
 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Tutorial given at the Spring School in Advances in
Operations Research, Higher School of Economics
Nizhny Novgorod, Russia ✤ May 3, 2011

 GRASP heuristics
for discrete and
continuous global
optimization

Mauricio G. C. Resende
AT&T Labs Research
Florham Park, New Jersey

mgcr@research.att.com
http://www2.research.att.com/~mgcr

mailto:mgcr@research.att.com

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Google Scholar Search: "greedy randomized adaptive search"
(http://scholar.google.com)

year cumul. papers year Cumul. papers
1990 1 2001 402
1991 7 2002 533
1992 11 2003 661
1993 16 2004 803
1994 34 2005 1,010
1995 54 2006 1,220
1996 89 2007 1,470
1997 126 2008 1,770
1998 196 2009 2,130
1999 256 2010 2,440
2000 308 2011 (to Apr. 26th) 3,400

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Annotated bibliographies of GRASP

• P. Festa and M.G.C. Resende, GRASP: An annotated bibliography,
Essays and Surveys on Metaheuristics, C.C. Ribeiro and P.
Hansen, Eds., Kluwer Academic Publishers, pp. 325-367, 2002

• P. Festa and M.G.C. Resende, An annotated bibliography of
GRASP–Part I: Algorithms, International Transactions in
Operational Research, vol. 16, pp. 1-24, 2009.

• P. Festa and M.G.C. Resende, An annotated bibliography of
GRASP–Part II: Applications, International Transactions in
Operational Research, vol. 16, pp. 131-172, 2009.

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Follow GRASP on Twitter: http://twitter.com/graspheuristic

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Summary

Combinatorial optimization and a review of GRASP
Neighborhoods, local search, greedy randomized construction
and diversification

Hybrid construction
Other greedy randomized constructions, reactive GRASP,
long-term memory in construction, biased sampling, cost
perturbation

Hybrid local search
Variable neighborhood descent, variable neighborhood search,
short-term memory tabu search, simulated annealing, iterated
local search, very large-scale neighborhood search

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Summary

Hybridization with path-relinking
Elite sets, forward, backward, back and forward, mixed,
greedy randomized adaptive path-relinking, evolutionary path-
relinking

Continuous GRASP for bound constrained global optimization

Concluding remarks

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Combinatorial
Optimization

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Combinatorial Optimization

Combinatorial optimization: process of finding
the best, or optimal, solution for problems with
a discrete set of feasible solutions.

 Applications: e.g. routing, scheduling, packing,
inventory and production management,
location, logic, and assignment of resources.

Economic impact: e.g. transportation (airlines,
trucking, rail, and shipping), forestry,
manufacturing, logistics, aerospace, energy
(electrical power, petroleum, and natural gas),
agriculture, biotechnology, financial services,
and telecommunications.

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Combinatorial Optimization

Given:
discrete set of solutions X
objective function f(x): x ∈ X → R

Objective (minimization):
find x ∈ X : f(x) ≤ f(y), ∀ y ∈ X

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Combinatorial Optimization

Much progress in recent years on finding
exact (provably optimal) solutions: dynamic
programming, cutting planes, branch and
cut, …
Many hard combinatorial optimization
problems are still not solved exactly and
require good solution methods.

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Combinatorial Optimization

Approximation algorithms are guaranteed to
find in polynomial-time a solution within a
given factor of the optimal.

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Combinatorial Optimization

Approximation algorithms are guaranteed to
find in polynomial-time a solution within a
given factor of the optimal.
Sometimes the factor is too big, i.e. guaranteed
solutions are far from optimal
Some optimization problems (e.g. max clique,
covering by pairs) cannot have approximation
schemes unless P=NP

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Combinatorial Optimization

Aim of heuristic methods for combinatorial
optimization is to quickly produce good-
quality solutions, without necessarily
providing any guarantee of solution quality.

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Metaheuristics

Metaheuristics are heuristics to devise heuristics.

Examples: simulated annealing, genetic algorithms,
tabu search, scatter search, ant colony
optimization, variable neighborhood search, and
GRASP.

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Metaheuristics

Metaheuristics are high level procedures that
coordinate simple heuristics, such as local search,
to find solutions that are of better quality than
those found by the simple heuristics alone.
Examples: simulated annealing, genetic algorithms,
tabu search, scatter search, ant colony
optimization, variable neighborhood search, and
GRASP.

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Metaheuristics

Metaheuristics are high level procedures that
coordinate simple heuristics, such as local search,
to find solutions that are of better quality than
those found by the simple heuristics alone.
Examples: simulated annealing, genetic algorithms,
tabu search, scatter search, ant colony
optimization, variable neighborhood search, and
GRASP.

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Review of GRASP:
Local Search

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Local Search

To define local search, one needs to specify a local
neighborhood structure.
Given a solution x , the elements of the
neighborhood N(x) of x are those solutions y that
can be obtained by applying an elementary
modification (often called a move) to x.

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Local Search Neighborhoods

Consider x = (0,1,0) and the 1-flip neighborhood of a 0/1
array.

x = (0,1,0)

(1,1,0) (0,0,0) (0,1,1)

N (x)

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Local Search Neighborhoods

Consider x = (2,1,3,4) and the 2-swap neighborhood of a
permutation array.

x = (2,1,3,4)

(1,2,3,4) (3,1,2,4) (4,1,3,2)

N (x) = C(4,2) = 6

(2,3,1,4) (2,4,3,1)

(2,1,4,3)

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Local Search

Given an initial solution x0, a neighborhood N(x), and
function f(x) to be minimized:

x = x0 ;

while (∃ y ∈ N(x) | f(y) < f(x)) {
x = y ;

}
At the end, x is a local minimum of f(x) .

check for better solution in neighborhood of x

move to better
solution y Time complexity of local search

 can be exponential.

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Local Search
(ideal situation)

f (0,0,0) = 3

f (1,1,1) = 3

f (0,1,0) = 4

f (0,0,1) = 0

f (1,0,0) = 5

f (0,1,1) = 1

f (1,1,0) = 6

f (1,0,1) = 2

With any starting solution Local Search finds the global optimum.

global
minimum

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Local Search
(more realistic situation)

f (1,1,1) = 2

f (0,1,0) = 2

f (0,0,1) = 0

f (1,0,0) = 1

f (0,1,1) = 3

f (1,1,0) = 6

f (1,0,1) = 3

f (0,0,0) = 3 global
minimum

local
minima

local
minimum

But some starting solutions lead Local Search to a local minimum.

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Effectiveness of local search depends on several
factors:

neighborhood structure
function to be minimized
starting solution

Local Search

usually pre-
determined

usually easier to
control

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Multi-start method

c* = ∞

repeat

x = method()

if f(x) < c* then
 x* = x
 c* = f(x*)
endif

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Random multi-start

c* = ∞

repeat

x = random_construction()

if f(x) < c* then
 x* = x
 c* = f(x*)
endif

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Example: probability of finding opt by random selection

Suppose x = (0/1, 0/1, 0/1, 0/1, 0/1) and let the
unique optimum be x* = (1,0,0,1,1).
The prob of finding the opt at random is 1/32 = .
031 and the prob of not finding it is 31/32.
After k trials, the probability of not finding the opt is
(31/32)k and hence the prob of find it at least once
is 1− (31/32)k

For k = 5, p = .146; for k = 10, p = .272; for k =
20, p = .470; for k = 50, p = .796; for k = 100, p
= .958; for k = 200, p = .998

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Example: Probability of finding opt with K samplings
on a 0−1 vector of size N

 N: 10 15 20 25 30
K:
10 .010 .000 .000 .000 .000
100 .093 .003 .000 .000 .000
1000 .624 .030 .000 .000 .000
10000 1.000 .263 .009 .000 .000
100000 1.000 .953 .091 .003 .000

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Greedy algorithm

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

The greedy algorithm

Constructs a solution, one element at a time:
Defines candidate elements.
Applies a greedy function to each candidate element.
Ranks elements according to greedy function value.
Add best ranked element to solution.

re
pe

at
 u

nt
il

 d
on

e

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

The greedy algorithm
An example: minimum weight spanning tree

3

2
2

1
3 2

2

4 2
5 4

4

5

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

The greedy algorithm
An example: minimum weight spanning tree

3

2
2

1
3 2

2

4 2
5 4

4

5

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

The greedy algorithm
An example: minimum weight spanning tree

3

2
2

1
3 2

2

4 2
5 4

4

5

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

The greedy algorithm
An example: minimum weight spanning tree

3

2
2

1
3 2

2

4 2
5 4

4

5

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

The greedy algorithm
An example: minimum weight spanning tree

3

2
2

1
3 2

2

4 2
5 4

4

5

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

The greedy algorithm
An example: minimum weight spanning tree

3

2
2

1
3 2

2

4 2
5 4

4

5

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

The greedy algorithm
An example: minimum weight spanning tree

3

2
2

1
3 2

2

4 2
5 4

4

5

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

The greedy algorithm
An example: minimum weight spanning tree

3

2
2

1
3 2

2

4 2
5 4

4

5

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

The greedy algorithm
An example: minimum weight spanning tree

3

2
2

1
3 2

2

4 2
5 4

4

5

Global minimum

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

The greedy algorithm
Another example: Maximum clique

Given graph G = (V, E), find largest subgraph of G
such that all vertices are mutually adjacent.
greedy algorithm builds solution, one element (vertex) at a
time
candidate set: unselected vertices adjacent to all selected
vertices
greedy function: vertex degree with respect to other
candidate set vertices.

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

The greedy algorithm
Another example: Maximum clique

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

The greedy algorithm
Another example: Maximum clique

432

2

3 3 3

2

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

The greedy algorithm
Another example: Maximum clique

432

2

3 3 3

2

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

The greedy algorithm
Another example: Maximum clique

0

1 2

1

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

The greedy algorithm
Another example: Maximum clique

0

1 2

1

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

The greedy algorithm
Another example: Maximum clique

0

0

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

The greedy algorithm
Another example: Maximum clique

global maximum

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

The greedy algorithm
Another example: Maximum clique

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

The greedy algorithm
Another example: Maximum clique

2

4

4

3

33

2 3

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

The greedy algorithm
Another example: Maximum clique

2

4

4

3

33

2 3

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

The greedy algorithm
Another example: Maximum clique

0 0

0

0

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

The greedy algorithm
Another example: Maximum clique

0 0

0

0

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

The greedy algorithm
Another example: Maximum clique

sub-optimal
clique

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Semi-greedy heuristic

A semi-greedy heuristic tries to get around
convergence to non-global local minima.
repeat until solution is constructed
For each candidate element
apply a greedy function to element

Rank all elements according to their greedy function values
Place well-ranked elements in a restricted candidate list (RCL)
Select an element from the RCL at random & add it to the solution

re
pe

at
 u

nt
il

 d
on

e

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Semi-greedy heuristic

Hart & Shogan (1987) propose two mechanisms for
building the RCL:
Cardinality based: place k best candidates in RCL
Value based: place all candidates having greedy values better than
α⋅best_value in RCL, where α ∈ [0,1].

Feo & Resende (1989) proposed semi-greedy
construction as a basic component of GRASP.

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Hart-Shogan Algorithm

c* = ∞

repeat

x = semi_greedy_construction()
if (x is infeasible) then

x = repair(x)
if f(x) < c* then
 x* = x
 c* = f(x*)
endif

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

The semi-greedy algorithm
Maximum clique example

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

The semi-greedy algorithm
Maximum clique example

Build clique, one node at a
time.

Candidates: nodes adjacent
to clique.

Greedy function: degree
with respect to candidate
nodes.

RCL =

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

The semi-greedy algorithm
Maximum clique example

Build clique, one node at a
time.

Candidates: nodes adjacent
to clique.

Greedy function: degree
with respect to candidate
nodes.

RCL =

Choose at random

Semi-greedy
iteration 1

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

The semi-greedy algorithm
Maximum clique example

Build clique, one node at a
time.

Candidates: nodes adjacent
to clique.

Greedy function: degree
with respect to candidate
nodes.

RCL =

Choose at random

Semi-greedy
iteration 1

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

The semi-greedy algorithm
Maximum clique example

Build clique, one node at a
time.

Candidates: nodes adjacent
to clique.

Greedy function: degree
with respect to candidate
nodes.

RCL =

Choose at random

Semi-greedy
iteration 1

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

The semi-greedy algorithm
Maximum clique example

Build clique, one node at a
time.

Candidates: nodes adjacent
to clique.

Greedy function: degree
with respect to candidate
nodes.

RCL =

Choose at random

Clique of size 2

Semi-greedy
iteration 1

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

The semi-greedy algorithm
Maximum clique example

Build clique, one node at a
time.

Candidates: nodes adjacent
to clique.

Greedy function: degree
with respect to candidate
nodes.

RCL =

Instead, choose at
random

Semi-greedy
iteration 2

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

The semi-greedy algorithm
Maximum clique example

Build clique, one node at a
time.

Candidates: nodes adjacent
to clique.

Greedy function: degree
with respect to candidate
nodes.

RCL =

Instead, choose at
random

Semi-greedy
iteration 2

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

The semi-greedy algorithm
Maximum clique example

Build clique, one node at a
time.

Candidates: nodes adjacent
to clique.

Greedy function: degree
with respect to candidate
nodes.

RCL =

Then, choose at
random

Semi-greedy
iteration 2

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

The semi-greedy algorithm
Maximum clique example

Build clique, one node at a
time.

Candidates: nodes adjacent
to clique.

Greedy function: degree
with respect to candidate
nodes.

RCL =

Then, choose at
random

Optimal clique of
size 3

Semi-greedy
iteration 2

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

GRASP

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

GRASP: Basic algorithm

c* = ∞

repeat

x = semi_greedy_construction()
if (x is infeasible) then
 x = repair(x)

if f(x) < c* then
 x* = x
 c* = f(x*)
endif

 x = local_search(x)

Semi-greediness
is more general
in GRASP

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Construction phase: greediness + randomization
Builds a feasible solution combining greediness and
randomization
Local search: search in the current neighborhood
until a local optimum is found
Solutions generated by the construction procedure are not
necessarily optimal:
Effectiveness of local search depends on: neighborhood structure,
search strategy, and fast evaluation of neighbors, but also on the
construction procedure itself.

GRASP: Basic algorithm

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

GRASP Construction

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

 Construction phase: RCL based

Evaluate incremental cost
of candidate element

Determine set C of candidate elements

Repeat while
there are
candidate
elements

For each
candidate
element:

Build RCL with best candidates, select one
at random and add it to solution.

restricted candidate list

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Construction phase: RCL based

Minimization problem
Basic construction procedure:
Greedy function c(e): incremental cost associated with the
incorporation of element e into the current partial solution
under construction
cmin (resp. cmax): smallest (resp. largest) incremental cost
RCL made up by the elements with the smallest incremental
costs.

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Construction phase
Cardinality-based construction:
p elements with the smallest incremental costs
Quality-based construction:
Parameter α defines the quality of the elements in RCL.
RCL contains elements with incremental cost
cmin ≤ c(e) ≤ cmin + α (cmax –cmin)
α = 0 : pure greedy construction

α = 1 : pure randomized construction

Select at random from RCL using uniform probability
distribution

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

α=0.2

α=0.4

α=0.6

α=0.8

Illustrative results: RCL parameter

weighted MAX-SAT instance, 1000 GRASP iterations

Construction phase only

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

α=0.2

α=0.6

α=0.8

α=1.0

Illustrative results: RCL parameter

weighted MAX-SAT instance, 1000 GRASP iterations

Construction + local search

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

best solution

average solution

time

tim
e

(s
ec

on
ds

) f
or

 1
00

0
ite

ra
tio

ns

so
lu

tio
n

va
lu

e

RCL parameter α

Illustrative results: RCL parameter

random greedy

weighted MAX-SAT instance: 100 variables and
 850 clauses

SGI Challenge 196 MHz

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 0.2 0.4 0.6 0.8 1
 400000

 405000

 410000

 415000

 420000

 425000

 430000

 435000

 440000

 445000

 450000

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

5

10

15

20

0 0.2 0.4 0.6 0.8 1

tim
e

 (
se

co
n

d
s)

 f
o

r
1

0
0

0
 it

e
ra

tio
n

s

RCL parameter alpha

total CPU time

local search CPU time

Illustrative results: RCL parameter

Another weighted MAX-SAT instance

random greedyRCL parameter α
SGI Challenge 196 MHz

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

w
ei

gh
t

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

0 500 1000 1500 2000 2500 3000 3500 4000

phase 2 soln
phase 1 soln

w
ei

gh
t

iterations

random construction

local search

GRASP: Basic algorithm

Application: modem placement
max weighted covering problem
maximization problem: α = 0.85

9.50

9.55

9.60

9.65

9.70

9.75

9.80

9.85

9.90

9.95

10.00

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

t
)

phase 2 soln
phase 1 soln

iterations

GRASP construction

local search

w
ei

gh
t

Effectiveness of greedy randomized vs
purely randomized construction:

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Hybrid construction
schemes

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

 Construction phase: sampled greedy
 [Resende & Werneck, 2004]

Evaluate incremental cost
of candidate element

Sample a small set C from the set of
candidate elements

Repeat while
there are
candidate
elements

For each
element in
set C:

Select the element with the best
incremental cost and add it to solution.

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

 Construction phase: random+greedy
 [Resende & Werneck, 2004]

Determine set C of candidate elements

Determine set C of candidate elements

Repeat while
solution has
fewer than K
elements

For each
element in
set C:

Select an element from the set C
at random and add it to solution.

Repeat while
there are
candidate
elements

Evaluate incremental cost
of candidate element

Select the element with the best
incremental cost and add it to solution.

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

W() < W() < W() < W()

Construction with cost perturbation

Perturb with costs
increasing from
top to bottom.

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

W() < W() < W() < W()

Construction with cost perturbation

Perturb with costs
increasing from
top to bottom.

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

W() < W() < W() < W()

Construction with cost perturbation

Perturb with costs
increasing from
top to bottom.

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

W() < W() < W() < W()

Construction with cost perturbation

Perturb with costs
increasing from
top to bottom.

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

W() < W() < W() < W()

Construction with cost perturbation

Perturb with costs
increasing from
top to bottom.

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

W() < W() < W() < W()

Construction with cost perturbation

Perturb with costs
increasing from
top to bottom.

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

W() < W() < W() < W()

Construction with cost perturbation

Perturb with costs
increasing from
top to bottom.

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

W() < W() < W() < W()

Construction with cost perturbation

Perturb with costs
increasing from
top to bottom.

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

W() < W() < W() < W()

Construction with cost perturbation

Perturb with costs
increasing from
bottom to top.

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

W() < W() < W() < W()

Construction with cost perturbation

Perturb with costs
increasing from
bottom to top.

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

W() < W() < W() < W()

Construction with cost perturbation

Perturb with costs
increasing from
bottom to top.

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

W() < W() < W() < W()

Construction with cost perturbation

Perturb with costs
increasing from
bottom to top.

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

W() < W() < W() < W()

Construction with cost perturbation

Perturb with costs
increasing from
bottom to top.

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

W() < W() < W() < W()

Construction with cost perturbation

Perturb with costs
increasing from
bottom to top.

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

W() < W() < W() < W()

Construction with cost perturbation

Perturb with costs
increasing from
bottom to top.

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

W() < W() < W() < W()

Construction with cost perturbation

Perturb with costs
increasing from
bottom to top.

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

W() < W() < W() < W()

Construction with cost perturbation

Greedy heuristic
generates two
different spanning
trees.

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Reactive GRASP
Prais & Ribeiro (2000)

When building RCL, what α to use?
Fix a some value 0 ≤ α ≤ 1
Choose α at random (uniformly) at each GRASP iteration.
Another approach reacts to search ...
At each GRASP iteration, a value of the RCL parameter α is
chosen from a discrete set of values [α1, α2, ..., αm].

The probability that αk is selected is pk.
Reactive GRASP: adaptively changes the probabilities [p1, p2, ...,
pm] to favor values of α that produce good solutions.

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Reactive GRASP Prais & Ribeiro (2000)

Reactive GRASP for minimization ...
Initially pk = 1/m, for k = 1,...,m. (α's are selected
uniformly at random)
Define
 F(S*) be the best solution so far

A
k
be the average value of the solutions obtained with αk

Every N
α

GRASP iterations, compute

q
k
 = F(S*) / A

k
, for k = 1,...,m

p
k
 = q

k
/ sum(q

i
| i = 1,...,m)

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Reactive GRASP Prais & Ribeiro (2000)

Reactive GRASP for minimization ...
Initially pk = 1/m, for k = 1,...,m. (α's are selected
uniformly at random)
Define
 F(S*) be the best solution so far

A
k
be the average value of the solutions obtained with αk

Every N
α

GRASP iterations, compute

q
k
 = F(S*) / A

k
, for k = 1,...,m

p
k
 = q

k
/ sum(q

i
| i = 1,...,m)

The more suitable is
α

k
, the larger is q

k
, and

consequently p
k
, making

α
k
 more likely to chosen.

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Hybrid local search in
GRASP

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Local search within GRASP

Local search is usually implemented in
GRASP as:

x = x0;

while (there exists y ∈N(x) | f(y) < f(x)) do
x = y; // y is first improving solution found in N(x)

end while
return x;

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Local search within GRASP

Local search is usually implemented in
GRASP as:

x = x0;

while (there exists y ∈N(x) | f(y) < f(x)) do
x = y; // y is first improving solution found in N(x)

end while
return x;

first improving

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Local search within GRASP

Another way to implement local
search in GRASP is:

x = x0;

y = argmin { f(z) | z ∈N(x) };
while (f(y) < f(x)) do

x = y;

y = argmin { f(z) | z ∈N(x) };

end while
return x;

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Local search within GRASP

Another way to implement local
search in GRASP is:

x = x0;

y = argmin { f(z) | z ∈N(x) };
while (f(y) < f(x)) do

x = y;

y = argmin { f(z) | z ∈N(x) };

end while
return x;

best improving

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

x = x0;

while (∃ y ∈N(x) |f(y) < f(x)) do
x = y;

end while

return x;

x = x0;

y = argmin { f(z) | z ∈N(x) };

while (f(y) < f(x)) do
x = y;

y = argmin { f(z) | z ∈N(x) };

end while

return x;

First improving is usually faster.
Premature convergence to low-quality local optimum is more likely to
occur with best improving.

 first improving best improving

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

x = x0;

while (∃ y ∈N(x) |f(y) < f(x)) do
x = y;

end while

return x;

x = x0;

y = argmin { f(z) | z ∈N(x) };

while (f(y) < f(x)) do
x = y;

y = argmin { f(z) | z ∈N(x) };

end while

return x;

If search of N(x) is done deterministically, then repeated
applications of local search starting from same x0 lead to same
local minimum

 first improving best improving

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

x = x0;

while (∃ y ∈N(x) |f(y) < f(x)) do
x = y;

end while

return x;

x = x0;

y = argmin { f(z) | z ∈N(x) };

while (f(y) < f(x)) do
x = y;

y = argmin { f(z) | z ∈N(x) };

end while

return x;

If search of N(x) is done deterministically, then repeated
applications of local search starting from same x0 lead to same
local minimum
Hashing can avoid repeating local search from previous x0

{ Woodruff & Zemel (1993), Ribeiro et. al (1997), Martins et al. (2000) }

 first improving best improving

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

if (f(x0) < CUTOFF) then

 x = x0;

 while (∃ y ∈N(x) |f(y) < f(x)) do
x = y;

 end while

 return x;

end if

if (f(x0) < CUTOFF) then

 x = x0;

 y = argmin { f(z) | z ∈N(x) };

 while (f(y) < f(x)) do

x = y;

y = argmin { f(z) | z ∈N(x) };

 end while

 return x;

end if

Filtering to avoid application of local search to low quality
solutions, only promising solutions are investigated: { Feo,

Resende, & Smith (1994), Prais & Ribeiro (2000), Martins et. al (2000) }

 first improving best improving

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Local search within GRASP
As the name implies, local search, is confined to a localized region
of the solution space.
To escape from local minima and broaden the search several
alternatives have been proposed to replace local search in GRASP:
variable neighborhood descent (VND)
variable neighborhood search (VNS)
short-term memory tabu search (TS)
simulated annealing (SA)
iterated local search (ILS)
very large-scale neighborhood search (VLSNS)

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Local search within GRASP
As the name implies, local search, is confined to a localized region
of the solution space.
To escape from local minima and broaden the search several
alternatives have been proposed to replace local search in GRASP:
variable neighborhood descent (VND)
variable neighborhood search (VNS)
short-term memory tabu search (TS)
simulated annealing (SA)
iterated local search (ILS)
very large-scale neighborhood search (VLSNS)

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

 GRASP VND local search

 Instead of using a single
neighborhood, VND uses K
not necessarily related
neighborhoods N

1
, N

2
, ..., N

K
.

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

 GRASP VND local search

 Instead of using a single
neighborhood, VND uses K
not necessarily related
neighborhoods N

1
, N

2
, ..., N

K
.

x = x
0
; k = 1;

while (k ≤ K) do

 if ( s  N
k
(x) such that f(s) < f(x)) then

 x = s; k = 1; break;

 endif

 k = k + 1;

endwhile

return x;

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

 GRASP VND local search
 x = x

0
; k = 1;

while (k ≤ K) do scan all K neighborhoods

 if ( s  N
k
(x) such that f(s) < f(x)) then

 x = s; k = 1; break;

 endif

 k = k + 1;

endwhile

return x;

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

 GRASP VND local search
 x = x

0
; k = 1;

while (k ≤ K) do scan all K neighborhoods

 if ( s  N
k
(x) such that f(s) < f(x)) then

 x = s; k = 1; break; found improving solution

 endif

 k = k + 1;

endwhile

return x;

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

 GRASP VND local search
 x = x

0
; k = 1;

while (k ≤ K) do scan all K neighborhoods

 if ( s  N
k
(x) such that f(s) < f(x)) then

 x = s; k = 1; break; found improving solution in N
k

 endif

 k = k + 1; x is a local mimimum of N
k

endwhile

return x;

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

 GRASP VND local search
 x = x

0
; k = 1;

while (k ≤ K) do scan all K neighborhoods

 if ( s  N
k
(x) such that f(s) < f(x)) then

 x = s; k = 1; break; found improving solution in N
k

 endif

 k = k + 1; x is a local mimimum of N
k

endwhile

return x; x is a local mimimum of N
k
, for k = 1,...,K

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

 GRASP VND local search
 example: scheduling of multi-grouped units

Input: Assignment of units to periods:

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

 GRASP VND local search
 example: scheduling of multi-grouped units

Local search: Examine neighborhood of current
solution. If better solution found, make it current
solution.

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

 GRASP VND local search
 example: scheduling of multi-grouped units

Three neighborhoods: Swap units, move unit, swap
periods.

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

 GRASP VND local search
 example: scheduling of multi-grouped units

Swap units neighborhood: Swaps places of two
units assigned to distinct periods.

solution

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Swap units neighborhood: Swaps places of two
units assigned to distinct periods.

solution

 GRASP VND local search
 example: scheduling of multi-grouped units

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Swap units neighborhood: Swaps places of two
units assigned to distinct periods.

solution

 GRASP VND local search
 example: scheduling of multi-grouped units

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Swap units neighborhood: Swaps places of two
units assigned to distinct periods.

solution

 GRASP VND local search
 example: scheduling of multi-grouped units

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Swap units neighborhood: Swaps places of two
units assigned to distinct periods.

solution

 GRASP VND local search
 example: scheduling of multi-grouped units

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Swap units neighborhood: Swaps places of two
units assigned to distinct periods.

solution

 GRASP VND local search
 example: scheduling of multi-grouped units

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Swap units neighborhood: Swaps places of two
units assigned to distinct periods.

solution

neighbor

 GRASP VND local search
 example: scheduling of multi-grouped units

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Move unit neighborhood: Moves unit from current
period to available period.

solution

 GRASP VND local search
 example: scheduling of multi-grouped units

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Move unit neighborhood: Moves unit from current
period to available period.

solution

 GRASP VND local search
 example: scheduling of multi-grouped units

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Move unit neighborhood: Moves unit from current
period to available period.

solution

 GRASP VND local search
 example: scheduling of multi-grouped units

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Move unit neighborhood: Moves unit from current
period to available period.

solution

 GRASP VND local search
 example: scheduling of multi-grouped units

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Move unit neighborhood: Moves unit from current
period to available period.

solution

 GRASP VND local search
 example: scheduling of multi-grouped units

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Move unit neighborhood: Moves unit from current
period to available period.

solution

 GRASP VND local search
 example: scheduling of multi-grouped units

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Move unit neighborhood: Moves unit from current
period to available period.

solution

neighbor

 GRASP VND local search
 example: scheduling of multi-grouped units

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Swap periods neighborhood: Swap all units in
period i with all units in period j.

solution

 GRASP VND local search
 example: scheduling of multi-grouped units

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Swap periods neighborhood: Swap all units in
period i with all units in period j.

solution

Period i Period j

 GRASP VND local search
 example: scheduling of multi-grouped units

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Swap periods neighborhood: Swap all units in
period i with all units in period j.

solution

Period i Period j

 GRASP VND local search
 example: scheduling of multi-grouped units

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Swap periods neighborhood: Swap all units in
period i with all units in period j.

solution

Period i Period j

 GRASP VND local search
 example: scheduling of multi-grouped units

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Swap periods neighborhood: Swap all units in
period i with all units in period j.

solution

Period i Period j

 GRASP VND local search
 example: scheduling of multi-grouped units

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Swap periods neighborhood: Swap all units in
period i with all units in period j.

solution

neighbor

Period i Period j

 GRASP VND local search
 example: scheduling of multi-grouped units

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

GRASP VND local search

Move unit

Swap periods

improved

improved

improved

Swap units

start

yes

yes

yes

no

no

Local
minimum

no

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

GRASP VND local search

Move unit

Swap periods

improved

improved

improved

Swap units

start

yes

yes

yes

no

no

Local
minimum

no

Neighborhoods are unrelated as
opposed to VNS where the are
related

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

GRASP VND local search

Move unit

Swap periods

improved

improved

improved

Swap units

start

yes

yes

yes

no

no

Local
minimum

no

1) Local min in one neighborhood
may not be local min in another

2) Global min is a local min in
all neighborhoods

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Examples of VND within GRASP

Martins et al. (1999): Steiner problem in graphs
Ribeiro and Souza (2002): degree constrained
minimum spanning tree
Ribeiro et al. (2002): Steiner problem in graphs
Ribeiro and Vianna (2005): Phylogeny problem
Andrade and Resende (2006): PBX phone
migration

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Path-relinking (PR)

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Path-relinking

 Intensification strategy exploring trajectories
connecting elite solutions (Glover, 1996)
Originally proposed in the context of tabu search
and scatter search.
Paths in the solution space leading to other elite
solutions are explored in the search for better
solutions.

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Path-relinking

Exploration of trajectories that connect high
quality (elite) solutions:

initial
solution

guiding
solution

path in the neighborhood of solutions

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Path-relinking
Path is generated by selecting moves that
introduce in the initial solution attributes of the
guiding solution.
At each step, all moves that incorporate attributes
of the guiding solution are evaluated and the best
move is selected:

initial
solution

guiding
solution

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

starting solution guiding solutionPR example

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

starting solution x guiding solution yPR example

|∆(x,y)| = 5

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

starting solution guiding solutionPR example

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

starting solution guiding solutionPR example

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

starting solution guiding solutionPR example

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

starting solution guiding solutionPR example

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

starting solution guiding solutionPR example

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

starting solution guiding solutionPR example

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

starting solution guiding solutionPR example

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

starting solution guiding solutionPR example

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

starting solution guiding solutionPR example

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

starting solution guiding solutionPR example

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

starting solution guiding solutionPR example

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

starting solution guiding solutionPR example

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

starting solution guiding solutionPR example

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

starting solution guiding solutionPR example

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

starting solution guiding solutionPR example

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

starting solution guiding solutionPR example

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

starting solution guiding solutionPR example

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

starting solution guiding solutionPR example

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

starting solution guiding solutionPR example

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

starting solution guiding solutionPR example

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

starting solution guiding solutionPR example

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

starting solution guiding solutionPR example

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

starting solution guiding solutionPR example

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

starting solution guiding solutionPR example

Cannot improve
endpoint solutions

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

starting solution guiding solutionPR example

Cannot improve
endpoint solutions

Can improve
endpoint solutions

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Forward path-relinking
Variants: trade-offs between computation time and
solution quality
Forward PR adopts as initial solution the worse of the two
input solutions and uses the better solution as the guide.

guiding
solutionworse

solution

forward

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Backward path-relinking
Variants: trade-offs between computation time and
solution quality
Backward PR usually does better: Better to start from the
best of the two input solutions, neighborhood of the initial
solution is explored more than of the guide!

guiding
solutionbetter

solution

backward

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Back and forth path-relinking
Variants: trade-offs between computation time and
solution quality
Explore both trajectories: twice as much time, often with only
marginal improvements!

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Truncated path-relinking

Variants: trade-offs between computation time and
solution quality
Truncate the search, do not follow the full trajectory.

Truncate search here

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Truncated path-relinking

Variants: trade-offs between computation time and
solution quality
Truncate the search, do not follow the full trajectory.

Truncate search here

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Mixed path-relinking
Variants: trade-offs between computation time and
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)

I
G

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Mixed path-relinking
Variants: trade-offs between computation time and
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Mixed path-relinking
Variants: trade-offs between computation time and
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)

IG

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Mixed path-relinking
Variants: trade-offs between computation time and
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Mixed path-relinking
Variants: trade-offs between computation time and
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)

GI

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Mixed path-relinking
Variants: trade-offs between computation time and
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Mixed path-relinking
Variants: trade-offs between computation time and
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)

I

G

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Mixed path-relinking
Variants: trade-offs between computation time and
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Mixed path-relinking
Variants: trade-offs between computation time and
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)

GI

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Mixed path-relinking
Variants: trade-offs between computation time and
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Mixed path-relinking
Variants: trade-offs between computation time and
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)

G

I

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Mixed path-relinking
Variants: trade-offs between computation time and
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Mixed path-relinking
Variants: trade-offs between computation time and
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)

Advantage: explore around
neighborhoods of both input
solutions.

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Truncated mixed path-relinking
Variants: trade-offs between computation time and
solution quality
Truncated mixed path-relinking

Truncate search here

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Greedy randomized adaptive path-relinking
 Faria, Binato, Resende, & Falcão (2001, 2005)

Incorporates semi-greediness into PR.
Standard PR selects moves greedily: samples one of
exponentially many paths

guiding
solutioninitial

solution

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Greedy randomized adaptive path-relinking
 Faria, Binato, Resende, & Falcão (2001, 2005)

Incorporates semi-greediness into PR.
graPR creates RCL with best moves: samples several
paths

guiding
solutioninitial

solution

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Incorporates semi-greediness into PR.
graPR creates RCL with best moves: samples several
paths

guiding
solutioninitial

solution

Greedy randomized adaptive path-relinking
 Faria, Binato, Resende, & Falcão (2001, 2005)

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Truncated mixed graPR
When applied to a given pair of
solutions truncated mixed PR
explores one of exponentially
many path segments each time
it is executed.

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Truncated mixed graPR
With high probability, truncated
mixed graPR explores different
path segments each time it is
executed between the same pair
of solutions.

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Truncated mixed graPR
With high probability, truncated
mixed graPR explores different
path segments each time it is
executed between the same pair
of solutions.

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Truncated mixed graPR
With high probability, truncated
mixed graPR explores different
path segments each time it is
executed between the same pair
of solutions.

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

GRASP with path-relinking

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

GRASP with path-relinking

First proposed by Laguna and Martí (1999).
Maintains a set of elite solutions found during GRASP
iterations.
After each GRASP iteration (construction and local
search):
Use GRASP solution as initial solution.
Select an elite solution uniformly at random: guiding solution.
Perform path-relinking between these two solutions.

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

GRASP with path-relinking

Since 1999, there has been a lot of activity in
hybridizing GRASP with path-relinking.
Survey by Resende & Ribeiro in MIC 2003 book of
Ibaraki, Nonobe, and Yagiura (2005).
Main observation from experimental studies:
GRASP with path-relinking outperforms pure
GRASP.

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

MAX-SAT (Festa, Pardalos, Pitsoulis, and Resende, 2006)

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

3-index assignment (Aiex, Resende, Pardalos, & Toraldo, 2005)

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

QAP (Oliveira, Pardalos, and Resende, 2004)

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Bandwidth packing (Resende and Ribeiro, 2003)

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Job shop scheduling (Aiex, Binato, & Resende, 2003)

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

GRASP with path-relinking:
Pool management

P is a set (pool) of elite solutions.
Ideally, pool has a set of good diverse solutions.
Mechanisms are needed to guarantee that pool is
made up of those kinds of solutions.

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

GRASP with path-relinking:
Pool management

Each iteration of first |P| GRASP iterations adds
one solution to P (if different from others).
After that: solution x is promoted to P if:
x is better than best solution in P.
x is not better than best solution in P, but is better than
worst and is sufficiently different from all solutions in P.

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

GRASP with path-relinking:
Pool management

GRASP with PR works best when paths in PR are
long, i.e. when the symmetric difference between
the initial and guiding solutions is large.
Given a solution to relink with an elite solution,
which elite solution to choose?
Choose at random with probability proportional to the
symmetric difference.

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

GRASP with path-relinking:
Pool management

Solution quality and diversity are two goals of pool
design.
Given a solution X to insert into the pool, which elite
solution do we choose to remove?
Of all solutions in the pool with worse solution than X, select
to remove the pool solution most similar to X, i.e. with the
smallest symmetric difference from X.

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

GRASP with path-relinking

Repeat
GRASP
with
PR loop

1) Construct randomized greedy X
2) Y = local search to improve X
3) Path-relinking between Y and
 pool solution Z
4) Update pool

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Evolutionary path-
relinking (EvPR)

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Evolutionary path-relinking
 (Resende & Werneck, 2004, 2006)

Evolutionary path-relinking “evolves” the pool, i.e.
transforms it into a pool of diverse elements whose
solution values are better than those of the original
pool.
Evolutionary path-relinking can be used
as an intensification procedure at certain points of the
solution process;
as a post-optimization procedure at the end of the solution
process.

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Evolutionary path-relinking (EvPR)

Each “population” of EvPR starts with a
pool of elite solutions of size |P|.

Population P(0) is the current elite set.

Population P(0)

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Evolutionary path-relinking (EvPR)

All pairs of elite solutions (x,y) in K-th
population P(K), such that x ∈ X ⊆ P(K) and
y ∈ Y ⊆ P(K), are path-relinked and the
resulting z = PR(x,y) is a candidate for
inclusion in population P(K+1).

Rules for inclusion into P(K+1) are the same
used for inclusion into any pool.

X

Y

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Evolutionary path-relinking (EvPR)

X

Y

All pairs of elite solutions (x,y) in K-th
population P(K), such that x ∈ X ⊆ P(K) and
y ∈ Y ⊆ P(K), are path-relinked and the
resulting z = PR(x,y) is a candidate for
inclusion in population P(K+1).

Rules for inclusion into P(K+1) are the same
used for inclusion into any pool.

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Evolutionary path-relinking (EvPR)

If best solution in population P(K+1) has same
objective function value as best solution in
population P(K), process stops.

Else K=K+1 and repeat.

Population P(K)

Population P(K+1)

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

GRASP with evolutionary path-relinking

As post-optimization During GRASP + PR

Repeat
GRASP
with
PR loop

Evolutionary-PR

1) Construct greedy
 randomized
2) Local search
3) Path-relinking
4) Update pool

Repeat
inner
loop

Evolutionary-PR

1) Construct greedy
 randomized
2) Local search
3) Path-relinking
4) Update pool

Repeat
outer
loop

(Resende & Werneck, 2004, 2006)

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

GRASP with EvPR: Implementation ideas
Truncated mixed graPR

In PR and EvPR, apply one iteration of graPR.
For (x,y), different calls to graPR(x,y) explore different paths.

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

GRASP with EvPR: Implementation ideas
Make set X small and with best pool solutions.
Make set Y be entire pool.

X

Y

Use set X of size 1 or 2.

Speeds up EvPR.

Avoids unfruitful calls to graPR(x,y)

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

GRASP with EvPR: Implementation ideas
Make set X small and with best pool solutions.
Make set Y be entire pool.

X

Y

Use set X of size 1 or 2.

Speeds up EvPR.

Avoids unfruitful calls to graPR(x,y)

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

GRASP
GRASP+PR

GRASP+EvPR

Weights uniformly distributed in interval [1,100]: min sum cuts

Each heuristic was run
200 times and time to
target solution recorded.

Network migration scheduling

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Each heuristic was run
200 times and time to
target solution recorded.

Network migration scheduling

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Each heuristic was run
200 times and time to
target solution recorded.

Network migration scheduling

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

GRASP + PR

GRASP + evPR

GRASP

Easier target: GRASP
manages to find target
solution.

Network migration scheduling

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

GRASP + PR

GRASP + evPR

GRASP

Each heuristic was run
200 times and time to
target solution was
recorded.

Network migration scheduling

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

GRASP + PR

GRASP + evPR

Easier target: Comparing GRASP
with path-relinking and GRASP with
evolutionary path-relinking over 200
independent runs.

Network migration scheduling

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

GRASP + PR

GRASP + evPR

Easier target: Comparing GRASP
with path-relinking and GRASP with
evolutionary path-relinking over 200
independent runs.

Runs in which GRASP+evPR
found target solution during
first call to evPR.

Network migration scheduling

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

GRASP + PRGRASP + evPR

Harder target: GRASP cannot
find target solution.

Comparing GRASP with PR and
GRASP with evPR over 200
independent runs.

Network migration scheduling

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Examples of PR within GRASP

Laguna and Martí (1999): 2-layer straight line crossing
minimization

Canuto et al. (2001): Prize-collecting Steiner problem in graphs

Resende and Ribeiro (2001): Bandwidth packing

Ribeiro et al. (2002): Steiner problem in graphs

Resende and Werneck (2004,2006): p-median problem &
capacitated facility location

Aiex et al. (2005): Three-index assignment

Resende and Ribeiro (2005): Survey paper on GRASP & PR

Mateus, Resende, and Silva (2010): generalized QAP

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Continuous GRASP
(C-GRASP)

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

C-GRASP

• C-GRASP is a metaheuristic to finding optimal or
near-optimal solutions to
– Min f(x) subject to: L  x  U
– where x, L, U ∈ Rn

– and f(x) is continuous but can have discontinuities, be
non-differentiable, be the output of a simulation, etc.

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

C-GRASP

• C-GRASP is based on the discrete optimization
metaheuristic GRASP

• M.J. Hirsch, C.N. Meneses, P.M. Pardalos, and M.G.C. Resende,
“Global optimization by continuous GRASP,” Optimization Letters,
vol. 1, pp. 201-212, 2007.

• M.J. Hirsch, P.M. Pardalos, and M.G.C. Resende, “Speeding up
continuous GRASP,” European J. of Operational Research, vol.
205, pp. 507-521, 2010.

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

C-GRASP
• C-GRASP is a multi-start procedure, i.e. a major

loop is repeated until some stopping criterion is
satisfied.

• In each major iteration
– x is initialized with a solution randomly selected from

the box defined by vectors L and U.
– a number of minor iterations are carried out, where

each minor iterations consists of a construction
phase and a local improvement phase.

– Minor iterations are done on a dynamic grid and
stops when the grid is too dense.

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

C-GRASP
f* = ∞
while (stopping criterion not satisfied) do

 x = random[L,U]; h = h(start);

 while (h ≥ h(end)) do

 x = ConstructGreedyRandomized(x)

 x = LocalImprovement(x)

 if (f(x) < f*) then { x* = x; f* = f(x) }

 if (x did not improve this iteration) then { h = h/2 }

 end while

end while

return x*

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

C-GRASP line search

x

current solution

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

C-GRASP line search

x

current solution

direction

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

C-GRASP line search

x

current solution

direction

upper bound

lower bound

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

C-GRASP line search

x

current solution

upper bound

lower bound

h

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

C-GRASP line search

x

upper bound

lower bound

h

Evaluate f(x) at each

Line search returns x* =argmin{ f(x) }

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

C-GRASP greedy randomized construction
unset = {1, 2, 3, ..., n }; x = x0

for (k = 1, 2, ..., n) do
 for (all i ∈ unset) do
 z

i
 = line search in direction e

i
 = (0,0,...,1,....,0)

 end for
 RCL = { i ∈ unset | f(z

i
) < CUTOFF }

 Select at random i* ∈ RCL
 Set x

i*
 = z

i*
; unset = unset \ {i*}

end for

i-th component

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

C-GRASP local improvement

x

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

C-GRASP local improvement

x

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

C-GRASP local improvement

x

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

C-GRASP local improvement

x

Sample projected point y on circle and evaluate f(y)
If f(y) < f(x) then set x = y, translate grid to intersect x
and restart local search from x
If max-points are examined without improvement: x is h-local min

y

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

C-GRASP

• M.J. Hirsch, “GRASP-based heuristics for continuous
global optimization problems,” Dept. of Industrial &
Systems Engineering, University of Florida, Gainesville,
Florida, 2006.
– Michael Hirsch's Ph.D. thesis.

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

C-GRASP
• M.J. Hirsch, P.M. Pardalos, and M.G.C. Resende, “Sensor

registration in a sensor network by continuous GRASP,”
IEEE Military Communications Conference (MILCOM),
2006.
– Sensor registration is the process of removing

(accounting for) non-random errors, or biases, in sensor
data.

– We solve the sensor registration problem when some
data is not seen by all sensors, and the correspondence
of data seen by the different sensors is not known.

– We outperform previous methods in the literature and
have been granted a U.S. Patent.

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

C-GRASP

• M.J. Hirsch, C.N. Meneses, P.M. Pardalos, M.A. Ragle, and
M.G.C. Resende, “A continuous GRASP to determine the
relationship between drugs and adverse reactions,” in “Data
Mining, Systems Analysis and Optimization in Biomedicine,”
O. Seref, O.Erhun Kundakcioglu, and P.M. Pardalos (eds.),
AIP Conference Proceedings, vol. 953, pp. 106-121,
Springer, 2008.
– We formulate the drug-reaction relationship problem as a

continuous global optimization problem

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

C-GRASP

• M.J. Hirsch, P.M. Pardalos, and M.G.C. Resende,
“Solving systems of nonlinear equations with continuous
GRASP,” Nonlinear Analysis: Real World Applications,
vol. 10, pp. 2000-2006, 2009.
– We formulate a system of nonlinear equations as

nonlinear function which has min value zero. After
finding a root, we add a barrier around the root and
resolve to find the next root.

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

C-GRASP

• E.G. Birgin, E.M. Gozzi, M.G.C. Resende, and R.M.A. Silva,
“Continuous GRASP with a local active-set method for
bound-constrained global optimization,” J. of Global
Optimization, vol. 48, pp. 289-310, 2010.
– We adapt C-GRASP for global optimization of functions

for which gradients can be computed. To to this, we use
GENCAN (Birgin and Martínez, 2002), an active-set
method for bound-constrained local minimization as the
local improvement procedure.

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

C-GRASP

• R.M.A. Silva, M.G.C. Resende, and P.M. Pardalos,
“A C-GRASP Python/C library for bound-
constrained global optimization,” to appear in
Optimization Letters, 2011.
– We describe libcgrpp,a GNU-style dynamic

shared Python/C library.
– The function to be minimized is encoded in Python

and read by the library.
– Solver can be standalone or called from a C program.

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

C-GRASP

• M.J. Hirsch, P.M. Pardalos, and M.G.C. Resende,
“Correspondence of projected 3D points and
lines using a continuous GRASP,” to appear in
International Transactions in Operational
Research, 2011.
– Computer vision application

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Concluding remarks

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

Concluding remarks

We have given a review of classical GRASP
We then showed how the main components of GRASP
(randomized construction and local search) can be replaced
We showed how hybridization with path-relinking and elite
sets can add memory mechanisms to GRASP
We concluded describing C-GRASP, an adaptation of
GRASP for bound-constrained global optimization.

 Spring School on Adv. in OR – May 3, 2011 GRASP & C-GRASP

The End
These slides and all papers cited in this talk
can be downloaded from my homepage:
http://mauricioresende.com

Spring School on Adv. In OR – May 3, 2011 GRASP for cliques in massive graphs

Detecting cliques
in massive sparse
graphs

Maurício G. C. Resende
AT&T Labs Research
Florham Park, New Jersey

mgcr@research.att.com
http://www2.research.att.com/~mgcr

Joint work with J. Abello, P.M. Pardalos,
and S. Sudarsky

Tutorial given at the Spring School in Advances in
Operations Research, Higher School of Economics
Nizhny Novgorod, Russia ✤ May 3, 2011

Spring School on Adv. In OR – May 3, 2011 GRASP for cliques in massive graphs

Summary of talk

• Data explosion
• Massive graphs arising from telephone call detail

database
• Structure of call detail graph
• Searching for large cliques and bicliques
• Some experimental results

Spring School on Adv. In OR – May 3, 2011 GRASP for cliques in massive graphs

Data explosion
(Abello, Pardalos, & R., Eds., “Handbook of Massive Data Sets,” Kluwer, 2001)

• Proliferation of massive data sets brings with it
computational challenges

• Data avalanche arises in a wide range of scientific and
commercial applications

• Today’s data sets are of high dimension and are made
up of huge numbers of observations:
 More often they overwhelm rather than enlighten

• Outstripped the capabilities of traditional data
measurement, data analysis, and data visualization tools

Spring School on Adv. In OR – May 3, 2011 GRASP for cliques in massive graphs

Data explosion

• A variety of massive data sets can be modeled
as a very large multi-digraph
 Special set of edge attributes represent special

characteristics of application

• WWW: nodes are pages, edges are links
pointing from one page to another

• Telephone call graph is another example …

Spring School on Adv. In OR – May 3, 2011 GRASP for cliques in massive graphs

Call detail

• Every phone call placed on AT&T network
generates a record (∼ 200 bytes) with:
 Originating & terminating numbers
 Start time & duration of call
 Other billing information

• The collection of these records is known as the
Call Detail Database

Spring School on Adv. In OR – May 3, 2011 GRASP for cliques in massive graphs

Call detail

• AT&T system (currently) generates:
 250 million records per day (on average)
 320 million records on busy day
 18 terabytes of data per year

• Data is accessed for:
 Billing & customer inquiries
 Marketing & traffic engineering

Spring School on Adv. In OR – May 3, 2011 GRASP for cliques in massive graphs

Call detail graph

• G = (V , E) is a directed graph:
 V is the set of phone numbers
 E is the set of phone calls

 (u,v) ∈ E implies that phone u called phone v

• G quickly grows into a huge graph
 Hundreds of millions of nodes and billions of edges
 Our goal is to work with one year of data (∼ 1 Tb)

Spring School on Adv. In OR – May 3, 2011 GRASP for cliques in massive graphs

Structure of call detail graph

• Consider a 12-hour call detail graph
 123 million records: edges
 53 million phone numbers: nodes

 21 million source nodes
 22 million sink nodes
 10 million transmittal nodes

Source

Sink

T

Spring School on Adv. In OR – May 3, 2011 GRASP for cliques in massive graphs

Connected components

3.6 million connected components

largest CC has
45 million vertices
and 80 million
edges

27,906 CC’s with
 6 vertices

2.8 million CC’s
with 2 vertices

979 CC’s with
11 vertices

598,519 CC’s
with 3 vertices

Spring School on Adv. In OR – May 3, 2011 GRASP for cliques in massive graphs

Depth first search (DFS) tree

Pick a high out-degree node

Spring School on Adv. In OR – May 3, 2011 GRASP for cliques in massive graphs

DFS trees in largest CC

TL

Largest DFS tree Smaller DFS trees

G (TL) has
10 million nodes &
19 million edges, i,e.
22% of the nodes &
24% of the edges of
the CC

18 million DFS trees

Most edges are within
trees.

Spring School on Adv. In OR – May 3, 2011 GRASP for cliques in massive graphs

Subgraph induced by DFS tree nodes

• Most subgraphs induced by DFS tree nodes are

very sparse: |E | < log(|V |)
• Few are dense: |E | > sqrt(|V |) with at most

32 nodes

Spring School on Adv. In OR – May 3, 2011 GRASP for cliques in massive graphs

Dense subgraphs

• Dense subgraphs could be
 within G (DFS tree)
 among different G (DFS tree)

• Counting edges:
 most are within G (DFS tree)
 leaves few edges between different G (DFS tree)

Spring School on Adv. In OR – May 3, 2011 GRASP for cliques in massive graphs

Macro structure of call detail graph

dense sub-graph dense sub-graph

dense sub-graph

dense sub-graph

sparse sub-graph

community of
interest?

Spring School on Adv. In OR – May 3, 2011 GRASP for cliques in massive graphs

Searching for dense subgraphs

• We look for two types of subgraphs
 cliques or quasi-cliques
 bicliques or quasi-bicliques

clique quasi-clique biclique quasi-biclique

Spring School on Adv. In OR – May 3, 2011 GRASP for cliques in massive graphs

Clique case

• We illustrate the approach with the clique case.
 We work on connected component of transmittal

nodes (no cliques in sources or sinks)
 Breadth first search decomposition
 Peeling off vertices to focus in on large cliques
 Finding cliques in a subgraph

Spring School on Adv. In OR – May 3, 2011 GRASP for cliques in massive graphs

Breadth first search decomposition

• Given a graph G one can decompose its
vertices into levels

level 0

level 1

level 3

level 4

level 5

There are no cliques spanning three or more levels.

Spring School on Adv. In OR – May 3, 2011 GRASP for cliques in massive graphs

BFS: distribution of nodes per level

1 10 100 1000 10000 100000 1000000 10000000

0

3

6

9

12

15

18

level

number of nodes

Spring School on Adv. In OR – May 3, 2011 GRASP for cliques in massive graphs

Edge ordering

• Use levels to order edges (k = 0,1,2,…)
 Edges in level k
 Edges from level k to level k+1

level 0

level 1

level 3

level 4

level 5

Spring School on Adv. In OR – May 3, 2011 GRASP for cliques in massive graphs

Chunking & peeling

• Start with all edges in E (set is massive)
• Repeat

 Create a subgraph G’ with one or more chunks
 Find large clique (of size c’) in G’
 Peel from G all vertices v with deg(v) < c’
 E = E (G)

chunk

chunk chunk

Spring School on Adv. In OR – May 3, 2011 GRASP for cliques in massive graphs

Peeling

• Peeling is applied recursively

peel
peel

Clique of size 5

Clique of size 4

Spring School on Adv. In OR – May 3, 2011 GRASP for cliques in massive graphs

Peeling with degree = 2
reduction from 3.4 M edges to 3.0 M edges

2800000

2900000

3000000

3100000

3200000

3300000

3400000

3500000

1 2 3 4 5 6 7 8 9 10 11 12 13

iteration

ed
ge

s
re

m
ai

ni
ng

Spring School on Adv. In OR – May 3, 2011 GRASP for cliques in massive graphs

Peeling with degree = 14
reduction from 3.0 M edges to 18.3 K edges

0

50000

100000

150000

200000

250000
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

iteration

ed
ge

s
re

m
ai

ng

Spring School on Adv. In OR – May 3, 2011 GRASP for cliques in massive graphs

Finding cliques

• GRASP for max clique
 multi-start

 construct clique using randomized greedy algorithm
 attempt to improve clique using 2-exchange local search
 store all cliques found in construction & local search

Spring School on Adv. In OR – May 3, 2011 GRASP for cliques in massive graphs

Greedy vertex choice

• Choose v ∈N (S)} with max degN (S) {v ∈N (S)}.

S

N (S) = nodes
adjacent to all
nodes in S

Spring School on Adv. In OR – May 3, 2011 GRASP for cliques in massive graphs

(2,1) exchange local search

• for each vertex v in clique S
 while ∃ an edge (x, y) ∈ E with x and y adjacent

to all vertices in S \ {v }
 remove v from S and add x and y to S:
 S = S \ {v } ∪ {x } ∪ {y }

x

v
y y

x

clique of size 3

clique of size 4

Spring School on Adv. In OR – May 3, 2011 GRASP for cliques in massive graphs

Software platform
external & semi-external memory algorithms

Read data
Remove

multiplicities &
self loops

Decompose graph
into sources,
transmitters &

sinks

Compute
connected

components
For each CC:Find cliques

Spring School on Adv. In OR – May 3, 2011 GRASP for cliques in massive graphs

Software platform
computing cliques

For each CC BFS decomposition
into K levels

for k = 1,K −1

Work on graph
induced by nodes in
 levels k and k + 1

GRASP & save
 maximal cliques

peel

Spring School on Adv. In OR – May 3, 2011 GRASP for cliques in massive graphs

Mining for cliques
examples

• 12 hours of calls
 53M nodes, 170M edges
 3.6M connected components (only 302K had more

than three nodes)
 255 self loops, 2.7M pairs, and 598K triplets

 Giant CC has 45M nodes
 Found cliques of size up to 30 nodes in giant CC.
 Found quasi-cliques of size 44 (90% density), 57

(80%), 65 (70%), and 98 (50%) in giant CC.

Spring School on Adv. In OR – May 3, 2011 GRASP for cliques in massive graphs

Concluding remarks

• We developed algorithms and systems for mining
dense subgraphs is massive graphs.

• Subgraphs currently handled:
 Cliques and quasi-cliques
 Bicliques and quasi-bicliques

• We have explored data sets up to one week of calls, but
aim to handle one year.

• Parallelization under way to speed up computations.

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Tutorial given at the Spring School in Advances in
Operations Research, Higher School of Economics
Nizhny Novgorod, Russia ✤ May 3, 2011

GRASP with evolutionary
path-relinking for the
antibandwidth problem

Mauricio G. C. Resende
AT&T Labs Research
Florham Park, New Jersey
mgcr@att.com

Joint work with A. Duarte, R. Martí, & R. Silva

mailto:mgcr@att.com

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Summary

• Antibandwidth
• Integer programming formulation
• GRASP construction
• Local search
• GRASP with evolutionary path-relinking
• Experimental results
• Concluding remarks

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Paper

A. Duarte, R. Martí, , M.G.C. Resende, and R.M.A.
Silva, “GRASP with path relinking heuristics for the
antibandwidth problem,” Networks, published
online 22 December 2010.

Tech report:

http://www2.research.att.com/~mgcr/doc/gpr-antiband.pdf

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Antibandwidth problem

• Given an undirected graph G = (V,E), where
– V is the set of nodes (n = |V|)
– E is the set of edges (m = |E|)

• A labeling f of V is a one-to-one mapping of
{1,2,...,n} onto V.
– Each vertex v ∈ V has a unique label f(v) ∈ {1,2,...,n}

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Antibandwidth problem

• Given an undirected graph G = (V,E), where
– V is the set of nodes (n = |V|)
– E is the set of edges (m = |E|)

• A labeling f of V is a one-to-one mapping of
{1,2,...,n} onto V.
– Each vertex v ∈ V has a unique label f(v) ∈ {1,2,...,n}

undirected graph
G = (V,E)

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Antibandwidth problem

• Given an undirected graph G = (V,E), where
– V is the set of nodes (n = |V|)
– E is the set of edges (m = |E|)

• A labeling f of V is a one-to-one mapping of
{1,2,...,n} onto V.
– Each vertex v ∈ V has a unique label f(v) ∈ {1,2,...,n}

1 3 4

2

5

6

undirected graph
G = (V,E) with a
labeling f

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Antibandwidth problem

• Given an undirected graph G = (V,E), where
– V is the set of nodes (n = |V|)
– E is the set of edges (m = |E|)

• A labeling f of V is a one-to-one mapping of
{1,2,...,n} onto V.
– Each vertex v ∈ V has a unique label f(v) ∈ {1,2,...,n}

6 4 5

1

3

2

undirected graph
G = (V,E) with another
labeling f

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Antibandwidth problem

• Given G and f, the antibandwidth AB
f
(v) of node v

is smallest difference between f(v) and the labels
of all of the nodes adjacent to v, i.e.
– AB

f
(v) = min { |f(v) − f(u)|: u ∈ N(v) }

– where N(v) is the set of nodes adjacent to v

6 4 5

1

3

2

undirected graph
G = (V,E) with a
labeling f

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Antibandwidth problem

• Given G and f, the antibandwidth AB
f
(v) of node v

is smallest difference between f(v) and the labels
of all of the nodes adjacent to v, i.e.
– AB

f
(v) = min { |f(v) − f(u)|: u ∈ N(v) }

– where N(v) is the set of nodes adjacent to v

6 4 5

1

3

2

undirected graph
G = (V,E) with a
labeling f

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Antibandwidth problem

• Given G and f, the antibandwidth AB
f
(v) of node v

is smallest difference between f(v) and the labels
of all of the nodes adjacent to v, i.e.
– AB

f
(v) = min { |f(v) − f(u)|: u ∈ N(v) }

– where N(v) is the set of nodes adjacent to v

6 4 5

1

3

2

undirected graph
G = (V,E) with a
labeling f

6-1=5

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Antibandwidth problem

• Given G and f, the antibandwidth AB
f
(v) of node v

is smallest difference between f(v) and the labels
of all of the nodes adjacent to v, i.e.
– AB

f
(v) = min { |f(v) − f(u)|: u ∈ N(v) }

– where N(v) is the set of nodes adjacent to v

6 4 5

1

3

2

undirected graph
G = (V,E) with a
labeling f

6-1=5

4-1=3

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Antibandwidth problem

• Given G and f, the antibandwidth AB
f
(v) of node v

is smallest difference between f(v) and the labels
of all of the nodes adjacent to v, i.e.
– AB

f
(v) = min { |f(v) − f(u)|: u ∈ N(v) }

– where N(v) is the set of nodes adjacent to v

6 4 5

1

3

2

undirected graph
G = (V,E) with a
labeling f

6-1=5

4-1=3 5-1=4

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Antibandwidth problem

• Given G and f, the antibandwidth AB
f
(v) of node v

is smallest difference between f(v) and the labels
of all of the nodes adjacent to v, i.e.
– AB

f
(v) = min { |f(v) − f(u)|: u ∈ N(v) }

– where N(v) is the set of nodes adjacent to v

6 4 5

1

3

2

undirected graph
G = (V,E) with a
labeling f

6-1=5

4-1=3 5-1=4

2-1=1

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Antibandwidth problem

• Given G and f, the antibandwidth AB
f
(v) of node v

is smallest difference between f(v) and the labels
of all of the nodes adjacent to v, i.e.
– AB

f
(v) = min { |f(v) − f(u)|: u ∈ N(v) }

– where N(v) is the set of nodes adjacent to v

6 4 5

1

3

2

undirected graph
G = (V,E) with a
labeling f

6-1=5

4-1=3 5-1=4

2-1=1
 AB

f
(1) = min {5,3,4,1} = 1

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Antibandwidth problem

• Given G and f, the antibandwidth AB
f
(G) of f is

smallest antibandwidth over all nodes in V, i.e.
– AB

f
(G) = min { AB

f
(v) : v ∈ V }

– where N(v) is the set of nodes adjacent to v

6 4 5

1

3

2

undirected graph
G = (V,E) with a
labeling f

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Antibandwidth problem

• Given G and f, the antibandwidth AB
f
(G) of f is

smallest antibandwidth over all nodes in V, i.e.
– AB

f
(G) = min { AB

f
(v) : v ∈ V }

– where N(v) is the set of nodes adjacent to v

6 4 5

1

3

2

AB
f
(G) = min { 1, 1, 1, 1, 2 } = 1

1

1

1
11

2

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Antibandwidth problem

• Given G, the antibandwidth AB(G) of G is largest
antibandwidth over all possible labelings, i.e.
– AB(G) = max { AB

f
(G) : f ∈ Π

n
 }

– where Π
n
 is the set of all permutations of {1, 2, ..., n}

6 4 5

1

3

2

AB
f
(G) = min { 1, 1, 1, 1, 2 } = 1

1

1

1
11

2

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

AB
f
(G) = min { 2, 2, 2, 2, 3 } = 2

Antibandwidth problem

• Given G, the antibandwidth AB(G) of G is largest
antibandwidth over all possible labelings, i.e.
– AB(G) = max { AB

f
(G) : f ∈ Π

n
 }

– where Π
n
 is the set of all permutations of {1, 2, ..., n}

6 3 5

1

2

4

2

2

2
22

3

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

AB(G) = 2

Antibandwidth problem

• Given G, the antibandwidth AB(G) of G is largest
antibandwidth over all possible labelings, i.e.
– AB(G) = max { AB

f
(G) : f ∈ Π

n
 }

– where Π
n
 is the set of all permutations of {1, 2, ..., n}

6 3 5

1

2

4

2

2

2
22

3

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Antibandwidth problem

• NP-hard (Leung et al., 1984)
• Special cases can be solved in polynomial time,

e.g. complements of intervals, arborescent
comparability, and on threshold graphs (Raspaud
et al., 2008)

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Antibandwidth problem

• Yixum and Jinjiang (2003) proposed the upper
bound: min { floor((n − δ + 1)/2), n − ∆ }, where
– δ is the smallest degree over all v ∈ V
– ∆ is the largest degree over all v ∈ V

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Antibandwidth problem

• Yixum and Jinjiang (2003) proposed the upper
bound: min { floor((n − δ + 1)/2), n − ∆ }, where
– δ is the smallest degree over all v ∈ V
– ∆ is the largest degree over all v ∈ V

2

2
3

deg = 2

4

3
δ = 2
∆ = 4
UB = min{ 2, 2 } = 2

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Antibandwidth problem

• Yixum and Jinjiang (2003) proposed the upper
bound: min { floor((n − δ + 1)/2), n − ∆ }, where
– δ is the smallest degree over all v ∈ V
– ∆ is the largest degree over all v ∈ V

δ = 2
∆ = 4
UB = min{ 2, 2 } = 2
AB

f
(G) = 2 is opt

AB(G) = 2

6 3 5

1

2

4

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Antibandwidth problem: IP formulation

• Let be a binary variable that takes on the value 1 if
and only if , i.e. node i takes label k.

• Define to be the label of node i.
• Finally, let

be the antibandwidth of labeling f.
• In the antibandwidth problem we want to determine the

labeling f * that maximizes b.

ikx
()f i k=

() {1,2, , }il f i n= ∈ K

() min{| () () | : (,) }fb AB G f u f v u v E= = − ∈

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Antibandwidth problem: IP formulation

• Objective: maximize b
• Constraints:

– One label is assigned to each node:

1

1, 1, ,
n

ik
i

x k n
=

= ∀ =∑ K

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Antibandwidth problem: IP formulation

• Objective: maximize b
• Constraints:

– One node is assigned to each label:

1

1, 1, ,
n

ik
k

x i n
=

= ∀ =∑ K

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Antibandwidth problem: IP formulation

• Objective: maximize b
• Constraints:

– Each label l
i
 is a function of the binary variables x

ik
:

1
, 1, ,

n

ik i
k

k x l i n
=

⋅ = ∀ =∑ K

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Antibandwidth problem: IP formulation

• Objective: maximize b
• Constraints:

– Require that :

| |, (,)i jb l l i j E≤ − ∈

min{| |: (,) }i jl l i jb E− ∈=

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Antibandwidth problem: IP formulation

• Objective: maximize b
• Constraints:

– Binary variables can only take values 0 or 1 :

{0,1}, , 1, ,ikx i k n∈ ∀ = K

ikx

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Antibandwidth problem: IP formulation

• Objective: maximize b
• Constraints:

– Labels can only take on values {1, ..., n} :

{1, 2, , }, 1, ,il n i n∈ ∀ =K K

il

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Antibandwidth problem: IP formulation

• Objective: maximize b
• Constraints are

nonlinear:
– If then
– Otherwise,
– Introduce two binary variables to indicate case:

• If then and
• Otherwise, and

| |, (,)i jb l l i j E≤ − ∈

i jl l≥ i jb l l≤ −
()i jb l l≤ − −

i jl l≥ 0ijy = 1ijz =
1ijy = 0ijz =

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Antibandwidth problem: IP formulation

• Objective: maximize b
• Constraints become:

| |, (,)i jb l l i j E≤ − ∈

() 2 (1), (,)i j ijb l l y n i j E− − ≤ − ∀ ∈

() 2 (1), (,)i j ijb l l z n i j E+ − ≤ − ∀ ∈

1, (,)ij ijy z i j E+ = ∀ ∈

1b ≥

theni jl l≥ 0ijy = 1ijz =

1ijy = 0ijz =theni jl l<

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Antibandwidth problem: IP formulation

() 2 (1), (,)i j ijb l l y n i j E− − ≤ − ∀ ∈
() 2 (1), (,)i j ijb l l z n i j E+ − ≤ − ∀ ∈

1, (,)ij ijy z i j E+ = ∀ ∈

1b ≥

1
1, 1, ,

n

ik
i

x k n
=

= ∀ =∑ K

max b

1
1, 1, ,

n

ik
k

x i n
=

= ∀ =∑ K

1

, 1, ,
n

ik i
k

k x l i n
=

⋅ = ∀ =∑ K

{0,1}, (,)ikx i k E∈ ∀ ∈

{1,2, }, 1, 2,il n i n∈ ∀ =K K

{0,1}, (,)iky i k E∈ ∀ ∈
{0,1}, (,)ikz i k E∈ ∀ ∈

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Antibandwidth problem: IP formulation

() 2 (1), (,)i j ijb l l y n i j E− − ≤ − ∀ ∈
() 2 (1), (,)i j ijb l l z n i j E+ − ≤ − ∀ ∈

1, (,)ij ijy z i j E+ = ∀ ∈

1b ≥

1
1, 1, ,

n

ik
i

x k n
=

= ∀ =∑ K

max b

1
1, 1, ,

n

ik
k

x i n
=

= ∀ =∑ K

1

, 1, ,
n

ik i
k

k x l i n
=

⋅ = ∀ =∑ K

{0,1}, (,)ikx i k E∈ ∀ ∈

{1,2, }, 1, 2,il n i n∈ ∀ =K K

{0,1}, (,)iky i k E∈ ∀ ∈
{0,1}, (,)ikz i k E∈ ∀ ∈

IP has O(n2) variables and O(n2) constraints

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

GRASP with evolutionary path-relinking

Repeat
inner
loop

Evolutionary-PR

1) Construct greedy randomized
2) Local search
3) Mixed path-relinking
4) Update pool

Repeat
outer
loop

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

GRASP construction procedure

• We use the sampled greedy construction scheme
of R. & Werneck (2004)

Select first node at random & label it n/2

Select a small set C of unlabeled
nodes

Select the node in C with the
best incremental value and label
it with its best label

For each
node c in C:

Evaluate incremental
value of node c
(determine best label
for c)

Repeat while
there are
unlabeled nodes

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

GRASP construction procedure:
Selecting a small set C of unlabeled nodes

• The set CL of candidate nodes is made up of nodes
adjacent to labeled nodes

• The small set C of candidate nodes is a set of α×|CL|
randomly sampled nodes from CL, where α is a random
real number ∈ [0,1]

• The value of α does not change during construction

• Values of α ≈ 1 makes sampled greedy resemble a
greedy construction, while values of α ≈ 0 makes it
behave like a random construction

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

GRASP construction procedure:
Determine the best label for a candidate node c

• Let and be, respectively, the smallest and largest
assigned labels to the the nodes adjacent to c

• The “best” label for c is

• The closest available label to is assigned to c

cl
)

cl
(

* argmax{min(| |,| |): 1, , }c cl l l l l l n= − − =
) (

K

*l

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

GRASP construction procedure:
Determine the best label for a candidate node

• Let and be, respectively, the smallest and largest
assigned labels to the the nodes adjacent to c

• The “best” label for c is

• The closest available label to is assigned to c

cl
)

cl
(

* argmax{min(| |,| |): 1, , }u ul l l l l l n= − − =
) (

K

*l

3 Choose first node
at random and label
it n/2 = 6/2 = 3

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

GRASP construction procedure

3

Candidate node

Best label for both
candidates is 6.

Label one of the
nodes with a 6

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

GRASP construction procedure

6

3

Best label for both
candidates on left
is 1 and on right is 6.

Label node on right
with a 5 (closest
available label to 6)

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

GRASP construction procedure

6

3

Candidate node

Best label for both
candidates on left
is 1 and on right is 6.

Label node on right
with a 5 (closest
available label to 6)

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

GRASP construction procedure

6

3

5

Best label for both
candidates on left
is 1 and on right is 6.

Label node on right
with a 5 (closest
available label to 6)

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

GRASP construction procedure

6

3

5

Candidate node

Best label for both
candidates is 1.

Label node on top
with a 1.

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

GRASP construction procedure

1 6

3

5 Best label for both
candidates is 1.

Label node on top
with a 1.

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

GRASP construction procedure

1 6

3

5

Candidate node

Best label for node on
left is 6 and for node
on bottom is 3.

Label node on bottom
with a 2.

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

GRASP construction procedure

1 6

2

3

5

Candidate node

Best label for node on
left is 6 and for node
on bottom is 2 or 3.

Label node on bottom
with a 2.

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

GRASP construction procedure

1 6

2

3

5
Remaining node must
be labeled with a 4.

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

GRASP construction procedure

4 1 6

2

3

5 Remaining node must
be labeled with a 4.

AB
f
(G) = 1

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Local Search

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

GRASP local search procedure

• Antibandwidth problem has a flat landscape:
many solutions have same cost

• For a given labeling f, there may be multiple
nodes u such that AB

f
(u) = AB

f
(G)

• Therefore, in local search, a move (swap of labels
of a pair of nodes) that improves AB

f
(u) does not

necessarily change the value of the solution
AB

f
(G)

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

GRASP local search procedure

• Nodes u with unequal AB
f
(u) values but that are

close to AB
f
(G) can be crucial in future iterations

(swaps) of the local search, even though they
cannot affect the value of the current labeling

• Define the set of crucial vertices of a labeling f
to be

() ())({ : }f fC AB u A Gf u V Bβ= ∈ ≤ ⋅

(1 2)β≤ ≤

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

GRASP local search procedure

• Given a labeling f, operator move(u,v) assigns the label f (u)
to node v and the label f (v) to node u, resulting in a new
labeling f '

• Local search scans nodes u in C(f), changing their labels to
increase their antibandwidths

• Let and be, respectively, the smallest and largest
assigned labels to the the nodes adjacent to u

• The best label for u is

ul
(

ul
)

* argmax{min(| |,| |): 1, , }u u ul l l l l l n= − − =
) (

K

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

GRASP local search procedure

• Once we determine the best label l* for u, we determine the
node v with this label to evaluate move(u,v)

• We know that label l* is good for u, but we need to
determine whether label f(u) is good for node v

• We extend the search for a good label for u not only to node
v with label l*, but also to nodes with labels close to l*

• The set N'(u) of suitable swapping nodes for u depends on
the relationship between l*, , and ul

(
ul
)

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

GRASP local search procedure

• If then

• If then

• If then

*
u ul l<

(
* ()'() { : () }u fuN u v V l f ABv Gl= ∈ ≤ ≤ −

(

*
u ul l>

)
*'() { () }: ()u ufAN u v V lB Gl f v= ∈ + ≤ ≤

)

*
u u ul l l≤ ≤
()

'() { () (()}:)u uf fAB GN u v V l f v l AB G= ∈ + ≤ ≤ −
))

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

GRASP local search procedure

• If then

• If then

• If then

*
u ul l<

(
* ()'() { : () }u fuN u v V l f ABv Gl= ∈ ≤ ≤ −

(

*
u ul l>

)
*'() { () }: ()u ufAN u v V lB Gl f v= ∈ + ≤ ≤

)

*
u u ul l l≤ ≤
()

'() { () (()}:)u uf fAB GN u v V l f v l AB G= ∈ + ≤ ≤ −
()

If N'(u) = ∅, then AB
f
(u) cannot be increased in a single step

by changing the current label of u.

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

GRASP local search procedure

6 4 5

1

2

3

a 2
b 1
c 2
d 1
e 1
f 1

a b d

e

f

c

AB
f
(G) = 1

v AB
f
(v)

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

GRASP local search procedure

6 4 5

1

2

3

a 2
b 1 crucial
c 2
d 1 crucial
e 1 crucial
f 1 crucial

a b d

e

f

c

AB
f
(G) = 1

v AB
f
(v)

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

GRASP local search procedure

6 4 5

1

2

3 1 5 0
2 4 1
3 3 2
4 2 3
5 1 4
6 0 5

a b d

e

f

c

AB
f
(G) = 1

| | | |u ul l l l l− −
) (

6 1b bl l= =
) (

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

GRASP local search procedure

6 4 5

1

2

3 1 5 0
2 4 1
3 3 2
4 2 3
5 1 4
6 0 5

a b d

e

f

c

AB
f
(G) = 1

| | | |u ul l l l l− −
) (

6 1b bl l= =
) (

* argmax{min(| |,| |): 1, , } 3u u ul l l l l l n= − − = =
) (

K

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

GRASP local search procedure

6 4 5

1

2

3 1 5 0
2 4 1
3 3 2
4 2 3
5 1 4
6 0 5

a b d

e

f

c

AB
f
(G) = 1

| | | |u ul l l l l− −
) (

6 1b bl l= =
) (

* argmax{min(| |,| |): 1, , } 3u u ul l l l l l n= − − = =
) (

K

*Since 1 then6u u ul l l≤ ≤ ==
()

'() { : (() ()} { , , })u f u fN AB G Au v V l B G d e ff v l= ∈ + ≤ ≤ =−
()

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

GRASP local search procedure

6 4 5

1

2

3 1 5 0
2 4 1
3 3 2
4 2 3
5 1 4
6 0 5

a b d

e

f

c

AB
f
(G) = 1

| | | |u ul l l l l− −
) (

6 1b bl l= =
) (

* argmax{min(| |,| |): 1, , } 3u u ul l l l l l n= − − = =
) (

K

*Since 1 then6u u ul l l≤ ≤ ==
()

'() { : (() ()} { , , })u f u fN AB G Au v V l B G d e ff v l= ∈ + ≤ ≤ =−
()

swap

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

GRASP local search procedure

6 3 5

1

2

4

a b d

e

f

c

AB
f
(G) = 2

optimal!

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

GRASP local search procedure

• Value of a move:
– Common practice is to define it as change in

objective function value
– In antibandwidth, change in objective function

provides little information

• Given node u and node v ∈C(u), we define value
of move(u,v) to be the difference in the
antibandwidth of u.

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

GRASP local search procedure
• If f is the original labeling and f ' is the resulting

labeling after move(u,v), then

 moveValue(u,v) = AB
f'
(u) − AB

f
(u)

• Perform move(u,v) only if moveValue(u,v) > 0
and AB

f'
(v) ≥ AB

f
(G)

• Computation of AB
f
(G) is expensive: requires

examination of all vertices in graph
– AB

f
(G) is not updated after each move, only when C(f)

is computed (a la Glover & Laguna (1997))

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Define the crucial vertices set C(f) from labeling f: compute AB
f
(G)

GRASP local search procedure

Update labeling f

while C(f) is
not empty

 Randomly select and remove u from C(f)

while AB(G) is
improving

Find the best label l(u) for u

Find the vertex v with f(v) = l(u)

Compute neighborhood N'(u)

while N'(u) is
not empty and
there is no
improvement

Select the best
vertex v in N'(u)

Remove v from
N'(u)
If OK, swap labels
f(u) and f(v)

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

GRASP with evolutionary
path-relinking

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

GRASP with evolutionary path-relinking

Repeat
inner
loop

pool ← evolutionary-PR(pool)

1) f ← construct greedy randomized
2) f ← local search(f)
3) If pool not empty: select f' from pool
3) f ← mixed path-relinking (f, f')
4) Attempt to update pool with f

Repeat
outer
loop

Initialize pool as empty set

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Mixed path-relinking
Variants: trade-offs between computation time and
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)

I
G

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Mixed path-relinking
Variants: trade-offs between computation time and
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Mixed path-relinking
Variants: trade-offs between computation time and
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)

IG

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Mixed path-relinking
Variants: trade-offs between computation time and
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Mixed path-relinking
Variants: trade-offs between computation time and
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)

GI

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Mixed path-relinking
Variants: trade-offs between computation time and
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Mixed path-relinking
Variants: trade-offs between computation time and
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)

I

G

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Mixed path-relinking
Variants: trade-offs between computation time and
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Mixed path-relinking
Variants: trade-offs between computation time and
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)

GI

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Mixed path-relinking
Variants: trade-offs between computation time and
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Mixed path-relinking
Variants: trade-offs between computation time and
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)

G

I

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Mixed path-relinking
Variants: trade-offs between computation time and
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Mixed path-relinking
Variants: trade-offs between computation time and
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)

Advantage: explore around
neighborhoods of both input
solutions.

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Pool management
• Pool has at most p (e.g. p = 10 elements) ordered from

best {f(1)} to worst {f(p)}.
• Let AB

f(1)
(G) be the antibandwidth of the best labeling {f(1)}

in the pool
• Labeling f is accepted to the pool if AB

f
(G) > AB

f(1)
(G) or if

AB
f
(G) > AB

f(p)
(G) and ∆(f, pool) > δ, where

• If the pool is full and f is accepted into the pool: among all
labelings f' such that AB

f'
(G) < AB

f
(G) we remove from the

pool the labeling closest to f.

1
pool) min{ | () () | : pool}(,

n
i

k
f k f k if

=

= − ∈∆ ∑

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Evolutionary path-relinking
 (Resende & Werneck, 2004, 2006)

• Evolutionary path-relinking “evolves” the pool, i.e.
transforms it into a pool of diverse elements
whose solution values are better than those of
the original pool.

• Evolutionary path-relinking can be used
– as an intensification procedure at certain points of the

solution process;
– as a post-optimization procedure at the end of the

solution process.

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Evolutionary path-relinking (EvPR)

Start with the pool of elite solutions

We use a variant of EvPR introduced in
Resende, Martí, Gallego, & Duarte (2008)

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Evolutionary path-relinking (EvPR)

While there exists a pair of pool solutions
that have not yet been relinked:

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Evolutionary path-relinking (EvPR)

While there exists a pair of pool solutions
that have not yet been relinked:
 Apply mixed path-relinking between pair

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Evolutionary path-relinking (EvPR)

While there exists a pair of pool solutions
that have not yet been relinked:
 Apply mixed path-relinking between pair

Solution of path-relinking is candidate to
enter the pool: if accepted, it replaces
closest solution with smaller antibandwidth

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Evolutionary path-relinking (EvPR)

While there exists a pair of pool solutions
that have not yet been relinked:
 Apply mixed path-relinking between pair

Solution of path-relinking is candidate to
enter the pool: if accepted, it replaces
closest solution with smaller antibandwidth

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Evolutionary path-relinking (EvPR)

EvPR ends when all pairs of pool solutions
have been relinked and resulting labelings
are not accepted to enter the pool.

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Preliminary
experimental results

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Experiments

• Heuristics were coded in C and testing was done
on a 3.0 GHz Pentium 4 PC with 3 Gb of
memory

• CPLEX 11.1 was used to solve the integer
program on a 1.6 GHz Itanium 2 computer with
256 Gb of memory

• Four sets of test problems serve as our
benchmark

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Experiments
• Test problems derived from the Harwell-Boeing Sparse

Matrix Collection
– 12 small instances (having between 30 and 100 vertices)
– 12 large instances (having between 400 and 900

vertices)

• 2-dim meshes with optimal solutions known by
construction (Raspaud et al., 2008)
– 12 small instances (having between 90 and 120 vertices)
– 12 large instances (having between 900 and 1200

vertices)

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Experiments
• Test problems from the Harwell-Boeing Sparse Matrix

Collection
– 12 small instances (having between 30 and 100 vertices)
– 12 large instances (having between 400 and 900

vertices)

• 2-dim meshes with optimal solutions known by
construction (Raspaud et al., 2008)
– 12 small instances (having between 90 and 120 vertices)
– 12 large instances (having between 900 and 1200

vertices)

All instances are available at
http://www.uv.es/rmarti

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Integer programming: small Harwell-Boeing instances

name n m nz Iters
million

B&B
million

Time
(secs)

Soln UB

bcspwr01 209 1607 4931 74.8 3.7 14641 17 17

bcspwr02 265 2510 7675 426.6 8.9 >24h 21 22

ibm32 276 1147 3792 27.5 0.5 5709 9 9

pores1 296 1034 3524 352.6 16.9 >24h 6 8

curtis54 410 3095 9740 219.2 7.0 >24h 10 13

will57 425 3434 10763 216.0 3.8 >24h 12 14

bcsstk01 496 2529 8320 219.9 4.9 >24h 6 11

dwt234 675 13969 42363 91.9 1.7 >24h 23 58

ash85 693 7530 23427 116.2 3.8 >24h 12 27

bcspwr03 712 14222 43204 75.3 1.7 >24h 22 57

impcol.b 739 3822 12691 148.8 2.5 >24h 5 11

nos4 794 10348 31976 99.6 2.8 >24h 10 48

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Integer programming: large Harwell-Boeing instances

name n m nz
thous

Iters
million

B&B
nodes

Time
(secs)

Soln UB

494bus 2654 245117 736 4.52 949 >24h 12 247

662bus 3798 439813 1321 1.35 408 >24h 16 331

685bus 4619 471193 1417 1.53 10 >24h 3 342

bcsstk06 8700 180541 559 5.97 406 >24h 1 210

bcsstk07 8700 180541 559 5.85 401 >24h 1 210

can445 4699 200153 608 3.35 321 >24h 1 221

can715 8095 514916 1557 1.89 16 >24h 1 357

dwt503 7033 256275 781 2.40 103 >24h 1 250

dwt592 6288 353313 1069 3.38 84 >24h 2 295

impcold 3809 182318 552 4.59 466 >24h 2 212

nos6 4605 457591 1377 2.37 48 >24h 4 337

sherman 4320 300004 905 3.16 107 >24h 5 272

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Experiments with GRASP

• For each of the 48 instances, we apply G+evPR
and G+PR 30 times

• G+evPR: 25 iterations of inner loop and 4
iterations of the outer loop (total of 100 GRASP
iterations)

• G+PR: 250 iterations
• Size of elite set is 10

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Deviation w.r.t. best or optimum

minimum maximum average

Small grids
G+PR 2.9 % 5.9 % 3.8 %
G+evPR 2.2 % 4.8 % 3.4 %

Large grids
G+PR 2.4 % 3.8 % 3.3 %
G+evPR 2.2 % 3.6 % 3.0 %

Small H-B
G+PR 0.6 % 5.9 % 3.8 %
G+evPR 0.0 % 5.9 % 3.1 %

Large H-B
G+PR 1.0 % 3.9 % 2.7 %

G+evPR 0.0 % 3.4 % 2.1 %

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

CPU time (seconds)

minimum maximum average
Small grids G+PR 2.4 2.7 2.6

G+evPR 4.0 5.4 4.7
Large grids G+PR 1009.0 1081.6 1046.8

G+evPR 2479.3 3281.1 2822.1
Small H-B G+PR 1.0 1.1 1.1

G+evPR 3.9 4.9 4.3
Large H-B G+PR 194.3 200.9 197.6

G+evPR 588.7 790.2 668.5

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Number of best (optimal) solutions

minimum maximum % best
Small grids G+PR 0 30 23%

G+evPR 0 30 25%
Large grids G+PR 0 0 0%

G+evPR 0 0 0%
Small H-B G+PR 0 30 51%

G+evPR 1 30 57%
Large H-B G+PR 0 30 12%

G+evPR 1 30 17%

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Number of best (optimal) solutions

minimum maximum % best
Small grids G+PR 0 30 23%

G+evPR 0 30 25%
Large grids G+PR 0 0 0%

G+evPR 0 0 0%
Small H-B G+PR 0 30 51%

G+evPR 1 30 57%
Large H-B G+PR 0 30 12%

G+evPR 1 30 17%

A minimum of 0 implies at least one instance (of the 12)
for which all 30 runs failed to find the best/opt

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Number of best (optimal) solutions

minimum maximum % best
Small grids G+PR 0 30 23%

G+evPR 0 30 25%
Large grids G+PR 0 0 0%

G+evPR 0 0 0%
Small H-B G+PR 0 30 51%

G+evPR 1 30 57%
Large H-B G+PR 0 30 12%

G+evPR 1 30 17%

A maximum of 30 implies at least one instance (of the 12)
for which all 30 runs found the best/opt

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Number of best (optimal) solutions

minimum maximum % best
Small grids G+PR 0 30 23%

G+evPR 0 30 25%
Large grids G+PR 0 0 0%

G+evPR 0 0 0%
Small H-B G+PR 0 30 51%

G+evPR 1 30 57%
Large H-B G+PR 0 30 12%

G+evPR 1 30 17%

%best = total number of runs that found best/opt / (12 × 30)

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Small Harwell-Boeing instances (solution values)

name IP CPLEX

G+PR G+evPR
max min avg max min avg

bcspwr01 17 17 16 16.13 17 16 16.40

bcspwr02 21 21 20 20.97 21 20 20.93

ibm32 9 9 8 8.30 9 8 8.27

pores1 6 6 6 6 6 6 6

curtis54 10 12 12 12 12 12 12

will57 12 13 12 12.3 13 12 12.43

bcsstk01 6 8 8 8 8 8 8

dwt234 23 51 49 49.5 51 49 49.67

ash85 12 21 19 19.87 22 19 20.30

bcspwr03 22 39 39 39 39 39 39

impcol.b 5 8 7 7.4 8 7 7.63

nos4 10 34 31 32.6 35 31 33.03

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Large Harwell-Boeing instances (solution values)

name IP CPLEX

G+PR G+evPR
max min avg max min avg

494bus 12 227 224 225.43 228 224 225.73

662bus 16 220 219 219.33 220 219 219.57

685bus 3 136 136 136.00 136 136 136.00

bcsstk06 1 32 31 31.2 33 31 31.57

bcsstk07 1 32 31 31.03 33 31 31.57

can445 1 82 75 78.2 85 78 80.67

can715 1 115 112 113.73 127 115 115.97

dwr503 1 53 51 51.97 58 51 53.73

dwr592 2 108 99 103.03 112 102 106.10

impcol.d 2 104 100 102.03 105 101 102.90

nos6 4 326 324 325.4 328 325 326.47

sherman 5 261 260 260.1 261 260 261.1

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

 Concluding remarks
• We described a GRASP with evolutionary path-relinking for the

antibandwidth problem.

• The antibandwidth problem has an important application in
frequency assignment in cellular telephony.

• To complete the experiments, we will derive run time distributions
for the heuristics. Preliminary results indicate that G+PR and
G+evPR have similar run time distributions.

• We will also conclude the CPLEX runs on the mesh instances.
Preliminary results indicate that CPLEX cannot solve optimally
even the smallest of the mesh instances.

• Our current G+evPR implementation can be made more efficient,
resulting in a reduction in the number of path-relinking operations
in the evolutionary path-relinking procedure.

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

Coauthors

Rafael Martí

Abraham Duarte

Ricardo M. A. Silva

 Spring School on Adv. in OR --- May 3, 2011 GRASP for antibandwidth

The End
These slides and a technical report
can be downloaded from my homepage:
http://www.research.att.com/~mgcr

http://www.research.att.com/~mgcr

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Tutorial given at the Spring School in Advances in
Operations Research, Higher School of Economics
Nizhny Novgorod, Russia ✤ May 3, 2011

Hospital layout optimization
using GRASP with
path-relinking

Mauricio G. C. Resende
AT&T Labs Research
Florham Park, New Jersey

mgcr@research.att.com

Joint work with Ricardo M. A. Silva

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Summary

• Modeling hospital layout via quadratic assignment
• Modeling hospital layout via generalized quadratic

assignment
• Generalized quadratic assignment problem (GQAP)
• GRASP with path-relinking for GQAP

– GRASP construction
– Local search
– Path-relinking

• Experimental results

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Hospital layout as a QAP [Elshafei, 1977]

• Assign N facilities (surgery, ICU, recovery, ...) to
N locations in the hospital
– Each facility is assigned to a unique location
– Each location has only one facility assigned to it

• Given:
– Number of patients that move between each pair (i,j)

of facilities (in some time period): P(i,j)
– Distance between each pair of locations: D(k,l)

• Minimize average distance traveled by patients

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Hospital layout as a QAP [Elshafei, 1977]

• assignment array π:

– [π(i) = j ⇔ facility i is assigned to location j]
• P[i,j] × D[π(i), π(j)]

– Total distance traveled by patients between facilities i
and j that are assigned to locations π(i) and π(j),
respectively

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Hospital layout as a QAP [Elshafei, 1977]

Find the assignment vector π from all possible
permutations ∏

N
 of {1, 2, ..., N} that minimizes:

 Σ
i,j
 P[i,j] × D[π(i), π(j)]

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Hospital layout as a QAP [Elshafei, 1977]

Find the assignment vector π from all possible
permutations ∏

N
 of {1, 2, ..., N} that minimizes:

 Σ
i,j
 P[i,j] × D[π(i), π(j)]

QAP's are one of the most computationally
difficult classes of combinatorial optimization
problems: Instances of size N=20 are considered
challenging for exact methods.

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Hospital layout as a QAP [Elshafei, 1977]

Find the assignment vector π from all possible
permutations ∏

N
 of {1, 2, ..., N} that minimizes:

 Σ
i,j
 P[i,j] × D[π(i), π(j)]

Heuristics are optimization methods that find good,
though not provably optimal solutions to combinatorial
optimization problems like the QAP.

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Hospital layout as a QAP [Elshafei, 1977]

Find an assignment vector π from all possible
permutations ∏

N
 of {1, 2, ..., N} that minimizes:

 Σ
i,j
 P[i,j] × D[π(i), π(j)]

Since the 1990s, many effective heuristics have been
developed for the QAP. Examples: simulated annealing,
tabu search, genetic algorithms, ant colony
optimization, and GRASP.

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Hospital layout as a QAP [Elshafei, 1977]

The main drawback of the QAP model is that it
assumes that it does not take into account that
facilities have different dimensions and that they
must be assigned to locations that can
accommodate them.

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Hospital layout as a QAP [Elshafei, 1977]

The main drawback of the QAP model is that it
assumes that it does not take into account that
facilities have different dimensions and that they
must be assigned to locations that can
accommodate them.

The generalized QAP model addresses this.

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Hospital layout as a GQAP

• The GQAP is similar to the QAP except that
– Facilities have an associated area
– Locations have an associated total available area

• Assign facilities to locations minimizing the
average distance traveled by patients such that
– Sum of areas of facilities assigned to a location does

not exceed the total available area of the location
– More than one facility can be assigned to a location.
– No facility can be be assigned to a location.

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Hospital layout as a GQAP

First floor

Second floor

Third floor

Elevator

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Hospital layout as a GQAP

First floor

Location 1
(400 m2)

Location 4
(600 m2)

Location 2
(1050 m2)

Location 3
(450 m2)

Elevator

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Hospital layout as a GQAP

Second floor

Location 5
(250 m2)

Location 8
(875 m2)

Location 6
(1000 m2)

Location 7
(375 m2)

Elevator

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Hospital layout as a GQAP

Third floor

Location 10
(175 m2)

Location 12
(525 m2)

Location 9
(750 m2)

Location 11
(1050 m2)

Elevator

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Hospital layout as a GQAP

• Distances between locations on same floor are
just the Euclidean distances between the centers
of the locations.

• Distances between locations on different floors
are the sums of the Euclidean distance between
the center of the the first location to the elevator
on that floor, the distance traveled by elevator
(penalized), and the Euclidean distance between
the elevator on the other floor and the center of
the second location.

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Hospital layout as a GQAP

First floor

Second floor

Third floor

Elevator

Distance between location on same floor

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Hospital layout as a GQAP

First floor

Second floor

Third floor

Elevator

Distance between location on different floors

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Hospital layout as a GQAP

First floor

Second floor

Third floor

Elevator

Distance between location on different floors

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Hospital layout as a GQAP

First floor

Second floor

Third floor

Elevator

Distance between location on different floors

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Hospital layout as a GQAP

ICU ::: quantity: 3 ::: area 135 m2

Pediatric ICU ::: quantity: 6 ::: area 110 m2

Operating room ::: quantity: 12 ::: area 90 m2

Radiology ::: quantity: 12 ::: area 65 m2

Physician's office ::: quantity: 15 ::: area 45 m2

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Hospital layout as a GQAP

ICU ::: quantity: 3 ::: area 135 m2

Pediatric ICU ::: quantity: 6 ::: area 110 m2

Operating room ::: quantity: 12 ::: area 90 m2

Radiology ::: quantity: 12 ::: area 65 m2

Physician's office ::: quantity: 15 ::: area 45 m2

Inter-facility
traffic is given

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Hospital layout as a GQAP

• Applying GRASP with path-relinking heuristic, the
following assignment was found in 1898.4 secs
on a 2.6 Ghz machine.

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Hospital layout as a GQAP

Third floor

Elevator

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Hospital layout as a GQAP

Third floor

Elevator

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Hospital layout as a GQAP

Second floor

Elevator

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Hospital layout as a GQAP

Second floor

Elevator

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Generalized quadratic
assignment problem

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Generalized quadratic assignment

•The GQAP is NP-hard.
•It is a generalization of the quadratic
assignment problem (QAP).
•Multiple facilities can be assigned to a single
location as long as the capacity of the location
allows.

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

N: set of n facilities M: set of m locations

d
i
 : capacity demanded by facility i∊N Q

j
 : capacity of location j∊M

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

i'

i

A
nxn

=(a
ii'
) : flow between facilities

N: set of n facilities M: set of m locations

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

i'

i

B
mxm

= (b
jj'
) : distance between locationsA

nxn
= (a

ii'
) : flow between facilities

N: set of n facilities M: set of m locations

j'

j

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

N: set of n facilities M: set of m locations

i

C
nxm

=(c
ij
) : cost of assigning facility i∊N to location j∊M

j

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

GQAP seeks a assignment, without violating the capacities of locations,
that minimizes the sum of products of flows and distances in addition
to a linear total cost of assignment.

The generalized quadratic assignment problem

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

cost[Π] = sum(i=1,n) c[i,π[i]] +
 sum(i=1,n) sum (i≠k=1,n) F[i,k]*D[π[i],π[k]]

The generalized quadratic assignment problem

Π

i

k

π[i]

π[k]

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Solution method

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Paper

G.R. Mateus, R.M.A. Silva, and M.G.C. Resende,
“GRASP with path-relinking for the generalized
quadratic assignment problem,” J. of Heuristics,
published online 1 September 2010.

Tech report:

http://www2.research.att.com/~mgcr/doc/gpr-gqap.pdf

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Choose z at random
from elite set (ES),
do path-relinking
between y and z,
and find p

stopping
criterion

Construct greedy
randomized
solution x

Apply local
search starting
from x and find
local min y

GRASP with path-relinking

Replace a solution
in ES by p if p
is of high-quality
& sufficiently
different from
solutions in ES

start

end

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Components

• Construction of greedy randomized solution
• Local search
• Path-relinking

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

GRASP construction

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

N M

Suppose a number of assignments have already been made

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

FF

CF

F

N M

N = F ∪ CF, where CF is the set of assigned facilities and
F the set of facilities not yet assigned to some location

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

FF

CF

F

N M

CL

L

M = L ∪ CL, where CL is the set of previously chosen locations and
L the set of unselected locations.

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

FF

CF

F

N M

CL

L

With probability 1− (|T|/|F|), randomly select a new location l from L, where the set T
consists of all unassigned facilities with demands less than or equal to the maximum available
capacity of locations in CL and move location l to CL

T

Procedure to select a new location from set L

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

FF

CF

F

N M

CL

L

Favor locations in L that have high available capacity and that are close to all locations in CL

T

Procedure to select a new location from set L

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

FF

CF

F

N M

CL

L

Randomly select a facility f ∈ T favoring facilities that have high
demand and high flows to other facilities.

T

Facility selection procedure

f

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

FF

CF

F

N M

CL

L

1. Let set R to be all locations in CL having slack greater than or equal to
demand of facility f;

T

Procedure to select a location from CL (step 1)

f

R

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

FF

CF

F

N M

CL

L

2. Randomly select a location l ∈ R favoring those having high available
capacity and those close to high-capacity locations in CL;

T

Procedure to select a location from CL (step 2)

f
R

l

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

FF

CF

F

N M

CL

L

Assign facility f to location l

T

Assignment procedure

f

l

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

FF

CF

F

N M

CL

L

Update sets F, CF, and slack of location l

Assignment procedure

f

l

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Considerations about the construction
procedure

• The procedure is not guaranteed to produce a
feasible solution.
• To address this difficulty, the construction
procedure is repeated a maximum number of times or
until all facilities are assigned (i.e. until F=∅).

• At start of construction, a location l from L is
selected with probability proportional to its capacity.
Location l is placed in CL.

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Local search

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Local search
1-move and 2-move neighborhoods from solution p are
used in our local search.
1-move: changing one facility-to-location assignment in p

i i
j j

k

N N MM

(i,j)

(i,k)

solution p 1-move neighbor of p

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Local search
1-move and 2-move neighborhoods from solution p are
used in our local search.
1-move: changing one facility-to-location assignment in p
2-move: changing two facility-to-location assignment in p.

N N MM

i j ji

k k
t zt

(i,j) (i,z)

(t,k) (t,j)

solution p 2-move neighbor of p

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

N M

Assignment representation

assignment = solution

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

solution p

1-move neighborhood

2-move neighborhood Neighborhood
of solution p

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Traditional local search approaches

Best improving approach:
Evaluate all 1-move and 2-move neighborhood solutions and select the best
improving solution

First improving approach:
1: From solution p, to evaluate its 1-move neighbors until the first
improving solution q is found.
2: If q does not exist, continue search in the 2-move neighborhood.
3: If q does not exist in the 2-move neighborhood, stop. Otherwise, assign
 p = q and go to step 1.

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Approximate local search

Neighborhoods can be very large for best
improvement

Local search can take very long

Tradeoff between best & first improvement: sample
the neighborhood of solution p.

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

solution p

1-move neighborhood

2-move neighborhood Approximate
Local Search

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

p

Approximate Local Search

1. Sample k improving solutions
from 1-move and 2-move
neighborhood of p and place them
in an elite set E.

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

2. Select the best solution q
from elite set E.

q

p

Approximate Local Search

1. Sample k improving solutions
from 1-move and 2-move
neighborhood of p and place them
in an elite set E.

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

p = q

3. Update p = q

Approximate Local Search

1. Sample k improving solutions
from 1-move and 2-move
neighborhood of p and place them
in an elite set E.

2. Select the best solution q
from elite set E.

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

The search is repeated from
current solution p until

Previous
solution p

current
solution p

Approximate
Local Search

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

...until no improvement in
the neighborhoods exists

approximate local
minimum

Approximate
Local Search

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Path-relinking

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Path-relinking (Glover, 1996)

Exploration of trajectories that connect high quality
(elite) solutions:

initial
solution

guiding
solution

path in the neighborhood of solutions

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Path-relinking
Path is generated by selecting moves that introduce
in the initial solution attributes of the guiding
solution.
At each step, all moves that incorporate attributes
of the guiding solution are evaluated and the best
move is selected:

initial
solution

guiding
solution

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Path is generated by selecting moves that introduce
in the initial solution attributes of the guiding
solution.
At each step, all moves that incorporate attributes of
the guiding solution are evaluated and the best
move is selected:

initial
solution

guiding
solution

Path-relinking

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Path is generated by selecting moves that introduce
in the initial solution attributes of the guiding
solution.
At each step, all moves that incorporate attributes
of the guiding solution are evaluated and the best
move is selected:

initial
solution

guiding
solution

Path-relinking

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Path is generated by selecting moves that introduce
in the initial solution attributes of the guiding
solution.
At each step, all moves that incorporate attributes of
the guiding solution are evaluated and the best
move is selected:

initial
solution

guiding
solution

Path-relinking

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Path is generated by selecting moves that introduce
in the initial solution attributes of the guiding
solution.
At each step, all moves that incorporate attributes of
the guiding solution are evaluated and the best
move is selected:

initial
solution

guiding
solution

Path-relinking

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Path is generated by selecting moves that introduce
in the initial solution attributes of the guiding
solution.
At each step, all moves that incorporate attributes of
the guiding solution are evaluated and the best
move is selected:

initial
solution

guiding
solution

Path-relinking

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Path is generated by selecting moves that introduce
in the initial solution attributes of the guiding
solution.
At each step, all moves that incorporate attributes of
the guiding solution are evaluated and the best
move is selected:

initial
solution

guiding
solution

Path-relinking

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Infeasibility in path-relinking for GQAP

N M

initial
solution

guiding
solution(i,j)
(i,k)

i j

k

solution A

solution A
feasible

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Infeasibility in path relinking for GQAP

N M

initial
solution

guiding
solution(i,j)
(i,k)

i j

k

(i,k)

solution B
infeasible

solution B

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Repair procedure

N MN M

initial
solution

guiding
solution(i,j)

(i,k)
solution B

Non-fixed

Fixed

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Repair procedure

N MN M

initial
solution

guiding
solution(i,j)

(i,k)
solution B

Non-fixed

Fixed
permanently assigned

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Repair procedure

N M

1. Set FT ⊆ non-Fixed: all facilities in solution B assigned to location k

kFT

solution B

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Repair procedure

N M

1. Set FT ⊆ non-Fixed: all facilities in solution B assigned to location k

kFT

solution B

2. Set T ⊆ FT: all facilities in B with demand ≤ maximum slack in M

maximum
slack in M

T

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Repair procedure

N M

1. Set FT ⊆ non-Fixed: all facilities in solution B assigned to location k

kFT

solution B

2. Set T ⊆ FT: all facilities in B with demand ≤ maximum slack in M

T

3. Randomly select a facility w ∈ T favoring those with higher demand

w

k

maximum
slack in Mk

maximum
slack in M

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

N M

1. Set FT ⊆ non-Fixed: all facilities in solution B assigned to location k

kFT

solution B

2. Set T ⊆ FT: all facilities in B with demand ≤ maximum slack in M

T

3. Randomly select a facility w ∈ T favoring those with higher demand

w

4. Set R ⊆ M: all locations having slack ≥ demand of facility w

R

kkk

maximum
slack in M

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

N M

kFT

solution B

T
w

R

5. Randomly select a location v ∈ R (equal probability)

V

k

maximum
slack in M

1. Set FT ⊆ non-Fixed: all facilities in solution B assigned to location k
2. Set T ⊆ FT: all facilities in B with demand ≤ maximum slack in M
3. Randomly select a facility w ∈ T favoring those with higher demand
4. Set R ⊆ M: all locations having slack ≥ demand of facility w

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

N M

kFT

T
w

RV

6. Assign facility w to location v

w

solution B
feasible

1. Set FT ⊆ non-Fixed: all facilities in solution B assigned to location k
2. Set T ⊆ FT: all facilities in B with demand ≤ maximum slack in M
3. Randomly select a facility w ∈ T favoring those with higher demand
4. Set R ⊆ M: all locations having slack ≥ demand of facility w
5. Randomly select a location v ∈ R (equal probability)

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

N M

k

solution B'

initial
solution

guiding
solution

solution B'repair
procedure

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

guiding
solution

...

... ...
initial
solution

repair procedure

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

guiding
solution

...

... ...
initial
solution

repair procedure succeeds

guiding
solution

...

... ...
initial
solution

or repair procedure fails

X

Possible outcomes

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

guiding
solution

...

... ...
initial
solution

repair procedure succeeds

guiding
solution

...

... ...
initial
solution

or repair procedure fails

X

Possible outcomes

 Repeat the repair procedure on solution B a maximum number of
times. If a feasible solution is not found, discard B and move to
solution C

guiding
solution

... ...
initial
solution

X
solution C

A

B

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

guiding
solution

...

... ...
initial
solution

repair procedure

initial
solution

guiding
solution

So, instead of a path with feasible solution in one single step ...

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

guiding
solution

...

... ...
initial
solution

repair procedure

initial
solution

guiding
solution

initial
solution

guiding
solution

We have now a path with eventual intermediate repair hops

repair hops

So, instead of a path with feasible solution in one single step ...

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Experimental results

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Test environment

Dell PE1950 computer with a dual quad core 2.66
GHz Intel Xeon processors an 16 GB of Memory
Red Hat Linux version 5.1.19.6
Java language, Javac compiler ver.1.6.0-05
Random-number generator: Mersenne Twister
algorithm (Matsumoto and Nishimura, 1998) from
the COLT library

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Test environment

Instances:
From Elloumi et al. (2003), Lee and Ma (2005), and Cordeau et al. (2006):
10 to 50 facilities and 3 to 20 locations.

Experimental Design:
For each instance we made 200 independent runs of GRASP-PR. Each run
stopped when a solution value as good as the best in the literature was
found.

Statistics:
Minimum, maximum, average times, and standard deviation.
Time for 95% of the runs to find solutions as good as the literature.

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Parameter tuning for GRASP-PR

Instance: 50-10-95 (Cordeau et al., 2006).
Strategies tested:
Path-relinking direction: forward (f) or backward (b);
Criteria to select a facility from set T in the repairing
procedure: randomly (r) or greedily (g)
Criteria to select a solution from elite set in the
approximate local search: randomly (r) or greedily (g).

Combinations: 23 = 8

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

We chose to use f-r-g in
the remaining experiments:

 > Forward PR

 > Random selection of facility
 in set T during repair in PR

 > Select best solution from
 elite set in approx. local
 search

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Comparison with other algorithms

Elloumi et al. (2003)
Lee and Ma (2005)
Cordieu et al. (2006)
Hahn et al. (2007)
Pessoa et al. (2008)

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Comparison with Elloumi et al (2003):

Method(s): Three linearization methods (L1, L2, and L3), three
semidefinite programming formulations (S0, S1, and S2) and a
Lagrangian decomposition (D0).

Instances (Elloumi (1991) and Roupin (2004)): For each one of eight
types [four configurations (A, B, C, and D) with two classes of
instances], five instances with 10 facilities and three locations, and
five instances with 20 facilities and five locations. Total of 80
instances

Comparison: GRASP-PR achieved the target values on all instances,
with an AVERAGE performance improvement varying between a
factor of 7.3 and over 5000 in relation to the BEST average time
of the methods of Elloumi et al (2003)

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Comparison with Lee and Ma (2005):

Method(s): Three linearization methods (F-Y, K-B, and L3), based on
the work of Frieze and Yadegar (1983), Kaufman and Broeckx (1978),
and Padberg and Rijal (1996) and a branch and bound method (B&B)
based on the work of Burkard (1991).

Instances: Suite of test problems with 10 to 16 facilities and 3 to 8
locations. Total of 25 instances.

Comparison: GRASP-PR found the target value on all 200 runs for
each of the instances, with an AVERAGE performance improvement
varying between a factor of 11.2 and 1004.6 in relation to the
BEST average time of the methods of Lee and Ma (2005)

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Comparison with Cordeau et al. (2006):

Method: memetic algorithm.

Instances: problems with 20 to 50 facilities and 6 to 20 locations.
Total = 21 instances

Comparison: GRASP-PR found the target value on all 200 runs for
each of the instances, with an AVERAGE performance improvement
varying between a factor of 1.5 and 59.2 in relation to the BEST
average time of the memetic algorithm, except for instances 30-20-
95, 35-15-95, and 50-10-75.
However, for the last two instances the FASTEST GRASP-PR running times

were FAR LESS than those of the memetic algorithm.

For instance 30-20-95, the GRASP-PR heuristic found the best solution found
by the memetic algorithm but in 44 hours and 47 minutes.

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Comparison with Hahn et al. (2007):

Method(s): Level-1 reformulation-linearization technique (RLT) dual
ascent procedure in a branch-and-bound scheme.

Instances: Four instances from Elloumi et al. (2003), three instances
from Lee and Ma (2005), and one instance from Cordeau et al.
(2006). Total of eight instances.

Comparison: GRASP-PR found the target value on all 200 runs for
each of the instances, with an AVERAGE performance improvement
varying between a factor of 8.8 and over 69,000 w.r.t. the BEST
average time of the method of Hahn et al. (2007).

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Comparison with Pessoa et al. (2008):

Method: Combination of Hahn et al. (2007) dual ascent procedure
with the general-purpose volume algorithm of Barahona and Anbil
(2000).

Instances: Four instances from Elloumi et al. (2003), three instances
from Lee and Ma (2005), and 12 instances from Cordeau et al.
(2006). Total of 24 instances.

Comparison: GRASP-PR found the target value on all 200 runs for
each of the instances, with an AVERAGE performance improvement
varying between a factor of 132.7 and over 100,000 w.r.t. the
BEST average time of the method of Pessoa et al. (2008), except
for instance 30-20-95.

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Concluding remarks

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Concluding remarks
Reviewed hospital layout optimization via QAP
Introduced hospital layout optimization via generalized QAP

Described several heuristics that can be applied to solve
this layout problem:
> Greedy

> Randomized greedy

> Local search

> Path-relinking

> GRASP

> GRASP with path-relinking

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

Coauthor

Ricardo M.A. Silva
Fed. U. of Lavras,
Brazil. Visiting scholar
at AT&T Research (2008-2010)

 Spring School on Adv. in OR --- March 2010 Hospital layout optimization

The End
Slides and full paper can be downloaded from
http://mauricioresende.com

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

Tutorial given at the Spring School in Advances in
Operations Research, Higher School of Economics
Nizhny Novgorod, Russia ✤ May 3, 2011

GRASP for the
regenerator location
problem

Mauricio G. C. Resende
AT&T Labs Research
Florham Park, New Jersey
mgcr@research.att.com

Joint work with A. Duarte, R. Martí,
and R.M.A. Silva

mailto:mgcr@research.att.com

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

Summary

• Regenerator location problem (RLP)
• Solution construction procedures
• Local improvement procedure
• GRASP for the RLP
• Experimental results
• Concluding remarks

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

Regenerator location
problem

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

Reference

A. Duarte, R. Martí, M.G.C.R., and R.M.A. Silva,
“Randomized heuristics for the regenerator location
problem,” AT&T Labs Research Technical Report, Florham
Park, NJ, July 13, 2010.

Tech report:

http://www2.research.att.com/~mgcr/doc/gpr-regenloc.pdf

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

Signal regeneration

• Telecommunication systems use optical signals to
transmit information

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

Signal regeneration

• Telecommunication systems use optical signals to
transmit information

• Strength of signal deteriorates and loses power
as it gets farther from source

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

Signal regeneration

• Telecommunication systems use optical signals to
transmit information

• Strength of signal deteriorates and loses power
as it gets farther from source

• Signal must be regenerated periodically to reach
destination

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

Signal regeneration

• Telecommunication systems use optical signals to
transmit information

• Strength of signal deteriorates and loses power
as it gets farther from source

• Signal must be regenerated periodically to reach
destination: Regenerators

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

Signal regeneration

• Telecommunication systems use optical signals to
transmit information

• Strength of signal deteriorates and loses power
as it gets farther from source

• Signal must be regenerated periodically to reach
destination: Regenerators

• Regenerators are expensive: minimize the
number of regenerators in the network

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

Regenerator location problem (RLP)

• Given:
– Graph G=(V,E), where V are vertices, E are edges,

where edge (i,j) has a real-valued length d(i,j) > 0
– D > 0 is the maximum length that a signal can travel

before it must be regenerated

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

Regenerator location problem (RLP)

• Find:
– Paths that connect all pairs of nodes in V×V
– Set of nodes where it is necessary to locate single

regenerators

• Minimize number of deployed regenerators

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

Regenerator location problem (RLP)

• Path between {s,t} ∈ VV
– { (s,v[1]), (v[1],v[2]), ...,(v[k],t) } is formed by one or

more path segments

• Path segment is sequence of consecutive edges
– { (v[i],v[i+1]), (v[i+1],v[i+2]), ...,(v[q-1],v[q]) } in the

path satisfying the condition
 d(v[i],v[i+1]) + d(v[i+1],v[i+2])+⋯+ d(v[q-1],v[q]) ≤ D

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

Regenerator location problem (RLP)

• Path between {s,t} ∈ VV
– { (s,v[1]), (v[1],v[2]), ...,(v[k],t) } is formed by one or

more path segments

• Path segment is sequence of consecutive edges
– { (v[i],v[i+1]), (v[i+1],v[i+2]), ...,(v[q-1],v[q]) } in the

path satisfying the condition
 d(v[i],v[i+1]) + d(v[i+1],v[i+2])+⋯+ d(v[q-1],v[q]) ≤ D

Path segment must not be longer than D

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

Regenerator location problem (RLP)

• If total length of path is no more than D, then
path consists of a single path segment

• Otherwise, it consists of two or more segments
– Regenerators will be located in the internal nodes of

the path

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

Regenerator location problem (RLP)

• If total length of path is no more than D, then
path consists of a single path segment

• Otherwise, it consists of one or more segments
– Regenerators will be located in the internal nodes of

the path

r

r

r

ts
dD

dD

dD dD

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

Regenerator location problem (RLP)

1

2 3

4

5

6

7

60

70

60

90

40
40

150

90

90
70

D = 100

7-node graph with D = 100

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

Regenerator location problem (RLP)

1

2 3

4

5

6

7

60

70

60

90

40
40

150

90

90
70

D = 100

(1) Note that:
– D(1,5) = 150 > 100 = D
– Edge (1,5) cannot be part of

any path

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

Regenerator location problem (RLP)

1

2 3

4

5

6

7

60

70

60

90

40
40

150

90

90
70

D = 100

(2) Note that:
– Shortest path from 1 to 3 is

 { (1,2), (2,3) } with total
length
 60 + 70 = 130 > 100 = D

– Must be decomposed into two
path segments { (1,2) } and
{ (2,3) } with a regenerator in
node 2

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

Regenerator location problem (RLP)

1

2 3

4

5

6

7

60

70

60

90

40
40

150

90

90
70

D = 100

(3) Note that:
– Shortest feasible path from 1

to 5 is { (1,2), (2,3), (3,5) }
with total length
60 + 70 + 90 = 220 >
 100 = D

– Must be decomposed into
three path segments { (1,2) },
{ (2,3) }, and { (3,5) } with
regenerators in nodes 2
and 3

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

Regenerator location problem (RLP)

1

2 3

4

5

6

7

60

70

60

90

40
40

150

90

90
70

D = 100

(4) Note that:
– Shortest feasible path from 5

to 7 is { (5,6), (6,7) } with total
length 40 + 40 = 80 ≤
 100 = D

– No regenerator is needed to
connect nodes 5 and 7

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

Regenerator location problem (RLP)

1

2 3

4

5

6

7

60

70

60

90

40
40

150

90

90
70

D = 100

(5) Note that:
– Placing regenerators in

nodes 2 and 7 allows for
communication between all
pairs of nodes in the graph

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

Related work
• Yetginer & Karasan (2003): regenerator placement in

context of traffic engineering with restoration

• Gouveia et al. (2003): network design problem that forbids
path segments between components that are longer than a
maximum length

• Chen & Raghavan (2007): introduce RLP & greedy
heuristic

• Chen et al. (2010): introduce branch & cut scheme and new
heuristics; prove NP-hardness

• Flammini et al. (2009): prove NP-hardness

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

Communication graph (Chen et al., 2010)

1

2 3

4

5

6

7

60

70

60

90

40
40

150

90

90
70

G = (V,E)
D = 100

• Given weighted graph G
– Delete all edges having

length greater than D
– For all non-adjacent nodes,

add an edge between them
of length equal to the
corresponding shortest
path in G if it is no longer
than D

– Disregard all length info

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

Communication graph (Chen et al., 2010)

1

2 3

4

5

6

7

60

70

60

90

40
40

150

90

90
70

G = (V,E)
D = 100

1

2 3

4

5

6

7

M = (V,E')

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

Communication graph (Chen et al., 2010)

1

2 3

4

5

6

7

M = (V,E')

• If M is complete, then
there is no need for
regenerators

• If M is not connected,
then the problem is
infeasible

• Otherwise, one or
more regenerators are
needed

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

Greedy algorithm (Chen et al., 2010)

1

2 3

4

5

6

7

M = (V,E')

• Works on communication graph M

• Input: set of nodes not directly
connected (NDC) in M and builds a set
R of regenerator nodes

• At each step the procedure determines a
node u* whose inclusion in R enables
the connection of the largest number
g(u*) of yet unconnected pairs X(u*)
in M

• Node u* is added to R and M is updated

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

Greedy algorithm (Chen et al., 2010)

1

2 3

4

5

6

7

M = (V,E')

u X(u) g(u)

1 ∅ 0
2 { (1,3),(1,4),(1,7),(3,7),

(4,7) }
5

3 { (4,5),(2,5) } 2
4 { (2,6),(3,6) } 2
5 { (3,7),(3,6) } 2
6 { (4,7),(4,5) } 2
7 { (2,6),(2,5) } 2

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

Greedy algorithm (Chen et al., 2010)

1

2 3

4

5

6

7

M = (V,E')

u X(u) g(u)

1 ∅ 0
2 { (1,3),(1,4),(1,7),(3,7),

(4.7) }
5

3 { (4,5),(2,5) } 2
4 { (2,6),(3,6) } 2
5 { (3,7),(3,6) } 2
6 { (4,7),(4,5) } 2
7 { (2,6),(2,5) } 2

Add regenerator to node 2

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

Greedy algorithm (Chen et al., 2010)

1

2 3

4

5

6

7

M = (V,E')

u X(u) g(u)

1 ∅ 0
2 { (1,3),(1,4),(1,7),(3,7),

(4.7) }
5

3 { (4,5),(2,5) } 2
4 { (2,6),(3,6) } 2
5 { (3,7),(3,6) } 2
6 { (4,7),(4,5) } 2
7 { (2,6),(2,5) } 2

Update M to account for regenerator
in node 2

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

Greedy algorithm (Chen et al., 2010)

1

2 3

4

5

6

7

M = (V,E')

u X(u) g(u)

1 ∅ 0
- - -
3 { (1,5),(2,5),(4,5) } 3
4 { (1,6),(2,6),(3,6) } 3
5 { (3,6) } 1
6 { (4,5) } 1
7 { (1,5),(1,6),(2,5),(2,6),(3,6),(4,5) } 6

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

Greedy algorithm (Chen et al., 2010)

1

2 3

4

5

6

7

M = (V,E')

u X(u) g(u)

1 ∅ 0
- - -
3 { (1,5),(2,5),(4,5) } 3
4 { (1,6),(2,6),(3,6) } 3
5 { (3,6) } 1
6 { (4,5) } 1
7 { (1,5),(1,6),(2,5),(2,6),(3,6),(4,5) } 6

Add regenerator to node 7

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

Greedy algorithm (Chen et al., 2010)

1

2 3

4

5

6

7

M = (V,E')
Update M to account for regenerator
in node 7

u X(u) g(u)

1 ∅ 0
- - -
3 { (1,5),(2,5),(4,5) } 3
4 { (1,6),(2,6),(3,6) } 3
5 { (3,6) } 1
6 { (4,5) } 1
7 { (1,5),(1,6),(2,5),(2,6),(3,6),(4,5) } 6

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

Greedy algorithm (Chen et al., 2010)

1

2 3

4

5

6

7

M = (V,E')
Since M is complete, all pairs can
communicate and solution R = {2,7}

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

H1 heuristic (Chen et al., 2010)

Aim of H1 is find a spanning
tree in M having the maximum
number of leaves, thus
minimizing the number of
internal nodes.

Regenerators are assigned to
the internal nodes.

1

2 3

4

5

6

7

Communication graph M

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

H1 heuristic (Chen et al., 2010)

u* = argmin { deg(u): u ∈ V }

S ← { u* } (spanning tree)

S ← V \ { u* }

R ← ∅ (regenerators)
Call recursive function
 Tree(u*,S,S,R)

1

2 3

4

5

6

7

Communication graph M

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

H1 heuristic (Chen et al., 2010)

u* = argmin { deg(u): u ∈ V }

S ← { u* } (spanning tree)

S ← V \ { u* }

R ← ∅ (regenerators)
Call recursive function
 Tree(u*,S,S,R)

1

2 3

4

5

6

7

Communication graph M

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

H1 heuristic (Chen et al., 2010)

Tree(u,S,S,R)

U(u) ← N(u) ∩ S

if (|S|> 0) then

 S ← S ∪ U(u)

 S ← V \ S

end if

while U(u) ≠ 0 do

 Compute deg
S
(v) for all v ∈ U(u)

 u* ← argmax { deg
S
(v): v ∈ U(u) }

 if deg
S
(u*) > 0 then

 R ← R ∪ { u* }

 Tree(u*,S,S,R)

 end if

 U(u) ← N(u) \ { u* }

end while

return

1

2 3

4

5

6

7

u = 1; S = {1}; S = {2,3,4,5,6,7}
U(1) = { 2 }
S = {1,2}; S = {3,4,5,6,7}
deg

S
(2) = 3

u* = 2
R ← R ∪ { 2 } = { 2 }

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

H1 heuristic (Chen et al., 2010)

Tree(u,S,S,R)

U(u) ← N(u) ∩ S

if (|S|> 0) then

 S ← S ∪ U(u)

 S ← V \ S

end if

while U(u) ≠ 0 do

 Compute deg
S
(v) for all v ∈ U(u)

 u* ← argmax { deg
S
(v): v ∈ U(u) }

 if deg
S
(u*) > 0 then

 R ← R ∪ { u* }

 Tree(u*,S,S,R)

 end if

 U(u) ← N(u) \ { u* }

end while

return

1

2 3

4

5

6

7

u = 1; S = {1}; S = {2,3,4,5,6,7}
U(1) = { 2 }
S = {1,2}; S = {3,4,5,6,7}
deg

S
(2) = 3

u* = 2
R ← R ∪ { 2 } = { 2 }

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

H1 heuristic (Chen et al., 2010)

Tree(u,S,S,R)

U(u) ← N(u) ∩ S

if (|S|> 0) then

 S ← S ∪ U(u)

 S ← V \ S

end if

while U(u) ≠ 0 do

 Compute deg
S
(v) for all v ∈ U(u)

 u* ← argmax { deg
S
(v): v ∈ U(u) }

 if deg
S
(u*) > 0 then

 R ← R ∪ { u* }

 Tree(u*,S,S,R)

 end if

 U(u) ← N(u) \ { u* }

end while

return

1

2 3

4

5

6

7

u = 2; S = {1,2}; S = {3,4,5,6,7}
U(2) = { 3,4,7 }
S = {1,2,3,4,7}; S = {5,6}
deg

S
(3) = 1

deg
S
(4) = 1

deg
S
(7) = 2

u* = 7
R ← R ∪ { 7 } = { 2,7 }

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

H1 heuristic (Chen et al., 2010)

Tree(u,S,S,R)

U(u) ← N(u) ∩ S

if (|S|> 0) then

 S ← S ∪ U(u)

 S ← V \ S

end if

while U(u) ≠ 0 do

 Compute deg
S
(v) for all v ∈ U(u)

 u* ← argmax { deg
S
(v): v ∈ U(u) }

 if deg
S
(u*) > 0 then

 R ← R ∪ { u* }

 Tree(u*,S,S,R)

 end if

 U(u) ← N(u) \ { u* }

end while

return

1

2 3

4

5

6

7

u = 2; S = {1,2}; S = {3,4,5,6,7}
U(2) = { 3,4,7 }
S = {1,2,3,4,7}; S = {5,6}
deg

S
(3) = 1

deg
S
(4) = 1

deg
S
(7) = 2

u* = 7
R ← R ∪ { 7 } = { 2,7 }

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

H1 heuristic (Chen et al., 2010)

Tree(u,S,S,R)

U(u) ← N(u) ∩ S

if (|S|>1) then

 S ← S ∪ U(u)

 S ← V \ S

end if

while U(u) ≠ 0 do

 Compute deg
S
(v) for all v ∈ U(u)

 u* ← argmax { deg
S
(v): v ∈ U(u) }

 if deg
S
(u*) > 0 then

 R ← R ∪ { u* }

 Tree(u*,S,S,R)

 end if

 U(u) ← N(u) \ { u* }

end while

return

1

2 3

4

5

6

7

u = 7; S = {1,2,3,4,7}; S = {5,6}
U(7) = { 5,6 }
S = {1,2,3,4,5,6,7}; S = { }

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

H1 heuristic (Chen et al., 2010)

Tree(u,S,S,R)

U(u) ← N(u) ∩ S

if (|S|>1) then

 S ← S ∪ U(u)

 S ← V \ S

end if

while U(u) ≠ 0 do

 Compute deg
S
(v) for all v ∈ U(u)

 u* ← argmax { deg
S
(v): v ∈ U(u) }

 if deg
S
(u*) > 0 then

 R ← R ∪ { u* }

 Tree(u*,S,S,R)

 end if

 U(u) ← N(u) \ { u* }

end while

return

1

2 3

4

5

6

7

u = 7; S = {1,2,3,4,7}; S = {5,6}
U(7) = { 5,6 }
S = {1,2,3,4,5,6,7}; S = { }

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

H2 heuristic (Chen et al., 2010)

 1

2 3

4

5

6

7

Communication graph M

while M is not complete do

 Find lowest degree node u* in M
 Assign regenerator to neighbor v* of u*
 having max degree
 Update M adding links that can now
 communicate because of v*

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

H2 heuristic (Chen et al., 2010)

 1

2 3

4

5

6

7

Min degree node is {1}

while M is not complete do

 Find lowest degree node u* in M
 Assign regenerator to neighbor v* of u*
 having max degree
 Update M adding links that can now
 communicate because of v*

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

H2 heuristic (Chen et al., 2010)

 1

2 3

4

5

6

7

Min degree node is {1}
Max degree neighbor of {1} is {2}
Add regenerator to {2}

while M is not complete do

 Find lowest degree node u* in M
 Assign regenerator to neighbor v* of u*
 having max degree
 Update M adding links that can now
 communicate because of v*

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

H2 heuristic (Chen et al., 2010)

 1

2 3

4

5

6

7

Min degree node is {1}
Max degree neighbor of {1} is {2}
Add regenerator to {2}

while M is not complete do

 Find lowest degree node u* in M
 Assign regenerator to neighbor v* of u*
 having max degree
 Update M adding links that can now
 communicate because of v*

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

H2 heuristic (Chen et al., 2010)

 1

2 3

4

5

6

7

Min degree node is {1}
Max degree neighbor of {1} is {2}
Add regenerator to {2}
Update M: add { (1,3), (1,4), (1,7),
(3,7), (4,7) }

while M is not complete do

 Find lowest degree node u* in M
 Assign regenerator to neighbor v* of u*
 having max degree
 Update M adding links that can now
 communicate because of v*

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

H2 heuristic (Chen et al., 2010)

 1

2 3

4

5

6

7

Min degree node is {5}
Max degree neighbors of {5} are {3,7}

while M is not complete do

 Find lowest degree node u* in M
 Assign regenerator to neighbor v* of u*
 having max degree
 Update M adding links that can now
 communicate because of v*

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

H2 heuristic (Chen et al., 2010)

 1

2 3

4

5

6

7

Min degree node is {5} or {6}. Pick {5}.
Max degree neighbors of {5} is {7}.
Add regenerator to {7}

while M is not complete do

 Find lowest degree node u* in M
 Assign regenerator to neighbor v* of u*
 having max degree
 Update M adding links that can now
 communicate because of v*

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

H2 heuristic (Chen et al., 2010)

 1

2 3

4

5

6

7

Min degree node is {5}
Max degree neighbors of {5} are {3,7}
Add regenerator to {7}
Update M: add { (1,5), (1,6), (2,5),
(2,6), (3,6), (4,5) }

while M is not complete do

 Find lowest degree node u* in M
 Assign regenerator to neighbor v* of u*
 having max degree
 Update M adding links that can now
 communicate because of v*

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

H2 heuristic (Chen et al., 2010)

 1

2 3

4

5

6

7

M is complete!

R = { 2, 7 }

while M is not complete do

 Find lowest degree node u* in M
 Assign regenerator to neighbor v* of u*
 having max degree
 Update M adding links that can now
 communicate because of v*

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

GRASP heuristics

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

GREEDY, H1, and H2 are greedy
heuristics.

• In GREEDY: pick the node u* which maximizes
the number of unconnected pairs that become
connected if a regenerator is added at u*.

• In H1: pick the node u* that maximizes deg
S
(v)

for v ∈ U(u).
• In H2: pick the maximum degree node u*

adjacent to the node v* of minimum degree in M.

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

GRASP heuristics (Feo & M.G.C.R., 1989, 1995)

• GRASP constructs a solution, one regenerator at a time.

• Randomized greedy: instead of making the greedy choice,
randomized greedy builds a restricted candidate set (RCL) of
semi-greedy elements and selects one at random to add to
the solution. A real-valued parameter ∈ [0,1] controls the
amount of randomness and greediness of the semi-greedy
method. This is repeated until a solution is on hand.

• Local search: after solution is constructed, local
improvement attempts to decrease the number of
regenerators.

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

GRASP heuristics (Feo & M.G.C.R., 1989, 1995)

• We propose randomized versions of GREEDY, H1, and
H2, which we call, respectively, CG, C1, and C2.

• Local search (Chen et al., 2010) attempts to remove
regenerators { i,j } from R and replace them with one not
currently in R.

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

Local search

1

2 3

4

5

6

7

M = (V,E')

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

Local search

1

2 3

4

5

6

7

M = (V,E')

Attempt to remove {3,5}

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

Local search

1

2 3

4

5

6

7

M = (V,E')

Attempt to remove {3,5}

R' = R \ { 3, 5 } = { 2 }

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

Local search

1

2 3

4

5

6

7

M = (V,E')

Attempt to remove {3,5}

R' = R \ { 3, 5 } = { 2 }

C = { 1, 3, 4, 5, 6, 7 } candidates

Analyze non-regen neighbors of { 3, 5 }:
 u = { 3, 4, 5, 6, 7} to be added to R'

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

Local search

1

2 3

4

5

6

7

M = (V,E')

Attempt to remove {3,5}

R' = R \ { 3, 5 } = { 2 }

C = { 1, 3, 4, 5, 6, 7 } candidates

Analyze non-regen neighbors of { 3, 5 }:
 u = { 3, 4, 5, 6, 7} to be added to R'

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

Local search

1

2 3

4

5

6

7

M = (V,E')

Attempt to remove {3,5}

R' = R \ { 3, 5 } = { 2 }

C = { 1, 3, 4, 5, 6, 7 } candidates

Analyze non-regen neighbors of { 3, 5 }:
 u = { 3, 4, 5, 6, 7} to be added to R'

For each u: if N(u) ∩ R' = ∅ then

 C = C ∩ N(u)

 endif

N(3) ∩ R' = { 2 }

N(4) ∩ R' = { 2 }

N(5) ∩ R' = ∅: C = C ∩ {3,6,7} = {3,6,7}

N(6) ∩ R' = ∅: C = C ∩ {4,5,7} = {7}

N(7) ∩ R' = { 2 }

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

Local search

1

2 3

4

5

6

7

M = (V,E')

Attempt to remove {3,5}

R' = R \ { 3, 5 } = { 2 }

C = { 1, 3, 4, 5, 6, 7 } candidates

Analyze non-regen neighbors of { 3, 5 }:
 u = { 3, 4, 5, 6, 7} to be added to R'

For each u: if N(u) ∩ R' = ∅ then

 C = C ∩ N(u)

 endif

C = {7}

Add { 7 } to R' = { 2, 7 }

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

Experimental results

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

Design
• We compare effectiveness & efficiency of the procedures

proposed with those in Chen et al. (2010)

• Use 280 instances shared with us by Chen et al. (2010), with 40,
60, 80, and 100 nodes:
– 200 instances are M-graphs, generated directly
– 80 are instances in which edges are generated randomly and

from which the corresponding M-graphs are computed

• All methods implemented in Java SE 6

• All experiments done on a 3 GHz Pentium 4 computer with 2 Gb
of memory

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

Design
• In each experiment we compute

– The overall best solution (BestValue) found for each instance
by all executions of the methods considered

– The relative percentage deviation from BestValue for each
method on each instance

– The average deviation (Dev) across all instances in each
experiment

– For each method, the number of instances (#Best) in which
the BestValue solution was obtained

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

Design
• Tuning on a set of 20 instances randomly selected of size n = 80,

100.

• We study the value of the RCL parameter  in constructive
methods CG, C1, and C2

• We tested three values for : 0.3, 0.6, 0.9

• CG, C1, and C2 were each run independently 100 times on each
instance

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

Tuning the RCL parameter 
Value #Best % dev CPU (s)

CG
 = 0.3 7.00 7 25.77 12935.5
 = 0.6 5.65 13 5.92 10001.0

 = 0.9 5.35 19 0.45 7958.1

C1
 = 0.3 6.80 8 20.42 767.75

 = 0.6 6.10 10 10.79 747.25

 = 0.9 6.25 11 12.10 761.55

C2
 = 0.3 6.30 7 16.59 573.85

 = 0.6 6.10 11 10.64 562.40

 = 0.9 5.95 12 8.51 543.65

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

Clearly, the best
outcomes are for
method CG with RCL
parameter  = 0.9

However, CG's running
times are longer than
those of C1 and C2

Tuning the RCL parameter 
Value #Best % dev CPU (s)

CG
 = 0.3 7.00 7 25.77 12935.5
 = 0.6 5.65 13 5.92 10001.0

 = 0.9 5.35 19 0.45 7958.1

C1
 = 0.3 6.80 8 20.42 767.75

 = 0.6 6.10 10 10.79 747.25

 = 0.9 6.25 11 12.10 761.55

C2
 = 0.3 6.30 7 16.59 573.85

 = 0.6 6.10 11 10.64 562.40

 = 0.9 5.95 12 8.51 543.65

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

Comparing constructive methods with local search

• On the same 20 instances from the previous experiment we
compare the constructive methods with local search of Chen et al.
(2010) with their GRASP counterparts

• Chen et al. methods are: Greedy+LS, H1+LS, and H2+LS

• GRASP methods are CG+LS, C1+LS, and C2+LS and are run for
50 iterations

• We use the best value of  for each method according to the
previous experiment (corresponding to minimum % deviation)

• RCL parameter  was set to 0.9, 0.6, and 0.9 for CG, C1, and C2,
respectively

• We report Value, #Best, %dev, and CPU time

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

Comparing constructive methods with local search

 Value #Best %dev CPU(s)

Greedy+LS 5.65 11 8.96 176.20

H1+LS 5.70 11 9.96 48.95

H2+LS 5.55 14 7.50 14.05

GC(0.9)+LS 5.25 18 1.45 8193.05

C1(0.6)+LS 5.15 20 0.00 2238.25

C2(0.9)+LS 5.25 18 1.70 1093.55

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

Comparing constructive methods with local search

Three new GRASP methods
improve upon previous
methods based on
construction with local
search

Since GRASP is a multi-
start method and previous
methods are deterministic
and run only once, GRASP
running times are higher

Value #Best %dev CPU(s)

Greedy+LS 5.65 11 8.96 176.20

H1+LS 5.70 11 9.96 48.95

H2+LS 5.55 14 7.50 14.05

GC(0.9)+LS 5.25 18 1.45 8193.05

C1(0.6)+LS 5.15 20 0.00 2238.25

C2(0.9)+LS 5.25 18 1.70 1093.55

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

Comparing best GRASP with best method of
Chen et al. (2010) and BRKGA

• We now compare C1+LS with H2+LS and the
BRKGA

• GRASP was run for 100 iterations and the
BRKGA was run for 100 generations with a
population of size 100

• We now report Value, #Best, %dev, and CPU
time for the entire set of 280 test instances
(separated by problem size)

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

C1+LS, H2+LS, and BRKGA on all 70 n = 40
instances

Value #Best %dev CPU (s)

H2+LS 3.96 59 4.46 3.61
C1(0.6)+LS 3.77 70 0.00 253.69

BRKGA 3.83 66 1.71 1445.57

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

C1+LS, H2+LS, and BRKGA on all 70 n = 40
instances

GRASP was best in terms
of solution quality

GRASP running times
longer than deterministic
method

BRKGA beat H2+LS but
running times were the
longest

Value #Best %dev CPU (s)

H2+LS 3.96 59 4.46 3.61
C1(0.6)+LS 3.77 70 0.00 253.69

BRKGA 3.83 66 1.71 1445.57

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

C1+LS, H2+LS, and BRKGA on all 70 n = 60
instances

Value #Best %dev CPU (s)

H2+LS 4.37 62 1.74 6.43
C1(0.6)+LS 4.26 70 0.00 646.46

BRKGA 4.34 64 1.48 4462.64

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

C1+LS, H2+LS, and BRKGA on all 70 n = 60
instances

GRASP was best in terms
of solution quality

GRASP running times
longer than deterministic
method

BRKGA beat H2+LS but
running times were the
longest

Value #Best %dev CPU (s)

H2+LS 4.37 62 1.74 6.43
C1(0.6)+LS 4.26 70 0.00 646.46

BRKGA 4.34 64 1.48 4462.64

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

C1+LS, H2+LS, and BRKGA on all 70 n = 80
instances

Value #Best %dev CPU (s)

H2+LS 4.90 46 8.25 10.26
C1(0.6)+LS 4.50 70 0.00 1356.20

BRKGA 4.67 58 4.39 9742.37

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

C1+LS, H2+LS, and BRKGA on all 70 n = 80
instances

GRASP was best in terms
of solution quality

GRASP running times
longer than deterministic
method

BRKGA beat H2+LS but
running times were the
longest

Value #Best %dev CPU (s)

H2+LS 4.90 46 8.25 10.26
C1(0.6)+LS 4.50 70 0.00 1356.20

BRKGA 4.67 58 4.39 9742.37

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

C1+LS, H2+LS, and BRKGA on all 70 n = 100
instances

Value #Best %dev CPU (s)

H2+LS 5.27 50 5.69 16.20
C1(0.6)+LS 4.91 70 0.00 2393.73

BRKGA 5.00 62 2.13 20169.06

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

C1+LS, H2+LS, and BRKGA on all 70 n = 100
instances

GRASP was best in terms
of solution quality

GRASP running times
longer than deterministic
method

BRKGA beat H2+LS but
running times were the
longest

Value #Best %dev CPU (s)

H2+LS 5.27 50 5.69 16.20
C1(0.6)+LS 4.91 70 0.00 2393.73

BRKGA 5.00 62 2.13 20169.06

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

Concluding remarks

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

Concluding remarks

• We introduce several new randomized heuristics for the
regenerator location problem

• GRASP heuristics are based on the three greedy
algorithms of Chen et al. (2010)

• BRKGA uses a decoder based on the greedy algorithm
GREEDY of Chen et al. (2010)

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

Concluding remarks

• Experiments show that our heuristic C1+LS with RCL
parameter  = 0.6 consistently produces the best
solutions with smaller %dev and larger #Best values than
the other heuristics

• Deterministic heuristic H2+LS of Chen et al. (2010) is
able to obtain relatively good solutions in short
computational time

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

My coauthors

Holmdel, New Jersey
September 2009

Ricardo Silva

Rafael Martí
Abraham Duarte

Spring School on Adv. in OR --- May 3, 2011 GRASP for regenerator location

The End
Slides of this talk as well as all papers cited in the talk can be
downloaded from my homepage:

http://www2.research.att.com/~mgcr

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Combinatorial Optimization Handbook of Applied Optimization P.M. Pardalos and M.G.C. Resende, eds. Oxford U. Press, 2002
	Combinatorial Optimization
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Metaheuristics Metaheuristics: Computer Decision-Making M.G.C. Resende and J.P. de Sousa, eds., Kluwer, 2003
	Slide 15
	Slide 16
	Slide 17
	Local Search
	Local Search Neighborhoods
	Slide 20
	Slide 21
	Local Search (ideal situation)
	Local Search (more realistic situation)
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	The greedy algorithm
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	The greedy algorithm Another example
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Semi-greedy heuristic
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Local search
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222
	Slide 223
	Slide 224
	Slide 225
	Slide 226
	Slide 227
	Slide 228
	Slide 229
	Slide 230
	Slide 231
	Slide 232
	Slide 233
	Slide 234
	Slide 235
	Slide 236
	Slide 237
	Slide 238
	Slide 239
	Slide 240
	Slide 241
	Slide 242
	Slide 243
	Slide 244
	Slide 245
	Slide 246
	Slide 247
	Slide 248
	Slide 249
	Slide 250
	Slide 251
	Slide 252
	Slide 253
	Slide 254
	Slide 255
	Slide 256
	Slide 257
	Slide 258
	Slide 259
	qcl-ismp2000.pdf
	Detecting quasi-cliques in massive sparse multi digraphs
	Summary of talk
	Data explosion (Abello, Pardalos, & R., Eds., “Handbook of Massive Data Sets,” Kluwer, 2001)
	Data explosion
	Call detail
	Slide 6
	Call detail graph
	Structure of call detail graph
	Connected components
	Depth first search (DFS) tree
	DFS trees in largest CC
	Subgraph induced by DFS tree nodes
	Dense subgraphs
	Macro structure of call detail graph
	Searching for dense subgraphs
	Clique case
	Breadth first search decomposition
	BFS: distribution of nodes per level
	Edge ordering
	Chunking & peeling
	Peeling
	Peeling with degree = 2 reduction from 3.4 M edges to 3.0 M edges
	Peeling with degree = 14 reduction from 3.0 M edges to 18.3 K edges
	Finding cliques
	Greedy vertex choice
	(2,1) exchange local search
	Software platform external & semi-external memory algorithms
	Software platform computing cliques
	Mining for cliques examples
	Concluding remarks

	2011-05-03-nn-school-antibandwidth.pdf
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107

	2011-05-03-nn-spring-school-hospital-layout.pdf
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105

	2011-05-03-nn-spring-school-regen-loc.pdf
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85

