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Google Scholar Search:     "greedy randomized adaptive search" 
(http://scholar.google.com)

year cumul. papers year Cumul. papers

1990 1 2001 402

1991 7 2002 533

1992 11 2003 661

1993 16 2004 803

1994 34 2005 1,010

1995 54 2006 1,220

1996 89 2007 1,470

1997 126 2008 1,770

1998 196 2009 2,130

1999 256 2010 2,440

2000 308 2011 (to Jan. 27th) 2,450
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Annotated bibliographies of GRASP

• P. Festa and M.G.C. Resende, GRASP: An annotated bibliography, 
Essays and Surveys on Metaheuristics, C.C. Ribeiro and P. 
Hansen, Eds., Kluwer Academic Publishers, pp. 325-367, 2002

• P. Festa and M.G.C. Resende, An annotated bibliography of 
GRASP–Part I: Algorithms,  International Transactions in 
Operational Research, vol. 16, pp. 1-24, 2009.

• P. Festa and M.G.C. Resende, An annotated bibliography of 
GRASP–Part II: Applications,  International Transactions in 
Operational Research, vol. 16, pp. 131-172, 2009.
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Follow GRASP on Twitter:        http://twitter.com/graspheuristic
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Summary

Combinatorial optimization and a review of GRASP
Neighborhoods, local search, greedy randomized construction 
and diversification

Hybrid construction
Other greedy randomized constructions, reactive GRASP, 
long-term memory in construction, biased sampling, cost 
perturbation

Hybrid local search
Variable neighborhood descent, variable neighborhood search, 
short-term memory tabu search, simulated annealing, iterated 
local search, very large-scale neighborhood search
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Summary

Hybridization with path-relinking
Elite sets, forward, backward, back and forward, mixed, 
greedy randomized adaptive path-relinking, evolutionary path-
relinking 

Continuous GRASP for bound constrained global optimization

Concluding remarks
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Combinatorial 
Optimization
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Combinatorial Optimization

Combinatorial optimization: process of finding 
the best, or optimal, solution for problems with 
a discrete set of feasible solutions. 

 Applications: e.g. routing, scheduling, packing, 
inventory and production management, 
location, logic, and assignment of resources. 

Economic impact: e.g. transportation (airlines, 
trucking, rail, and shipping), forestry, 
manufacturing, logistics, aerospace, energy 
(electrical power, petroleum, and natural gas), 
agriculture, biotechnology, financial services, 
and telecommunications.
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Combinatorial Optimization

Given:
discrete set of solutions  X
objective function f(x): x ∈ X → R

Objective (minimization):
find x ∈ X : f(x) ≤ f(y), ∀ y ∈ X
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Combinatorial Optimization

Much progress in recent years on finding  
exact (provably optimal) solutions: dynamic 
programming, cutting planes, branch and 
cut, …
Many hard combinatorial optimization 
problems are still not solved exactly and 
require good solution methods.
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Combinatorial Optimization

Approximation algorithms are guaranteed to 
find in polynomial-time a solution within a 
given factor of the optimal. 
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Combinatorial Optimization

Approximation algorithms are guaranteed to 
find in polynomial-time a solution within a 
given factor of the optimal. 
Sometimes the factor is too big, i.e. guaranteed 
solutions are far from optimal
Some optimization problems (e.g. max clique, 
covering by pairs) cannot have approximation 
schemes unless P=NP
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Combinatorial Optimization

Aim of heuristic methods for combinatorial 
optimization is to quickly produce good-
quality solutions, without necessarily 
providing any guarantee of solution quality. 
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Metaheuristics

Metaheuristics are heuristics to devise heuristics.   
                                                                              
                                                                              
                                                   
Examples: simulated annealing, genetic algorithms, 
tabu search, scatter search, ant colony 
optimization, variable neighborhood search, and 
GRASP.  
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Metaheuristics

Metaheuristics are high level procedures that 
coordinate simple heuristics, such as local search, 
to find solutions that are of better quality than 
those found by the simple heuristics alone.
Examples: simulated annealing, genetic algorithms, 
tabu search, scatter search, ant colony 
optimization, variable neighborhood search, and 
GRASP.  
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Metaheuristics

Metaheuristics are high level procedures that 
coordinate simple heuristics, such as local search, 
to find solutions that are of better quality than 
those found by the simple heuristics alone.
Examples: simulated annealing, genetic algorithms, 
tabu search, scatter search, ant colony 
optimization, variable neighborhood search, and 
GRASP.  
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Review of GRASP:
Local Search
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Local Search

To define local search, one needs to specify a local 
neighborhood structure.
Given a solution x , the elements of the 
neighborhood N(x) of x are those solutions y  that 
can be obtained by applying an elementary 
modification (often called a move) to x.
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Local Search Neighborhoods

Consider x = (0,1,0) and the 1-flip neighborhood of a 0/1 
array.

x = (0,1,0)

(1,1,0) (0,0,0) (0,1,1)

N (x )
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Local Search Neighborhoods

Consider x = (2,1,3,4) and the 2-swap neighborhood of a 
permutation array.

x = (2,1,3,4)

(1,2,3,4) (3,1,2,4) (4,1,3,2)

N (x ) = C(4,2) = 6

(2,3,1,4) (2,4,3,1)

(2,1,4,3)
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Local Search

Given an initial solution x0, a neighborhood N(x), and  
function f(x) to be minimized:

x = x0 ;

while ( ∃  y ∈ N(x) | f(y) < f(x) ) {
x = y ; 

}
At the end, x is a local minimum of f(x) .

check for better solution in neighborhood of x

move to better
solution y Time complexity of local search

 can be exponential.
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Local Search
(ideal situation)

f (0,0,0) = 3

f (1,1,1) = 3

f (0,1,0) = 4

f (0,0,1) =  0

f (1,0,0) = 5

f (0,1,1) = 1

f (1,1,0) = 6

f (1,0,1) =  2

With any starting solution Local Search finds the global optimum.

global
minimum



 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Local Search
(more realistic situation)

f (1,1,1) = 2

f (0,1,0) = 2

f (0,0,1) =  0

f (1,0,0) = 1

f (0,1,1) = 3

f (1,1,0) = 6

f (1,0,1) =  3

f (0,0,0) = 3 global
minimum

local
minima

local
minimum

But some starting solutions lead Local Search to a local minimum.
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Effectiveness of local search depends on several 
factors:

neighborhood structure
function to be minimized
starting solution

Local Search

usually pre-
determined

usually easier to
control
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Multi-start method

c* = ∞

repeat 

x = method()

if f(x) < c* then
     x* = x
     c* = f(x*)
endif
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Random multi-start

c* = ∞

repeat 

x = random_construction()

if f(x) < c* then
     x* = x
     c* = f(x*)
endif
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Example: probability of finding opt by random selection

Suppose x = (0/1, 0/1, 0/1, 0/1, 0/1) and let the 
unique optimum be x* = (1,0,0,1,1).
The prob of finding the opt at random is 1/32 = .
031 and the prob of not finding it is 31/32.
After k trials, the probability of not finding the opt is 
(31/32)k and hence the prob of find it at least once 
is 1− (31/32)k

For k = 5, p = .146;  for k = 10, p = .272; for k = 
20, p = .470; for k = 50, p = .796; for k = 100, p 
= .958; for k = 200, p = .998 
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Example: Probability of finding opt with K samplings 
on a  0−1 vector of size N 

                         N:            10         15            20              25          30
K:                                  
10                                 .010      .000         .000           .000       .000
100                               .093      .003         .000           .000       .000
1000                             .624      .030         .000           .000       .000
10000                         1.000      .263         .009           .000       .000
100000                       1.000      .953         .091           .003       .000
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Greedy algorithm
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The greedy algorithm

Constructs a solution, one element at a time:
Defines candidate elements.
Applies a greedy function to each candidate element.
Ranks elements according to greedy function value.
Add best ranked element to solution.
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The greedy algorithm
An example: minimum weight spanning tree
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The greedy algorithm
An example: minimum weight spanning tree
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The greedy algorithm
Another example: Maximum clique 

Given graph G = (V, E), find largest subgraph of G 
such that all vertices are mutually adjacent.
greedy algorithm builds solution, one element (vertex) at a 
time
candidate set: unselected vertices adjacent to all selected 
vertices
greedy function: vertex degree with respect to other 
candidate set vertices.
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The greedy algorithm
Another example: Maximum clique 
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The greedy algorithm
Another example: Maximum clique 
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The greedy algorithm
Another example: Maximum clique 
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The greedy algorithm
Another example: Maximum clique 
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The greedy algorithm
Another example: Maximum clique 

0

0
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The greedy algorithm
Another example: Maximum clique 

global maximum
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The greedy algorithm
Another example: Maximum clique 
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The greedy algorithm
Another example: Maximum clique 
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The greedy algorithm
Another example: Maximum clique 
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The greedy algorithm
Another example: Maximum clique 

0 0

0

0
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The greedy algorithm
Another example: Maximum clique 

sub-optimal
clique



 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Semi-greedy heuristic

A semi-greedy heuristic tries to get around 
convergence to non-global local minima.
repeat until solution is constructed
For each candidate element
apply a greedy function to element

Rank all elements according to their  greedy function values
Place well-ranked elements in a restricted candidate list (RCL)
Select an element from the RCL at random & add it to the solution
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Semi-greedy heuristic

Hart & Shogan (1987) propose two mechanisms for 
building the RCL:
Cardinality based:  place k best candidates in RCL
Value based:  place all candidates having greedy values better than 
α ⋅ best_value in RCL, where α  ∈ [0,1].

Feo & Resende (1989) proposed semi-greedy 
construction as a basic component of GRASP.
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Hart-Shogan Algorithm

c* = ∞

repeat 

x = semi_greedy_construction()
if (x is infeasible) then

x = repair(x)
if f(x) < c* then
     x* = x
     c* = f(x*)
endif
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The semi-greedy algorithm
Maximum clique example 
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The semi-greedy algorithm
Maximum clique example 

Build clique, one node at a
time.

Candidates:  nodes adjacent
to clique.

Greedy function: degree
with respect to candidate
nodes.

RCL = 
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The semi-greedy algorithm
Maximum clique example 

Build clique, one node at a
time.

Candidates:  nodes adjacent
to clique.

Greedy function: degree
with respect to candidate
nodes.

RCL = 

Choose at random

Semi-greedy 
iteration 1
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time.

Candidates:  nodes adjacent
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Greedy function: degree
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nodes.
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Choose at random
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The semi-greedy algorithm
Maximum clique example 

Build clique, one node at a
time.

Candidates:  nodes adjacent
to clique.

Greedy function: degree
with respect to candidate
nodes.

RCL = 

Choose at random

Clique of size 2

Semi-greedy 
iteration 1
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The semi-greedy algorithm
Maximum clique example 

Build clique, one node at a
time.

Candidates:  nodes adjacent
to clique.

Greedy function: degree
with respect to candidate
nodes.

RCL = 

Instead, choose at 
random

Semi-greedy 
iteration 2
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The semi-greedy algorithm
Maximum clique example 

Build clique, one node at a
time.

Candidates:  nodes adjacent
to clique.

Greedy function: degree
with respect to candidate
nodes.

RCL = 

Then, choose at 
random

Semi-greedy 
iteration 2



 UFL/SIE – January 27, 2011 GRASP & C-GRASP

The semi-greedy algorithm
Maximum clique example 

Build clique, one node at a
time.

Candidates:  nodes adjacent
to clique.

Greedy function: degree
with respect to candidate
nodes.

RCL = 

Then, choose at 
random

Optimal clique of 
size 3

Semi-greedy 
iteration 2
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GRASP
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GRASP: Basic algorithm

c* = ∞

repeat 

x = semi_greedy_construction()
if (x is infeasible) then
             x = repair(x)

if f(x) < c* then
     x* = x
     c* = f(x*)
endif

    x = local_search(x)

Semi-greediness
is more general
in GRASP
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Construction phase: greediness + randomization
Builds a feasible solution combining greediness and 
randomization
Local search: search in the current neighborhood 
until a local optimum is found
Solutions generated by the construction procedure are not 
necessarily optimal:
Effectiveness of local search depends on: neighborhood structure, 
search strategy, and fast evaluation of neighbors, but also on the 
construction procedure itself.

GRASP: Basic algorithm
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GRASP Construction
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 Construction phase: RCL based

Evaluate incremental cost
of candidate element

Determine set C of candidate elements

Repeat while
there are
candidate
elements

For each  
candidate 
element:

Build RCL with best candidates, select one
at random and add it to solution.

restricted candidate list
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Construction phase: RCL based

Minimization problem
Basic construction procedure: 
Greedy function c(e): incremental cost associated with the 
incorporation of element e into the current partial solution 
under construction
cmin (resp. cmax): smallest (resp. largest) incremental cost
RCL made up by the elements with the smallest incremental 
costs.
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Construction phase
Cardinality-based construction:
p elements with the smallest incremental costs
Quality-based construction: 
Parameter α  defines the quality of the elements in RCL.
RCL contains elements with incremental cost                          
cmin ≤  c(e) ≤  cmin + α  (cmax –cmin)
α  = 0 : pure greedy construction 
α  = 1 : pure randomized construction

Select at random from RCL using uniform probability 
distribution
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α=0.2

α=0.4

α=0.6

α=0.8

Illustrative results: RCL parameter

weighted MAX-SAT instance, 1000 GRASP iterations 

Construction phase only
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α=0.2

α=0.6

α=0.8

α=1.0

Illustrative results: RCL parameter

weighted MAX-SAT instance, 1000 GRASP iterations

Construction + local search
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Hybrid construction 
schemes
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 Construction phase: sampled greedy
 [Resende & Werneck, 2004]

Evaluate incremental cost
of candidate element

Sample a small set C from the set of
candidate elements

Repeat while
there are
candidate
elements

For each   
element in
set C:

Select the element with the best 
incremental cost and add it to solution.
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 Construction phase: random+greedy
 [Resende & Werneck, 2004]

Determine set C of candidate elements

Determine set C of candidate elements

Repeat while
solution has
fewer than K
elements

For each   
element in
set C:

Select an element from the set C
at random and add it to solution.

Repeat while
there are
candidate
elements

Evaluate incremental cost
of candidate element

Select the element with the best 
incremental cost and add it to solution.
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W(    ) < W(   ) < W(  ) < W(  )

Construction with cost perturbation

Perturb with costs
increasing from
top to bottom.
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W(    ) < W(   ) < W(  ) < W(  )

Construction with cost perturbation

Greedy heuristic
generates two 
different spanning
trees.
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Reactive GRASP
Prais & Ribeiro (2000) 

When building RCL, what α  to use?  
Fix a some value  0 ≤  α  ≤  1
Choose α  at random (uniformly) at each GRASP iteration.
Another approach reacts to search ...
At each GRASP iteration, a value of the RCL parameter   α  is 
chosen from a discrete set of values [α 1, α 2, ..., α m]. 
The probability that α k is selected is pk.
Reactive GRASP: adaptively changes the probabilities [p1, p2, ..., 
pm] to favor values of α  that produce good solutions.
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Reactive GRASP                        Prais & Ribeiro (2000) 

Reactive GRASP for minimization ...
Initially pk = 1/m, for k = 1,...,m.  (α 's are selected 
uniformly at random)
Define
 F(S*) be the best solution so far
A

k 
be the average value of the solutions obtained with α k

Every N
α  

GRASP iterations, compute

q
k 
 = F(S*) / A

k 
, for k = 1,...,m

p
k 
 = q

k 
/ sum(q

i
| i = 1,...,m)
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Reactive GRASP                        Prais & Ribeiro (2000) 

Reactive GRASP for minimization ...
Initially pk = 1/m, for k = 1,...,m.  (α 's are selected 
uniformly at random)
Define
 F(S*) be the best solution so far
A

k 
be the average value of the solutions obtained with α k

Every N
α  

GRASP iterations, compute

q
k 
 = F(S*) / A

k 
, for k = 1,...,m

p
k 
 = q

k 
/ sum(q

i
| i = 1,...,m)

The more suitable is 
α

k 
, the larger is q

k 
, and

consequently p
k 
, making

α
k 
 more likely to chosen.
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Hybrid local search in 
GRASP
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Local search within GRASP

Local search is usually implemented in 
GRASP as:

x = x0;
while ( there exists y ∈N(x) | f(y) < f(x) ) do

x = y; // y is first improving solution found in N(x)

end while
return x;
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while ( there exists y ∈N(x) | f(y) < f(x) ) do

x = y; // y is first improving solution found in N(x)

end while
return x;

first improving



 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Local search within GRASP

Another way to implement local 
search in GRASP is:

x = x0;
y = argmin { f(z) | z ∈N(x) };
while ( f(y) < f(x) ) do

x = y;  
y = argmin { f(z) | z ∈N(x) };

end while
return x;
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Another way to implement local 
search in GRASP is:

x = x0;
y = argmin { f(z) | z ∈N(x) };
while ( f(y) < f(x) ) do

x = y;  
y = argmin { f(z) | z ∈N(x) };

end while
return x;

best improving



 UFL/SIE – January 27, 2011 GRASP & C-GRASP

x = x0;

while ( ∃  y ∈N(x) |f(y) < f(x) ) 
do
x = y;

end while

return x;

x = x0;

y = argmin { f(z) | z ∈N(x) };

while ( f(y) < f(x) ) do
x = y;  
y = argmin { f(z) | z ∈N(x) };

end while

return x;

First improving is usually faster.
Premature convergence to low-quality local optimum is more likely to 
occur with best improving.     

 first improving                  best improving
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x = x0;

while ( ∃  y ∈N(x) |f(y) < f(x) ) 
do
x = y;

end while

return x;

x = x0;

y = argmin { f(z) | z ∈N(x) };

while ( f(y) < f(x) ) do
x = y;  
y = argmin { f(z) | z ∈N(x) };

end while

return x;

If search of N(x) is done deterministically, then repeated 
applications of local search starting from same x0 lead to same 
local minimum   

 first improving                  best improving
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x = x0;

while ( ∃  y ∈N(x) |f(y) < f(x) ) 
do
x = y;

end while

return x;

x = x0;

y = argmin { f(z) | z ∈N(x) };

while ( f(y) < f(x) ) do
x = y;  
y = argmin { f(z) | z ∈N(x) };

end while

return x;

If search of N(x) is done deterministically, then repeated 
applications of local search starting from same x0 lead to same 
local minimum   
Hashing can avoid repeating local search from previous x0 

{ Woodruff & Zemel (1993), Ribeiro et. al (1997), Martins et al. (2000) } 

 first improving                  best improving
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if ( f(x0) < CUTOFF) then

 x = x0;

 while ( ∃  y ∈N(x) |f(y) < f(x) ) do
x = y;

 end while

 return x;

end if

if ( f(x0) < CUTOFF) then

 x = x0;

 y = argmin { f(z) | z ∈N(x) };

 while ( f(y) < f(x) ) do

x = y;  

y = argmin { f(z) | z ∈N(x) };

 end while

 return x;

end if

Filtering to avoid application of local search to low quality 
solutions, only promising solutions are investigated: { Feo, 

Resende, & Smith (1994), Prais & Ribeiro (2000), Martins et. al (2000) }

 first improving                  best improving
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Local search within GRASP
As the name implies, local search, is confined to a localized region 
of the solution space.
To escape from local minima and broaden the search several 
alternatives have been proposed to replace local search in GRASP:
variable neighborhood descent (VND)
variable neighborhood search (VNS)
short-term memory tabu search (TS)
simulated annealing (SA)
iterated local search  (ILS)
very large-scale neighborhood search (VLSNS)
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 GRASP VND local search
   

 Instead of using a single 
neighborhood, VND uses  K 
not necessarily related 
neighborhoods N

1
, N

2
, ..., N

K
.
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 GRASP VND local search
   

 Instead of using a single 
neighborhood, VND uses  K 
not necessarily related 
neighborhoods N

1
, N

2
, ..., N

K
.

x = x
0
; k = 1;

while (k ≤ K) do

     if (  s  N
k
(x) such that f(s) < f(x) ) then

          x = s; k = 1; break;

     endif

     k = k + 1;

endwhile

return x;
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 GRASP VND local search
   x = x

0
; k = 1;

while (k ≤ K) do                           scan all K neighborhoods

     if (  s  N
k
(x) such that f(s) < f(x) ) then

          x = s; k = 1; break;

     endif

     k = k + 1;

endwhile

return x;
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 GRASP VND local search
   x = x

0
; k = 1;

while (k ≤ K) do                           scan all K neighborhoods

     if (  s  N
k
(x) such that f(s) < f(x) ) then

          x = s; k = 1; break;              found improving solution

     endif

     k = k + 1;

endwhile

return x;
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 GRASP VND local search
   x = x

0
; k = 1;

while (k ≤ K) do                           scan all K neighborhoods

     if (  s  N
k
(x) such that f(s) < f(x) ) then

          x = s; k = 1; break;     found improving solution in N
k

     endif

     k = k + 1;                              x is a local mimimum of N
k

endwhile

return x;
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 GRASP VND local search
   x = x

0
; k = 1;

while (k ≤ K) do                           scan all K neighborhoods

     if (  s  N
k
(x) such that f(s) < f(x) ) then

          x = s; k = 1; break;     found improving solution in N
k

     endif

     k = k + 1;                              x is a local mimimum of N
k

endwhile

return x;               x is a local mimimum of N
k
, for k = 1,...,K
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 GRASP VND local search
   example: scheduling of multi-grouped units 

Input: Assignment of units to periods:



 UFL/SIE – January 27, 2011 GRASP & C-GRASP

 GRASP VND local search
   example: scheduling of multi-grouped units 

Local search:  Examine neighborhood of current 
solution.  If better solution found, make it current 
solution.
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 GRASP VND local search
   example: scheduling of multi-grouped units 

Three neighborhoods:  Swap units, move unit, swap 
periods.



 UFL/SIE – January 27, 2011 GRASP & C-GRASP

 GRASP VND local search
   example: scheduling of multi-grouped units 

Swap units neighborhood:  Swaps places of two 
units assigned to distinct periods.

solution
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Swap units neighborhood:  Swaps places of two 
units assigned to distinct periods.

solution

neighbor

 GRASP VND local search
   example: scheduling of multi-grouped units 
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Move unit neighborhood:  Moves unit from current 
period to available period. 

solution

 GRASP VND local search
   example: scheduling of multi-grouped units 
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Move unit neighborhood:  Moves unit from current 
period to available period. 

solution

neighbor

 GRASP VND local search
   example: scheduling of multi-grouped units 
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Swap periods neighborhood:  Swap all units in 
period i with all units in  period j. 

solution

 GRASP VND local search
   example: scheduling of multi-grouped units 
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Swap periods neighborhood:  Swap all units in 
period i with all units in  period j. 

solution

Period i Period j

 GRASP VND local search
   example: scheduling of multi-grouped units 
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Swap periods neighborhood:  Swap all units in 
period i with all units in  period j. 

solution

neighbor

Period i Period j

 GRASP VND local search
   example: scheduling of multi-grouped units 
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GRASP VND local search

Move unit

Swap periods

improved

improved

improved

Swap units

start

yes

yes

yes

no

no

Local
minimum

no
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GRASP VND local search

Move unit

Swap periods

improved

improved

improved

Swap units

start

yes

yes

yes

no

no

Local
minimum

no

Neighborhoods are unrelated as
opposed to VNS where the are 
related
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GRASP VND local search

Move unit

Swap periods

improved

improved

improved

Swap units

start

yes

yes

yes

no

no

Local
minimum

no

1) Local min in one neighborhood
may not be local min in another 

2) Global min is a local min in 
all neighborhoods
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Examples of VND within GRASP

Martins et al. (1999): Steiner problem in graphs
Ribeiro and Souza (2002): degree constrained 
minimum spanning tree
Ribeiro et al. (2002): Steiner problem in graphs
Ribeiro and Vianna (2005): Phylogeny problem
Andrade and Resende (2006):  PBX phone 
migration
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Path-relinking (PR)
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Path-relinking

 Intensification strategy exploring trajectories       
connecting elite solutions (Glover, 1996)
Originally proposed in the context of tabu search 
and scatter search.
Paths in the solution space leading to other elite 
solutions are explored in the search for better 
solutions.



 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Path-relinking

Exploration of trajectories that connect high 
quality (elite) solutions:

initial
solution

guiding
solution

path in the neighborhood of solutions
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Path-relinking
Path is generated by selecting moves that 
introduce in the initial solution attributes of the 
guiding solution.
At each step, all moves that incorporate attributes 
of the guiding solution are evaluated and the best 
move is selected: 

initial
solution

guiding 
solution
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starting solution guiding solutionPR example
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starting solution x guiding solution yPR example

|∆ (x,y)| = 5



 UFL/SIE – January 27, 2011 GRASP & C-GRASP

starting solution guiding solutionPR example
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starting solution guiding solutionPR example

Cannot improve
endpoint solutions
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starting solution guiding solutionPR example

Cannot improve
endpoint solutions

Can improve
endpoint solutions
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Forward path-relinking
Variants: trade-offs between computation time and 
solution quality
Forward PR adopts as initial solution the worse of the two 
input solutions and uses the better solution as the guide.

guiding 
solutionworse

solution

forward



 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Backward path-relinking
Variants: trade-offs between computation time and 
solution quality
Backward PR usually does better: Better to start from the 
best of the two input solutions, neighborhood of the initial 
solution is explored more than of the guide!

guiding 
solutionbetter

solution

backward
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Back and forth path-relinking
Variants: trade-offs between computation time and 
solution quality
Explore both trajectories: twice as much time, often with only 
marginal improvements! 
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Truncated path-relinking

Variants: trade-offs between computation time and 
solution quality
Truncate the search, do not follow the full trajectory.

Truncate search here
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solution quality
Truncate the search, do not follow the full trajectory.

Truncate search here
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Mixed path-relinking
Variants: trade-offs between computation time and 
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)

I
G
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Mixed path-relinking
Variants: trade-offs between computation time and 
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)

G
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Mixed path-relinking
Variants: trade-offs between computation time and 
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)
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Mixed path-relinking
Variants: trade-offs between computation time and 
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)

Advantage: explore around 
neighborhoods of both input 
solutions.
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Truncated mixed path-relinking
Variants: trade-offs between computation time and 
solution quality
Truncated mixed path-relinking 

Truncate search here
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Greedy randomized adaptive path-relinking 
  Faria, Binato, Resende, &  Falcão (2001, 2005) 

Incorporates semi-greediness into PR.
Standard PR selects moves greedily: samples one of 
exponentially many paths

guiding 
solutioninitial

solution
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Greedy randomized adaptive path-relinking 
  Faria, Binato, Resende, &  Falcão (2001, 2005)

Incorporates semi-greediness into PR.
graPR creates RCL with best moves: samples several 
paths

guiding 
solutioninitial

solution
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Incorporates semi-greediness into PR.
graPR creates RCL with best moves: samples several 
paths

guiding 
solutioninitial

solution

Greedy randomized adaptive path-relinking 
  Faria, Binato, Resende, &  Falcão (2001, 2005)
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Truncated mixed graPR
When applied to a given pair of
solutions truncated mixed PR
explores one of exponentially
many path segments each time
it is executed. 
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Truncated mixed graPR
With high probability, truncated 
mixed graPR explores different
path segments each time it is 
executed between the same pair 
of solutions.



 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Truncated mixed graPR
With high probability, truncated 
mixed graPR explores different
path segments each time it is 
executed between the same pair 
of solutions.



 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Truncated mixed graPR
With high probability, truncated 
mixed graPR explores different
path segments each time it is 
executed between the same pair 
of solutions.
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GRASP with path-relinking 
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GRASP with path-relinking

First proposed by Laguna and Martí (1999).
Maintains a set of elite solutions found during GRASP 
iterations.
After each GRASP iteration (construction and local 
search):
Use GRASP solution as initial solution. 
Select an elite solution uniformly at random: guiding solution.
Perform path-relinking between these two solutions.
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GRASP with path-relinking

Since 1999, there has been a lot of activity in 
hybridizing GRASP with path-relinking.
Survey by Resende & Ribeiro in MIC 2003 book of 
Ibaraki, Nonobe, and Yagiura (2005).
Main observation from experimental studies:  
GRASP with path-relinking outperforms pure 
GRASP.
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MAX-SAT (Festa, Pardalos, Pitsoulis, and Resende, 2006)
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3-index assignment (Aiex, Resende, Pardalos, & Toraldo, 2005)
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QAP (Oliveira, Pardalos, and Resende, 2004)
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Bandwidth packing (Resende and Ribeiro, 2003)
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Job shop scheduling (Aiex, Binato, & Resende, 2003)
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GRASP with path-relinking: 
Pool management

P is a set (pool) of elite solutions.
Ideally, pool has a set of good diverse solutions.
Mechanisms are needed to guarantee that pool is 
made up of those kinds of solutions.
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GRASP with path-relinking: 
Pool management

Each iteration of first |P| GRASP iterations adds 
one solution to P (if different from others).
After that: solution x is promoted to P if:
x is better than best solution in P.
x is not better than best solution in P, but is better than 
worst and is sufficiently different from all solutions in P.
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GRASP with path-relinking: 
Pool management

GRASP with PR works best when paths in PR are 
long, i.e. when the symmetric difference between 
the initial and guiding solutions is large.
Given a solution to relink with an elite solution, 
which elite solution to choose?
Choose at random with probability proportional to the 
symmetric difference. 
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GRASP with path-relinking: 
Pool management

Solution quality and diversity are two goals of pool 
design.
Given a solution X to insert into the pool, which elite 
solution do we choose to remove?
Of all solutions in the pool with worse solution than X, select 
to remove the pool solution most similar to X, i.e. with the 
smallest symmetric difference from X.
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GRASP with path-relinking

Repeat
GRASP 
with
PR loop

1) Construct randomized greedy X
2) Y = local search to improve X
3) Path-relinking between Y and      
    pool solution Z
4) Update pool
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Evolutionary path-
relinking (EvPR)
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Evolutionary path-relinking
 ( Resende & Werneck, 2004, 2006 )

Evolutionary path-relinking “evolves” the pool, i.e. 
transforms it into a pool of diverse elements whose 
solution values are better than those of the original 
pool.
Evolutionary path-relinking can be used 
as an intensification procedure at certain points of the 
solution process;
as a post-optimization procedure at the end of the solution 
process. 
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Evolutionary path-relinking (EvPR)

Each “population” of EvPR  starts with a
pool of elite solutions of size |P|.

Population P(0) is the current elite set.

Population P(0)
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Evolutionary path-relinking (EvPR)

All pairs of elite solutions (x,y) in K-th 
population P(K), such that x ∈ X ⊆ P(K) and 
y ∈ Y ⊆ P(K), are  path-relinked and the 
resulting z = PR(x,y)  is a candidate for
inclusion in population P(K+1).

Rules for inclusion into P(K+1) are the same
used for inclusion into any pool. 

X

Y
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Evolutionary path-relinking (EvPR)

X

Y

All pairs of elite solutions (x,y) in K-th 
population P(K), such that x ∈ X ⊆ P(K) 
and 
y ∈ Y ⊆ P(K), are  path-relinked and the 
resulting z = PR(x,y)  is a candidate for
inclusion in population P(K+1). 

Rules for inclusion into P(K+1) are the same
used for inclusion into any pool. 
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Evolutionary path-relinking (EvPR)

If best solution in population P(K+1) has same 
objective function value as best solution in
population P(K), process stops.  

Else K=K+1 and repeat.

Population P(K)

Population P(K+1)
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GRASP with evolutionary path-relinking

As post-optimization During GRASP + PR

Repeat
GRASP 
with
PR loop

Evolutionary-PR

1) Construct greedy 
    randomized
2) Local search
3) Path-relinking
4) Update pool

Repeat
inner
loop

Evolutionary-PR

1) Construct greedy 
    randomized
2) Local search
3) Path-relinking
4) Update pool

Repeat
outer
loop

( Resende & Werneck, 2004, 2006 )
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GRASP with EvPR: Implementation ideas 
Truncated mixed graPR

In PR and EvPR, apply one iteration of graPR.
For (x,y), different calls to graPR(x,y) explore different paths. 
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GRASP with EvPR: Implementation ideas 
Make set X small and with best pool solutions.
Make set Y be entire pool.

X

Y

Use set X of size 1 or 2.

Speeds up EvPR.

Avoids unfruitful calls to graPR(x,y)
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GRASP with EvPR: Implementation ideas 
Make set X small and with best pool solutions.
Make set Y be entire pool.

X

Y

Use set X of size 1 or 2.

Speeds up EvPR.

Avoids unfruitful calls to graPR(x,y)
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GRASP
GRASP+PR

GRASP+EvPR

Weights uniformly distributed in interval [1,100]:  min sum cuts

Each heuristic was run 
200 times and time to 
target solution recorded.

Network migration scheduling



 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Each heuristic was run 
200 times and time to 
target solution recorded.

Network migration scheduling



 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Each heuristic was run 
200 times and time to 
target solution recorded.

Network migration scheduling
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GRASP + PR

GRASP + evPR

GRASP

Easier target: GRASP 
manages to find target 
solution.

Network migration scheduling
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GRASP + PR

GRASP + evPR

GRASP

Each heuristic was run
200 times and time to
target solution was
recorded.

Network migration scheduling
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GRASP + PR

GRASP + evPR

Easier target: Comparing GRASP
with path-relinking and GRASP with 
evolutionary path-relinking over 200
independent runs.

Network migration scheduling
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GRASP + PR

GRASP + evPR

Easier target: Comparing GRASP
with path-relinking and GRASP with 
evolutionary path-relinking over 200
independent runs.

Runs in which GRASP+evPR 
found target solution during 
first call to evPR.

Network migration scheduling
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GRASP + PRGRASP + evPR

Harder target: GRASP cannot
find target solution.

Comparing GRASP with PR and
GRASP with evPR over 200 
independent runs.

Network migration scheduling
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Examples of PR within GRASP

Laguna and Martí (1999): 2-layer straight line crossing 
minimization

Canuto et al. (2001): Prize-collecting Steiner problem in graphs

Resende and Ribeiro (2001): Bandwidth packing

Ribeiro et al. (2002):  Steiner problem in graphs

Resende and Werneck (2004,2006):  p-median problem & 
capacitated facility location

Aiex et al. (2005):  Three-index assignment

Resende and Ribeiro (2005):  Survey paper on GRASP & PR

Mateus, Resende, and Silva (2010): generalized QAP
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Continuous GRASP
(C-GRASP)
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C-GRASP

• C-GRASP is a metaheuristic to finding optimal or 
near-optimal solutions to
– Min f(x)  subject to: L  x  U
– where x, L, U ∈ Rn

– and f(x) is continuous but can have discontinuities, be 
non-differentiable, be the output of a simulation, etc.
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C-GRASP

• C-GRASP is based on the discrete optimization 
metaheuristic GRASP

• It was proposed in 2006 by U. of FL ISE PhD 
students Michael Hirsch and Claudio Meneses 
with Mauricio Resende and Panos Pardalos.

• M.J. Hirsch, C.N. Meneses, P.M. Pardalos, and M.G.C. Resende, 
“Global optimization by continuous GRASP,” Optimization Letters, 
vol. 1,  pp. 201-212, 2007.

• M.J. Hirsch, P.M. Pardalos, and M.G.C. Resende, “Speeding up 
continuous GRASP,” European J. of Operational Research, vol. 
205, pp. 507-521, 2010.
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C-GRASP
• C-GRASP is a multi-start procedure, i.e. a major 

loop is repeated until some stopping criterion is 
satisfied.

• In each major iteration 
– x is initialized with a solution randomly selected from 

the box defined by vectors L and U.
– a number of minor iterations are carried out, where 

each minor iterations consists of a construction 
phase and a local improvement phase.

– Minor iterations are done on a dynamic grid and 
stops when the grid is too dense.
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C-GRASP
f* = ∞

while (stopping criterion not satisfied) do

 x = random[L,U]; h = h(start);

      while ( h ≥ h(end) ) do

            x = ConstructGreedyRandomized(x)

            x = LocalImprovement(x)

            if ( f(x) < f* ) then { x* = x; f* = f(x) }

            if ( x did not improve this iteration ) then { h = h/2 }

       end while

end while

return x*
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C-GRASP line search

x

current solution
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C-GRASP line search

x

current solution

direction
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C-GRASP line search

x

current solution

direction

upper bound

lower bound
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C-GRASP line search

x

current solution

upper bound

lower bound

h
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C-GRASP line search

x

upper bound

lower bound

h

Evaluate f(x) at each

Line search returns x* =argmin{ f(x) } 
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C-GRASP greedy randomized construction
unset = {1, 2, 3, ..., n }; x = x0

for ( k = 1, 2, ..., n ) do
      for ( all i ∈ unset ) do
         z

i
 = line search in direction e

i
 = (0,0,...,1,....,0)

    end for
 RCL = { i ∈ unset | f(z

i
) < CUTOFF }

      Select at random i* ∈ RCL
      Set x

i*
 = z

i*
;  unset = unset \ {i*}

end for

      

i-th component
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C-GRASP local improvement

x
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C-GRASP local improvement

x
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C-GRASP local improvement

x
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C-GRASP local improvement

x

Sample projected point y on circle and evaluate f(y)
If f(y) < f(x) then set x = y, translate grid to intersect x
and restart local search from x
If max-points are examined without improvement: x is h-local min  

y
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C-GRASP

• M.J. Hirsch, “GRASP-based heuristics for continuous 
global optimization problems,” Dept. of Industrial & 
Systems Engineering, University of Florida, Gainesville, 
Florida, 2006.
– Michael Hirsch's Ph.D. thesis.
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C-GRASP
• M.J. Hirsch, P.M. Pardalos, and M.G.C. Resende, “Sensor 

registration in a sensor network by continuous GRASP,” 
IEEE Military Communications Conference (MILCOM), 
2006.
– Sensor registration is the process of removing 

(accounting for) non-random errors, or biases, in sensor 
data.

– We solve the sensor registration problem when some 
data is not seen by all sensors, and the correspondence 
of data seen by the different sensors is not known.

– We outperform previous methods in the literature and 
have applied for a U.S. Patent.
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C-GRASP

• M.J. Hirsch, C.N. Meneses, P.M. Pardalos, M.A. Ragle, and 
M.G.C. Resende, “A continuous GRASP to determine the 
relationship between drugs and adverse reactions,” in “Data 
Mining, Systems Analysis and Optimization in Biomedicine,” 
O. Seref, O.Erhun Kundakcioglu, and P.M. Pardalos (eds.), 
AIP Conference Proceedings, vol. 953, pp. 106-121,  
Springer, 2008.
– We formulate the drug-reaction relationship problem as a 

continuous global optimization problem
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C-GRASP

• M.J. Hirsch, P.M. Pardalos, and M.G.C. Resende, 
“Solving systems of nonlinear equations with continuous 
GRASP,” Nonlinear Analysis: Real World Applications, 
vol. 10, pp. 2000-2006, 2009.
– We formulate a system of nonlinear equations as 

nonlinear function which has min value zero.  After 
finding a root, we add a barrier around the root and 
resolve to find the next root.
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C-GRASP

• E.G. Birgin, E.M. Gozzi, M.G.C. Resende, and R.M.A. Silva, 
“Continuous GRASP with a local active-set method for 
bound-constrained global optimization,” J. of Global 
Optimization, vol. 48, pp. 289-310, 2010.
– We adapt C-GRASP for global optimization of functions 

for which gradients can be computed. To to this, we use 
GENCAN (Birgin and Martínez, 2002), an active-set 
method for bound-constrained local minimization as the 
local improvement procedure.
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C-GRASP

• R.M.A. Silva, M.G.C. Resende, and P.M. Pardalos, 
“A C-GRASP Python/C library for bound-
constrained global optimization,” to appear in 
Optimization Letters, 2011.
–  We describe libcgrpp,a GNU-style dynamic 

shared Python/C library.
– The function to be minimized is encoded in Python 

and read by the library.
– Solver can be standalone or called from a C program.
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C-GRASP

• M.J. Hirsch, P.M. Pardalos, and M.G.C. Resende, 
“Correspondence of projected 3D points and 
lines using a continuous GRASP,” to appear in 
International Transactions in Operational 
Research, 2011.
– Computer vision application
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Concluding remarks
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Concluding remarks

We have given a review of classical GRASP
We then showed how the main components of GRASP 
(randomized construction and local search) can be replaced 
We showed how hybridization with path-relinking  and elite 
sets can add memory mechanisms to GRASP
We concluded describing C-GRASP, an adaptation of 
GRASP for bound-constrained global optimization.
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The End
These slides and all papers cited in this talk
can be downloaded from my homepage:
http://mauricioresende.com
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