
 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Talk given at the Department of Industrial Systems &
Engineering, U. of Florida
Gainesville, FL ✤ January 27, 2011

 GRASP heuristics for
discrete & continuous
global optimization

Mauricio G. C. Resende
AT&T Labs Research
Florham Park, New Jersey
mgcr@research.att.com

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Google Scholar Search: "greedy randomized adaptive search"
(http://scholar.google.com)

year cumul. papers year Cumul. papers

1990 1 2001 402

1991 7 2002 533

1992 11 2003 661

1993 16 2004 803

1994 34 2005 1,010

1995 54 2006 1,220

1996 89 2007 1,470

1997 126 2008 1,770

1998 196 2009 2,130

1999 256 2010 2,440

2000 308 2011 (to Jan. 27th) 2,450

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Annotated bibliographies of GRASP

• P. Festa and M.G.C. Resende, GRASP: An annotated bibliography,
Essays and Surveys on Metaheuristics, C.C. Ribeiro and P.
Hansen, Eds., Kluwer Academic Publishers, pp. 325-367, 2002

• P. Festa and M.G.C. Resende, An annotated bibliography of
GRASP–Part I: Algorithms, International Transactions in
Operational Research, vol. 16, pp. 1-24, 2009.

• P. Festa and M.G.C. Resende, An annotated bibliography of
GRASP–Part II: Applications, International Transactions in
Operational Research, vol. 16, pp. 131-172, 2009.

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Follow GRASP on Twitter: http://twitter.com/graspheuristic

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Summary

Combinatorial optimization and a review of GRASP
Neighborhoods, local search, greedy randomized construction
and diversification

Hybrid construction
Other greedy randomized constructions, reactive GRASP,
long-term memory in construction, biased sampling, cost
perturbation

Hybrid local search
Variable neighborhood descent, variable neighborhood search,
short-term memory tabu search, simulated annealing, iterated
local search, very large-scale neighborhood search

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Summary

Hybridization with path-relinking
Elite sets, forward, backward, back and forward, mixed,
greedy randomized adaptive path-relinking, evolutionary path-
relinking

Continuous GRASP for bound constrained global optimization

Concluding remarks

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Combinatorial
Optimization

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Combinatorial Optimization

Combinatorial optimization: process of finding
the best, or optimal, solution for problems with
a discrete set of feasible solutions.

 Applications: e.g. routing, scheduling, packing,
inventory and production management,
location, logic, and assignment of resources.

Economic impact: e.g. transportation (airlines,
trucking, rail, and shipping), forestry,
manufacturing, logistics, aerospace, energy
(electrical power, petroleum, and natural gas),
agriculture, biotechnology, financial services,
and telecommunications.

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Combinatorial Optimization

Given:
discrete set of solutions X
objective function f(x): x ∈ X → R

Objective (minimization):
find x ∈ X : f(x) ≤ f(y), ∀ y ∈ X

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Combinatorial Optimization

Much progress in recent years on finding
exact (provably optimal) solutions: dynamic
programming, cutting planes, branch and
cut, …
Many hard combinatorial optimization
problems are still not solved exactly and
require good solution methods.

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Combinatorial Optimization

Approximation algorithms are guaranteed to
find in polynomial-time a solution within a
given factor of the optimal.

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Combinatorial Optimization

Approximation algorithms are guaranteed to
find in polynomial-time a solution within a
given factor of the optimal.
Sometimes the factor is too big, i.e. guaranteed
solutions are far from optimal
Some optimization problems (e.g. max clique,
covering by pairs) cannot have approximation
schemes unless P=NP

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Combinatorial Optimization

Aim of heuristic methods for combinatorial
optimization is to quickly produce good-
quality solutions, without necessarily
providing any guarantee of solution quality.

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Metaheuristics

Metaheuristics are heuristics to devise heuristics.

Examples: simulated annealing, genetic algorithms,
tabu search, scatter search, ant colony
optimization, variable neighborhood search, and
GRASP.

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Metaheuristics

Metaheuristics are high level procedures that
coordinate simple heuristics, such as local search,
to find solutions that are of better quality than
those found by the simple heuristics alone.
Examples: simulated annealing, genetic algorithms,
tabu search, scatter search, ant colony
optimization, variable neighborhood search, and
GRASP.

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Metaheuristics

Metaheuristics are high level procedures that
coordinate simple heuristics, such as local search,
to find solutions that are of better quality than
those found by the simple heuristics alone.
Examples: simulated annealing, genetic algorithms,
tabu search, scatter search, ant colony
optimization, variable neighborhood search, and
GRASP.

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Review of GRASP:
Local Search

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Local Search

To define local search, one needs to specify a local
neighborhood structure.
Given a solution x , the elements of the
neighborhood N(x) of x are those solutions y that
can be obtained by applying an elementary
modification (often called a move) to x.

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Local Search Neighborhoods

Consider x = (0,1,0) and the 1-flip neighborhood of a 0/1
array.

x = (0,1,0)

(1,1,0) (0,0,0) (0,1,1)

N (x)

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Local Search Neighborhoods

Consider x = (2,1,3,4) and the 2-swap neighborhood of a
permutation array.

x = (2,1,3,4)

(1,2,3,4) (3,1,2,4) (4,1,3,2)

N (x) = C(4,2) = 6

(2,3,1,4) (2,4,3,1)

(2,1,4,3)

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Local Search

Given an initial solution x0, a neighborhood N(x), and
function f(x) to be minimized:

x = x0 ;

while (∃ y ∈ N(x) | f(y) < f(x)) {
x = y ;

}
At the end, x is a local minimum of f(x) .

check for better solution in neighborhood of x

move to better
solution y Time complexity of local search

 can be exponential.

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Local Search
(ideal situation)

f (0,0,0) = 3

f (1,1,1) = 3

f (0,1,0) = 4

f (0,0,1) = 0

f (1,0,0) = 5

f (0,1,1) = 1

f (1,1,0) = 6

f (1,0,1) = 2

With any starting solution Local Search finds the global optimum.

global
minimum

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Local Search
(more realistic situation)

f (1,1,1) = 2

f (0,1,0) = 2

f (0,0,1) = 0

f (1,0,0) = 1

f (0,1,1) = 3

f (1,1,0) = 6

f (1,0,1) = 3

f (0,0,0) = 3 global
minimum

local
minima

local
minimum

But some starting solutions lead Local Search to a local minimum.

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Effectiveness of local search depends on several
factors:

neighborhood structure
function to be minimized
starting solution

Local Search

usually pre-
determined

usually easier to
control

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Multi-start method

c* = ∞

repeat

x = method()

if f(x) < c* then
 x* = x
 c* = f(x*)
endif

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Random multi-start

c* = ∞

repeat

x = random_construction()

if f(x) < c* then
 x* = x
 c* = f(x*)
endif

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Example: probability of finding opt by random selection

Suppose x = (0/1, 0/1, 0/1, 0/1, 0/1) and let the
unique optimum be x* = (1,0,0,1,1).
The prob of finding the opt at random is 1/32 = .
031 and the prob of not finding it is 31/32.
After k trials, the probability of not finding the opt is
(31/32)k and hence the prob of find it at least once
is 1− (31/32)k

For k = 5, p = .146; for k = 10, p = .272; for k =
20, p = .470; for k = 50, p = .796; for k = 100, p
= .958; for k = 200, p = .998

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Example: Probability of finding opt with K samplings
on a 0−1 vector of size N

 N: 10 15 20 25 30
K:
10 .010 .000 .000 .000 .000
100 .093 .003 .000 .000 .000
1000 .624 .030 .000 .000 .000
10000 1.000 .263 .009 .000 .000
100000 1.000 .953 .091 .003 .000

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Greedy algorithm

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

The greedy algorithm

Constructs a solution, one element at a time:
Defines candidate elements.
Applies a greedy function to each candidate element.
Ranks elements according to greedy function value.
Add best ranked element to solution.

re
pe

at
 u

nt
il

 d
on

e

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

The greedy algorithm
An example: minimum weight spanning tree

3

2
2

1
3 2

2

4 2
5 4

4

5

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

The greedy algorithm
An example: minimum weight spanning tree

3

2
2

1
3 2

2

4 2
5 4

4

5

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

The greedy algorithm
An example: minimum weight spanning tree

3

2
2

1
3 2

2

4 2
5 4

4

5

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

The greedy algorithm
An example: minimum weight spanning tree

3

2
2

1
3 2

2

4 2
5 4

4

5

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

The greedy algorithm
An example: minimum weight spanning tree

3

2
2

1
3 2

2

4 2
5 4

4

5

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

The greedy algorithm
An example: minimum weight spanning tree

3

2
2

1
3 2

2

4 2
5 4

4

5

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

The greedy algorithm
An example: minimum weight spanning tree

3

2
2

1
3 2

2

4 2
5 4

4

5

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

The greedy algorithm
An example: minimum weight spanning tree

3

2
2

1
3 2

2

4 2
5 4

4

5

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

The greedy algorithm
An example: minimum weight spanning tree

3

2
2

1
3 2

2

4 2
5 4

4

5

Global minimum

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

The greedy algorithm
Another example: Maximum clique

Given graph G = (V, E), find largest subgraph of G
such that all vertices are mutually adjacent.
greedy algorithm builds solution, one element (vertex) at a
time
candidate set: unselected vertices adjacent to all selected
vertices
greedy function: vertex degree with respect to other
candidate set vertices.

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

The greedy algorithm
Another example: Maximum clique

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

The greedy algorithm
Another example: Maximum clique

432

2

3 3 3

2

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

The greedy algorithm
Another example: Maximum clique

432

2

3 3 3

2

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

The greedy algorithm
Another example: Maximum clique

0

1 2

1

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

The greedy algorithm
Another example: Maximum clique

0

1 2

1

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

The greedy algorithm
Another example: Maximum clique

0

0

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

The greedy algorithm
Another example: Maximum clique

global maximum

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

The greedy algorithm
Another example: Maximum clique

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

The greedy algorithm
Another example: Maximum clique

2

4

4

3

33

2 3

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

The greedy algorithm
Another example: Maximum clique

2

4

4

3

33

2 3

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

The greedy algorithm
Another example: Maximum clique

0 0

0

0

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

The greedy algorithm
Another example: Maximum clique

0 0

0

0

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

The greedy algorithm
Another example: Maximum clique

sub-optimal
clique

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Semi-greedy heuristic

A semi-greedy heuristic tries to get around
convergence to non-global local minima.
repeat until solution is constructed
For each candidate element
apply a greedy function to element

Rank all elements according to their greedy function values
Place well-ranked elements in a restricted candidate list (RCL)
Select an element from the RCL at random & add it to the solution

re
pe

at
 u

nt
il

 d
on

e

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Semi-greedy heuristic

Hart & Shogan (1987) propose two mechanisms for
building the RCL:
Cardinality based: place k best candidates in RCL
Value based: place all candidates having greedy values better than
α ⋅ best_value in RCL, where α ∈ [0,1].

Feo & Resende (1989) proposed semi-greedy
construction as a basic component of GRASP.

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Hart-Shogan Algorithm

c* = ∞

repeat

x = semi_greedy_construction()
if (x is infeasible) then

x = repair(x)
if f(x) < c* then
 x* = x
 c* = f(x*)
endif

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

The semi-greedy algorithm
Maximum clique example

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

The semi-greedy algorithm
Maximum clique example

Build clique, one node at a
time.

Candidates: nodes adjacent
to clique.

Greedy function: degree
with respect to candidate
nodes.

RCL =

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

The semi-greedy algorithm
Maximum clique example

Build clique, one node at a
time.

Candidates: nodes adjacent
to clique.

Greedy function: degree
with respect to candidate
nodes.

RCL =

Choose at random

Semi-greedy
iteration 1

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

The semi-greedy algorithm
Maximum clique example

Build clique, one node at a
time.

Candidates: nodes adjacent
to clique.

Greedy function: degree
with respect to candidate
nodes.

RCL =

Choose at random

Semi-greedy
iteration 1

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

The semi-greedy algorithm
Maximum clique example

Build clique, one node at a
time.

Candidates: nodes adjacent
to clique.

Greedy function: degree
with respect to candidate
nodes.

RCL =

Choose at random

Semi-greedy
iteration 1

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

The semi-greedy algorithm
Maximum clique example

Build clique, one node at a
time.

Candidates: nodes adjacent
to clique.

Greedy function: degree
with respect to candidate
nodes.

RCL =

Choose at random

Clique of size 2

Semi-greedy
iteration 1

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

The semi-greedy algorithm
Maximum clique example

Build clique, one node at a
time.

Candidates: nodes adjacent
to clique.

Greedy function: degree
with respect to candidate
nodes.

RCL =

Instead, choose at
random

Semi-greedy
iteration 2

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

The semi-greedy algorithm
Maximum clique example

Build clique, one node at a
time.

Candidates: nodes adjacent
to clique.

Greedy function: degree
with respect to candidate
nodes.

RCL =

Instead, choose at
random

Semi-greedy
iteration 2

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

The semi-greedy algorithm
Maximum clique example

Build clique, one node at a
time.

Candidates: nodes adjacent
to clique.

Greedy function: degree
with respect to candidate
nodes.

RCL =

Then, choose at
random

Semi-greedy
iteration 2

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

The semi-greedy algorithm
Maximum clique example

Build clique, one node at a
time.

Candidates: nodes adjacent
to clique.

Greedy function: degree
with respect to candidate
nodes.

RCL =

Then, choose at
random

Optimal clique of
size 3

Semi-greedy
iteration 2

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

GRASP

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

GRASP: Basic algorithm

c* = ∞

repeat

x = semi_greedy_construction()
if (x is infeasible) then
 x = repair(x)

if f(x) < c* then
 x* = x
 c* = f(x*)
endif

 x = local_search(x)

Semi-greediness
is more general
in GRASP

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Construction phase: greediness + randomization
Builds a feasible solution combining greediness and
randomization
Local search: search in the current neighborhood
until a local optimum is found
Solutions generated by the construction procedure are not
necessarily optimal:
Effectiveness of local search depends on: neighborhood structure,
search strategy, and fast evaluation of neighbors, but also on the
construction procedure itself.

GRASP: Basic algorithm

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

GRASP Construction

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

 Construction phase: RCL based

Evaluate incremental cost
of candidate element

Determine set C of candidate elements

Repeat while
there are
candidate
elements

For each
candidate
element:

Build RCL with best candidates, select one
at random and add it to solution.

restricted candidate list

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Construction phase: RCL based

Minimization problem
Basic construction procedure:
Greedy function c(e): incremental cost associated with the
incorporation of element e into the current partial solution
under construction
cmin (resp. cmax): smallest (resp. largest) incremental cost
RCL made up by the elements with the smallest incremental
costs.

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Construction phase
Cardinality-based construction:
p elements with the smallest incremental costs
Quality-based construction:
Parameter α defines the quality of the elements in RCL.
RCL contains elements with incremental cost
cmin ≤ c(e) ≤ cmin + α (cmax –cmin)
α = 0 : pure greedy construction
α = 1 : pure randomized construction

Select at random from RCL using uniform probability
distribution

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

α=0.2

α=0.4

α=0.6

α=0.8

Illustrative results: RCL parameter

weighted MAX-SAT instance, 1000 GRASP iterations

Construction phase only

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

α=0.2

α=0.6

α=0.8

α=1.0

Illustrative results: RCL parameter

weighted MAX-SAT instance, 1000 GRASP iterations

Construction + local search

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

best solution

average solution

time

tim
e

(s
e c

on
ds

) f
or

 1
00

0
ite

ra
tio

ns

so
lu

tio
n

va
lu

e

RCL parameter α

Illustrative results: RCL parameter

random greedy

weighted MAX-SAT instance: 100 variables and
 850 clauses

SGI Challenge 196 MHz

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 0.2 0.4 0.6 0.8 1
 400000

 405000

 410000

 415000

 420000

 425000

 430000

 435000

 440000

 445000

 450000

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

5

10

15

20

0 0.2 0.4 0.6 0.8 1

ti
m

e
 (

s
e

c
o

n
d
s
)

fo
r

1
0
0

0
 i
te

ra
ti
o

n
s

RCL parameter alpha

total CPU time

local search CPU time

Illustrative results: RCL parameter

Another weighted MAX-SAT instance

random greedyRCL parameter α
SGI Challenge 196 MHz

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

w
ei

gh
t

2 . 0 0

3 . 0 0

4 . 0 0

5 . 0 0

6 . 0 0

7 . 0 0

8 . 0 0

9 . 0 0

1 0 . 0 0

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0 3 0 0 0 3 5 0 0 4 0 0 0

p h a s e 2 s o l n
p h a s e 1 s o l n

w
ei

gh
t

iterations

random construction

local search

GRASP: Basic algorithm

Application: modem placement
max weighted covering problem
maximization problem: α =
0.85

9 . 5 0

9 . 5 5

9 . 6 0

9 . 6 5

9 . 7 0

9 . 7 5

9 . 8 0

9 . 8 5

9 . 9 0

9 . 9 5

1 0 . 0 0

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0 3 0 0 0 3 5 0 0 4 0 0 0 4 5 0 0 5 0 0 0

t
)

p h a s e 2 s o l n
p h a s e 1 s o l n

iterations

GRASP construction

local search

w
ei

gh
t

Effectiveness of greedy randomized vs
purely randomized construction:

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Hybrid construction
schemes

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

 Construction phase: sampled greedy
 [Resende & Werneck, 2004]

Evaluate incremental cost
of candidate element

Sample a small set C from the set of
candidate elements

Repeat while
there are
candidate
elements

For each
element in
set C:

Select the element with the best
incremental cost and add it to solution.

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

 Construction phase: random+greedy
 [Resende & Werneck, 2004]

Determine set C of candidate elements

Determine set C of candidate elements

Repeat while
solution has
fewer than K
elements

For each
element in
set C:

Select an element from the set C
at random and add it to solution.

Repeat while
there are
candidate
elements

Evaluate incremental cost
of candidate element

Select the element with the best
incremental cost and add it to solution.

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

W() < W() < W() < W()

Construction with cost perturbation

Perturb with costs
increasing from
top to bottom.

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

W() < W() < W() < W()

Construction with cost perturbation

Perturb with costs
increasing from
top to bottom.

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

W() < W() < W() < W()

Construction with cost perturbation

Perturb with costs
increasing from
top to bottom.

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

W() < W() < W() < W()

Construction with cost perturbation

Perturb with costs
increasing from
top to bottom.

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

W() < W() < W() < W()

Construction with cost perturbation

Perturb with costs
increasing from
top to bottom.

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

W() < W() < W() < W()

Construction with cost perturbation

Perturb with costs
increasing from
top to bottom.

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

W() < W() < W() < W()

Construction with cost perturbation

Perturb with costs
increasing from
top to bottom.

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

W() < W() < W() < W()

Construction with cost perturbation

Perturb with costs
increasing from
top to bottom.

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

W() < W() < W() < W()

Construction with cost perturbation

Perturb with costs
increasing from
bottom to top.

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

W() < W() < W() < W()

Construction with cost perturbation

Perturb with costs
increasing from
bottom to top.

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

W() < W() < W() < W()

Construction with cost perturbation

Perturb with costs
increasing from
bottom to top.

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

W() < W() < W() < W()

Construction with cost perturbation

Perturb with costs
increasing from
bottom to top.

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

W() < W() < W() < W()

Construction with cost perturbation

Perturb with costs
increasing from
bottom to top.

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

W() < W() < W() < W()

Construction with cost perturbation

Perturb with costs
increasing from
bottom to top.

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

W() < W() < W() < W()

Construction with cost perturbation

Perturb with costs
increasing from
bottom to top.

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

W() < W() < W() < W()

Construction with cost perturbation

Perturb with costs
increasing from
bottom to top.

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

W() < W() < W() < W()

Construction with cost perturbation

Greedy heuristic
generates two
different spanning
trees.

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Reactive GRASP
Prais & Ribeiro (2000)

When building RCL, what α to use?
Fix a some value 0 ≤ α ≤ 1
Choose α at random (uniformly) at each GRASP iteration.
Another approach reacts to search ...
At each GRASP iteration, a value of the RCL parameter α is
chosen from a discrete set of values [α 1, α 2, ..., α m].
The probability that α k is selected is pk.
Reactive GRASP: adaptively changes the probabilities [p1, p2, ...,
pm] to favor values of α that produce good solutions.

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Reactive GRASP Prais & Ribeiro (2000)

Reactive GRASP for minimization ...
Initially pk = 1/m, for k = 1,...,m. (α 's are selected
uniformly at random)
Define
 F(S*) be the best solution so far
A

k
be the average value of the solutions obtained with α k

Every N
α

GRASP iterations, compute

q
k
 = F(S*) / A

k
, for k = 1,...,m

p
k
 = q

k
/ sum(q

i
| i = 1,...,m)

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Reactive GRASP Prais & Ribeiro (2000)

Reactive GRASP for minimization ...
Initially pk = 1/m, for k = 1,...,m. (α 's are selected
uniformly at random)
Define
 F(S*) be the best solution so far
A

k
be the average value of the solutions obtained with α k

Every N
α

GRASP iterations, compute

q
k
 = F(S*) / A

k
, for k = 1,...,m

p
k
 = q

k
/ sum(q

i
| i = 1,...,m)

The more suitable is
α

k
, the larger is q

k
, and

consequently p
k
, making

α
k
 more likely to chosen.

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Hybrid local search in
GRASP

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Local search within GRASP

Local search is usually implemented in
GRASP as:

x = x0;
while (there exists y ∈N(x) | f(y) < f(x)) do

x = y; // y is first improving solution found in N(x)

end while
return x;

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Local search within GRASP

Local search is usually implemented in
GRASP as:

x = x0;
while (there exists y ∈N(x) | f(y) < f(x)) do

x = y; // y is first improving solution found in N(x)

end while
return x;

first improving

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Local search within GRASP

Another way to implement local
search in GRASP is:

x = x0;
y = argmin { f(z) | z ∈N(x) };
while (f(y) < f(x)) do

x = y;
y = argmin { f(z) | z ∈N(x) };

end while
return x;

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Local search within GRASP

Another way to implement local
search in GRASP is:

x = x0;
y = argmin { f(z) | z ∈N(x) };
while (f(y) < f(x)) do

x = y;
y = argmin { f(z) | z ∈N(x) };

end while
return x;

best improving

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

x = x0;

while (∃ y ∈N(x) |f(y) < f(x))
do
x = y;

end while

return x;

x = x0;

y = argmin { f(z) | z ∈N(x) };

while (f(y) < f(x)) do
x = y;
y = argmin { f(z) | z ∈N(x) };

end while

return x;

First improving is usually faster.
Premature convergence to low-quality local optimum is more likely to
occur with best improving.

 first improving best improving

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

x = x0;

while (∃ y ∈N(x) |f(y) < f(x))
do
x = y;

end while

return x;

x = x0;

y = argmin { f(z) | z ∈N(x) };

while (f(y) < f(x)) do
x = y;
y = argmin { f(z) | z ∈N(x) };

end while

return x;

If search of N(x) is done deterministically, then repeated
applications of local search starting from same x0 lead to same
local minimum

 first improving best improving

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

x = x0;

while (∃ y ∈N(x) |f(y) < f(x))
do
x = y;

end while

return x;

x = x0;

y = argmin { f(z) | z ∈N(x) };

while (f(y) < f(x)) do
x = y;
y = argmin { f(z) | z ∈N(x) };

end while

return x;

If search of N(x) is done deterministically, then repeated
applications of local search starting from same x0 lead to same
local minimum
Hashing can avoid repeating local search from previous x0

{ Woodruff & Zemel (1993), Ribeiro et. al (1997), Martins et al. (2000) }

 first improving best improving

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

if (f(x0) < CUTOFF) then

 x = x0;

 while (∃ y ∈N(x) |f(y) < f(x)) do
x = y;

 end while

 return x;

end if

if (f(x0) < CUTOFF) then

 x = x0;

 y = argmin { f(z) | z ∈N(x) };

 while (f(y) < f(x)) do

x = y;

y = argmin { f(z) | z ∈N(x) };

 end while

 return x;

end if

Filtering to avoid application of local search to low quality
solutions, only promising solutions are investigated: { Feo,

Resende, & Smith (1994), Prais & Ribeiro (2000), Martins et. al (2000) }

 first improving best improving

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Local search within GRASP
As the name implies, local search, is confined to a localized region
of the solution space.
To escape from local minima and broaden the search several
alternatives have been proposed to replace local search in GRASP:
variable neighborhood descent (VND)
variable neighborhood search (VNS)
short-term memory tabu search (TS)
simulated annealing (SA)
iterated local search (ILS)
very large-scale neighborhood search (VLSNS)

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Local search within GRASP
As the name implies, local search, is confined to a localized region
of the solution space.
To escape from local minima and broaden the search several
alternatives have been proposed to replace local search in GRASP:
variable neighborhood descent (VND)
variable neighborhood search (VNS)
short-term memory tabu search (TS)
simulated annealing (SA)
iterated local search (ILS)
very large-scale neighborhood search (VLSNS)

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

 GRASP VND local search

 Instead of using a single
neighborhood, VND uses K
not necessarily related
neighborhoods N

1
, N

2
, ..., N

K
.

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

 GRASP VND local search

 Instead of using a single
neighborhood, VND uses K
not necessarily related
neighborhoods N

1
, N

2
, ..., N

K
.

x = x
0
; k = 1;

while (k ≤ K) do

 if ( s  N
k
(x) such that f(s) < f(x)) then

 x = s; k = 1; break;

 endif

 k = k + 1;

endwhile

return x;

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

 GRASP VND local search
 x = x

0
; k = 1;

while (k ≤ K) do scan all K neighborhoods

 if ( s  N
k
(x) such that f(s) < f(x)) then

 x = s; k = 1; break;

 endif

 k = k + 1;

endwhile

return x;

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

 GRASP VND local search
 x = x

0
; k = 1;

while (k ≤ K) do scan all K neighborhoods

 if ( s  N
k
(x) such that f(s) < f(x)) then

 x = s; k = 1; break; found improving solution

 endif

 k = k + 1;

endwhile

return x;

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

 GRASP VND local search
 x = x

0
; k = 1;

while (k ≤ K) do scan all K neighborhoods

 if ( s  N
k
(x) such that f(s) < f(x)) then

 x = s; k = 1; break; found improving solution in N
k

 endif

 k = k + 1; x is a local mimimum of N
k

endwhile

return x;

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

 GRASP VND local search
 x = x

0
; k = 1;

while (k ≤ K) do scan all K neighborhoods

 if ( s  N
k
(x) such that f(s) < f(x)) then

 x = s; k = 1; break; found improving solution in N
k

 endif

 k = k + 1; x is a local mimimum of N
k

endwhile

return x; x is a local mimimum of N
k
, for k = 1,...,K

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

 GRASP VND local search
 example: scheduling of multi-grouped units

Input: Assignment of units to periods:

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

 GRASP VND local search
 example: scheduling of multi-grouped units

Local search: Examine neighborhood of current
solution. If better solution found, make it current
solution.

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

 GRASP VND local search
 example: scheduling of multi-grouped units

Three neighborhoods: Swap units, move unit, swap
periods.

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

 GRASP VND local search
 example: scheduling of multi-grouped units

Swap units neighborhood: Swaps places of two
units assigned to distinct periods.

solution

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Swap units neighborhood: Swaps places of two
units assigned to distinct periods.

solution

 GRASP VND local search
 example: scheduling of multi-grouped units

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Swap units neighborhood: Swaps places of two
units assigned to distinct periods.

solution

 GRASP VND local search
 example: scheduling of multi-grouped units

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Swap units neighborhood: Swaps places of two
units assigned to distinct periods.

solution

 GRASP VND local search
 example: scheduling of multi-grouped units

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Swap units neighborhood: Swaps places of two
units assigned to distinct periods.

solution

 GRASP VND local search
 example: scheduling of multi-grouped units

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Swap units neighborhood: Swaps places of two
units assigned to distinct periods.

solution

 GRASP VND local search
 example: scheduling of multi-grouped units

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Swap units neighborhood: Swaps places of two
units assigned to distinct periods.

solution

neighbor

 GRASP VND local search
 example: scheduling of multi-grouped units

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Move unit neighborhood: Moves unit from current
period to available period.

solution

 GRASP VND local search
 example: scheduling of multi-grouped units

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Move unit neighborhood: Moves unit from current
period to available period.

solution

 GRASP VND local search
 example: scheduling of multi-grouped units

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Move unit neighborhood: Moves unit from current
period to available period.

solution

 GRASP VND local search
 example: scheduling of multi-grouped units

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Move unit neighborhood: Moves unit from current
period to available period.

solution

 GRASP VND local search
 example: scheduling of multi-grouped units

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Move unit neighborhood: Moves unit from current
period to available period.

solution

 GRASP VND local search
 example: scheduling of multi-grouped units

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Move unit neighborhood: Moves unit from current
period to available period.

solution

 GRASP VND local search
 example: scheduling of multi-grouped units

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Move unit neighborhood: Moves unit from current
period to available period.

solution

neighbor

 GRASP VND local search
 example: scheduling of multi-grouped units

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Swap periods neighborhood: Swap all units in
period i with all units in period j.

solution

 GRASP VND local search
 example: scheduling of multi-grouped units

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Swap periods neighborhood: Swap all units in
period i with all units in period j.

solution

Period i Period j

 GRASP VND local search
 example: scheduling of multi-grouped units

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Swap periods neighborhood: Swap all units in
period i with all units in period j.

solution

Period i Period j

 GRASP VND local search
 example: scheduling of multi-grouped units

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Swap periods neighborhood: Swap all units in
period i with all units in period j.

solution

Period i Period j

 GRASP VND local search
 example: scheduling of multi-grouped units

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Swap periods neighborhood: Swap all units in
period i with all units in period j.

solution

Period i Period j

 GRASP VND local search
 example: scheduling of multi-grouped units

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Swap periods neighborhood: Swap all units in
period i with all units in period j.

solution

neighbor

Period i Period j

 GRASP VND local search
 example: scheduling of multi-grouped units

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

GRASP VND local search

Move unit

Swap periods

improved

improved

improved

Swap units

start

yes

yes

yes

no

no

Local
minimum

no

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

GRASP VND local search

Move unit

Swap periods

improved

improved

improved

Swap units

start

yes

yes

yes

no

no

Local
minimum

no

Neighborhoods are unrelated as
opposed to VNS where the are
related

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

GRASP VND local search

Move unit

Swap periods

improved

improved

improved

Swap units

start

yes

yes

yes

no

no

Local
minimum

no

1) Local min in one neighborhood
may not be local min in another

2) Global min is a local min in
all neighborhoods

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Examples of VND within GRASP

Martins et al. (1999): Steiner problem in graphs
Ribeiro and Souza (2002): degree constrained
minimum spanning tree
Ribeiro et al. (2002): Steiner problem in graphs
Ribeiro and Vianna (2005): Phylogeny problem
Andrade and Resende (2006): PBX phone
migration

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Path-relinking (PR)

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Path-relinking

 Intensification strategy exploring trajectories
connecting elite solutions (Glover, 1996)
Originally proposed in the context of tabu search
and scatter search.
Paths in the solution space leading to other elite
solutions are explored in the search for better
solutions.

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Path-relinking

Exploration of trajectories that connect high
quality (elite) solutions:

initial
solution

guiding
solution

path in the neighborhood of solutions

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Path-relinking
Path is generated by selecting moves that
introduce in the initial solution attributes of the
guiding solution.
At each step, all moves that incorporate attributes
of the guiding solution are evaluated and the best
move is selected:

initial
solution

guiding
solution

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

starting solution guiding solutionPR example

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

starting solution x guiding solution yPR example

|∆ (x,y)| = 5

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

starting solution guiding solutionPR example

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

starting solution guiding solutionPR example

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

starting solution guiding solutionPR example

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

starting solution guiding solutionPR example

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

starting solution guiding solutionPR example

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

starting solution guiding solutionPR example

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

starting solution guiding solutionPR example

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

starting solution guiding solutionPR example

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

starting solution guiding solutionPR example

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

starting solution guiding solutionPR example

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

starting solution guiding solutionPR example

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

starting solution guiding solutionPR example

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

starting solution guiding solutionPR example

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

starting solution guiding solutionPR example

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

starting solution guiding solutionPR example

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

starting solution guiding solutionPR example

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

starting solution guiding solutionPR example

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

starting solution guiding solutionPR example

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

starting solution guiding solutionPR example

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

starting solution guiding solutionPR example

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

starting solution guiding solutionPR example

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

starting solution guiding solutionPR example

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

starting solution guiding solutionPR example

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

starting solution guiding solutionPR example

Cannot improve
endpoint solutions

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

starting solution guiding solutionPR example

Cannot improve
endpoint solutions

Can improve
endpoint solutions

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Forward path-relinking
Variants: trade-offs between computation time and
solution quality
Forward PR adopts as initial solution the worse of the two
input solutions and uses the better solution as the guide.

guiding
solutionworse

solution

forward

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Backward path-relinking
Variants: trade-offs between computation time and
solution quality
Backward PR usually does better: Better to start from the
best of the two input solutions, neighborhood of the initial
solution is explored more than of the guide!

guiding
solutionbetter

solution

backward

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Back and forth path-relinking
Variants: trade-offs between computation time and
solution quality
Explore both trajectories: twice as much time, often with only
marginal improvements!

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Truncated path-relinking

Variants: trade-offs between computation time and
solution quality
Truncate the search, do not follow the full trajectory.

Truncate search here

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Truncated path-relinking

Variants: trade-offs between computation time and
solution quality
Truncate the search, do not follow the full trajectory.

Truncate search here

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Mixed path-relinking
Variants: trade-offs between computation time and
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)

I
G

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Mixed path-relinking
Variants: trade-offs between computation time and
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Mixed path-relinking
Variants: trade-offs between computation time and
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)

IG

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Mixed path-relinking
Variants: trade-offs between computation time and
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Mixed path-relinking
Variants: trade-offs between computation time and
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)

GI

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Mixed path-relinking
Variants: trade-offs between computation time and
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Mixed path-relinking
Variants: trade-offs between computation time and
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)

I

G

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Mixed path-relinking
Variants: trade-offs between computation time and
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Mixed path-relinking
Variants: trade-offs between computation time and
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)

GI

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Mixed path-relinking
Variants: trade-offs between computation time and
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Mixed path-relinking
Variants: trade-offs between computation time and
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)

G

I

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Mixed path-relinking
Variants: trade-offs between computation time and
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Mixed path-relinking
Variants: trade-offs between computation time and
solution quality
Mixed path-relinking (Glover, 1997; Rosseti, 2003)

Advantage: explore around
neighborhoods of both input
solutions.

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Truncated mixed path-relinking
Variants: trade-offs between computation time and
solution quality
Truncated mixed path-relinking

Truncate search here

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Greedy randomized adaptive path-relinking
 Faria, Binato, Resende, & Falcão (2001, 2005)

Incorporates semi-greediness into PR.
Standard PR selects moves greedily: samples one of
exponentially many paths

guiding
solutioninitial

solution

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Greedy randomized adaptive path-relinking
 Faria, Binato, Resende, & Falcão (2001, 2005)

Incorporates semi-greediness into PR.
graPR creates RCL with best moves: samples several
paths

guiding
solutioninitial

solution

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Incorporates semi-greediness into PR.
graPR creates RCL with best moves: samples several
paths

guiding
solutioninitial

solution

Greedy randomized adaptive path-relinking
 Faria, Binato, Resende, & Falcão (2001, 2005)

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Truncated mixed graPR
When applied to a given pair of
solutions truncated mixed PR
explores one of exponentially
many path segments each time
it is executed.

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Truncated mixed graPR
With high probability, truncated
mixed graPR explores different
path segments each time it is
executed between the same pair
of solutions.

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Truncated mixed graPR
With high probability, truncated
mixed graPR explores different
path segments each time it is
executed between the same pair
of solutions.

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Truncated mixed graPR
With high probability, truncated
mixed graPR explores different
path segments each time it is
executed between the same pair
of solutions.

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

GRASP with path-relinking

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

GRASP with path-relinking

First proposed by Laguna and Martí (1999).
Maintains a set of elite solutions found during GRASP
iterations.
After each GRASP iteration (construction and local
search):
Use GRASP solution as initial solution.
Select an elite solution uniformly at random: guiding solution.
Perform path-relinking between these two solutions.

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

GRASP with path-relinking

Since 1999, there has been a lot of activity in
hybridizing GRASP with path-relinking.
Survey by Resende & Ribeiro in MIC 2003 book of
Ibaraki, Nonobe, and Yagiura (2005).
Main observation from experimental studies:
GRASP with path-relinking outperforms pure
GRASP.

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

MAX-SAT (Festa, Pardalos, Pitsoulis, and Resende, 2006)

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

3-index assignment (Aiex, Resende, Pardalos, & Toraldo, 2005)

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

QAP (Oliveira, Pardalos, and Resende, 2004)

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Bandwidth packing (Resende and Ribeiro, 2003)

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Job shop scheduling (Aiex, Binato, & Resende, 2003)

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

GRASP with path-relinking:
Pool management

P is a set (pool) of elite solutions.
Ideally, pool has a set of good diverse solutions.
Mechanisms are needed to guarantee that pool is
made up of those kinds of solutions.

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

GRASP with path-relinking:
Pool management

Each iteration of first |P| GRASP iterations adds
one solution to P (if different from others).
After that: solution x is promoted to P if:
x is better than best solution in P.
x is not better than best solution in P, but is better than
worst and is sufficiently different from all solutions in P.

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

GRASP with path-relinking:
Pool management

GRASP with PR works best when paths in PR are
long, i.e. when the symmetric difference between
the initial and guiding solutions is large.
Given a solution to relink with an elite solution,
which elite solution to choose?
Choose at random with probability proportional to the
symmetric difference.

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

GRASP with path-relinking:
Pool management

Solution quality and diversity are two goals of pool
design.
Given a solution X to insert into the pool, which elite
solution do we choose to remove?
Of all solutions in the pool with worse solution than X, select
to remove the pool solution most similar to X, i.e. with the
smallest symmetric difference from X.

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

GRASP with path-relinking

Repeat
GRASP
with
PR loop

1) Construct randomized greedy X
2) Y = local search to improve X
3) Path-relinking between Y and
 pool solution Z
4) Update pool

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Evolutionary path-
relinking (EvPR)

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Evolutionary path-relinking
 (Resende & Werneck, 2004, 2006)

Evolutionary path-relinking “evolves” the pool, i.e.
transforms it into a pool of diverse elements whose
solution values are better than those of the original
pool.
Evolutionary path-relinking can be used
as an intensification procedure at certain points of the
solution process;
as a post-optimization procedure at the end of the solution
process.

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Evolutionary path-relinking (EvPR)

Each “population” of EvPR starts with a
pool of elite solutions of size |P|.

Population P(0) is the current elite set.

Population P(0)

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Evolutionary path-relinking (EvPR)

All pairs of elite solutions (x,y) in K-th
population P(K), such that x ∈ X ⊆ P(K) and
y ∈ Y ⊆ P(K), are path-relinked and the
resulting z = PR(x,y) is a candidate for
inclusion in population P(K+1).

Rules for inclusion into P(K+1) are the same
used for inclusion into any pool.

X

Y

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Evolutionary path-relinking (EvPR)

X

Y

All pairs of elite solutions (x,y) in K-th
population P(K), such that x ∈ X ⊆ P(K)
and
y ∈ Y ⊆ P(K), are path-relinked and the
resulting z = PR(x,y) is a candidate for
inclusion in population P(K+1).

Rules for inclusion into P(K+1) are the same
used for inclusion into any pool.

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Evolutionary path-relinking (EvPR)

If best solution in population P(K+1) has same
objective function value as best solution in
population P(K), process stops.

Else K=K+1 and repeat.

Population P(K)

Population P(K+1)

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

GRASP with evolutionary path-relinking

As post-optimization During GRASP + PR

Repeat
GRASP
with
PR loop

Evolutionary-PR

1) Construct greedy
 randomized
2) Local search
3) Path-relinking
4) Update pool

Repeat
inner
loop

Evolutionary-PR

1) Construct greedy
 randomized
2) Local search
3) Path-relinking
4) Update pool

Repeat
outer
loop

(Resende & Werneck, 2004, 2006)

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

GRASP with EvPR: Implementation ideas
Truncated mixed graPR

In PR and EvPR, apply one iteration of graPR.
For (x,y), different calls to graPR(x,y) explore different paths.

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

GRASP with EvPR: Implementation ideas
Make set X small and with best pool solutions.
Make set Y be entire pool.

X

Y

Use set X of size 1 or 2.

Speeds up EvPR.

Avoids unfruitful calls to graPR(x,y)

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

GRASP with EvPR: Implementation ideas
Make set X small and with best pool solutions.
Make set Y be entire pool.

X

Y

Use set X of size 1 or 2.

Speeds up EvPR.

Avoids unfruitful calls to graPR(x,y)

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

GRASP
GRASP+PR

GRASP+EvPR

Weights uniformly distributed in interval [1,100]: min sum cuts

Each heuristic was run
200 times and time to
target solution recorded.

Network migration scheduling

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Each heuristic was run
200 times and time to
target solution recorded.

Network migration scheduling

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Each heuristic was run
200 times and time to
target solution recorded.

Network migration scheduling

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

GRASP + PR

GRASP + evPR

GRASP

Easier target: GRASP
manages to find target
solution.

Network migration scheduling

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

GRASP + PR

GRASP + evPR

GRASP

Each heuristic was run
200 times and time to
target solution was
recorded.

Network migration scheduling

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

GRASP + PR

GRASP + evPR

Easier target: Comparing GRASP
with path-relinking and GRASP with
evolutionary path-relinking over 200
independent runs.

Network migration scheduling

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

GRASP + PR

GRASP + evPR

Easier target: Comparing GRASP
with path-relinking and GRASP with
evolutionary path-relinking over 200
independent runs.

Runs in which GRASP+evPR
found target solution during
first call to evPR.

Network migration scheduling

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

GRASP + PRGRASP + evPR

Harder target: GRASP cannot
find target solution.

Comparing GRASP with PR and
GRASP with evPR over 200
independent runs.

Network migration scheduling

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Examples of PR within GRASP

Laguna and Martí (1999): 2-layer straight line crossing
minimization

Canuto et al. (2001): Prize-collecting Steiner problem in graphs

Resende and Ribeiro (2001): Bandwidth packing

Ribeiro et al. (2002): Steiner problem in graphs

Resende and Werneck (2004,2006): p-median problem &
capacitated facility location

Aiex et al. (2005): Three-index assignment

Resende and Ribeiro (2005): Survey paper on GRASP & PR

Mateus, Resende, and Silva (2010): generalized QAP

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Continuous GRASP
(C-GRASP)

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

C-GRASP

• C-GRASP is a metaheuristic to finding optimal or
near-optimal solutions to
– Min f(x) subject to: L  x  U
– where x, L, U ∈ Rn

– and f(x) is continuous but can have discontinuities, be
non-differentiable, be the output of a simulation, etc.

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

C-GRASP

• C-GRASP is based on the discrete optimization
metaheuristic GRASP

• It was proposed in 2006 by U. of FL ISE PhD
students Michael Hirsch and Claudio Meneses
with Mauricio Resende and Panos Pardalos.

• M.J. Hirsch, C.N. Meneses, P.M. Pardalos, and M.G.C. Resende,
“Global optimization by continuous GRASP,” Optimization Letters,
vol. 1, pp. 201-212, 2007.

• M.J. Hirsch, P.M. Pardalos, and M.G.C. Resende, “Speeding up
continuous GRASP,” European J. of Operational Research, vol.
205, pp. 507-521, 2010.

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

C-GRASP
• C-GRASP is a multi-start procedure, i.e. a major

loop is repeated until some stopping criterion is
satisfied.

• In each major iteration
– x is initialized with a solution randomly selected from

the box defined by vectors L and U.
– a number of minor iterations are carried out, where

each minor iterations consists of a construction
phase and a local improvement phase.

– Minor iterations are done on a dynamic grid and
stops when the grid is too dense.

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

C-GRASP
f* = ∞

while (stopping criterion not satisfied) do

 x = random[L,U]; h = h(start);

 while (h ≥ h(end)) do

 x = ConstructGreedyRandomized(x)

 x = LocalImprovement(x)

 if (f(x) < f*) then { x* = x; f* = f(x) }

 if (x did not improve this iteration) then { h = h/2 }

 end while

end while

return x*

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

C-GRASP line search

x

current solution

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

C-GRASP line search

x

current solution

direction

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

C-GRASP line search

x

current solution

direction

upper bound

lower bound

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

C-GRASP line search

x

current solution

upper bound

lower bound

h

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

C-GRASP line search

x

upper bound

lower bound

h

Evaluate f(x) at each

Line search returns x* =argmin{ f(x) }

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

C-GRASP greedy randomized construction
unset = {1, 2, 3, ..., n }; x = x0

for (k = 1, 2, ..., n) do
 for (all i ∈ unset) do
 z

i
 = line search in direction e

i
 = (0,0,...,1,....,0)

 end for
 RCL = { i ∈ unset | f(z

i
) < CUTOFF }

 Select at random i* ∈ RCL
 Set x

i*
 = z

i*
; unset = unset \ {i*}

end for

i-th component

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

C-GRASP local improvement

x

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

C-GRASP local improvement

x

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

C-GRASP local improvement

x

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

C-GRASP local improvement

x

Sample projected point y on circle and evaluate f(y)
If f(y) < f(x) then set x = y, translate grid to intersect x
and restart local search from x
If max-points are examined without improvement: x is h-local min

y

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

C-GRASP

• M.J. Hirsch, “GRASP-based heuristics for continuous
global optimization problems,” Dept. of Industrial &
Systems Engineering, University of Florida, Gainesville,
Florida, 2006.
– Michael Hirsch's Ph.D. thesis.

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

C-GRASP
• M.J. Hirsch, P.M. Pardalos, and M.G.C. Resende, “Sensor

registration in a sensor network by continuous GRASP,”
IEEE Military Communications Conference (MILCOM),
2006.
– Sensor registration is the process of removing

(accounting for) non-random errors, or biases, in sensor
data.

– We solve the sensor registration problem when some
data is not seen by all sensors, and the correspondence
of data seen by the different sensors is not known.

– We outperform previous methods in the literature and
have applied for a U.S. Patent.

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

C-GRASP

• M.J. Hirsch, C.N. Meneses, P.M. Pardalos, M.A. Ragle, and
M.G.C. Resende, “A continuous GRASP to determine the
relationship between drugs and adverse reactions,” in “Data
Mining, Systems Analysis and Optimization in Biomedicine,”
O. Seref, O.Erhun Kundakcioglu, and P.M. Pardalos (eds.),
AIP Conference Proceedings, vol. 953, pp. 106-121,
Springer, 2008.
– We formulate the drug-reaction relationship problem as a

continuous global optimization problem

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

C-GRASP

• M.J. Hirsch, P.M. Pardalos, and M.G.C. Resende,
“Solving systems of nonlinear equations with continuous
GRASP,” Nonlinear Analysis: Real World Applications,
vol. 10, pp. 2000-2006, 2009.
– We formulate a system of nonlinear equations as

nonlinear function which has min value zero. After
finding a root, we add a barrier around the root and
resolve to find the next root.

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

C-GRASP

• E.G. Birgin, E.M. Gozzi, M.G.C. Resende, and R.M.A. Silva,
“Continuous GRASP with a local active-set method for
bound-constrained global optimization,” J. of Global
Optimization, vol. 48, pp. 289-310, 2010.
– We adapt C-GRASP for global optimization of functions

for which gradients can be computed. To to this, we use
GENCAN (Birgin and Martínez, 2002), an active-set
method for bound-constrained local minimization as the
local improvement procedure.

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

C-GRASP

• R.M.A. Silva, M.G.C. Resende, and P.M. Pardalos,
“A C-GRASP Python/C library for bound-
constrained global optimization,” to appear in
Optimization Letters, 2011.
– We describe libcgrpp,a GNU-style dynamic

shared Python/C library.
– The function to be minimized is encoded in Python

and read by the library.
– Solver can be standalone or called from a C program.

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

C-GRASP

• M.J. Hirsch, P.M. Pardalos, and M.G.C. Resende,
“Correspondence of projected 3D points and
lines using a continuous GRASP,” to appear in
International Transactions in Operational
Research, 2011.
– Computer vision application

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Concluding remarks

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

Concluding remarks

We have given a review of classical GRASP
We then showed how the main components of GRASP
(randomized construction and local search) can be replaced
We showed how hybridization with path-relinking and elite
sets can add memory mechanisms to GRASP
We concluded describing C-GRASP, an adaptation of
GRASP for bound-constrained global optimization.

 UFL/SIE – January 27, 2011 GRASP & C-GRASP

The End
These slides and all papers cited in this talk
can be downloaded from my homepage:
http://mauricioresende.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Combinatorial Optimization Handbook of Applied Optimization P.M. Pardalos and M.G.C. Resende, eds. Oxford U. Press, 2002
	Combinatorial Optimization
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Metaheuristics Metaheuristics: Computer Decision-Making M.G.C. Resende and J.P. de Sousa, eds., Kluwer, 2003
	Slide 15
	Slide 16
	Slide 17
	Local Search
	Local Search Neighborhoods
	Slide 20
	Slide 21
	Local Search (ideal situation)
	Local Search (more realistic situation)
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	The greedy algorithm
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	The greedy algorithm Another example
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Semi-greedy heuristic
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Local search
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222
	Slide 223
	Slide 224
	Slide 225
	Slide 226
	Slide 227
	Slide 228
	Slide 229
	Slide 230
	Slide 231
	Slide 232
	Slide 233
	Slide 234
	Slide 235
	Slide 236
	Slide 237
	Slide 238
	Slide 239
	Slide 240
	Slide 241
	Slide 242
	Slide 243
	Slide 244
	Slide 245
	Slide 246
	Slide 247
	Slide 248
	Slide 249
	Slide 250
	Slide 251
	Slide 252
	Slide 253
	Slide 254
	Slide 255
	Slide 256
	Slide 257
	Slide 258
	Slide 259

