An Interior Point Approach to Boolean

Vector Function Synthesis'

A.P. Kamath 2 N.K. Karmarkar®

Abstract— The Boolean vector function synthesis problem
can be stated as follows: Given a truth table with n input vari-
ables and m output variables, synthesize a Boolean vector func-
tion that describes the table. In this paper we describe a new
formulation of the Boolean vector function synthesis problem
as a particular type of Satisfiability Problem. The Satisfiability
Problem is translated into an integer programming feasibility
problem, that is solved with an interior point algorithm for in-
teger programming. Preliminary computational results are pre-
sented.

INTRODUCTION

The Boolean Vector Function Synthesis Problem has ap-
plications in logic, artificial intelligence, machine learning, and
digital integrated circuit design. In this paper, we describe a
Satisfiability Problem formulation of the Boolean Vector Func-
tion Synthesis Problem. This formulation can be approached
with a wide range of algorithms. In this paper, preliminary
computational results are presented using an interior point al-
gorithm for integer programming to solve instances of the prob-
lem.

Consider the Boolean function F : {0,1}" — {0,1}. An
element of the domain of F is called a minterm of F. The set
of minterms for which F evaluates to 1 (0) is called the ON-set
(oFF-set). An incompletely specified Boolean function is one
for which the number of minterms in the ON- and OFF-sets is
less than 2.

An algebraic expression for an incompletely specified
Boolean function F is a Boolean expression (written with
Boolean sums (V) and products (A)) that evaluates to 1 (0)
for all minterms in the ON-set (OFF-set) and evaluates to ei-
ther 1 or 0 for all other minterms. An algebraic expression for
F can always be written in sum-of-products (disjunctive nor-
mal) form. Each product term in the algebraic sum-of-products
expression is called a disjunct. Let P? and P!, respectively, de-
note the index set of 0 and 1 values of the i-th element of the
ON-set of F. The canonical expansion,

\/ AR

i€ON-set | jepr}! JEP?

Yy =

is a sum-of-products algebraic expression for F. The major
drawback of the canonical expansion is that it has |ON-set| dis-
juncts, each having n variables.

Given an ON-set and OFF-set of minterms, the Boolean
Function Synthesis Problem is to find an algebraic sum-of-
products expression for F having a specified number of dis-
juncts. The corresponding decision problem is NP-complete [1]

[2].

1To appear in Proceedings of the 36th MSCAS (1993)
2Stanford University, Stanford CA 94305 USA
3AT&T Bell Laboratories, Murray Hill NJ 07974 USA

K.G. Ramakrishnan® M.G.C. Resende ?

The classical approach to tackle the Boolean Function
Minimization Problem (where one wishes to minimize the num-
ber of disjuncts in the sum-of-products form) was developed by
Quine [3] [4] and McCluskey [5]. Because exact versions of the
Quine-McCLuskey method fail to handle large instances, many
heuristic approaches have been developed. They include MINI
[6], PRESTO [7], and ESPRESSO-MV [1]. ESPRESSO-MV is widely
used in the circuit design industry.

In [8], Kamath, Karmarkar, Ramakrishnan and Resende
considered an interior point mathematical programming ap-
proach to the Boolean Function Synthesis Problem. In this pa-
per, we extend that approach to the Boolean Vector Function
Synthesis Problem. The synthesis problem is formulated as a
type of Satisfiability Problem that can be described as an in-
teger programming problem, using a standard transformation.
We apply the interior point algorithm for integer programming
described in [9] and [10] to synthesize Boolean vector functions.
In particular, we use an implementation derived from the one
described in [11], that is suited for finding a satisfiable truth
assignment in instances of the Satisfiability Problem. The in-
terior point algorithm is used to attempt to find a feasible £1
integer solution w to the following integer program:

BTw < b
+1, y=1,...,n,

(1)

where BT € R™*™ b € R™, and w € R". In [11] it is shown
how the Satisfiability Problem can be formulated as an integer

W, =

programming problem of this form. Let A = [B T - I:|,

where T is an » x n identity matrix and let ¢* = (57,1,...,1).
Starting with an interior point solution

w’ € {w eR"ATw < c} ,

a trust region method, similar to the one described in Moré
and Sorensen [12]; is applied to the nonconvex optimization
problem

L 1«
minimize log(n — w ' w) — — Zlog(ck —aj w).
k=1

At each iteration, a quadratic approximation of the potential
function

1 m
o(w) =log(n — w ' w) — — Zlog(ck —aj w)
k=1

is optimized over an ellipsoid inscribed in the polytope defined
by

{w € §R"|ATw < c} ,
and centered at the current iterate, to produce a descent di-

rection. The new iterate is determined by moving in that di-
rection by a fixed step length, such that the new point is in

the interior of the ellipsoid. A rounding heuristic is applied to
the fractional solution and feasibility of the rounded solution
is tested. A description of the rounding heuristic and initial
interior point solution used in this study can be found in [11].

SATISFIABILITY PROBLEM FORMULATION

A formulation of the Boolean Vector Function Synthe-
sis Problem as a Satisfiability Problem is given next. In the
Boolean Vector Function Synthesis Problem, we consider an
incompletely specified Boolean function F : {0,1}" — {0,1}™,
and wish to find m algebraic sum-of-products expressions (one
for each output variable), restricting disjuncts in each expres-
sion to come from a set of at most &k distinct disjuncts, where
k > 01s given. The input and output vectors have components
T1,...,Tn and y1,. .., Ym, respectively. In our formulation, two
types of decisions are to be made. First, what are each of the
k disjuncts. Second, for each output component, which of the
k disjuncts appear in the algebraic sum-of-products expression
for that output.

We assume that as input we are given a partial truth ta-
ble of the Boolean function F that we wish to synthesize. The
truth table is a set of A i/o-pairs, where each i/o-pair is made
up of an in-tuple and an out-tuple. The in-tuple is a Boolean
n-vector, representing an element of the domain of F, and the
out-tuple 1s a Boolean m-vector, representing the correspond-
ing output of F for that in-tuple. Let the a-th in-tuple be z¢
and the ¢-th input component of the a-th in-tuple be z{ and
let the a-th out-tuple be y* and the ¢g-th output component of
the a-th out-tuple be yg. A function is said to be incompletely
specified if A < 27,

In our formulation, we use decision variables s;; and s;i
to determine which literal (z; or T, if any) is part of the j-th
disjunctive term,

{ 0 if x; is in the j-th disjunctive term
S5i = .
1 otherwise

if T; is in the j-th disjunctive term
otherwise,

and wj; to determine which disjunct is part of the I-th output
component yi,

1
wy = 0

For each ifo-pair @ = 1,..., A, input variable z;, i =
1,...,n, and disjunct 5 = 1,...,k, define for convenience of
notation,

if the j-th disjunct appears in output y;
otherwise.

if o8 =1
if ¢ =0.

For input z¢, the truth value of the j-th disjunct can be rep-
resented by AL 07,

Auxiliary variable =}, is defined to be true if the j-th dis-
junct is selected to be part of the ¢g-th output and the truth

value of the j-th disjunct is true. Therefore,
Z5q = Wig A (Af=107%).

Hence, if the j-th product term is part of the ¢-th output com-

ponent, i.e. if w;jq = 1, then z7, will take on the value of the

7-th product term given the a-th in-tuple. Otherwise, if it is

not part of the g-th output component, then zJ, = 0 and hence

will not affect the g-th output. Having defined 2}, the ¢-th
output yg is the Boolean sum of the z}, variables, i.e.

y; = \/lezfq.

The clauses in the Satisfiability Problem formulation im-
pose conditions which the variables must satisfy in order to
determine a Boolean vector function that meets the specifica-
tion of the truth table.

We now state the clauses of Type-1. Since z; and T; can-
not simultaneously be part of the j-th disjunctive term, we
have that

85 V s;i

must be satisfied forall e =1,...,nand 3 =1,...,k.

We next state clauses of Type-2. Consider the case for
which yg = 0. Then, it must be the case that 2], = 0, for all
7=1,...,k, and consequently,

wig A (Af=105%) =0,
forall j = 1,..., k. These requirements can be stated as clauses
w]q \ (\/Z:l&;k)a

forall j=1,...,k and {g,a} such that yg = 0.

Now consider the other case, i.e. where yg = 1. To satisfy
yq = 1, then at least one product term in this output must
evaluate to true, i.e.

k a
Vi=145q;

for {¢,a} such that y = 1. These are the Type-3 clauses.

To complete the formulation, we must relate variables =7,
with w;, and o}, for {q,a} such that yg =1 and j=1,... k.
Two conditions must be satisfied.

First, if 27, = 1, then wjy =1 and o}; = 1, for all : =
1,...,n, le.

2iq = wig A (N 05s).

Clauses of Type-4a/b force this condition. Type-4a clauses are
Ejaq V wjg.

Type-4b clauses are
—a a
Ziq V Oy,
forall e =1,...,n.
Second, if zj, = 0, then either w;, = 0 or for at least one
index e =1,...,n, 0); =0, Le.
Zjq — Wiq V (Viz105:).

Type-5 clauses guarantee this,

25 V Wjq V (Vie1555).

Note that for our objective (to synthesize a Boolean func-
tion that realizes the specification given by the truth table),
only clauses of Types-1, 2, 3, 4a and 4b are needed. An as-
signment that satisfies these clauses produces a correct func-
tion, but does not necessarily satisfy clauses of Type-5. Type-5
clauses are only needed to produce correct values for the aux-
iliary variables z.

To summarize, for the Boolean Vector Function Synthesis
Problem, we wish to find truth assignments for s;; (j =1,...,k
and i =1,...,n), 85 (=1,...,kand s =1,...,n), w (j =
1L,...,kand I=1,...,m),and z5; (a =1,..., A, j=1,...,k
and I =1,...,m) such that the following clauses are satisfied:

Table 1: Truth table without DON'T CARE

=
[y

)
V)

s
w
e
pary
2
%)

O == O
= OoO|lo
[ey e
- oo O
= OoO|lo

Table 2: Truth table with DON'T CARE

Trq To T3 Y1 Y2
1 0o 1] 1 o
[DCJo 1] o0 o
11 1o 1
0 1 1] 1

e Type-1: Fore=1,...,nand y=1,...,k,
85 V s;i.
e Type-2: For j =1,...,k and {g, a} such that y5 =0,
Wiq V (VZ=1&;k)'
o Type-3: For {q,a} such that yg =1,
\/lezfq.
o Type-4a: For j=1,...,k, and {q,a} such that yg =1,

—=a
Z5q4 V Wigq.

e Type-4b: Fore=1,...
that yg =1,

,n, 3 =1,...,k, and {q,a} such

AV

~a
z gi-

jq
e Type-5: For j =1,...,k, and {¢, a} such that yg =1,

Zyy ¥V Wiq V (Viz165;).

The Satisfiability problem has k(2n 4+ m(1 + A)) variables and
k(n+ YO) + Yl(l + k(24 n)) clauses, where Y% is the number
of pairs {¢,a} for which yg = 0 and Y! is the number of pairs
{¢, a} for which yg = 1.

We next extend the Satisfiability model to allow for DON’T
CARE (DC) entries in the truth table. DCs in the in-tuple can
be used to make a more compact truth table representation of
the Boolean function. To illustrate this, consider the example
specification given in Table 1, where the second and third i/o-
pairs differ exactly in one input component. Table 1 can have a
more compact representation (Table 2) with the two i/o-pairs
replaced by a single i/o-pair with a DC in the component un-
der consideration. DCs in the out-tuple are used for modeling
purposes, where, given some in-tuple, we “don’t care” what a
given component of the output will evaluate to.

Since DCs affect only some in-tuple components z{ of the
truth table of F, only clauses that depend on these entries are
affected, i.e. clauses in which the variable o}; appears. Those
are clauses of Types 2, 4b and 5. Let us consider each clause

type individually. Before doing so, let us define the following

two sets that form a partition of the index set {1,...,n}:
* = {i|s*=DC),
J* = {i|zf=00r1}.

For Type-2 clauses, the requirement yg = 0 implies that

for all y =1,...,k we have 2}, = 0. Therefore

Wiq A (Akese U;k) A (/\kGI“a;k) =0, (2)

for all possible values of ¢f;. Let n°® € I*. Condition (2) can
be written as

wig A (Akea05i) AN Agerarno0yk) A oo = 0. (3)
Since ;o = DC, ano can be either s;,0 or s;nu, (3) can be

further be expressed as

(/\kGIa\nDa';k) A S]nu = 0, (4)
(/\keja\nua';k) A S;nu = 0. (5)

Wiq N (/\kGJ“U;k) A
wig A (Argsaoyy) A
Since, by clauses of Type-1, 5,0 V s;nu =1,for g =1,...,k,
conditions (4-5) can be reduced to

Wig A (Arggaoyy) A (Akeja\nuajk) =0.

Repeating this elimination process of o7, for all k € I* causes
clauses of Type-2 to reduce to

Wiq V (vaJ“&;k)a

for j=1,...,k and {g, a} such that y; = 0. This reduces the
number of literals per Type-2 clause by |I¢].

Now consider clauses of Type-4b. Since for ¢ € J¢ the
component of the in-tuple takes either value 0 or 1, the clauses
corresponding to those indices remain unaltered, i.e. we have

AV

_a
z FEEl

Jq
for i € J° j =1,...,k, and {¢,a} such that y7 = 1. For
1 € I* we must consider all possibilities and therefore expand
out clauses of Type-4b to become

Ejaq V 8;i,
Ejaq \Y% S;ia
for s € I¢, y = 1,...,k, and {¢,a} such that y; = 1. This
causes an increase of kY x |I%| clauses per Type-4b clause.
Finally, consider clauses of Type-5. Using an argument
similar to the one used for clauses of Type-2, clauses of Type-5

become
a — —a
Zjq V Wiq V (viGJ“UJi)’

for j =1,...,%, and {¢, a} such that y7 = 1. This reduces the
number of literals per Type-5 clause by |I¢].

DCs in the output are handled automatically, since the
clauses make no reference to out-tuple components for which
yq = DC, resulting in fewer number of clauses.

To summarize, in the synthesis problem where we allow
DON’T CARE entries in the truth table, we wish to find truth
assignments for s;; (j = 1,...,k and 1 = 1,...,n), s}; (j =
1,...,kand i=1,...,n), w; (j=1,...,kand I =1,...,m),
and zj; (e=1,...,4,5=1,...,kand [=1,...,m) such that
clauses of Types-1, 3 and 4a given for the formulation without
DCs are satisfied, together with the following clauses:

o There are 5 Type-3 clauses:
Table 3: A small example ypP

Trq To T3 | Y1 Y2

1 1 1 1 1 1 2 2 2
z11 V 221 V 231 213V z23 V 233 Z13 V 233 V 233

1 0 1 1 0

0 0 1 0 0 2115 N 255 N 231>5 Zf5 N 255 N Z32>5
1 0 0 1 1

1 1 1 0 0 e There are 15 Type-4a clauses:

0 1 1 1 1

~1 =3 =3
Z11 V w1 Z11 V w1 Z12 V w12
_5 =5 -1
Z11 V w1 Z192 V w12 221 V w21
-3 =3 =5

Table 4: o values for small example Z1 VW Zpp V w2y Vwa

=5 =1 =3
Zoo V waa Z31 V waq Z31 V waq

. a
a || ! | O-/Ji || d | || ! | / 232 V waso 25 V wsq 232 V waso
1|1 s | 2 5]2 3| s5a 31
2 1| s51 2| sj2 3 533
311 531 2 | sj2 || 3] sys e There are 45 Type-4b clauses:
4|11 s, 2| sy 3| sy 1 / 1 / 1 /
501 s] 9 s? 3 s? Z11 Vo s11 Z21 V $21 Z31 V 831
71 J2 J3 _3 ’ _3 ’ 23 ’
Z11 Vo s11 Z31 V $21 Z31 V 831
3 ' -3 ' _3 '
Z12 V S11 Z2 V821 Z32 V 831
. _5 1 -5 ' _5 '
o Type-2: For j=1,... k and {g, a} such that y5 =0, Z11 V51 Z31 V 8531 Z31 V 831
5 ' -5 ' _5 '
R (\/ o5) Z12 V 511 Za2 V 521 Z3z V 531
Jq k€J* 05k). _1 ’ 21 ' 21 '
Z11 V s12 %31 V 833 Z31 V 832
1, . a _3 ' -3 ' _3 '
e Type-4b™: Fori € J% j=1,...,k, and {q, a} such that E11 V81 E5; Vshy, Z3 V s3s
=1 _3 / _3 / _3 /
Ya ’ 20y gt Z12 V S12 Z23 VS32 Zap VoS3
q Vv %5 _5 ' _5 ' _5 '
211V S12 F21 V Sa Z31 V 832
2 . a
_Ah2- — _5 - _5
. Taypelélb : ForieI% 7=1,...,k, and {g,a} such that 25 Vs, 25,V shs 25,V sy
yq =4 -1 ! =1 ! -1 !
5%\ g0 Z11 V Ss13 F21 V Sa Z31 V 833
Ja v _3 ’ _3 ' _3 ’
5% v g Z11 V S13 Z31 V 823 Z31 V 833
q Jt _3 v ! _3 v ! _3 v !
) Z12 V S13 Z22 V S23 Z32 V 833
o Type-5: For j=1,... k, and {q,a} such that y5 =1, Vsl ZVshs 25V shs
a - . —a. =5 ! =5 ! =5 !
25q V Wiq V (Vigsa 05;). Z12 V 513 Z32 V 833 Z32 V 833
Again, as before, Type-5 clauses can be ignored in practice. e There are 15 Type-5 clauses:
1 _ ! — !
z11 VW11 V. 817 V812 V 3y,
3 _ _r _ _
A SMALL EXAMPLE ZnVn VoS VS Vi
3 _ _r _ _
Zi2 Vi Vo 8§13 V812V i
. 5 _ — ! !
Consider the logic specification given in Table 3. We seek z1p VWil Vo S11 V812 V S13
a 3 product term expression for this Boolean vector function. Zf2 Vs V511V 512 Vi 513
This problem has the following dimensions: n = 3, m = 2, A v V5 V5V
. . 21 21 21 22 23
k=3, A=5 and the o}; values given in Table 4. 3 ;
The Satisfiability formulation for this problem is given Zo1 VW21 Vo 851V S22V S2s
3 _ _ _ _
next. Zoo VW2 V sél V 822 V 823
5 _ — ! !
e There are 9 Type-1 clauses: Z21 VW21 Vo 521V 8 V Sy
5 _ — ! !
' n ' Z29 \Y% W22 \Y% S21 \Y% S99 \Y% S923
$11 V 811 821 V 831 831 V 831 1 _ _t _ _
' n ' Z31 \Y% wa3a1 \Y% S31 \Y% 832 \Y% S33
S12 V S12 S22 V Soo S32 V 8390 3 B . B B
I 1 I Z31 V wsq \Y% S31 V 832 V 833
s13 V 813 S23 V So3 S33 V S33 3 _ _t _ _
Z39 \ W32 \ 831 \ $32 \ 833
. 5 _ _ _ _
e There are 15 Type-2 clauses: Zay VWa1 V. 831V Sap V Sha
5 _ — ! !
W12 V §11 V 12 V F1a W11 V 811 V 12 V 515 Zag V W3z Vo 831V 833V 3
_ _ — ! _ ! ! !
w1z V 511 V 812 V 513 W11V 811 V 812 V 813 . - .
- , » , - , - , The Satisfiability problem for the small example has 66 vari-
W12 V 511V S12 V S1a Waz V' S31 V §22 V 82a ables and 104 clauses. A satisfiable truth assignment was found
_ _ — ! _ — — ! . o1 . . .
Wwa1 V 821 V S22 V 83 Wa2 V 821 V S22 V 83 in .18s on a 33MHz Silicon Graphics Indigo workstation, pro-
_ ! ! ! _ ! ! ! o 3 .
Wa1 V §hy V Fhy V 5ha Wz V Shy V Fhy V 5ha ducing the Boolean vector function:
_ ! — ! _ — — !
W3z V 831 V 832 V 833 w31 V 831 V 832 V 833 Y1 = T3+ T1T2+T132
_ _ — ! _ ! ! !
W32 V 831 V 832 V S33 wa1 V 831 \Y 8390 \Y S33 y2 = &34 F122

_ _t 1 1
w32 V 831 V 832 V 833

Table 5: Truth table of a 2-bit adder

1 T2 Z1 Z2 Y1 Y2 Y3
0 0 0 0 0 0 0
0 0 0 1 0 0 1
0 0 1 0 0 1 0
0 0 1 1 0 1 1
0 1 0 0 0 0 1
0 1 0 1 0 1 0
0 1 1 0 0 1 1
0 1 1 1 1 0 0
1 0 0 0 0 1 0
1 0 0 1 0 1 1
1 0 1 0 1 0 0
1 0 1 1 1 0 1
1 1 0 0 0 1 1
1 1 0 1 1 0 0
1 1 1 0 1 0 1
1 1 1 1 1 1 0

Table 6: 8 input Boolean functions

SAT
m k A vars clauses | itr time
2 2 300 608 6078 1 8.0s
2 3 300 486 5424 27 123.3s
2 4 300 824 8636 45 221.0s
2 5 300 | 1455 14233 202 766.1s
2 5 300 | 2605 23663 1 47.0s
4 3 350 | 1116 13024 5 74.0s
8 3 500 | 3168 37824 1 94.2s

COMPUTATIONAL RESULTS

We conclude this paper by reporting on preliminary com-
putational testing of the integer programming algorithm de-
scribed in [10] and [11] on instances of the Boolean Vector
Function Synthesis Problem. We use the standard integer pro-
gramming formulation for the Satisfiability problem [8]. The
runs were carried out on a 33 MHz MIPS3000 Silicon Graphics
Indigo workstation. The integer programming code was com-
piled with Fortran compiler £77 and the C language compiler
cc using compiler flags -02 -01imit 800. CPU times were
measured with the system call times().

We first consider the 2-Bit Adder (y = & 4 z) with the
4-input, 3-output specification given in Table 5. The Satisfia-
bility problem formulation for this adder, using at most k = 12
distinct product terms has 408 variables and 1751 clauses. The
interior point code took 66 iterations, producing the 11 product
term vector function

Y1 = T1¥2z2 + T2z122 121

Y2 = T1x2Z1z22 +T1T221 +T1x22122 +
T1T221 + T1%221%2 + 102721 22

Ya = T2Z2 + T222

in 34.3 CPU seconds.

Now consider 8-input Boolean vector functions. Table 6
summarizes the functions, Satisfiability problems and the ex-
perimental results. For each instance, the table shows the num-
ber of output variables (m), the number of product terms (k),

Table 7: Larger Boolean functions

SAT
n m k A vars clauses | itr time
10 4 5 400 | 2825 35641 353 8546.6s
16 2 5 300 | 1110 18308 30 153.0s
32 2 5 200 | 1245 31623 100 602.5s

the number of i/o-pairs in the truth table (A), the number of
variables (vars) and clauses of the Satisfiability problem and
the number of iterations and CPU time for the interior point
algorithm to produce the Boolean function.

Finally, in Table 7, we summarize results for three larger
Boolean functions. In addition to the parameters shown in
Table 6, this table gives the number of input variables (n) of
the instance.

This preliminary computational experiment was limited to
a narrow set of test problems. Nevertheless, it indicates that
the interior point approach can synthesize complex Boolean
vector functions in reasonable time. We believe this approach
holds much promise for solving real-world instances. In a forth-
coming paper, we extend the computational study to a wider
set of problems, including some real-world circuit design prob-
lems.

REFERENCES

[1] R. Brayton, G. Hachtel, C. McMullen, and
A. Sangiovanni-Vincentelli, Logic minimeization algorithms
for VLSI minimization. Kluwer Academic, 1985.

[2] J. Gimpel, “A method of producing a boolean function
having an arbitrarily prescribed prime implicant table,”
IEEE Trans. Computers, vol. 14, pp. 485-488, 1965.

[3] W. Quine, “The problem of simplifying truth functions,”
Am. Math. Monthly, vol. 59, 1952.

[4] W. Quine, “A way to simplify truth functions,” Am. Math.
Monthly, vol. 62, 1955.

[5] E. McCluskey, “Minimization of Boolean functions,” Bell
Syst. Tech. J., vol. 35, pp. 1417-1444, 1956.

[6] S. Hong, R. Cain, and D. Ostapko, “MINI: A heuristic
approach for logic minimization,” IBM J. Res. Develop.,
pp. 443-458, Sept. 1974.

[7] D. Brown, “A state-machine synthesizer-SMS,” in Pro-
ceedings of the 18th Design Automation Conference,
pp. 301-304, June 1981.

[8] A. Kamath, N. Karmarkar, K. Ramakrishnan, and M. Re-
sende, “A continuous approach to inductive inference,”
Mathematical Programming, vol. 57, pp. 215-238, 1992.

[9] N. Karmarkar, “An interior point approach to NP com-
plete problems,” Contemporary Mathematics, vol. 114,
pp. 297-308, 1990.

[10] N. Karmarkar, M. Resende, and K. Ramakrishan, “An
interior point algorithm to solve computationally diffi-
cult set covering problems,” Mathematical Programming,
vol. 52, pp. 597-618, 1991.

[11] A. Kamath, N. Karmarkar, K. Ramakrishan, and M. Re-
sende, “Computational experience with an interior point
algorithm on the Satisfiability problem,” Annals of O.R.,
vol. 25, pp. 43-58, 1990.

[12] J. Moré and D. Sorensen, “Computing a trust region step,”
SIAM J. Sci. Stat. Comput., vol. 4, pp. 553-572, 1983.

