 5.70 11 9.96 48.95

H2+LS 5.55 14 7.50 14.05

GC(0.9)+LS 5.25 18 1.45 8193.05

C1(0.6)+LS 5.15 20 0.00 2238.25

C2(0.9)+LS 5.25 18 1.70 1093.55
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Comparing best GRASP with best method of   
Chen et al. (2010) and BRKGA

• We now compare C1+LS with H2+LS and the 
BRKGA

• GRASP was run for 100 iterations and the 
BRKGA was run for 100 generations with a 
population of size 100

• We now report Value, #Best, %dev, and CPU 
time for the entire set of 280 test instances 
(separated by problem size)
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C1+LS, H2+LS, and BRKGA on all 70 n = 40 
instances

Value #Best %dev CPU (s)

H2+LS 3.96 59 4.46 3.61
C1(0.6)+LS 3.77 70 0.00 253.69

BRKGA 3.83 66 1.71 1445.57



Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

C1+LS, H2+LS, and BRKGA on all 70 n = 40 
instances

GRASP was best in terms 
of solution quality

GRASP running times 
longer than deterministic 
method

BRKGA beat H2+LS but 
running times were the 
longest

Value #Best %dev CPU (s)

H2+LS 3.96 59 4.46 3.61
C1(0.6)+LS 3.77 70 0.00 253.69

BRKGA 3.83 66 1.71 1445.57
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C1+LS, H2+LS, and BRKGA on all 70 n = 60 
instances

Value #Best %dev CPU (s)

H2+LS 4.37 62 1.74 6.43
C1(0.6)+LS 4.26 70 0.00 646.46

BRKGA 4.34 64 1.48 4462.64
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C1+LS, H2+LS, and BRKGA on all 70 n = 60 
instances

GRASP was best in terms 
of solution quality

GRASP running times 
longer than deterministic 
method

BRKGA beat H2+LS but 
running times were the 
longest

Value #Best %dev CPU (s)

H2+LS 4.37 62 1.74 6.43
C1(0.6)+LS 4.26 70 0.00 646.46

BRKGA 4.34 64 1.48 4462.64
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C1+LS, H2+LS, and BRKGA on all 70 n = 80 
instances

Value #Best %dev CPU (s)

H2+LS 4.90 46 8.25 10.26
C1(0.6)+LS 4.50 70 0.00 1356.20

BRKGA 4.67 58 4.39 9742.37
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C1+LS, H2+LS, and BRKGA on all 70 n = 80 
instances

GRASP was best in terms 
of solution quality

GRASP running times 
longer than deterministic 
method

BRKGA beat H2+LS but 
running times were the 
longest

Value #Best %dev CPU (s)

H2+LS 4.90 46 8.25 10.26
C1(0.6)+LS 4.50 70 0.00 1356.20

BRKGA 4.67 58 4.39 9742.37
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C1+LS, H2+LS, and BRKGA on all 70 n = 100 
instances

Value #Best %dev CPU (s)

H2+LS 5.27 50 5.69 16.20
C1(0.6)+LS 4.91 70 0.00 2393.73

BRKGA 5.00 62 2.13 20169.06
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C1+LS, H2+LS, and BRKGA on all 70 n = 100 
instances

GRASP was best in terms 
of solution quality

GRASP running times 
longer than deterministic 
method

BRKGA beat H2+LS but 
running times were the 
longest

Value #Best %dev CPU (s)

H2+LS 5.27 50 5.69 16.20
C1(0.6)+LS 4.91 70 0.00 2393.73

BRKGA 5.00 62 2.13 20169.06
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Concluding remarks
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Concluding remarks

• We introduce several new randomized heuristics for the 
regenerator location problem

• GRASP heuristics are based on the three greedy 
algorithms of Chen et al. (2010)

• BRKGA uses a decoder based on the greedy algorithm 
GREEDY of Chen et al. (2010)
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Concluding remarks

• Experiments show that our heuristic C1+LS with RCL 
parameter  = 0.6 consistently produces the best 
solutions with smaller %dev and larger #Best values than 
the other heuristics

• Deterministic heuristic H2+LS of Chen et al. (2010) is 
able to obtain relatively good solutions in short 
computational time
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My coauthors
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The End
Slides of this talk as well as all papers cited in the talk can be
downloaded from my homepage:  

http://www2.research.att.com/~mgcr
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