Hybrid Algorithms for Placement of Virtual Machines across
Geo-Separated Data Centers

Fernando Stefanello®*, Vaneet Aggarwal®, Luciana S. Buriol?®, Mauricio G.C. Resende 4

@ Instituto de Informdtica, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
b School of Industrial Engineering Purdue University, West Lafayette, IN 47907 USA.
¢ Amazon.com, Seattle, WA 98109 USA.
¢ Industrial and Systems Engineering, University of Washington, Seattle, WA 98105 USA.

Abstract

Cloud computing has emerged as a new paradigm for hosting and supplying services
over the Internet. This technology has brought many benefits, such as eliminating the
need for maintaining expensive computing hardware. With an increasing demand for cloud
computing, providing performance guarantees for applications that run over cloud become
important. Applications can be abstracted into a set of virtual machines with certain guar-
antees depicting the quality of service of the application. In this paper, we consider the
placement of these virtual machines across multiple data centers (VMPlacement), meeting
the quality of service requirements while minimizing the bandwidth cost of the data centers.
This problem is a generalization of the NP-hard Generalized Quadratic Assignment Prob-
lem (GQAP). In this paper, we present a Greedy Randomized Adaptive Search Procedure
(GRASP) and a Biased Random-Key Genetic Algorithm (BRKGA), both hybridized with a
Path-Relinking strategy and a local search based on Variable Neighborhood Descent (VND)
for solving this problem. The hybrid heuristics are also tested on instances of the GQAP.
We show that both algorithms are effective in quickly solving small and large instances of
VMPlacement problem, especially when the path-relinking is used. For GQAP, the results
outperform the previous state-of-the-art algorithms.

Keywords: Combinatorial optimization, Cloud computing, Biased Random-Key Genetic
Algorithm, GRASP, Path-Relinking

1. Introduction

Virtualization of physical servers has gained prominence in enterprise data centers. This
is because virtualization offers virtually unlimited resources without any upfront capital in-
vestment and a simple pay-as-you-go charging model. Long-term viability of virtualization

*Corresponding author.
Email addresses: fstefanello@inf.ufrgs.br (Fernando Stefanello), vaneet@purdue.edu (Vaneet
Aggarwal), buriol@inf.ufrgs.br (Luciana S. Buriol), mgcr@uw.edu (Mauricio G.C. Resende)

October 1, 2018

depends, among other factors, on cost and performance. To attain performance guaran-
tees, application providers can offer requirements for a number of virtual machines, band-
width /latency requirements between virtual machines, and latency requirements between
users of the service and virtual machines. Once a service provider can provide these perfor-
mance guarantees, an optimized service can be offered to user applications. However, the
service provider has to match the requirements of different applications to the placement of
virtual machines with the limited bandwidth links between geographically separated data
centers while minimizing its cost.

Unfortunately, today’s public cloud platforms such as Amazon EC2' do not provide
any performance guarantee, which in turn affects tenant cost. Specifically, the resource
reservation model in today’s clouds only provisions CPU and memory resources but ignores
networking completely. Because of the largely oversubscribed nature of data center networks
(e.g., Greenberg et al. (2009)), network bandwidth is a scarce resource shared across many
tenants. In order to meet reliability and demand requirements, data centers have to be
located all around the world. For instance, a teleconference call connects people from all
over the world, and a data center within a reasonable distance to the end users is needed.

For distributed data centers, networking cost is one of the major costs. Given the lim-
ited bandwidth links between data centers, communication-intensive phases of applications
collide and compete for the scarce network resources, which leads to unpredictable running
times. The uncertainty in execution time further translates into unpredictable cost as ten-
ants need to pay for the reserved virtual machines (VMs) for the entire duration of their
jobs.

Placement of virtual machines within a data center has been widely explored (Guo et al.,
2010; Piao and Yan, 2010; Ballani et al., 2011; Xie and Hu, 2012; Alicherry and Lakshman,
2012; Biran et al., 2012; Guo et al., 2017). These papers account for the networking needs
in addition to the CPU and memory needs within a data center. For example, Guo et al.
(2010) propose bandwidth reservation between every pair of VMs. Ballani et al. (2011)
propose a simpler virtual cluster (VC) model where all virtual machines are connected to
a virtual switch with links of bandwidth B. Xie and Hu (2012) extend these approaches
to consider time-varying network requirement. Alicherry and Lakshman (2012) develop re-
source allocation algorithms for distributed cloud systems where the primary objective is to
minimize the maximum latency in communication between the virtual machines allocated
for a user request. However, in comparison with our work, all these papers account for a
single data center or do not ensure minimum network requirements, or consider different
allocation resource objectives. Instead, this paper deals with the placement of virtual ma-
chines across geo-separated data centers, ensuring network resource requirement guarantees
on interconnections, and communication cost minimization. To the best of our knowledge,
this problem with these requirements has not been accounted for in the prior work.

In this paper, we consider multiple data centers that are connected with limited band-
width links. The latency between every pair of data centers is known. Each data center
provides a finite number of resources to users, called virtual machine (VM). A virtual ma-

'http://aws.amazon.com/ec2/

http://aws.amazon.com/ec2/

chine is part of the data center resource requested by users to execute user-defined tasks
that can exchange data with other tasks placed in others VMs. We assume that all VMs
have identical data center resource consumption. In order to meet the application’s quality
of service guarantees, there is an imposed minimum bandwidth and maximum latency be-
tween each pair of virtual machines. We assume that there are multiple users who would
use these services, and users are connected to some data center. In order to meet the overall
application performance, there is an additional requirement of maximum latency between
users and the virtual machines. Intuitively, if there is a set of VMs needed by a user and
the set does not have any requirement with any other user or VM, it can be placed in a
single data center. However, a VM interacts with multiple VMs which may be needed by
other users, thus increasing the set of options for placement. There is a cost of transferring
data between data centers and the placement minimizes this cost thus preferring placement
of all VMs in a single data center which may not be feasible due to the quality of service
requirements. Note that in this paper we consider a simplified version of a real problem.
Some characteristics as virtual machine CPU and memory requirement, virtual machine
relocation and many others are not considered here.

This problem has similarity with the problem of Virtual Network Embedding (VNE),
since the set of virtual machines and the relation between then can be considered as the
Virtual Network (VN), while the set of data centers and the links can be mapped as the
Substrate Network (SN). Fischer et al. (2013) describe a general framework for VNE. The
VMPlacement problem can be described using this framework, but the problem has some
differences from other works since we consider a complete graph connecting the data center,
a quadratic cost function for the communication cost, and latency constraints that usually
are ignored from other works.

This problem is a generalization of the NP-hard Generalized Quadratic Placement Prob-
lem (GQAP) given in Lee and Ma (2004). Solving this problem optimally is possible only
for very small instances, which may not represent the sizes found in real-world applications.
Thus, we propose two heuristic approaches to solve the Virtual Machine Placement Prob-
lem (VMPlacement). We extend the BRKGA (Gongalves and Resende, 2011) proposed
in Stefanello et al. (2015a) by including new neighborhood structures in the local search
and proposed a new GRASP algorithm, both coupled with a path-relinking (Glover, 1989)
and an extensive local search procedure. We test the performance of both algorithms on
problems from a dataset comprised of instances of sizes ranging from small to large. Both
algorithms have similar performance, although a slight advantage for BRKGA was observed
in small instances while GRASP has a slight advantage in larger instances. We show that
the algorithms are able to quickly find feasible solutions and find high-quality final solu-
tions for the VMPlacement problem, especially when the path-relinking procedure is used.
Furthermore, the results obtained with the proposed algorithms outperforms the previous
state-of-the-art results for GQAP.

This paper is an extension of Stefanello et al. (2015a) and Stefanello et al. (2015b) and
has several additional contributions not found in the previous papers: i) We propose a
path-relinking strategy as an intensification method, and a local search method based on
a large exploration of the neighborhood; ii) We extend the BRKGA proposed in Stefanello

3

et al. (2015a) to include new neighborhood structures in the local search, and propose a new
GRASP algorithm; iii) We integrate a path-relinking strategy to BRKGA; iv) We provide
experimental results for CPLEX, BRKGA and GRASP applied to a set of instances for
VMPlacement and GQAP.

The remainder of the paper is organized as follows. In Section 2, we present mathematical
models for the Virtual Machine Placement Problem in multiple data centers. Two heuristic
approaches are described in Section 3. Computational results are presented in Section 4.
Finally, conclusions are drawn in Section 5.

2. Virtual Machine Placement Problem

In the Virtual Machine Placement Problem (VMPlacement), the objective is to place a
set K of virtual machines (VM) in a set NV of data centers (DC) in order to minimize the
communication cost among virtual machines over the network.

In this problem, each data center has a capacity a;, which represents the number of
virtual machines that can be placed in DC 7. Also, between two data centers ¢ and j,
there is a bandwidth capacity (B;;), a latency (L;;), and a cost C;; to transfer a data unit
between the pair of data centers. In order to meet the reliability and demand requirements
of the applications, certain bandwidth and latency requirements can be imposed on the
different VMs that are placed on the data centers. Each pair of virtual machines v and w
has a required bandwidth (b,,,) whose sum overall VMs placed between DCs i and j cannot
exceed B;;. Furthermore, there is a required latency (l,,,), such that VMs v and w cannot
be placed in data centers ¢ and j if the required latency is greater than the respective data
center latency. Finally, there is a set U of users who access the system. Each user u is
located at a data center d(u) and has a maximum latency requirement t,, for each VM v.

Figure 1 from Stefanello et al. (2015a) shows a representation of the input data com-
ponents: the data centers (Figure la), and the virtual machines (Figure 1b). The first
component is composed of three data centers (rounded rectangles). Each data center has
a number of users and a capacity (represented as a number of spots where VMs can be
placed). The connection between each pair of DCs represents the bandwidth capacity, la-
tency, and cost. The second component is composed of eight virtual machines, where each
link represents the required bandwidth and the required latency.

In the next subsections, we present three mathematical formulations for the VMPlace-
ment problem. We first present a quadratic formulation, followed by two mixed integer linear
formulations. Since VMPlacement is a generalization of the NP-hard Generalized Quadratic
Assignment Problem, we extend the linear mathematical models proposed for the GQAP in
Lee and Ma (2004) to VMPlacement. The models in Lee and Ma (2004) were also extended
from the mixed integer linear programming formulation from Kaufman and Broeckx (1978)
and Frieze and Yadegar (1983) to the Quadratic Assignment Problem, all of them based on
the formulation for the QAP described in Koopmans and Beckmann (1957).

(DC 01) (DC 02

44) L& @)
(a) Data centers.

(b) Virtual machines.

Figure 1: Input data representation.

2.1. Quadratic mathematical model

A natural formulation for VMPlacement is based on a quadratic formulation as a gener-
alization of GQAP. In what follows we summarize the parameters and present a quadratic
mathematical model for VMPlacement (QMVMP) introduced in Stefanello et al. (2015a).

Parameters:

N: set of data centers; Cij

K: set of virtual machines;
U: set of users; byw:
a;: capacity in number of VMs that Lpw:
DC ¢ can host; d(u):
Bi;;: bandwidth between DCs ¢ and j; tou:
L;;: latency between DCs 4 and j; Civ:

cost of transferring a data unit between
DCs i and j;

required bandwidth between VMs v and w;
required latency between VMs v and w;
DC that hosts user u;

required latency between user v and VM wv;
cost of placing a VM v in a DC i.

Equations (1)-(7) present the quadratic model for the VMPlacement (QMVMP), where
the binary decision variable x;, = 1 if VM v is located in DC ¢, and x;, = 0 otherwise.

min Z Z CivTiv t+ Z Z Z Z Zin T juCi by (1)

1EN veK i€EN jeN veK weK
subject to:
Zﬂﬂwﬁai VieN, (2)
veEK
> a =1 VoeK, (3)
iEN
Z Z $ivxjwbvw S Bij v Z)] € Nv (4)
veK weK
Z invxjw[/ij S l'uw v v, w € K7 (5)
iEN jEN
Z xivLi,d(u) < tou Vue Ua Ve K7 (6)
1EN
z;, € {0,1} Vie N, VveK. (7)

Objective function (1) minimizes the cost of placing each pair of virtual machines v and
w at DCs ¢ and j. Constraints (2) require that the number of VMs in each DC must not
exceed the DC capacity. Constraints (3) require that each VM must be assigned to exactly
one DC. Constraints (4) require that the given bandwidth between each pair ¢ and j of DCs
should not be surpassed by the total sum of bandwidth required among the virtual machines
placed in these DCs. Constraints (5) assure that the latency required between each pair of
VMs should be respected, i.e, if VMs v and w are placed respectively at DCs i and j, then
the latency between DCs ¢ and j should not exceed the maximum required latency between
VMs v and w. Constraints (6) require that the latency between a VM v and the DC where
the user u is located be respected, i.e, a VM v can be only placed at DC 1 if the latency
between i and d(u) is less than or equal to a given latency between the VM v and the user
u. Finally, constraints (7) define the domain of the decision variables.

The performance of mixed integer linear solvers has improved considerably over the last
few years. CPLEX? is a general-purpose black-box solver based on simplex and a branch-
and-bound algorithm with the state-of-the-art exact algorithms for integer programming and
has been successfully applied in many combinatorial optimization problems. To analyze the
performance of CPLEX and provide baseline results for comparison of heuristic methods, the
following subsections present two linear mathematical models for VMPlacement problem.

2.2. Linear mathematical model I: LMVMP

Based on the model from Lee and Ma (2004) for the GQAP, and from Frieze and Yadegar
(1983) for the QAP, and introduced in Stefanello et al. (2015b), we present a mixed-integer

Zyww . cplex.com

www.cplex.com

linear model for the VMPlacement. Let yjpjuw = TinTjw, ¥V 1,7 = {1,...,N} and v,w =
{1,..., K}, the mathematical model referred to as LMVMP can be formulated as:

min Z Z CivTip + Z Z Z Z YivjwCijbow (8)

iEN veEK i€EN jeN veK weK
subject to:
wagai ViEN, (9)
veK
D a =1 VoveK, (10)
i€EN
Zyij:xjw VoweK,VjeN, (11)
iEN
Yivjw = Yjwiv v v, W € K, v Z,] € N, (12)
Z Z yivjwbvw S Bij v 7’7] € N, (13)
veK weK
Z Zyivijij S lvw v v,w € K7 (14)
€N jeN
invLi,d(u) < tou YVuelU, VveK, (15)
iEN
xi € {0,1} VieN,Vve K, (16)
Ogyivngl Vi, je N, Vvwe K. (17)

Model LMVMP is obtained by replacing the product z;,xj, by ¥iyjw from QMVMP.
In addition four extra sets of constraints are considered. Constraints (11) and (12) define
the relation between variables x and y. Constraints (12) impose the symmetry relation to
variables y. Finally, constraints (17) define the domain of variables y.

The model QMVMP has quadratic constraints, while LMVMP. The objective function
is also linear. However, the mixed-integer linear problem LMVMP has a considerably larger
number of variables, having variables v;,,, in addition to the previous variables x;,. Thus,
the number of variables changes from O(NK) in QMVMP to O(N?*K?) in LMVMP. We
note that if the optimal solution of LMVMP is (z7},, v}, ,,,), then (z},) is the optimal solution
of QMVMP. The proof that both models are equivalent can be obtained by extending the
proof for QAP provided in Lee and Ma (2004).

2.8. Linear mathematical model II LMVMP-I1

Next we present a second linearization for VMPlacement problem (LMVMPII), intro-
duced in Stefanello et al. (2015b). This linear model is derived from Kaufman and Broeckx
(1978) for QAP, which the linearization for QAP with a lower number of variables and
constraints. In Lee and Ma (2004) the authors extend the formulation for GQAP. In this
model, each binary decision variable z;, is set to one when VM v is located at DC ¢, and

7

zero otherwise. The auxiliary variables y;, aggregate the cost for each placed VM v in a DC
i, and n;;;, aggregate the bandwidth from VM v between data centers ¢ and j.

min Z Z CivTiv + Z Z Yiv (18)

€N veEK 1€EN veK
subject to:
> an < VieN, (19)
veEK
D a =1 VueK, (20)
iEN
Z Z Cijbvwxjw — Yiv S mw(l - ziv) Vove K7 Vie N7 (21)
JEN weK
vawxjw—nijvSM(l—mw) \VIUGK, \V/Z.,jEN, (22)
weK
Znijv < By Vi, jeN, (23)
veK
Lijxiv S lvw + L1J(2 — Tjpy — xjw) Y v, W € K,V Z,] <]\f7 (24)
inv[f’i,d(u) < tou Vue U, Voe K, (25)
tEN
zy € {0,1} Vie N, VveK, (26)
Yiv = 0 Vie N, VveK, (27)
nijUZO \V/U,MGK,\V/i,jGN. (28)

where

mwzzzcijbvw, ViGN,VUGK.

jEN weK

Constraints (21) impose the cost between the data centers ¢ and j to the variables y;;.
Constraints (22) and (23) impose the bandwidth constraints while constraints (24) impose
the latency constraints. The constraints (24) can be replaced by

l’w—f-l'ngl \V/i,jEN,\V/U,ZUEKifLij>lUw. (29)

We observe that CPLEX converts (24) into (29) in the pre-processing phase. Finally, con-
straints (26), (27), and (28) define the domains of the variables.

This model is not used in practice since it uses big-M constraints (21), and the root-
node bound is always zero. However, a stronger formulation can be obtained by adding the

following cuts
yivzifivxiv Vi€N7VU€K7 (30)

where Y, is defined as the optimal value of the following generalized assignment model:

8

Y;v = mlnz Z Cijbvwxjw (31>

JEN weK
subject to:
ijwgaj VjGN, (32)
weK
Za:jwzl VweK, (33)
JEN
Z Z bvwxjw S Bij Ywe K, (34)
jeEN weK
(24), (25) (35)
T € {0,1} VjeN, VweK. (37)

These additional cuts were applied for the 3-dimensional assignment problem in Mit-
telmann and Salvagnin (2015). Note that these cuts can also be applied for the GQAP
suppressing the constraints (22)—(25) and (28) from LMVMPII, and (34)—(35) from the
assignment model, which are the specific constraints for VMPlacement.

3. Heuristic Approaches

In this section we propose two heuristics approaches to solve the VMPlacement problem.
We first describe the local search procedures and two path-relinking strategies used in the
proposed metaheuristics. Finally, we describe the Greedy Randomized Adaptive Search
Procedure (GRASP), followed by the Biased Random-Key Genetic Algorithm (BRKGA).

Placing a virtual machine in a data center can violate some constraints. To deal with
this situation, we use a penalization strategy to minimize the number of violated constraints.
Thus, the cost of placing a VM v in DC 17 is calculated by the regular placement cost in
addition to a sufficiently large number M for each violated constraint. This penalization
strategy is applied whenever a solution is evaluated. In our experiments we use M = 10,
Also, the notation for a solution S represents a vector of size |K| with S = {ny,...,nk},
with n, representing the label (or index) of the data center where the virtual machine v is
placed.

3.1. Local search procedures

Local search is a general approach for finding and improving solutions to hard combina-
torial optimization problems. The most basic strategy of local search algorithms is to start
from an initial solution and iteratively replace the current solution by a better neighbor
solution, until no improvement is possible. A neighbor solution can be obtained by apply-
ing moves defined by a neighborhood structure. In this paper we define four neighborhood
structures to obtain neighbor solutions, namely shift, swap, chain2L, and chain3L.

9

Shift. A shift operation moves a virtual machine from the current data center to a
different data center. In a shift search, we select a virtual machine v in a circular order of
their indexes (starting from index zero), and calculate the cost to move it from the current
data center to each other data center. A virtual machine v is moved to the data center that
produces the greatest improvement in the objective function. This procedure is repeated
until reaching a local minimum.

Swap. A swap operation interchanges the positions of two virtual machines. In a swap
search, we evaluate the cost of all swap moves between two virtual machines v and w in a
circular order of their indexes (starting from index zero). When an improvement is reached,
the virtual machine positions are interchanged, and the search continues by selecting a next
pair of virtual machines. The procedure ends when no swap move can improve the solution.
The evaluation of symmetrical movements is avoided.

Chain2L. A chain operation is a composition of two shift moves applied sequentially.
In a chain2L search, the first shift move selects a virtual machine v from the data center ¢
to move to a data center j. In the second shift move, a virtual machine w from j is moved
to a data center k. We evaluate all compositions of two shift moves. When an improvement
is reached, the moves are applied to the solution and the process is restarted with the new
solution. Note that this neighborhood includes the swap search when k is equal to .

Chain3L. The last neighborhood proposed extends the concept of the chain moves to a
composition of three shift moves applied sequentially. A chain3L search involves four virtual
machines and up to four data centers. This search also comprises three shift moves between
two data centers, or a circle move among three data centers.

Given a solution S, the worst case time complexity to evaluate the cost to insert or remove
a virtual machine v in S is O(|K). This complexity is reached because it is necessary to
evaluate whether the latency requirement is satisfied between v and w € S. Also, it is
necessary to evaluate the bandwidth cost between v and w € S. Capacity constraints,
uniqueness in the placement, and user latency requirements can be evaluated in constant
time. Therefore, for the shift search |K| removals and |K| * |N| insertions are evaluated,
resulting in a complexity of O(|K|*|N|) (for the case of no improvement during the search).
For the swap search the time complexity is O(]K|*), while for the chain2L search it is
O(|K|3|N|). Finally, the chain3L search has complexity of O(|K|*|N|).

Naturally, in all the searches described above, the processing time can be reduced avoid-
ing the evaluation of moves that lead to a worse solution. Also, heuristic strategies do not
need to explore the whole neighborhood, and only evaluate a subset of the neighbor solu-
tions. This is done in the chain3L search by prohibiting the insertion of a virtual machine
in some data centers, thus reducing the search space.

Two heuristic strategies to reduce the amount of explored neighbor solutions in the
chain3L search are proposed. The first reduction heuristic strategy is based on the cost Y},
described in the Model (31)-(37) from Subsection 2.3. Given a parameter asy, € [0, 1], we
allow to insert a virtual machine v in a data center 7 only if 7 belongs to the | N % asr, | data
centers with the lowest cost Yj,. A low value of agy indicates a restricted search only in
data centers with low values of Y;,. A high value of as;, indicates a more broad search. An
analysis for the instances described in Section 4.1 with their respective best known solutions

10

corroborates this for this heuristic strategy. In these solutions, more than 50% of the virtual
machines are placed in the 30% data centers with lowest cost Y;,, and approximately 75%
are placed in the 50% data centers with the lowest cost.

The second reduction heuristic strategy is based on the communication cost assigned to
the data centers. Given a solution S, let C; be the sum of the communication cost from ¢
to all other data centers. We only evaluate compositions of movements that start from a
virtual machine that belongs to the B3, data center with the highest cost C;. In summary,
the idea is to limit the search to movements that reduce the communication cost of the most
required data centers. Combining both reduction heuristics, the search space is considerably
smaller, and the heuristics are still able to visit solutions in a promising search space. By
default, we use ag;, = 0.3 and B3, = 3.

The neighborhoods are integrated based on the idea of Variable Neighborhood Descent
(Hansen et al., 2010). Every neighborhood is applied sequentially starting from the lowest to
highest complexity neighborhood (shift, swap, chain2L, and chain3L). However, the search
is restarted with the first neighborhood if an improvement is reached. We name each local
search strategy using two characters. The first character is a number that indicates the high-
est complex neighborhood applied. The character V indicates that we use the VND strategy
to integrate the neighborhoods. For example, the name 3V indicates that we consider local
search procedures shift search, swap search, and chain2L search.

Note that using a penalization strategy described in the previous subsection, the local
search is also applied to infeasible solutions. In this case, the local search also works as a
repair procedure.

3.2. Path-relinking

Path-relinking (PR) is an approach to integrate intensification and diversification in the
search. It consists in exploring trajectories that connect high-quality solutions. Starting
from an initial solution, the scheme moves from one solution to another until the target
solution is reached. The objective consists in finding a solution that is better than both the
initial and target solutions.

Path-relinking was first suggested for tabu search in Glover (1989) and then formalized
in Glover and Laguna (1993). Since then, this strategy was applied on a large number
of combinatorial optimization problems and related studies as Glover (1997), Glover et al.
(2000), Resende and Ribeiro (2005), Resende et al. (2010), Festa and Resende (2013), and
Glover (2014), just to name a few.

Algorithm 1 shows a pseudo-code for the path-relinking operator between solutions S
and T, where S is the initial solution and 7T is the guiding solution. In line 2 the incumbent
solution is initialized. The loop between lines 3 and 10 is repeated while the distance
between both solutions is greater than an input parameter d;,,. The distance A{S, T}
is the minimum number of moves needed to transform S into T or vice-versa. We use
Oim = A{S,T}/2 defined at the beginning of the procedure, since we observed that the
probability of finding an improved solution is greater in the first steps of the path. In line 4
a movement is applied to the solution .S in the direction of solution 7'. Basically, we analyze

11

all changes in S to T that reduce the distance A{S,T} by one, and apply in S the change
with the least cost.

Several studies have experimentally found that it is convenient to add a local search
exploration from some of the generated solutions in the path (Marti et al., 2006). Since
two consecutive solutions obtained by a relinking step are often very similar, it is generally
not efficient to apply the local search at every step of the relinking process. Thus, in line 7
the local search is applied at each n iterations, where n = (|K| % 0.5)/(4 + |K|/50). The
parameter n is rounded up to the nearest even number. This ensures that the local search
is applied to S and T each time, since, in line 10, the solutions are interchanged to use
a back-and-forward strategy (Festa and Resende, 2013). Finally, in line 8 the incumbent
solution is updated and returned in line 11.

Algorithm 1: Pseudo-code for a greedy path-relinking operator.

1 Procedure PathRelinkingOperator(S,T")
2 S* + S,

3 while A{S, T} > 4y, do

4 S < MakeMovement (S, T);
5 S+ S,

6 if LSCondition then

7 L S’ «<—LocalSearch(S’);
8 if f(S") < f(S*) then

9 L S* 5%

10 | Swap(S,T);

11 return S*;

Algorithms 2 and 3 describe two frameworks of how to manage the elite set £, and
how solutions are selected for the path-relinking operator. In the first approach, the path-
relinking operator is applied between a provided solution S and a selected solution 7" from
the elite set. In the second approach, the path-relinking operator is applied multiple times,
between a provided solution S and every solution from the elite set.

To simplify the notation, we refer to path-relinking the general process to manage the
elite set and apply the path-relinking operator between the two solutions. With respect to
the specific elite-set management procedures, we call the first approach PRS and the second
approach PRM. The first two letters indicate that the algorithm is related to the path-relinking
and the last letter indicates the framework for managing the path-relinking operator. In the
first, S indicates the application of a single path-relinking operator and in the second, M
indicates the application of a multiple path-relinking operator.

In the beginning of Algorithm 2, the elite set £ is empty. The maximum size d,,4, of the
elite set is an input parameter. A solution S is added to £ if it improves the best solution
or is better than the worst elite solution and is sufficiently different from each solution in &
(lines 3, 6, and 11). We define that two solutions are sufficiently different if A{S, T} > 04;s.
We denote by S % £ if A{S,T"} > 645,V T" € €. In our case, we use dg;s = ||K|*0.1]. If

12

the elite set has a minimum number of solutions (,,;, = 2 in line 2), and S is sufficiently
different, a solution 7T is selected for the path-relinking operator between S and T

In line 4, solutions are ordered by a linear rank r(7;), Vi = 1...|&|, where the best
solution has rank r(77) = |£| and the worst solution has rank r(7j¢)) = 1. A solution
T € & is selected using the roulette wheel criterion, i.e, T is selected from the elite set
with probability r(T')/ > ,c,). With this criterion, better solutions have more chance to
be chosen. After T is selected, the path-relinking operator is applied between S and T

Lines 6 to 9 update the elite set after the path-relinking operator is applied. Line 6
evaluates whether S is sufficiently different or improves the best solution. If this is the case,
S is added to £. Line 8 maintains the cardinality of the elite set. 7" is the most similar
solution to S with worst solution than S, i.e, T" < {T" € £ | f(T") > f(S) and A{T",S} <
A{T", 5"}, V S’ € £}. Finally, in line 13, solution S is returned.

Algorithm 2: Pseudo-code for path-relinking management framework PRS.

1 Procedure PathRelinking(S)
2 if |€] > dpmin then

3 if S % & then

4 Select T € &€ ;

5 S <—PathRelinkingOperator (S,1);
6 if S % & then

7 L E+— EU{S}

8 if |E] > 0mar then
9 L Remove T" € &;
10 else

11 if S % & then

12 L E+ EU{SY};

13 | return S;

Another approach is outlined in Algorithm 3. The main difference from the previous
approach is that when a solution S is added to &£, the path-relinking operator is applied
between all pair of solutions from £ to which the operator was not previously applied. This
is done in the loop in lines 5 to 13. The flag hasPairsST can be easily updated using
memory structures, and it indicates whether there are S’ and 7" in the elite set for which
the path-relinking operator was not applied. In line 6 two solutions are selected. Pairs
with better objective functions are selected first. The insertion operation (line 11) and the
removal operation (line 13) follow the same rules as in the previous algorithm. In line 14 a
solution is removed from the elite set in case it is full. We also use a roulette wheel criterion
by rank, where the best solution has rank equal to zero, and the worst solution has rank
|€|] — 1. This ensures that the best solution are kept in the pool, and the worst solution has
the highest probability of being removed. Finally, in line 18 solution S is returned.

13

Algorithm 3: Pseudo-code for path-relinking management framework PRM.

1 Procedure PathRelinking(S)

2 if |&| > dmin then

3 if S & then

4 E+— EU{S}

5 while hasPairsST do

6 Select S’ and T”;

7 S’ +PathRelinkingOperator (S’,T");
8 if £(S') < £(S) then
9 L S+ S

10 if S’ % £ then

11 L E+— EU{S};

12 if || > dimae then
13 L Remove T" € &;
14 | Remove 7" € &;

15 else

16 if S & then

17 L E+— EU{S};

18 | return S

Note that Algorithms 2 and 3 are designed with independent components, requiring only
few configuration parameters (as local search strategy and elite size), and a procedure that
provides different solutions. For this reason, these path-relinking strategies can be easily
included in different heuristic frameworks. In the next subsections, we describe the GRASP
and BRKGA metaheuristics which use the path-relinking strategies.

3.3. Greedy Randomized Adaptive Search Procedure - GRASP

GRASP (Greedy Randomized Adaptive Search Procedure) is a multi-start metaheuris-
tic for combinatorial optimization problems (Feo and Resende, 1989; 1995; Resende and
Ribeiro, 2010; Marti et al., 2013; Resende and Ribeiro, 2014; 2016). The algorithm is basi-
cally composed of two phases: construction and local search. The construction phase builds
a feasible solution following a greedy randomized criterion scheme, whose neighborhood is
investigated until a local minimum is found during the local search phase. These phases are
repeated over the iterations and the best local optimum found is returned as the heuristic
solution. Its basic implementation is memoryless, because it does not make use of informa-
tion collected in previous iterations. One way to add memory to GRASP is its hybridization
with path-relinking. A large review of this technique is presented in Festa and Resende
(2013).

A high-level description of GRASP is presented in Algorithm 4. GRASP iterations are
carried out in lines 3 to 8. In line 4, the procedure attempts to build a greedy randomized

14

solution (see Algorithm 5). A solution S is used as the starting solution for the local search
in line 5. In line 6 path-relinking is applied if a hybrid approach is used. If the local optimum
S is better than the incumbent solution, then, in line 8 the incumbent solution is updated. In
line 9, the best solution found overall GRASP iterations is returned as the GRASP solution.

Algorithm 4: Pseudo-code for GRASP.

1 Procedure GRASP()
S* «— 0
while stopping criterion is not satisfied do
S < GreedyRandomized();
S < LocalSearch(S);
S < PathRelinking(S);
if f(S) < f(S*) then
L S* S

W I O Ok W N

9 return S5%;

Algorithm 5 shows a general pseudo-code for the greedy randomized constructive heuris-
tic used in the GRASP. The construction builds a solution S, one element at a time. In
line 2, solution S is initialized empty. In line 3, the set of candidate elements is initialized. In
line 4, the cost of placing each candidate element in a data center is calculated. The solution
is built in the loop in lines 5 to 10. In line 6, a restricted candidate list (RC'L) is built, and
in line 7 a candidate is selected. In line 8 this element is added to the partial solution. In
line 9, the candidate is removed from the set of candidates C. In line 10 the placement costs
for each candidate are re-evaluated. Finally, in line 11, solution S is returned.

Algorithm 5: Pseudo-code for a greedy randomized constructive solution procedure.

1 Procedure GreedyRandomized ()

2 S <+ 0;

3 Initialize set of candidates C;

4 Evaluate the incremental cost of candidates;
5 while C # () do

6 Build the RC'L;

7 Select ¢ € RCL;

8 Add ¢ to solution: S < S U {c};

9 Update candidates: C + C\{c};

10 Re-evaluate the incremental costs;

11 return S;

Based on this framework, four constructive heuristics were developed to generate initial
solutions in line 4 of GRASP.

Random. In the first constructive heuristic, at each placement step a yet unplaced
virtual machine is randomly selected and placed in a random data center. Note that this

15

constructive approach is not a greedy heuristic. We decided to evaluate this approach since
it is one of the simplest constructive methods, and we use it as a baseline for comparing
more sophisticated constructive methods.

Greedy. In the second constructive heuristic, at each placement step a yet unplaced
virtual machine is randomly selected and placed in the data center that produces the least
increase in the objective function. In this case, the RCL is composed of only one candidate
that is the best data center for a specific randomly selected virtual machine.

DC-Greedy. In the third constructive heuristic, on each placement step a yet unplaced
virtual machine is randomly selected and placed in one of the n data centers from the RCL.
The RC'L contains the candidates that produce the lowest incremental placement cost. By
default, we use n = max{3,|N| * 0.2}. The value of n can vary at each iteration since we
consider some additional conditions. First, candidates with the same cost as the first n
candidates are also added to the RCL. Second, if at least one candidate can be added to
the solution keeping it feasible, then candidates that generate infeasibilities are ignored.

VM-Greedy. In the last constructive heuristic, at each placement step, all possible
placements of virtual machines to data centers are evaluated, and one of the n best candidates
is randomly selected. In this constructive heuristic, we use n = max{5, | K|*0.1} for the RCL
size, but the effective value of n can vary since we also include both additional conditions
described in the previous constructive heuristic.

In these constructive heuristic, any random selection is based on a uniform distribu-
tion. Note that these constructive heuristic can generate infeasible solutions, and the repair
process is done by the local search procedure.

3.4. Biased random-key genetic algorithm - BRKGA

A biased random-key genetic algorithm (BRKGA) is a populational metaheuristic that
recently has been successfully applied to several hard combinatorial optimization prob-
lems (Gongalves and Resende, 2011). A BRKGA is a class of genetic algorithms in which
solutions are encoded as vectors of random keys, i.e. randomly generated real numbers from
uniform distribution in the interval [0,1). A vector of random keys is translated into a solu-
tion of the optimization problem by a decoder. A decoder is a deterministic algorithm that
takes as input a vector of random keys and returns a solution of the optimization problem
as well as its cost (or fitness).

Algorithm 6 presents a general scheme of a BRKGA. The algorithm starts with a set of p
random vectors of size n (population). Parameter n depends on the encoding while parameter
p is user-defined. Starting from the initial population, the algorithm generates a series of
populations. Each iteration of the algorithm is called a generation. The algorithm evolves
the population over the generations by combining pairs of solutions from one generation to
produce offspring solutions to the following generation.

At each generation ¢, the decoder is applied to all newly created random keys, and the
population is partitioned into a smaller set of p, elite solutions, i.e., the best fit p, solutions in
the population, and another larger set of p — p. > p. non-elite solutions (line 6). Population
g+1is generated as follows. All p, elite solutions of population g are copied without changing
to population g + 1 (line 7). This elitist strategy maintains the best solutions on hand. To

16

Algorithm 6: Pseudo-code of BRKGA.

1 Procedure BRKGA()

2 Generate p vectors of random keys;

3 Decode each vector of random keys;

4 while stopping criterion is not satisfied do
5 Sort solutions by their fitness;
6

7

8

9

Classify solutions as elite and non-elite;

Copy elite solutions to next population;

Generate mutants in the next population;

Combine an elite and a non-elite and add offspring to next population;
10 Decode each vector of random keys;

11 return best solution S

ensure that mutation is present in the evolution, p,, mutant are added to population g + 1.
A mutant is simply a vector of random keys, generated in the same fashion as the initial
solutions (line 8).

With p. + p,, solutions accounted for population g + 1, other p — p. — p,, additional
solutions must be generated to complete the p solutions that make up population g + 1.
This is done through mating or crossover (line 9). A parent-A is selected randomly from
the elite solutions, and a parent-B is selected randomly among the set of non-elite solutions.
A child C is produced by combining the parents using parameterized uniform crossover
(Spears and DeJong, 1991). Let pa > 1/2 be the probability that the offspring solution
inherits the key of parent-A and pgp = 1 — p4 be the probability that it inherits the key of
parent-B, i.e. ¢; = a; with probability pa or ¢; = b; with probability pg = 1 — pa, where a;
and b; are, respectively, the i-th key of parent-A and parent-B, fori=1,...,n.

Random key genetic algorithms were first introduced in Bean (1994). BRKGA differs
from the original approach in the way parents are chosen from the population and how the
child inherits the key (Gongalves and Resende, 2011). In that work, the authors describe a
BRKGA as having problem-independent and problem-dependent components. The indepen-
dent components are applied without any knowledge of the problem. The problem-dependent
components are the only connection with the problem. Thus, to describe a BRKGA, one
needs only to show how solutions are encoded and decoded, what choice of parameters p,
Des Pm, and p4 was made, and how the algorithm stops. We next describe the encoding and
decoding procedures for the proposed algorithm, and attribute values for parameters and
stopping criterion in Section 4.

3.4.1. Decoders

Solutions of the optimization problem are encoded as a vector X with n = |K| random
keys. To translate this vector into the solution of the VMPlacement problem, we propose
two decoders, as described next.

17

Greedy Ordered Decoder - D1: In this decoder, the keys provide the order of place-
ment. Following this order, a greedy strategy is used, placing each VM at the DC which
produces the least increase in the objective function.

The decoder starts with a list in which each element is composed of the random key and
the index of the virtual machine. The list is sorted by the keys. Now, the sorted list of indices
of virtual machines is used as an order in which virtual machines are placed. Following this
order, the next step is to place each virtual machine v at a DC. This is done by placing
virtual machine v at the DC ¢ which produces the least increase in the objective function.
Note that the cost to insert VM v in each DC considers the previous virtual machines placed.
When all VMs are placed, the decoder returns the fitness value for the vector X of random
keys.

Location Decoder - D2: In this decoder, each key is decoded as the data center in
which the virtual machine should be placed. Let k; be the key corresponding to the VM of
index ¢ in X, then this decoder simply places the VM of index i at DC |k; x [N||. Figure 2
shows an example of decoding for decoder D2 for three data centers, eight virtual machines
and a vector X of random keys.

M
v X (DC 01 (nd 0)) (DC 02 (Ind 1) \
L
<2 - [us 4
3L = fos| ey |88 s
— 7 e
$ % 3y (DC 03 (Ind 2) \
o - g
w <« (0.8
<8} [0z 22 -

Figure 2: Example of decoding for decoder D2.

Since both decoders are deterministic, we always obtain the same solution S’ from a
vector of random keys X. In the case where a deterministic local search strategy is applied
to S’, a solution S” can be obtained using the decoders and the local search, and thus, S” can
be associated with X. However, depending on the decoder, its is possible to use a process
called recode in X, to obtain S” only by using the decoder (without local search). In decoder
D1, the recode can be computationally expensive so we decided to maintain the local search
as part of the decoder. In decoder D2, the recode can be applied by calculating the value
of the key that will correspond to a data center in S”. Let i’ the index of DC i, [b =4'/|N|
and lu = (i 4+ 1)'/|N|, a key that corresponds to DC can be given by Ib + (lu — [b)/2 or any
number in the interval [lb, ub). Experiments including the recode process are presented in
the Subsection 4.4. To simplify the notation, we denote by D3 the decoder D2 with recode
process.

18

3.4.2. Hybrid BRKGA and path-relinking

Path-relinking is an approach to integrate intensification and diversification in the search
and can be incorporated on many metaheuristic frameworks. Path-relinking is frequently
used with GRASP algorithms (Laguna and Marti, 1999; Oliveira et al., 2004; Mateus et al.,
2010; Festa and Resende, 2013), but references can be found for other metaheuristics as
Scatter Search (Glover et al., 2003), Tabu Search (Armentano et al., 2011), VNS (Festa
et al., 2002). Regarding GAs, we find several papers where the path-relinking technique is
applied, as for example Basseur et al. (2005) and Vallada and Ruiz (2010), just to name a
few.

In this paper, we propose a new approach that hybridizes path-relinking with a BRKGA
algorithm. In our approach, we include the Algorithms 2 or 3 every n generations of BRKGA.
By default we use n = 1, i.e., we apply the path-relinking each time a new generation is
produced. Since both path-relinking procedures require a solution S, we randomly select S
with a uniform distribution among all elite solutions of the BRKGA population. In the case
that the path-relinking returns a solution S’ that is better than S, then the corresponding
vector X of S is recoded to be adjusted to 5.

In Section 4, experiments with both path-relinking strategies in comparison with the
standard approach are presented in detail. Since the path-relinking uses the recode process,
experiments are performed only with decoder D3.

4. Computational results

The experiments were conducted on a computer with an AMD FX-8150 Eight-Core 3.6
GHz CPUs, with at least 32 GB of RAM running GNU /Linux, except for experiments with
CPLEX which we used a computer with quad-core Intel Xeon E5530 2.4 GHz CPUs, with
at least 48 GB of RAM running GNU/Linux. Algorithms are implemented in C++, with
optimization flag -03. For BRKGA we use the API described in Toso and Resende (2015).
The commercial solver IBM ILOG CPLEX Optimizer version 12.6.0.0 (C++ API) was used
to evaluate the mathematical models. All experiments used a single thread but multiple
experiments were run in parallel.

Experiments were conducted with two main objectives. The first was to investigate the
performance of CPLEX considering the different mathematical models described in Sec-
tion 2. The second was to evaluate the performance of the heuristic approaches described in
Section 3 and some hybridized variants, including heuristic approaches, local search strate-
gies, and path-relinking procedures.

Initially we describe the method to generate the dataset used in the experiments. Fol-
lowing that, we report results for CPLEX, GRASP, BRKGA, and then we report the best
results of each heuristic method. Finally, we use our best approaches on a set of instances
of GQAP, comparing our results with the state-of-the-art results for the problem described
in Mateus et al. (2010).

19

4.1. Data set

In this subsection we present a problem-instance generator used to create the data set
used in the computational experiments reported by this paper. Since we do not have access to
real data, we randomly generate a set of instances with some empirically defined parameters
to study as many different scenarios as possible.

For each instance the generator receives as input four parameters: |N|, |K|, |U|, and P
(the last parameter represents the percentage of the overall data center occupation).

To ensure the generator creates instances that admit feasible solutions, we generate the
data for each instance based on n sets of pre-placed virtual machines to data centers (by
default n = 3). Given the capacity of each data center, each set of pre-placed s € S
is generated by randomly placing each virtual machine at a data center with probability
proportional to the data center capacity, ensuring the capacity is not violated. Biased
on these pre-placements, we generate the remaining data respecting the constraints of the
problem, ensuring at least n feasible solutions for each instance.

Considering a random number generator using uniform distribution, and M’ a sufficiently
large number, we generate the parameter data for each instance using the following steps.

Data center capacity: The total number of available virtual machines is given by

n’ = max <|N|, {%-‘) Thus, to define the values of a; for each DC 4, we start with all

a; = 0 and select n’ times a random data center i, and increase a; by one. We also ensure
that each data center has a capacity a; greater or equal to one. At this step, the n pre-
placements described before are generated.

Required virtual machine bandwidth: For each pair of virtual machines v € K
and w € K the bandwidth b, is a random number in the interval [0 : 9]. This matrix is
symmetric, i.e, by, = by, and by, = 0.

Data center bandwidth: Having defined the bandwidth between each pair of virtual
machines in the previous step, we generate the values of data center bandwidth based in
the pre-placements S. Let b}; be the sum of bandwidth between all virtual machines pre-
placed to 7 and j in s € §. For each pair of data centers ¢7, we associate a bandwidth
B;j = max{bj;}, Vs € S. This matrix also is symmetric, i.e B;; = Bj;, with B;; = M".

Data center latency: For each pair of data center ij, the latency L;; is a random
number selected in the interval [5 : 20]. This matrix is symmetric, i.e, L;; = Lj;, with

Required virtual machine latency: Let [, be the latency L;; between the data
centers 7 where v is placed in 7 and w is placed in j in the pre-placement s € §. We randomly
select n = | K| % 2 distinct pairs vw to associate a required latency [,,, = max{l?, }, Vs € S.
The remaining latency [, is defined as M’ indicating that no latency is required. We also
ensure that l,, = l,,, and [, = 0.

Users in data centers: Users are allocated at random to data centers chosen with
probability proportional to their capacity. More than one user can be located at the same
data center.

Required user latency: For each user, we randomly select a virtual machine v to
define a required latency. Let i(s) be the data center where v is placed in s € S, thus the

Jio

20

required latency between u and v is given by t,, = maX{Ld(u)7i(S)},\V/S € §. The remaining
user required latency ¢ is set to M.

Transferring data center cost: For each pair of data center ij, the cost Cj; is a
random number in the interval [10.00 : 100.00]. This matrix is symmetric, i.e C;; = Cj;,
and C“ =0.

The parameters |N| and |K | can be used to define the instance size, while parameters |U|
and P can be used to adjust how the problem should be restricted. Finally, we generate a set
of instances by combining values from N = {5,10,25}, K = {15,20, 25,50, 100, 150,200},
U={K;x0.5, K;, K;x1.5}, and P = {70,90}. Tables 1 and 3 list all instances we generated,
and the values of |N|, |K|, |[U| and P are encoded in the name of instance in this respective
order. All instances and their best known solutions are available at www.inf.ufsm.br/
“stefanello/instances/vmplacement.

The cost ¢;, is a generic user-defined parameter that can be used to consider a placement.
This cost can be related to a simple requesting virtual machine or a setup time to start a
virtual machine in a data center. We consider this parameter in the objective function for
two reasons: i) To keep the problem as generic as possible, considering these additional costs.
ii) Since we define the VMPlacement problem is a generalization of GQAP, we included this
cost inherited from the generic definition of GQAP. However, in our experiments, without
any loss of generality, we disregard this cost by simply set the cost to zero.

4.2. CPLEX results

In this section we investigate the performance of CPLEX for both linear mathematical
models described in Section 2. We carried out an empirical study to analyze which size of
instances the CPLEX solver can handle and prove optimality, and which model provides
better integer solutions and lower bounds when CPLEX is terminated with a time limit.
The objective is also to obtain baseline results for comparison of heuristic methods. We first
analyze the results for small-size instances, followed by a set of the medium-size instances
and large-size instances. We run CPLEX for the QMVMP model. Since the performance of
the linear models was considered better than for the quadratic model, we report only results
for the mixed-integer linear model.

4.2.1. Results for small size instances

In the first experiment, we evaluated the performance of CPLEX with the mathematical
models described in Section 2. We used the standard CPLEX 12.6 solver for models LMVMP
and LMVMPII. The time limit was set to three hours per run (10,800 seconds) and the
number of threads to one. The remaining parameters were kept to their default values.

In Fischetti and Monaci (2014) the authors exploited erraticism in search and how to take
advantage of this behavior. Also, the authors show that CPLEX can have a wide contrast
in its behavior due randomized initial conditions. Thus, to better evaluate the CPLEX
performance we perform ten runs for each instance, each one with a different random seed
defined by the CPLEX parameter RandomSeed.

Table 1 shows CPLEX results. The first column shows the name of the instances. The
second column (BKS) shows the objective function of the best known solution value for each

21

www.inf.ufsm.br/~stefanello/instances/vmplacement
www.inf.ufsm.br/~stefanello/instances/vmplacement

instance (optimal solutions are showed in boldface). The next two columns show the average
running times of CPLEX to solve each instance for each mathematical model. Numbers in
parenthesis denote the number of runs that the solver did not prove optimality within the
time limit. The next two columns show the average running times that CPLEX spent to
find the BKS value. The average is over ten runs or the number of times that CPLEX found
BKS (indicated by the number in parenthesis). A signal ‘—’ indicates that no run found a
solution as good as BKS within the time limit. Finally, the last two columns show the best
running times over all runs that CPLEX spent to find the BKS.

Table 1: CPLEX detailed results for small instances.

AVG Time(s) AVG BKS Time(s) MIN BKS Time(s)

Instance BKS LMVMP LMVMPII LMVMP LMVMPII LMVMP LMVMPII
05_015_007_70 25,844.02 2.9 6.2 2.3 2.2 1.1 0.4
05_015_007_90 23,557.30 26.0 61.9 17.4 15.4 10.2 1.4
05_015_015_70 10,904.78 0.4 1.0 0.3 0.4 0.2 0.3
05_015_015_90 24,354.96 4.2 6.9 3.1 1.8 2.3 0.8
05_015_022_70 14,163.60 0.2 0.7 0.1 0.1 0.1 0.0
05_015_022_90 32,318.02 22.4 21.3 21.2 5.2 12.7 0.9
05_020_010_70 38,572.62 292.8 701.7 232.4 138.1 6.4 1.2
05_020_010_90 64,710.80 68.3 107.3 58.5 24.7 31.2 1.9
05_020_020_70 55,288.76 134.5 437.6 100.9 212.4 10.5 37.8
05_020_020_90 57,574.90 1.7 2.1 1.3 0.4 0.8 0.4
05_020_030_70 28,433.34 11.1 17.4 7.1 3.7 2.8 0.4
05_020_030_90 66,088.70 1.9 2.6 1.8 0.7 1.2 0.3
05_025_012_70 43,300.76 1271.5 4,025.5 1,063.8 862.6 195.0 2.2
05_025_012_90 100,865.02 10,800 (10) 10,800 (10) 9,902.6 (4) 6,165.6 (8) 9,746.0 28.7
05_025_025_70 42,890.40 58.4 126.7 52.5 39.0 26.9 1.3
05_025_025_90 103,791.96 10,800 (10) 10,800 (10) 9,764.3 (1) - 9,764.3 -
05_0256_037_70 97,335.12 161.4 592.8 117.0 161.2 19.6 2.8
05_025_037_90 173,363.56 10,262 (7) 10,800 (10) 8,993.2 3,782.8 (9) 5,916.3 33.8

We can draw three main observations from this experiment. First, for both models, the
solver tends to increase significantly the time spent to prove optimality for instances with
5 or more data centers, and 25 or more virtual machines. This indicates a baseline for the
size of instances that this version of CPLEX can handle and prove optimality using these
models in this computer. The second observation is that CPLEX performance for both
models was relatively similar. CPLEX was able to prove or not the optimality in the same
instances, except for instance 05_025_037_90 which CPLEX proved optimality in three runs
for LMVMP, while for LMVMPII CPLEX has an average gap of 8%. However, considering
the time that each model spent to find a solution with objective function equal to BKS,
in most cases CPLEX with LMVMPII spent less time than with LMVMP. Finally, the last
observation is about the variance of time to find the BKS. With the randomized initial
conditions, CPLEX presented a large variance in its behavior. For example, for the instance
05_025_012_70 and LMVMPII, in the best case CPLEX found a BKS in 2.2 seconds, while
in the worst case it took 3,458.01 seconds to find the same solution. For this instance, the
time to prove optimality also has large variance, alternating between a minimum of 3, 685.67
and a maximum of 4, 828.05 seconds.

We also evaluate the model LMVMPII without including the additional set of cuts (30).
In comparison with the model with the cuts, we observed a worse performance of CPLEX.

22

For six instances CPLEX was not able to prove optimality in any of the ten runs. For these
cases, the gap of CPLEX is high. For example, for the instance 05_025_012_90, the average
gap was 53%, confirming that the relaxation quality of this model is low. Furthermore, the
time to find a BKS increased by a factor of about 8, and the number of nodes explored within
the time limit or to prove optimality increased by a factor about 7 times in comparison with
the model that includes the set of cuts (30).

4.2.2. Results for medium and large size instances

In this subsection we present results for CPLEX when applied to a set of medium and
large size instances. In this experiment, we evaluate CPLEX for each model and each
instance with one run for a time limit of one day (86,400 seconds).

Table 2 shows for each instance the BKS obtained over all experiments, including the
value reported in this paper for heuristic methods and additional non-reported experiments
used to evaluate the previous version of the algorithms. The column FO shows, for each
model, the objective function value of the best integer solution found by CPLEX. Column
CPLEX GAP shows the gap returned by CPLEX. The last column shows the gap from BKS
to the best integer solution returned by CPLEX.

The first observation from this experiment is that for instances with 10 data centers,
CPLEX was able to start to solve the models, but still with a high gap even after 24 hours
of computation. However, we observed that the gap returned by CPLEX as well as the gap
to BKS are lower for LMVMPII in comparison with the values of LMVMP. The average gap
returned by CPLEX with LMVMPII was around half of the average gap for LMVMP. The
average gap to BKS was 2.19% for LMVMPII, while for LMVMP the gap was 4.96%.

The second observation is that for instances with 25 data centers and LMVMP model,
CPLEX spent the whole time in the presolve phase without solving the root relaxation
node. On the other hand, for LMVMPII, CPLEX was able to start a node exploration and
found feasible solutions. For instances with 25 data centers, CPLEX explored an average
of approximately 34800 nodes for instances with 100 VMs, 5700 nodes for instances with
150 VMs, and 1000 nodes for instances with 200 VMs. Even though CPLEX maintained a
large gap, the gap with respect to the BKS was relatively small, considering the size of the
instance and the difficulty to find feasible solutions (Stefanello et al., 2015a).

4.3. GRASP results

This subsection presents results and analyzes feasibility for different constructive heuris-
tics combined with different local search procedures embedded in the GRASP framework.
Also, we report experiments with the path-relinking procedure.

The main goals of the following experiments are show how difficult is to find feasible
solutions using a constructive heuristic, and explore the effect of embedding a local search
procedure to obtain a feasible solution. Finally, the last main objective is to evaluate the
impact of each component added to the framework, i.e., constructive heuristic, local search
method, and path-relinking strategy.

In the first part of our experiment, we evaluate the performance of each constructive
heuristic described in Subsection 3.3, embedded in the GRASP. We performed one run for

23

Table 2: CPLEX detailed results for median and large instances.

FO CPLEX GAP BKS GAP

Instance BKS LMVMP LMVMPII LMVMP LMVMPII LMVMP LMVMPII
10_026_012_70 114,582.50 116,264.44 115,734.58 42.37 24.29 1.47 1.01
10_025_012_90 84,461.30 88,087.12 85,814.72 53.92 28.31 4.29 1.60
10_025_025_70 90,997.90 93,729.48 92,407.94 29.59 19.30 3.00 1.55
10_025_025_90 124,763.66 125,365.26 125,335.92 31.18 16.56 0.48 0.46
10_025_037_70 100,801.80 104,350.38 100,801.80 24.16 15.04 3.52 0.00
10_025_037_90 106,617.94 107,558.00 107,471.04 24.06 20.06 0.88 0.80
10_050_025_70 414,535.12 442,548.40 435,929.26 83.22 39.98 6.76 5.16
10_050_025_90 458,879.74 480,146.00 477,439.06 75.60 30.79 4.63 4.04
10_050_050_70 360,102.12 374,071.02 366,972.40 68.85 43.23 3.88 1.91
10_050_050_90 400,233.16 420,173.88 416,615.52 72.88 36.32 4.98 4.09
10_050_075_70 349,135.78 362,853.92 353,979.20 54.03 35.20 3.93 1.39
10_050_075_90 498,190.58 513,161.02 510,062.50 54.45 25.23 3.01 2.38
10_100_050_70 1,647,975.00 1,884,262.62 1,732,985.94 91.55 42.59 14.34 5.16
10_100_050_90 1,792,257.68 1,916,126.76 1,826,484.56 89.56 34.79 6.91 1.91
10_100_100_70 1,463,498.00 1,546,897.78 1,500,763.50 86.22 47.12 5.70 2.55
10_100_100_90 2,126,993.26 2,256,408.46 2,169,460.06 82.73 31.03 6.08 2.00
10_100_150_70 1,563,152.40 1,702,573.74 1,586,082.86 78.44 45.02 8.92 1.47
10_100_150_90 1,847,076.66 1,968,341.96 1,883,289.84 70.74 33.59 6.57 1.96
Average - - - 61.86 31.58 4.96 2.19
25_100_050_70 1,887,688.24 - 1,976,649.48 - 44.15 - 4.71
25_100_050_90 2,116,849.00 - 2,184,190.20 - 34.89 - 3.18
25_100_100_70 1,953,155.20 - 2,056,428.04 - 44.55 - 5.29
25_100_100_90 2,021,228.76 - 2,091,723.56 - 35.72 - 3.49
25_100_150_70 1,967,364.52 - 2,061,181.36 - 43.91 - 4.77
25_100_150_90 2,160,014.54 - 2,235,936.02 - 35.35 - 3.51
25_150_075_70 4,603,163.50 - 4,768,514.02 - 42.99 - 3.59
25_150_075_90 4,618,491.80 - 4,786,179.50 - 36.54 - 3.63
25_150_150_70 3,882,650.94 - 4,085,463.10 - 46.34 - 5.22
25_150_150_90 4,706,129.66 - 4,899,667.66 - 36.82 - 4.11
25_150_225_70 4,340,090.18 - 4,530,866.46 - 46.00 - 4.40
25_150_225_90 4,523,393.44 - 4,708,994.42 - 35.51 - 4.10
25_200_100_70 6,937,008.98 - 7,539,073.36 - 50.79 - 8.68
25_200_100_90 9,034,147.98 - 9,391,760.06 - 34.93 - 3.96
25_200_200_70 7,146,330.32 - 7,579,453.48 - 49.13 - 6.06
25_200_200_90 8,578,620.94 - 8,909,349.84 - 36.53 - 3.86
25_200_300_70 7,638,447.16 - 8,033,640.92 - 42.32 - 5.17
25_200_300_90 8,195,152.30 - 8,579,652.20 - 38.94 - 4.69
Average - - - - 40.86 - 4.58

each instance, and for each combination of constructive heuristic and local search method.
The stopping criterion of each run was a time limit of |K| x |[N| % 6 seconds, where 6 = 0.8.
We use this stopping criterion in all experiments in order to provide a fair comparison for
all evaluated strategies.

Table 3 shows the average of the percentage of feasible solutions found on each run of
the algorithm for all instances and combinations of local search (rows on first column) and
constructive heuristic (columns 2 to 5).

The first observation from Table 3 is that the probability of finding a feasible solution
using only a constructive heuristic without local search is low (row NoLS). On average, the
percentage of feasible solutions was less than 1%, with an average of less than 2% for the
constructive heuristic DC-Greedy. However, the main observation is that the constructive

24

Table 3: Percentage of feasible solutions found by GRASP for different constructive heuristic and local
search strategy.

LSType Random Greedy DC-Greedy VM-Greedy Average

NoLS 0.00 1.02 1.96 0.57 0.89
1V 23.70 22.12 27.88 21.96 23.91
2V 77.26 78.02 79.72 78.41 78.35
3V 82.93 82.66 84.06 83.20 83.21
4v 84.08 83.61 84.98 84.19 84.22

Average 53.59 53.49 55.72 53.67 ‘ 54.12

heuristic has a lower impact on the percentage of feasible solution in comparison with the
impact of any local search method. When a local search procedure is considered (also used as
repair procedure), the percentage of feasible solutions increases considerable. For example,
using 2V the percentage of feasible solutions is higher than 77% and higher than 82% for
3V. This occurs even with the random constructive heuristic, showing that the local search
has a performance that is not highly dependent of the initial solution. We also analyze the
quality of the feasible solutions found with each strategy. The conclusions are similar to the
percentage of feasible solutions, where the solution quality are similar for all constructive
heuristic and tends to be better when we consider a more complex neighborhood search.
Thus, in the remaining experiments we adopted the DC-Greedy constructive heuristic as
default since it presents the highest percentage of feasible solutions.

Table 4 shows the percentage of feasible solutions for each instance for the constructive
heuristic DC-Greedy.

Even with a significant increase in the percentage of feasible solutions found when the
local search is applied, some instances still have a low percentage of feasible solutions. This
shows that the set of instances used to evaluate the algorithms is diverse and not trivial
to solve. We also observed that, as expected, most instances with a higher percentage of
data center occupation have a low percentage of feasible solutions in comparison with the
respective instance with a low percentage of occupation.

In the next set of experiments, the main objective is to evaluate the path-relinking
component in the GRASP procedure. For each experiment, we performed five independent
runs totalling an amount of 180 samples for each experiment. We also use # = 0.8 as
stopping criterion The local search strategy used in the path-relinking is always the same
one used after the construction phase in GRASP procedure. Experiments are chosen to
analyze the performance for different combination of algorithms and to show the impact of
each component.

To compare the results with respect to the best solution found on each run, we first scale
the objective function value to the range [0, 1] since each instance can have very different
values. The scale is a simple transformation where for each instance, the largest cost over
all analyzed experiments is scaled to 1 and the lowest is scaled to 0.

25

Table 4: Percentage of feasible solutions found by GRASP with the DC-Greedy constructive heuristic.

Instance NoLS 1V 2V 3V av ‘ Instance NoLS 1V 2V 3V 4v

10_0256_012_70 10.90 60.50 90.88 95.75 96.24 | 25_100_050_70 8.10 77.11 95.89 98.03 98.46
10_025_012_90 1.27 24.57 92.25 95.68 96.18 | 25_100_050_90 0.00 13.16 84.37 87.90 89.16
10_025_025_70 25.75 92.23 99.44 99.78 99.86 | 25_100_100_70 0.56 40.15 88.12 91.93 91.82
10_0256_025_90 0.08 6.09 52.23 62.96 64.72 | 25_.100_100_90 0.00 3.08 66.90 74.69 75.48
10_025_037_70 291 59.80 81.60 86.55 88.67 | 25_100_150_70 1.23 46.98 93.80 96.42 97.31
10_025_037_90 0.06 4.93 44.24 57.58 63.35 | 25_100_150_90 0.00 2.78 66.30 73.97 75.14
10_050_025_70 4.38 42.79 94.45 9580 96.17 | 25_150_075_70 5.84 60.39 95.35 96.03 97.12
10_050_025_90 0.13 21.10 88.80 92.63 93.11 | 25_150_075_90 0.01 6.60 84.39 87.73 88.13
10_050_050_70 0.34 23.77 71.09 76.97 78.78 | 25_150_150_70 0.77 31.90 79.68 84.00 85.29
10_050_050_90 0.05 13.24 56.53 65.21 65.81 | 25_150_150_90 0.00 5.23 64.75 70.49 69.27
10_050_075_70 1.50 49.55 72.63 77.26 78.96 | 25_150_225_70 0.53 31.81 80.36 83.15 83.33
10_050_075_90 0.07 10.02 68.59 72.29 74.02 | 25_150_225_90 0.00 1.59 47.46 57.90 56.01
10_100_050_70 3.34 65.63 98.49 9896 98.62 | 25_200_100_70 0.21 31.49 85.27 86.11 90.86
10_100_050_90 0.01 3.07 80.60 86.54 86.99 | 25_200_100_90 0.00 21.90 95.36 97.76 97.36
10_100_100_70 1.66 39.19 8745 91.28 93.38 | 25_200_200_70 0.07 22.82 75.00 80.57 81.38
10_100_100_90 0.00 7.45 84.02 86.81 86.66 | 25_200_200_90 0.00 21.36 93.51 9541 95.36
10_100_150_70 0.82 41.94 83.35 86.01 86.89 | 25_200_300_70 0.00 13.36 66.92 72.53 73.55
10_100_150_90 0.00 1.46 73.33 74.18 75.63 | 25_200_300_90 0.00 4.49 86.54 89.12 90.08

Average 296 31.52 78.89 83.46 84.67 ‘ Average 0.96 24.23 80.55 84.65 85.28

Figure 3 shows the distribution of the scaled cost for each algorithm. The box plots show
the location of the minimum value, lower quartile, median, upper quartile, and maximum
value of each experiment. The dots are the outliers. Experiments are represented on the
horizontal axis and are labelled as composition of main algorithm name, path-relinking type,
local search strategy, and size of elite set parameter. Experiments ended with “x” use a full
exploration on the neighborhood chain3L, i.e, az;, = 1 and B3, = |N|. Also, note that the
first three experiments are a simple GRASP heuristic and do not include a path-relinking
component.

The first observation regards the relation between the intensification of the neighborhood
exploration and restarting the search. On the one hand, from Table 3 and 4 we observe that
the local search that includes more complex neighborhoods overcomes in most cases the
searches with less complex neighborhoods in the percentage of feasible solutions. Since
the strategies are executed for the same time, is natural that a less complex search has a
higher number of iterations and a higher numbers of restarts. This is an indication that
for this problem it is preferable to invest in the exploration of the neighborhood of a high-
quality solution rather than making a full restart to a new point of the search space. On
the other hand, even with a higher ability of the local search 4V in producing feasible
solutions and exploring a large neighborhood, when we consider the best solution found
in the experiments, local search 3V produces better results than 4V. This indicates that
for the proposed neighborhood strategies, there is a trade-off between intensification of the
neighborhood exploration and time spent on each local search strategy. This can be used to
guide the search and select the best strategies for a general proposed method.

26

o
S - o g
-
' ' o
oo 8 ©
© Voo
o | | ! ! e
.
Lo -
- ! - o o o o
n© | o
80 ' '
- e
3 - ! P - T -
S L T P :
wo i , T T i , X : : VT
Lo R b
' 1 1 1 ' 1 1 1
o : i | i ! . ' '
S Do '
' .
Lo ; ;
o L . .
o . ; — = —
| (— T T 1 T T, L | B E—
,‘L\\ /‘5\\ /&\ /@0% /Q,QQ) /QQ% /é\% /Zg‘b /?:\0 /GQQ: /Q:\Q 00% eg‘b é\Q Q\Q
I I N Sl P i el S S SN e R
& K & @Y @Y @ o QY QY T E
K K K KKK KK K K K
PP P o PUIIPUR SRS
& & & & & & & S & &

Figure 3: Dispersion of scaled cost for each algorithm.

The second observation is that the path-relinking component improves the results signif-
icantly in comparison with the case without this strategy (case GRASP-2V, GRASP-3V, and
GRASP-4V). We also observe that both path-relinking strategies have similar performance.
Furthermore, the results are not influenced heavily by the values of elite size in the tested
interval.

To confirm the results presented in Figure 3, we use the R package to test the normality
of these distributions using the Shapiro-Wilk test and apply the Mann-Whitney-Wilcoxon U
test. For all tests, we assume a confidence interval of 99%. Shapiro-Wilk tests indicate that
no cost distribution fits a normal distribution since the p-values for all tests are less than
0.01. Therefore, we applied the U test which assumes as null hypothesis that the location
statistics are equal in both distributions. We also use a p-value correction procedure based
on false discovery rate (FDR) to minimize the number of false positives.

Table 5 shows U test results for each pair of algorithms. The structure of this table
is as follows: Each row and column is indexed by one algorithm. Each element in the
diagonal (bold) is the median of the scaled cost of the corresponding algorithm. The upper-
right diagonal elements are the differences in location statistics for each pair of algorithms.
A negative difference indicates that the “row algorithm” has its location statistics lower
(better) than the “column algorithm”, and the positive difference is the opposite. The
bottom-left diagonal elements are the p-values of each test. Math signals indicate when
p<0.01 for a U test between “row algorithm” and “column algorithm” for the respective
signal alternative hypothesis. The case “less” indicates that the “row algorithm” overcomes
the “column algorithm”, or the opposite in the case “greater”.

Table 5 confirms that the difference between the results of the standard GRASP proce-
dure and the procedure that includes the path-relinking component are statistically signifi-

27

Table 5: Values of medians, p-values, and difference in median location for cost distributions using a confi-
dence interval of 99% for GRASP algorithm.
GRASP GRASP-PRM GRASP-PRS

2V 3V 4V 2V-e08 3V-e06 3V-e08 3V-el0 4V-e06 4V-el0 5V-e06 5V-el0 3V-e06 3V-e08 3V-el0 4V-el0

2V 0.911 0.311 0.265 0.683 0.755 0.756 0.751 0.683 0.679 0.676 0.642 0.730 0.728 0.734 0.647

3V < 0.593 -0.048 0.379 0.452 0.456 0.448 0.387 0.379 0.360 0.332 0.424 0.422 0.427 0.342

4V < > 0.644 0.426 0.496 0.498 0.489 0.434 0.421 0.416 0.389 0.468 0.465 0.476 0.393
PRM-2V-e08 < < < 0.203 0.075 0.081 0.069 -0.001 0.003 -0.014 -0.051 0.056 0.053 0.061 -0.035
PRM-3V-e06 < < < < 0.119 0.002 -0.006 -0.077 -0.075 -0.085 -0.121 -0.022 -0.029 -0.017 -0.118
PRM-3V-e08 < < < < 0.839 0.113 -0.010 -0.077 -0.082 -0.086 -0.125 -0.027 -0.028 -0.022 -0.119
PRM-3V-el0 < < < < 0.568 0.353 0.128 -0.072 -0.075 -0.082 -0.116 -0.020 -0.017 -0.012 -0.110
PRM-4V-e06 < < < 0.930 > > > 0.201 -0.007 -0.014 -0.049 0.051 0.054 0.058 -0.039
PRM-4V-el0 < < < 0.846 > > > 0.582 0.190 -0.015 -0.045 0.056 0.055 0.058 -0.037
PRM-5V-e06 < < < 0.409 > > > 0.376 0.294 0.171 -0.041 0.063 0.058 0.067 -0.031
PRM-5V-e10 < < < > > > > > > > 0.220 0.100 0.093 0.096 0.006
PRS-3V-e06 < < < < 0.075 0.040 0.089 < < < < 0.139 -0.004 0.003 -0.097
PRS-3V-e08 < < < < 0.016 0.010 0.091 < < < < 0.737 0.144 0.009 -0.097
PRS-3V-el0 < < < < 0.065 0.066 0.243 < < < < 0.774 0.384 0.146 -0.102
PRS-4V-el0 < < < > > > > > > 0.056 0.774 > > > 0.253

cant for a confidence interval of 99%. Tests between cases with local search 3V and different
elite sizes indicate that the difference is not significant, even for both path-relinking strate-
gies. However analyzing the values of median and median location, we conclude that there
is a low advantage for the PRM strategy with elite size equal to 8.

A report for the solution quality obtained with this strategy is shown in Subsection 4.5.
Next we report results for the BRKGA.

4.4. BRKGA results

This subsection presents results for the biased random-key genetic algorithm. The objec-
tive is to analyze different procedures, decoders, the recode process, and the path-relinking
procedure introduced in the algorithm. The experiments follow the rules and the objectives
explained in the previous subsection.

BRKGA parameters was set to the same parameters as described in Stefanello et al.
(2015a) which are similar to the values suggested by Gongalves and Resende (2011), i.e.,
the elite size p. = 0.24p, the set of mutants p,, = 0.12p, and the probability of inheriting
pa = 0.6. The restart parameter was disabled and the population size p = 75. The stopping
criterion for all runs was a time set to | K| * | V| % 6 seconds (where 6 = 0.8).

We run experiments that include different local searches, decoders and path-relinking
procedures. In each experiment, we performed five independent runs with different random
seeds for each instance, given a total of 180 runs. To compare the results we scale the
values of the objective function for the best solution found on each run to the range [0, 1],
as described in the previous subsection.

Figure 4 shows the box plot for the distribution of the scaled cost for each algorithm.
Algorithms are represented on the horizontal axis and are labelled as a composition of main
algorithm name, path-relinking strategy, decoder method, local search strategy, and size of
elite set parameter.

The first observation is that the recode process helps to improve the results, since all
experiments with decoder D3 have medians lower than the respective corresponding algo-
rithm with decoders D1 and D2. Note for example that without the recode, one modification

28

1.0

Scaled cost

0.0
|

0.2 0.4
l l
oo @@ |
o oo o}
i —
A L
A T

Figure 4: Dispersion of scaled cost for each algorithm.

in a random key can have influence in one or more placements (since the local search can
apply many changes). Using the recode, when one key is changed, the modification is in
only one placement. This well-defined behavior helps to keep a more accurate information
of each individual. The second observation is that for the local search strategies, the same
conclusions from the GRASP can be taken for BRKGA. Experiments with local search 3V
provides better results than the other local search strategies. Finally, strategies that include
the path-relinking procedure are more effective to producing better results than the stan-
dard counterpart. However, different from what was observed with GRASP, the difference
between PRM and PRS is significant. We attribute the worst performance of PRS due to the
small number of applications of the path-relinking since it is limited to only a few genera-
tions. Also, after some iterations of BRKGA, the solutions in the elite set of BRKGA tend to
be similar, and fail in the similarity check with the solution in the elite set of path-relinking,
and thus, the path-relinking operator is not performed.

Table 6 shows U test results for each pair of algorithms. We present the values of
medians, p-values, and the difference in median location for the scaled cost distributions
using a confidence interval of 99% for all experiments. The organization of this table follows
the description of Table 5.

Table 6 confirms the considerations described above showing that the best approaches
use the path-relinking component (PRM). Also, as mentioned for GRASP in the previous
subsection, the experiments for different elite sizes indicate that the differences are not
statistically significant for a confidence interval of 99%. However, analyzing the values of
the median, and median location we conclude that with a elite set of size 8, the procedure
tends to produce better results.

29

Table 6: Values of medians, p-values, and difference in median location for cost distributions using a confi-
dence interval of 99% for BRKGA algorithm.
BRKGA BRKGA-PRM BRKGA-PRS
D1-2V DI1-3V D2-2V D2-3V D24V D3-3V D3-4V 3V-e06 3V-e08 3V-el0 4V-e08 3V-e06 3V-e08 3V-el0

D1-2V 0.866 0.251 0.000 0.242 0.211 0.512 0.449 0.678 0.697 0.701 0.645 0.533 0.520 0.515
D1-3V < 0.602 -0.247 0.000 -0.028 0.250 0.185 0.413 0.437 0.440 0.397 0.275 0.263 0.261
D2-2V 0.987 > 0.853 0.243 0.200 0.505 0.440 0.669 0.691 0.692 0.640 0.524 0.512 0.506

D2-3V < 0.979 < 0.605 -0.036 0.250 0.188 0.424 0.443 0.449 0.397 0.272 0.265 0.260
D2-4V < 0.016 < > 0.623 0.275 0.216 0.449 0.470 0.477 0.424 0.300 0.291 0.287
D3-3V < < < < < 0.284 -0.062 0.179 0.208 0.202 0.142 0.031 0.014 0.018
D3-4V < < < < < > 0.342 0.233 0.266 0.263 0.206 0.091 0.073 0.075
PRM-3V-e06 < < < < < < < 0.156 0.020 0.023 -0.026 -0.151 -0.163 -0.169
PRM-3V-e08 < < < < < < < 0.074 0.116 0.001 -0.042 -0.176 -0.186 -0.190
PRM-3V-el0 < < < < < < < 0.040 0.891 0.123 -0.046 -0.179 -0.194 -0.193
PRM-4V-e08 < < < < < < < 0.047 > > 0.179 -0.118 -0.129 -0.133
PRS-3V-e06 < < < < < 0.011 < > > > > 0.283 -0.015 -0.015
PRS-3V-e08 < < < < < 0.171 < > > > > 0.102 0.284 -0.003
PRS-3V-el0 < < < < < 0.071 < > > > > 0.118 0.810 0.309

In Stefanello et al. (2015a) this problem was first introduced, and the first version of
BRKGA is presented. From the original approach, three main improvements are made.
First, we added a new neighborhood search. In the original approach, we described a local
search that includes only shift and swap moves (namely LSW that correspond to 2V in
this paper). We observe from the results in Figure 4 and in Table 6 that the inclusion
of this new neighborhood strategy (chain search) helps to significantly improve the results
(comparison between BRKGA-D2-2V and BRKGA-D2-3V). Second, the inclusion of the
recode procedure in the decoder D2 (defined as decoder D3), also significantly improves
the results (comparison between BRKGA-D2-2V and BRKGA-D3-2V, as well as BRKGA-
D2-3V and BRKGA-D3-3V). Finally, we included a path-relinking component that, to the
best of our knowledge, is the first experiment that considers this hybrid approach between
BRKGA and path-relinking.

A final observation about running times of BRKGA is that results are reported using
single-thread processing to provide a fair comparison with the GRASP and CPLEX. How-
ever, the BRKGA API of Toso and Resende (2015) provides for efficient multi-thread decod-
ing that could be used to substantially reduce the running times when multiple processors
are available.

4.5. Additional comparison

In this subsection we report an overview over the best strategies for BRKGA and GRASP,
providing addition comparisons and information for both algorithms. Figure 5 shows an
overview for the experiments for both strategies reported in the previous subsections.

As depicted in Figure 5 and reported in Subsections 4.3 and 4.4, the best approach
for both algorithms is consider the local search 3V and to inclusion of the path-relinking
component with elite size equal to 8. Table 7 presents supplementary information for the
experiments with both strategies. The second column shows the best-known solution value
(BKS) for each instance. The next columns show the minimum, average and maximum
percentage gap for both algorithms. The percentage gap is calculated by the formula (FO-
BKS)*100/BKS, where FO is the corresponding value of the objective function for the

30

o
= - - - - o g
! -
- T T ! o
© : b | o 3
!
— ' ' ' !
o : oo T : o
‘ T ‘ o
: - ° — - Do
Do
% 9 Do T : T T
‘
3 : ; [- ‘ ! o Do
kel i ' ' - ' ' ' ' ' -
2 : ‘ - ‘ - R -~
o] ' ' ' ' '
o % ' ' oo g ' [-
»n o ‘ ; o T T ‘
3 ; ‘ Lo 8 ; Lo : :
0 ! ' ' l 0 ' '
o e ‘ g N ‘
- ‘ Lo ‘
P !
8 oo !
o ;
° : Do ‘ ; L o + o5 - —
S 0O - 0 +~ + o+ o TolJd= 4 4 4 o - 4+ o JJt b . 4 4 4 4 4 4
T I I I I I I I I I I I I I l I I I I I I I I Lo LT I I T
N o A S R edb e ot ,"f’\\ ® e“‘b QQQ) «29% ef\g e“b Q’\b ,«29% /ef\g ,e“% A/edb \\,é\g \\,z'\g

PN S SO SN
N NI F P ‘b\\ﬁ 27
Aol SO PN SR SR SRR SR Vgl Vol g S SR St Y
F (F(F (K F KD
SOLO AT A A (O A I T TS e S
QY & & X 7 R Q7 &£ L RS
S8 38 2 S o W o o o P 1 o o P oW o o
F(FF(F S (& (O ol i Ol SISO CON Ol i Ol oY
S & & & & &

7 R L7 AT AT AT AT QTN N N
(RS [N - S S N

ST R A G QW QY
00039‘39‘9?‘3?‘3?‘3?‘9?‘3?‘

SV s
£
Figure 5: Dispersion of scaled cost for each algorithm.

respective algorithm. Finally, columns Time shows the minimum and average time in seconds
in which each algorithm obtained the last improvement in the objective function.

From this table, we observe that the percentage gap is relatively small for both algo-
rithms, showing that the approaches are efficient in finding good quality solutions. For
instances with 10 data centers, in most cases both algorithms found the BKS. Also, con-
sidering that each run was stopped by the time limit (|N|* | K| % 0.8), from columns Time
we observe that a significant portion of the execution was spent without improvements.
This indicates that the algorithm has a fast convergence, and will probably provide a good
solution if stopped before the used time limit. Furthermore, we observe that BRKGA-PR
is slightly faster than GRASP-PR for the instance set with 10 data centers. However, the
opposite happens for the instances with 25 data centers.

Finally, the last experiment uses the Time-To-Target (TTT) plots to display the running
time distribution for the algorithm to find a solution at least as good as a given target
value. TTT plots were proposed by Feo et al. (1994); Aiex et al. (2007) and have been
advocated by Hoos and Stiitzle (1998b;a) as a way to characterize the running times of
stochastic algorithms for optimization problems. The experiment consists in performing
200 runs of BRKGA-PR and GRASP-PR algorithms for two instances until a target is
reached. The target was set to be the worst solution found for both strategies in the
previous experiment, i.e, 1,468,973 for 010_100_100_70 and 9,077,672 for 025_200_100_90.
We choose one instance with 10 and one instance with 25 data centers, both with the lowest
difference of average percentage gap between both approaches (excluding equal values).

Figure 6 illustrates the cumulative probability plot obtained by using BRKGA-PR and
GRASP-PR for two instances. For instance 10_100_100_70, we observe that BRKGA-PR
has a higher probability of finding a solution at least as good as the target in less time than
GRASP-PR. For instance 25_150_225_70 likelihood is reverse.

In summary, both approaches have good performance according to specific scenarios.
The best performance of BRKGA-PR is on small and median size instances while GRASP-

31

Table 7: Comparison of percentage gap and last improve time for BRKGA-PR and GRASP-PR.

BRKGA-PR GRASP-PR
GAP (%) Time (s) GAP (%) Time (s)
Instance BKS Min Avg Max Min Avg Min Avg Max Min Avg
10_025_012_70 114,582.50 0.00 0.00 0.00 1.6 22.7 0.00 0.00 0.00 1.3 38.7
10_025_012_90 84,461.30 0.00 0.32 0.54 1.8 35.9 0.00 0.00 0.00 16.1 49.2
10_.025_025_70 90,997.90 0.00 0.00 0.00 0.5 0.8 0.00 0.00 0.00 48.5 111.3
10_.025_025_90 124,763.66 0.00 0.15 0.18 1.9 45.1 0.00 0.04 0.18 19.1 59.8
10_025_037_70 100,801.80 0.00 0.00 0.00 0.7 0.8 0.00 0.00 0.00 0.4 1.0
10_025_037_90 106,617.94 0.00 0.00 0.00 0.7 13.3 0.00 0.00 0.00 1.1 2.3
10_050_025_70 414,535.12 0.11 0.26 0.47 12.5 86.5 0.00 0.08 0.13 47.9 190.9
10_050_025_90 458,879.74 0.00 0.02 0.07 38.3 76.0 0.00 0.09 0.16 87.5 193.6
10_050_050_70 360,102.12 0.00 0.10 0.49 11.4 36.0 0.00 0.00 0.00 4.5 92.4
10_050_050_90 400,233.16 0.00 0.37 0.64 21.2 32.9 0.00 0.28 0.62 32.9 185.6
10_050_075_70 349,135.78 0.00 0.00 0.00 4.7 29.8 0.00 0.00 0.00 7.7 62.1
10_050_075_90 498,190.58 0.39 0.58 0.87 47.9 153.7 0.00 0.26 0.47 18.1 147.8
10_100_050_70 1,647,975.00 0.00 1.98 3.32 82.8 395.4 1.12 226 3.37 457.5 652.2
10_100_050_90 1,792,257.68 0.01 0.18 0.31 98.1 380.7 0.14 0.31 0.55 292.5 493.0
10_100_100_70 1,463,498.00 0.00 0.08 0.37 50.9 271.7 0.00 0.03 0.14 518.3 624.6
10_100_100_90 2,126,993.26 0.00 0.23 0.48 433.7 656.5 0.12 0.28 0.53 60.6 483.5
10_100_150_70 1,563,152.40 0.00 0.13 0.40 190.1 437.5 0.06 0.30 0.59 198.7 537.4
10_100_150_90 1,847,076.66 0.01 0.12 0.32 137.2 429.0 0.08 0.26 0.39 252.6 575.8
Average 0.03 0.25 047 63.1 172.5 0.08 0.23 0.40 114.7 250.0
25_100_050_70 1,887,688.24 0.18 0.43 0.78 160.3 1,128.9 0.12 0.30 0.47 953.2 1,464.6
25_100_050_90 2,116,849.00 0.03 0.52 0.81 904.3 1,6154 0.26 0.37 0.46 741.2 1,326.4
25_100_100_70 1,953,155.20 0.36 0.62 0.83 284.5 770.2 0.00 0.35 0.75 253.9 1,122.9
25_100_100_90 2,021,228.76 0.35 0.72 1.24 976.0 1,516.7 044 0.55 0.65 847.5 1,207.5
25_100_150_70 1,967,364.52 0.30 0.57 0.82 276.5 1,141.6 0.00 042 0.70 160.5 1,377.1
25_100_150_90 2,160,014.54 0.56 0.80 1.08 776.3 1,509.1 044 0.62 0.77 528.9 1,156.7
25_150_075_70 4,603,163.50 0.20 0.37 0.49 531.1 1,877.3 0.24 033 041 992.6 1,567.2
25_150_075_90 4,618491.80 0.21 0.33 049 1,223.7 1,807.9 0.21 031 040 1,986.0 2,548.8
25_150_150_70 3,882,650.94 0.19 0.36 0.54 788.5 2,183.6 0.19 0.34 049 1,560.7 2,156.1
25_150_150_90 4,706,129.66 0.41 0.53 0.68 597.5 1,984.0 0.32 046 0.58 889.2 2,067.9
25_150_225_70 4,340,090.18 0.13 0.34 0.53 1,657.6 2,347.1 047 059 0.80 1,648.5 2,321.8
25_150_225_90 4,523,393.44 0.44 0.54 0.69 271.5 1,684.5 0.17 0.37 0.53 543.2 1,607.5
25_200_100_70 6,937,008.98 0.22 0.28 0.35 3,123.8 3,938.7 0.07 0.26 044 1,855.8 2,841.7
25_200_100_90 9,034,147.98 0.15 0.29 048 2,017.7 3,352.2 0.15 029 044 1,371.5 2,688.1
25_200_200_70 7,146,330.32 0.13 0.24 044 1,271.1 2948.6 0.10 035 052 1,718.1 3,201.1
25_200_200_90 8,578,620.94 0.00 0.15 0.26 1,170.0 2,669.4 0.18 0.22 0.30 326.3 1,681.0
25_200_300_70 7,638,447.16 0.00 0.25 0.35 1,763.6 3,216.9 0.19 0.28 0.39 819.1 2,745.9
25_200_300_90 8,195,152.30 0.05 0.18 0.27 1,523.7 2,689.1 0.13 0.27 0.37 913.1 2,796.6
Average 0.22 042 0.62 1,073.2 2,132.3 0.20 0.37 0.53 1,006.1 1,993.3

PR has a better performance on large instances. The path-relinking component provides
an improvement for both strategies. We attribute this performance to a rugged landscape
for this problem and the fact that is hard to find feasible solutions. Since in general path-
relinking is performed between two feasible solutions, this component explores a search space
where solutions are feasible or has fewer infeasibilities. Thus, when local search is applied

32

1 L N = B < 1 D F

+ fyf X “ i # "
ff X o4 **f»f» o+
0.8 f
- 0.8 / ¥ > E’;ff?
o ;’1} ol o
0 ;
S 06 8 o6} / /
a s ‘
2 2
T 04 T 04
> >
2 |1/ :
> >
o o
0.2 - 0.2
BRKGA-PR + j BRKGA-PR
o GRASP-PR ~ 0 | GRASP-PR =
0 200 400 600 800 1000 0 1000 2000 3000 4000
time (s) time (s)
(a) TTT plot for 10_100_100_70. (b) TTT plot for 25_200_100_90.

Figure 6: Cumulative probability distribution.

to a solution in the path, the search tends to be faster and leads to a new local minimum
that can be better than the initial and guiding solutions.

Finally, we evaluate our algorithm considering a set of instances of sizes not address
before in the literature. We test for instances with up to 25 data centers and 200 virtual
machines. Even though in real world application 200 VMs can be considered small-scale,
previous work on related problems addressed instances with up to 50. A major contribution
of our work is to consider five times larger than those previously considered. Furthermore, we
provide a new set of benchmark instances for a future experimental analyses of algorithms.

In the next subsection we evaluate our proposed algorithms on an adapted set of instances
from a similar problem and compare our algorithm with a method described in the literature.

4.6. Results for the Generalized Quadratic Assignment Problem

VMPlacement is a generalization of GQAP and our proposed method can be easily
adapted for GQAP. Since we evaluate the infeasibilities in the objective function, we only
need to change the cost evaluation function. However, for convenience, we adapted the
instances of GQAP to make them instances of the VMPlacement. To do this, we give a
sufficiently large value for bandwidth capacity between each pair of data centers as well as
for the required latency between each pair of virtual machines. Finally, we also define an
empty set of users.

The main objective of this experiment is to provide a brief comparison with a method
described in the literature to show that our approach has a competitive performance. We first
perform an experiment with CPLEX to provide a baseline comparison with exact methods.
Later, we compare our algorithms with a GRASP with path-relinking proposed by Mateus
et al. (2010).

33

We use a set of instances proposed by Cordeau et al. (2006). These instances have 20 to
50 facilities (virtual machines) and 6 to 20 locations (data centers). Instances are listed in
Table 8 and are labelled, respectively, with the number of facilities (virtual machines), loca-
tions (data centers), and a parameter that controls the tightness of the capacity constraints.
The higher the value of this parameter, the higher the tightness of the capacity constraints.
Since this set comprises the largest instance set available for GQAP, we evaluate our strate-
gies only for this set of instances. These experiments are carried out on a computer with an
Intel(R) Core(TM) i7 CPU 930 with 2.80 GHz and 12GB of main memory.

Cordeau et al. (2006) evaluate CPLEX (version 8.1) exploring the emphasis parameter
on the branch-and-bound tree for a time limit of two hours. CPLEX was able to prove
optimality only for instance 30-08-55. Pessoa et al. (2010) proposed exact algorithms that
combine branch-and-bound with a new Lagrangean decomposition and the Reformulation-
Linearization Technique and prove optimality for another 13 instances of this instance set.

In the first experiment we evaluate the performance of CPLEX on models LMVMP and
LMVMPII, described in Section 2. We run CPLEX for each instance with a time limit of
one day (86,400 seconds). We also set the tree memory parameter (TreLim) to 5000 to stop
execution when this memory limit is exceeded. The remaining parameters are kept to their
default values.

Table 8 shows the results for each instance listed in the first column. The second column
shows the best-known solutions for each instance (optimal values are given in boldface).
The next two sets of columns show the results for each linear mathematical model. Column
Nodes shows the number of search tree nodes visited by CPLEX. Column Integer Sol shows
the objective function of best solution found during the execution. Column gap shows the
percentage gap between the lower bound and the best integer solution found by CPLEX.
Column Time shows the running time in seconds for CPLEX to prove optimality or sat-
isfy the stopping criterion. Instances that CPLEX found the optimal solution or proved
optimality are highlighted in boldface.

Observing the results in Pessoa et al. (2010) and comparing then with the results in
Table 8, we note that the branch-and-bound approach in Pessoa et al. (2010) tends to be more
efficient than CPLEX. In general, the running time tends to be smaller than the required
by CPLEX. However, both methods are not strictly comparable since the experiments use
different stopping criteria, and are reported over different computers. In the end, the main
observation from these results is that even with a high increase in the computational power
and the development of many algorithms and improvements over each CPLEX version, this
set of instances is still hard to be solved by exact methods.

In a second experiment, we compare our strategies with the GRASP-PR proposed by
Mateus et al. (2010), the state-of-the-art heuristic for GQAP. For each instance we performed
200 independent runs. Each run stopped when a solution value as good as the best-known
solution was found (column BKS in Table 8).

Two main differences are observed between our approaches and GRASP-PR proposed
by Mateus et al. (2010). First, we performed a wide exploration with the local search
strategy. Mateus et al. (2010) uses an approximate local search using shift and swap moves.
In our approach, we explore all neighbors using three neighborhood structures. Second, we

34

Table 8: CPLEX results for GQAP instances.

LMVMP LMVMPII
Instance BKS Nodes Integer Sol gap (%) Time (s) Nodes Integer Sol gap (%) Time (s)
20-15-35 1,471,896 2,990 1,471,896 0.00 3,788.3 30,709,073 1,471,896 7.95 41,981.1
20-15-55 1,723,638 10,839 1,723,638 0.00 9,149.2 30,269,870 1,723,638 6.58 39,265.6
20-15-75 1,953,188 5725 1,953,188 0.00 45463 1,867,883 1,953,188 0.00 3,979.6
30-06-95 5,160,920 24,889 5,160,920 0.00 9471.3 16,820,694 5,160,920 0.00 35,086.4
30-07-75 4,383,923 47,884 4,383,923 0.00 22,4295 26,644,434 4,383,923 450 63,524.3
30-08-55 3,501,695 793 3,501,695 0.00 370.1 14,090,023 3,501,695 0.00 36,009.5

30-10-65 3,620,959 41,020 3,620,959 0.00 658054 19,972,814 3,620,959 13.32 58,100.3
30-20-35 3,379,359 1,872 3,605,129 23.96 86,400.0 14,857,869 3,379,359 35.36 50,023.8
30-20-55 3,593,105 1,680 3,865,716 31.23 86,400.0 14,117,019 3,593,105 30.27 54,253.0
30-20-75 4,050,938 1,946 4,245,753 26.43 86,400.0 13,553,603 4,050,938 21.13 59,363.0
30-20-95 5,710,645 3,575 5,840,934 12.96 86,400.0 6,869,516 5,710,645 2.71 86,400.2
35-15-35 4,456,670 3,200 4,456,670 1323 86,400.0 15,797,188 4,457,348 34.76 40,190.5
35-15-55 4,639,128 3,078 4,723,959 19.34 86,400.0 13,903,550 4,639,128 2752 40,295.3
35-15-75 6,301,723 1,139 6,395,402 27.83 86,400.0 13,348,410 6,327,723 28.02 59,428.9
35-15-95 6,670,264 1,546 7,370,866 32.00 86,400.0 9,664,857 6,689,421 20.38 86,400.0
40-07-75 7,405,793 34,769 7,405,793 3.60 86,400.0 20,466,362 7,405,793 12.94 35,228.8
40-09-95 7,667,719 8471 7,941,330 18.26 86,400.0 16,718,721 7,694,904 18.61 38,337.7
40-10-65 7,265,559 6,790 7,305,381 10.80 86,400.0 16,475,064 7,265,559 22.79 49,526.1
50-10-65 10,513,029 5467 10,513,029 415 86,400.0 14,617,831 10,513,029 19.39 52,238.3
50-10-75 11,217,503 2,209 11,415,840 19.80 86,400.0 14,018,304 11,251,072 24.42 54,3325
50-10-95 12,845,508 1,960 13,242,115 1857 86,400.0 13,205,512 12,845,598 19.25 57,175.5

use a penalization strategy to deal with infeasible solutions. This allows visiting infeasible
solutions to reach new feasible solutions that can be difficult to be reached only exploring a
feasible search space.

Table 9 shows a comparison of GRASP-PR of Mateus et al. (2010) and our best two
approaches described in the previous subsection. Columns Min, Avg, Max, Sd give the
minimum, average, and maximum times, as well as the standard deviation of these runs to
find a solution with values equal to BKS. Finally, column 0.95 shows the time in which 95%
of the runs find the BKS.

The results described in Mateus et al. (2010) are reported on a Dell PE1950 computer
with dual quad core 2.66 GHz Intel Xeon processors. Unfortunately, there is no specific
information about the processor model. We assume the model Intel(R) Xeon(TM) X5355
2.66 GHz, based on server model, the number of cores and clock frequency. We run our
algorithms for this set of experiments on a computer with an Intel(R) Core(TM) i7 CPU
930 2.80 GHz. The machine that we use is approximately 1.2 times faster than the one used
in Mateus et al. (2010) (based on Single Thread Rating data from wwww.cpubenchmark.
net). The execution times for the two implementations are not strictly comparable since
the languages and compilers used are different. However, at a high level, this comparison
provides an idea of the behavior of the algorithms.

Even considering that the running times are measured on different hardware, the data
from Table 9 shows that our version of GRASP-PR, as well as the BRKGA-PR approach
have a significant lower running time in comparison with the results reported in Mateus
et al. (2010). The average minimum time is nearly two orders of magnitude smaller. This

35

wwww.cpubenchmark.net
wwww.cpubenchmark.net

Table 9: Comparison algorithms for GQAP.

Mateus et al. (2010) BRKGA-PR GRASP-PR
Instance ~ Min Avg Max Sd 0.95 Min Avg Max Sd 0.95 Min Avg Max Sd 0.95
20-15-35 0.16 7.05 38.87 6.47 21.04 0.06 0.13 0.28 0.04 0.17 0.01 0.08 0.57 0.09 0.22
20-15-55 0.24 2.87 14.42 2.18 7.69 0.06 0.12 0.17 0.03 0.16 0.01 0.13 0.75 0.14 0.36
20-15-75 0.26 2.01 12.82 1.72 525 0.08 0.39 344 0.50 1.32 0.01 0.41 3.30 0.51 1.41
30-06-95 0.55 2.59 23.81 2.22 6.44 0.16 041 223 0.25 0.88 0.01 0.48 1.78 0.36 1.16
30-07-75 0.50 7.80 38.47 5.47 18.18 0.15 0.66 5.22 0.63 1.86 0.01 0.48 4.10 0.49 1.28
30-08-55 0.18 1.61 4.89 0.95 3.60 013 027 0.40 0.06 0.35 0.01 0.03 0.24 0.03 0.10
30-10-65 2.75 121.94 1,032.80 146.06 514.82 0.18 1.58 1227 1.83 5.35 0.01 1.59 8.83 1.53 4.41
30-20-35 1.08 79.03 4,441.40 312.62 166.21 024 0.73 1.73 0.29 1.27 0.01 1.81 8.60 1.60 5.14
30-20-55 1.28 25.16 150.11 21.19 66.82 0.25 1.35 9.84 1.37 4.05 0.01 1.73 7.43 1.37 4.58
30-20-75 2.11 41.43 759.81 68.39 148.43 0.29 0.71 147 0.23 1.15 0.01 1.01 4.84 0.90 2.67
30-20-95 833.99 543,019.01 2,533,608.00 747,962.39 2,186,440.80 8.82 514.61 2,780.71 491.24 1,556.91 1.40 1,880.75 7,363.47 1,643.47 5,563.42
35-15-35 841 306.11 1,717.94 242.49 775.25 0.24 5.62 27.82 5.64 1771 0.09 12.26 53.11 11.26 35.16
35-15-55 4.33 21.13 75.69 11.95 4247 032 097 410 0.54 171 0.01 0.38 1.56 0.31 0.97
35-15-75 5.18 68.23 621.83 74.17 183.19 0.35 1.09 3.30 0.48 1.99 0.07 1.66 6.85 1.39 4.63
35-15-95 6.61 1,454.00 19,171.48 3,057.43 6,949.08 3.75 152.66 693.83 130.20 406.25 0.44 126.32 822.98 132.03 386.36
40-07-75 4.53 59.37 377.06 51.21 159.00 0.26 0.64 246 0.27 1.02 0.01 0.57 3.29 0.58 1.64
40-09-95 6.18 417.00 5,017.56 610.28 1,490.31 1.65 58.30 398.04 58.47 14819 0.27 16.87 99.82 16.26 48.26
40-10-65 0.84 17.87 115.06 15.88 52.73 0.37 0.79 112 0.21 1.03 0.01 0.14 0.71 0.13 0.38
50-10-65 2.52 24.56 84.64 16.34 64.04 0.67 1.42 2.06 0.34 1.88 0.01 0.12 0.58 0.09 0.28
50-10-75 22.79 1,352.41 24,507.34 3,085.42 4,404.50 1.70 299.78 1,595.95 311.53 965.27 0.19 38.58 195.59 40.51 120.84
50-10-95 9.97 89.36 1,059.59 91.95 200.20 1.98 22.36 145.65 25.65 73.16 0.14 9.38 39.38 772 25.55
Average 43.55 26,053.36 123,470.17 35,989.85 104,843.81 1.03 50.69 271.05 49.04 151.98 0.13 99.75 410.85 88.61 295.66
Median 2.52 41.43 377.06 51.21 14843 0.26 0.97 344 0.50 1.86 0.01 1.01 4.84 0.90 2.67

evidence that our proposed strategies have competitive performance since they are able to
find the BKS in all runs in times that are significantly shorter than that those reported
in Mateus et al. (2010). We also observe that our strategies are robust in the sense the
algorithms were developed for a specific problem and they also perform well in a general
application without any modification. Finally, statistical tests similar to the one described
in previous subsections comparing our two approaches shows that GRASP-PR is slightly
faster than BRKGA-PR, especially for instances with 35 or more facilities. For instances
with up to 30 facilities, the behavior is the reverse.

Figure 7 shows the time-to-target plots depicting the run time distributions for BRKGA-
PR and GRASP-PR with target solution defined as BKS. We choose the same instances used
to show the time-to-target for GRASP-PR in Mateus et al. (2010). We observe that the
behavior, in general, is similar for BRKGA-PR and GRASP-PR, but the performance of
one algorithm can be better than the other depending on the instance.

5. Concluding remarks

In this paper, we presented the problem of minimizing the cost of placing virtual machines
across geo-separated data centers. A quadratic and two linear mathematical programming
formulations were presented. Moreover, we presented several heuristics for solving this
problem. In the experiments, we evaluate the performance of CPLEX using the proposed
mathematical programming formulations, and the proposed heuristic methods.

The results of CPLEX show that by adding the set of cuts the solver significantly improves
the quality of the lower bounds for the LMVMPII model. We also observed that for this
model, CPLEX can handle larger instances than considering LMVMP model, obtaining

36

}m?wx £ v X x X
%(xi& OoF
i ’
0.8 i 0.8
3 3 i
3 ; 38
2 06 2 06
s s
)] 3]
2 2
8 04 8 04
=} =)
S £
3 3
o o
0.2 0.2
BRKGA-PR + BRKGA-PR
0 GRASP-PR 0 GRASP-PR _
0 05 1 15 2 25 3 35 4 0o 1 2 3 4 5 6 7 8 9
time (s) time (s)
(a) TTT plot for 20-15-75. (b) TTT plot for 30-20-35.
1 = = 1 %
~ X X 3 e -
i [/
0.8 y 0.8 /
2 s Z A
3 3
: / ; /
S 0.6 / S 0.6 f
o o
] 5] /}
2 2
8 0414 Z 04
> 3
1S y £
) 3
o [S]
0.2 0.2
BRKGA-PR + BRKGA-PR
GRASP-PR ~ o GRASP-PR
0 100 200 300 400 500 600 700 800 900 0 50 100 150 200 250 300 350 400
time (s) time (s)
(¢) TTT plot for 35-15-95. (d) TTT plot for 40-09-95.

Figure 7: Cumulative probability distribution for BRKGA-PR and GRASP-PR running times for instances
20-15-75, 30-20-35, 35-15-95, and 40-09-95.

better lower bounds and feasible solutions in less computational time. However, as an exact
method, CPLEX is limited to solve small instances, showing that heuristic methods are
required on larger size instances.

Two heuristics approaches are used to solve the problem, GRASP and BRKGA. In both
methods, we use a path-relinking procedure as an intensification mechanism. Also, we use
a local search that explores many neighborhood strategies. Both heuristic approaches had
similar performance, with the best performance achieved using local search 3V and path-
relinking PRM. A slight advantage for BRKGA was observed in small instances while GRASP
has a slight advantage on larger instances. The same performance was observed when our
strategies were applied to GQAP instances. In this case, our methods outperforms the
previous state-of-the-art algorithm.

37

Finally, considering the high cost involved in this kind of problem, and the difficulty
to obtain feasible solutions when taking into account several constraints and limited re-
sources, the proposed algorithms are good alternative to reduce costs, while maintaining the
reliability and the demand requirements of data centers.

6. Acknowledgments

This work has been partially supported by CAPES, CNPq project 462425/2014-2, PRH
PB-217 Petrobras S.A. from Brazil. We thank to K. Joshi at AT&T Labs-Research for
many helpful discussions. The work of Vaneet Aggarwal and Mauricio G.C. Resende was
done when both were employed at AT&T Labs Research.

References

Aiex, R. M., Resende, M. G. C., and Ribeiro, C. C. (2007). TTT plots: A perl program to create time-to-
target plots. Optimization Letters, 1(4):355-366.

Alicherry, M. and Lakshman, T. (2012). Network aware resource allocation in distributed clouds. In 2012
Proceedings IEEE INFOCOM, pages 963-971. IEEE.

Armentano, V. A.; Shiguemoto, A., and Lgkketangen, A. (2011). Tabu search with path relinking for an
integrated production—distribution problem. Computers & Operations Research, 38(8):1199-1209.

Ballani, H., Costa, P., Karagiannis, T., and Rowstron, A. (2011). Towards predictable datacenter networks.
ACM SIGCOMM Computer Communication Review, 41(4):242.

Basseur, M., Seynhaeve, F., and Talbi, E.-G. (2005). Path Relinking in Pareto Multi-objective Genetic
Algorithms. In Coello Coello, C., Hernandez Aguirre, A., and Zitzler, E., editors, Evolutionary Multi-
Criterion Optimization SE - 9, volume 3410, pages 120-134. Springer Berlin Heidelberg.

Bean, J. C. (1994). Genetic Algorithms and Random Keys for Sequencing and Optimization. INFORMS
Journal on Computing, 6(2):154-160.

Biran, O., Corradi, A., Fanelli, M., Foschini, L., Nus, A., Raz, D., and Silvera, E. (2012). A Stable Network-
Aware VM Placement for Cloud Systems. In 2012 12th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (ccgrid 2012), pages 498-506. IEEE.

Cordeau, J. F., Gaudioso, M., Laporte, G., and Moccia, L. (2006). A memetic heuristic for the generalized
quadratic assignment problem. INFORMS Journal on Computing, 18(4):433-443.

Feo, T. A. and Resende, M. G. C. (1989). A probabilistic heuristic for a computationally difficult set covering
problem. Operations Research Letters, 8(2):67-71.

Feo, T. A. and Resende, M. G. C. (1995). Greedy Randomized Adaptive Search Procedures. Journal of
Global Optimization, 6(2):109-133.

Feo, T. A., Resende, M. G. C., and Smith, S. H. (1994). A Greedy Randomized Adaptive Search Procedure
for Maximum Independent Set.

Festa, P., Pardalos, P., Resende, M., and Ribeiro, C. (2002). Randomized heuristics for the Max-Cut
problem. Optimization Methods and Software, 17(6):1033—1058.

Festa, P. and Resende, M. G. C. (2013). Hybridizations of GRASP with Path-Relinking. In Talbi, E.-
G., editor, Hybrid Metaheuristics, volume 434 of Studies in Computational Intelligence, pages 135-155.
Springer Berlin Heidelberg.

Fischer, A., Botero, J. F., Beck, M. T., de Meer, H., and Hesselbach, X. (2013). Virtual Network Embedding:
A Survey. IEEE Communications Surveys € Tutorials, 15(4):1888-1906.

Fischetti, M. and Monaci, M. (2014). Exploiting Erraticism in Search. Operations Research, 62(1):114-122.

Frieze, A. and Yadegar, J. (1983). On the quadratic assignment problem. Discrete Applied Mathematics,
5(1):89-98.

Glover, F. (1989). Tabu Search—Part I. ORSA Journal on Computing, 1(3):190-206.

38

Glover, F. (1997). Tabu Search and Adaptive Memory Programming - Advances, Applications and Chal-
lenges. In Barr, R., Helgason, R., and Kennington, J., editors, Interfaces in Computer Science and
Operations Research, volume 7 of Operations Research/Computer Science Interfaces Series, pages 1-75.
Springer US.

Glover, F. (2014). Exterior Path Relinking for Zero-One Optimization. International Journal of Applied
Metaheuristic Computing, 5(3):1-8.

Glover, F. and Laguna, M. (1993). Tabu Search. In Reeves, C. R., editor, Modern Heuristic Techniques for
Combinatorial Problems, pages 70-150. Blackwell Scientific Publishing, Oxford, England.

Glover, F., Laguna, M., and Marti, R. (2000). Fundamentals of scatter search and path relinking. Control
and Cybernetics, Vol. 29, n(3):653-684.

Glover, F., Laguna, M., and Marti, R. (2003). Scatter Search and Path Relinking: Advances and Applica-
tions. In Glover, F. and Kochenberger, G., editors, Handbook of Metaheuristics, volume 57 of International
Series in Operations Research € Management Science, pages 1-35. Springer US.

Gongalves, J. F. and Resende, M. G. C. (2011). Biased random-key genetic algorithms for combinatorial
optimization. Journal of Heuristics, 17(5):487-525.

Greenberg, A., Hamilton, J. R., Jain, N., Kandula, S., Kim, C., Lahiri, P., Maltz, D. a., Patel, P., and
Sengupta, S. (2009). VL2: A Scalable and Flexible Data Center Network. ACM SIGCOMM Computer
Communication Review, 39(4):51.

Guo, C., Lu, G., Wang, H. J., Yang, S., Kong, C., Sun, P., Wu, W., and Zhang, Y. (2010). SecondNet: A Data
Center Network Virtualization Architecture with Bandwidth Guarantees. In International Conference on
- Co-NEXT, 10, page 12, New York. ACM.

Guo, T., Shenoy, P., Ramakrishnan, K. K., and Gopalakrishnan, V. (2017). Latency-aware virtual desktops
optimization in distributed clouds. Multimedia Systems, 0(0):22.

Hansen, P., Mladenovié¢, N., and Moreno Pérez, J. A. (2010). Variable neighbourhood search: Methods and
applications. Annals of Operations Research, 175(1):367-407.

Hoos, H. H. and Stiitzle, T. (1998a). Evaluating Las Vegas Algorithms: Pitfalls and Remedies. In Conference
on Uncertainty in Artificial Intelligence, 14, pages 238-245, San Francisco. Morgan Kaufmann Pub.

Hoos, H. H. and Stiitzle, T. (1998b). On the empirical evaluation of Las Vegas algorithms. Technical report,
Computer Science Department, University of British Columbia.

Kaufman, L. and Broeckx, F. (1978). An algorithm for the quadratic assignment problem using Bender’s
decomposition. European Journal of Operational Research, 2(3):207-211.

Koopmans, T. C. and Beckmann, M. J. (1957). Assignment problems and the location of economic activities.
Econometrica, 25(1):53-76.

Laguna, M. and Marti, R. (1999). GRASP and Path Relinking for 2-Layer Straight Line Crossing Mini-
mization. INFORMS Journal on Computing, 11(1):44-52.

Lee, C. G. and Ma, Z. (2004). The generalized quadratic assignment problem. Technical report, Department
of Mechanical and Industrial Engineering at the University of Toronto, Toronto, Ontario, M5S 3GS,
Canada.

Marti, R., Laguna, M., and Glover, F. (2006). Principles of scatter search. Furopean Journal of Operational
Research, 169(2):359-372.

Marti, R., Resende, M. G. C., and Ribeiro, C. C. (2013). Multi-start methods for combinatorial optimization.
European Journal of Operational Research, 226(1):1-8.

Mateus, G. R., Resende, M. G. C., and Silva, R. M. A. (2010). GRASP with path-relinking for the generalized
quadratic assignment problem. Journal of Heuristics, 17(5):527-565.

Mittelmann, H. and Salvagnin, D. (2015). On solving a hard quadratic 3-dimensional assignment problem.
Mathematical Programming Computation, pages 1-16.

Oliveira, C. A. S., Pardalos, P. M., and Resende, M. G. C. (2004). GRASP with Path-Relinking for
the Quadratic Assignment Problem. In Ribeiro, C. C. and Martins, S. L., editors, Ezperimental and
Efficient Algorithms, volume 3059 of Lecture Notes in Computer Science, pages 356-368. Springer Berlin
Heidelberg.

39

Pessoa, A. A., Hahn, P. M., Guignard, M., and Zhu, Y.-R. (2010). Algorithms for the generalized quadratic
assignment problem combining Lagrangean decomposition and the Reformulation-Linearization Tech-
nique. European Journal of Operational Research, 206(1):54-63.

Piao, J. T. and Yan, J. (2010). A Network-aware Virtual Machine Placement and Migration Approach in
Cloud Computing. In 2010 Ninth International Conference on Grid and Cloud Computing, pages 87-92.
IEEE.

Resende, M. G. and Ribeiro, C. C. (2016). Optimization by GRASP: Greedy Randomized Adaptive Search
Procedures. Springer New York.

Resende, M. G. C. and Ribeiro, C. C. (2005). GRASP with Path-Relinking: Recent Advances and Applica-
tions. In Metaheuristics: Progress as Real Problem Solvers, volume 1, pages 29-63. Springer-Verlag, New
York.

Resende, M. G. C. and Ribeiro, C. C. (2010). Greedy Randomized Adaptive Search Procedures: Advances,
Hybridizations, and Applications. In Gendreau, M. and Potvin, J.-Y., editors, Handbook of Metaheuris-
tics, volume 146 of International Series in Operations Research & Management Science, pages 283-319.
Springer US.

Resende, M. G. C. and Ribeiro, C. C. (2014). GRASP: Greedy Randomized Adaptive Search Procedures.
In Burke, E. K. and Kendall, G., editors, Search Methodologies, pages 287-312. Springer US.

Resende, M. G. C., Ribeiro, C. C., Glover, F., and Marti, R. (2010). Scatter search and path-relinking:
Fundamentals, advances, and applications. In Handbook of Metaheuristics, pages 87—107. Springer.

Spears, W. M. and DeJong, K. A. (1991). On the virtues of parameterized uniform crossover. In Proceedings
of the Fourth International Conference on Genetic Algorithms, pages 230-236.

Stefanello, F., Aggarwal, V., Buriol, L. S., Gongalves, J. F., and Resende, M. G. C. (2015a). A Biased
Random-key Genetic Algorithm for Placement of Virtual Machines across Geo-Separated Data Centers.
In Conference on Genetic and evolutionary computation, 15, pages 1-8, Madrid. ACM.

Stefanello, F., Buriol, L. S., Aggarwal, V., and Resende, M. G. C. (2015b). A New Linear Model for
Placement of Virtual Machines across Geo-Separated Data Centers. In Simpdsio Brasileiro de Pesquisa
Operacional, 47, pages 1-11, Porto de Galinhas, PE. Sociedade Brasileira de Pesquisa Operacional.

Toso, R. and Resende, M. (2015). A C++application programming interface for biased random-key genetic
algorithms. Optimization Methods and Software, 30(1):81-93.

Vallada, E. and Ruiz, R. (2010). Genetic algorithms with path relinking for the minimum tardiness permu-
tation flowshop problem. Omega, 38(1-2):57-67.

Xie, D. and Hu, Y. C. (2012). The Ouly Constant is Change: Incorporating Time-Varying Network Reser-
vations in Data Centers. In Sigcomm, 12, SIGCOMM ’12, pages 199-210, New York. ACM.

40

	Introduction
	Virtual Machine Placement Problem
	Quadratic mathematical model
	Linear mathematical model I: LMVMP
	Linear mathematical model II LMVMP-II

	Heuristic Approaches
	Local search procedures
	Path-relinking
	Greedy Randomized Adaptive Search Procedure - GRASP
	Biased random-key genetic algorithm - BRKGA
	Decoders
	Hybrid BRKGA and path-relinking

	Computational results
	Data set
	CPLEX results
	Results for small size instances
	Results for medium and large size instances

	GRASP results
	BRKGA results
	Additional comparison
	Results for the Generalized Quadratic Assignment Problem

	Concluding remarks
	Acknowledgments

