A hybrid genetic algorithm for road congestion minimizatio

Luciana S. Buriol Michael J. Hirsch Panos M. Pardalos Tania Queridd
Mauricio G. C. Resende Marcus Ritt

lnstituto de Infornmatica, Universidade Federal do Rio Grande do Sul
Av. Bento Goncalves, 9500, Porto Alegre, Brazil.
{buriol,marcus.ritt}@nf.ufrgs. br

2Raytheon, Inc., Network Centric Systems
P.O. Box 12248, St. Petersburg, FL, USA.
n h8787@f | . edu

3Dept. of Industrial and Systems Engineering, Universitiflofida
303 Weil Hall, Gainesville, FL, 32611, USA.
{par dal os, queri do}@iofl . edu

4Internet and Network Systems Research Center, AT&T LalesaRés
180 Park Avenue, Room C241, Florham Park, NJ 07932 USA.
ngcr @ esearch. att. com

ABSTRACT

One of the main goals in a transportation planning processaghieve solutions for two classical
problems: the traffic assignment problem, which minimizes tbtal travel delay among all trav-
elers, and the toll pricing problem which settles, based ata derived from the first problem, the
tolls that would collectively benefit all travelers and wablgad to a user equilibrium solution. Ac-
quiring precision for this framework is a challenge for kngetworks. In this article, we propose
an approach to solve the two problems jointly, making use di/arid Genetic Algorithm for the
optimization of transportation network performance bwtgically allocating tolls on some of the
links. Since a regular transportation network may haveghods of intersections and hundreds of
roads, our algorithm takes advantage of mechanisms fodspeap shortest path algorithms.

Keywords: Transportation networks. Genetic algorithm. Shortest paths. Applications to
Logistics and Transportation.

RESUMO

Um dos principais objetivos no planejamento de redes despitate € obter solu¢cdes para dois
problemas classicos: o problema de designa¢ao dgtrabequal minimiza o tempo total de atraso
considerando todos os viajantes, e o problema de desigoaeyaos pedagios o qual, considerando
os dados do primeiro problema, atribui valores de pedaggobgneficiam todos os viajantes, con-
duzindo a uma solucao de equilibrio. Resolver tais probls € um desafio para redes de grande
dimensao. Neste artigo, propde-se a resolucao deegeprdblemas em conjunto, fazendo uso de
um Algoritmo Genético Hibrido para otimizacao de redegransporte, alocando pedagios estrate-
gicamente em alguns links. Visto que redes de transportgeeah sao redes de grande dimensao,
o algoritmo tem seu desempenho melhorado ao fazer uso deata@@ dinamica de caminhos
minimos.

Palavras-chave: Redes de transporte. Algoritmos géticos. Caminhos ninimos. Aplicagdes
a Logistica e Transportes.

1 Introduction

Stable transportation systems are one of the main factonsilmating to a high quality of life.
Moreover, as reported by Arnott and Small (1994), milliohglallars are spent every day on traffic
issues. Thus, traffic planning is a crucial component of dayrpng process for investment and
operating policies. Traffic Assignment models have beed ts@rovide the necessary description
of real-world traffic flows with accuracy. These problems my@hematically modeled on a graph
structure, with nodes representing locations of interadtacs representing valid roads on which
traffic can flow. Some pairs of nodes are called commoditiesyrigin-destination QD) pairs,
representing traffic flow start and end points. In most irstan each arc of the network has an
associated capacity and cost of use, as a function of theratrobtraffic using the arc. In addition,
some arcs might have tolls levied on them, adding to the ast cbhe main goal in the traffic
planning model is to levy tolls on some arcs of the networkhghat the overall cost of the network
(the sum of the cost of each arc) is minimized.

As an example, one can look at New York City. Each day, manyleelving in New Jersey
commute into New York City to work. Suppose we label the citiNewark (in New Jersey) as one
origin node of our traffic network, and the borough of Queénd({ C) as a destination node. It is
easy to see that there are many possible traffic paths to gotfre origin node to the destination
node. Some of the arcs in these paths have tolls levied on tHeitand and Lincoln tunnels, for
example), while others do not. In addition, each arc has aacested cost as a function of the
number of commuters using that arc. Each commuter ideallyldwavant to minimize his/her cost
of getting from their respective origins to their respeetilestinations.

Optimizing transportation network performance has beetelyidiscussed in the literature (Bai,
2004; Bai et al., 2006; Dial, 1999a,b; Florian and Hearn 5]19@wphongpanich and Hearn, 2004)
and two fundamental traffic assignment models have beeriapea User Equilibrium(UE) and
System OptimdISO models.UE is used to describe the behavior of users on a given trafficonkt
In aUE solution, each driver will follow his/her shortest patha@ cost path) in traveling from their
origin to their destination. In contras§O describes a traffic network in its best operation. This
means that &0solution seeks to spread the flow over all the arcs of the m&tamthat the overall
network cost is minimized. Hence,3E solution attempts to do what is best for each individual
driver, without consideration of other users on the netwatkile aSOsolution considers the overall
performance of the network, without consideration of ang owlividual user. These two concepts
seem contradictory, and in a way they are. The overall trafggnment problem can therefore be
viewed as simultaneously solving tlE and SO problems, i.e. to find a traffic flow that is both
UE and SQ In most instances, tolls are introduced on some of the artse network so that the
resultingSOandUE solutions coincide.

Itis important to note that while the transportation problean be stated in terms of both system
optimality and user equilibrium, to the best of our knowlegdthere has been no effort to solve these
problems jointly. In effect, the problem has always beeit 8ftb two problems. In the literature,
first the SO problem is considered (see, for instance Hearn and Rib&&0fL Convex functions
are used to represent the cost of traveling along each aecfuasction of the flow on the arc. This
problem is solved to optimality, and tf&0Osolution is then used as input into thie problem. In
order to induce users to choose B®path solution, tolls are levied on certain arcs within thadfic
network. A genetic algorithm which solves the toll locatiamd level problem separately has been
proposed by Shepherd and Sumalee (2004).

The Minimum Toll Booth ProblemNIINTB) (Bai et al., 2006) describes an approach that mini-
mizes the number of toll locations for whichHe solution is achieved, maintaining tis®solution.
MINTBwas formulated as a mixed-integer program (Bai et al., 2G06) is easily shown to be in the
class ofNP-hardproblems (Bai, 2004). Various heuristics have been dedignan effort to solve
the MINTB. The reader is referred to Bai (2004) for a complete desoripif this methodology, as
well as background on traffic assignment problems.

One problem with the above two-phase approach is thas@solution may result in an infea-
sible UE program. Hearn and Ramana (1988) report infeasibility &itioll pricing problem for
a network of416 links, 962 nodes and 623 OD pairs, when an approximate solution to {8©
program, with a relative optimality gap ab—3, is used to construct the constraints defining the
MINTB program. To overcome infeasibility, methods based on pematms (Hearn and Ribera,
1980) and relaxation of constraints (Kim and Pardalos, 1298 employed. However, acquiring
precision for this framework remains a challenge for lamgetworks. Another issue, related to the
heuristics defined for thMINTB problem, is to select an appropriate neighborhood strecthat
is a set of solutions near a given solution. In Bai (2004); Kind Pardalos (1999) a binary vector
{y.} is used to indicate whether aidas a toll levied on it. They limit the concept of neighbortioo
to adjacent vertexes in the unit hyper-cube (N.B.: eachrpimector{y,} can be seen as one vertex
of the unit hyper-cube). Due to this definition of neighbartipeven for small problem instances,
the computation time was reported as large, and/or thetguidlithe solution was poor.

In this article we propose to use a Hybrid Genetic Algorithrthwocal improvement, first
presented in Ericsson et al. (2002), for the optimizatiotraffic flow, leading to a system efficient
pattern and user optimal solution on the network. We compareapproach with the two-phase
approaches in the literature.

This paper is organized as follows. In Section 2 we presentrtathematical framework for the
traffic assignment problem. Section 3 describes our Hybede&ic Algorithm used to determine the
optimal traffic pattern and tolling scheme. Computatioesutts are reported in Section 4. Finally,
conclusions are presented in Section 5.

2 Problem Formulation

Given a network topology and certain traffic flow demands, ey ltolls on arcs, seeking an
efficient system such that the resulting commodity least-paths (JE solution) is optimal for the
overall system. In a mathematical framework, consider actid graphG = (N, A), with N
representing the set of nodes aAdhe set of arcs. Each atce A has an associated capacity
and cost®,, which is a function of the load, (or flow) on the arc, the timg, to transverse the arc,
powern,, and cosfl’,. In real-world traffic networks, arc (road) delay are getgr@described by
nonlinear functions associated with these network corgreglarameters. We assume tidatis a
strictly increasing, convex function. In addition, defifeC N x N to be the set of commaodities,
or origin-destination©@D) pairs, having (k) andd(k) as origin and destination nodes, respectively,
Vke K ={1,...,|K|}. Each commoditys ¢ K has an associated demand of traffic fldw
defined, i.e. for eac®D pair {o(k), d(k)}, there is an associated amount of fldwthat emanates
from nodeo(k) and terminates at nod&k). Furthermore, define” to be the the contribution of
commodityk to the flow on araz.

Then, we can write the traffic optimization problem as (1))- (4

minimize ® =" loto[1+Ta(la/ca)™]/ Y di (1)
acA kek
subjectto £, =Y ak VacA 2)
keK
—dy, if j =d(k)
Sooaly— Y. ahy=1Sd ifj=o(k) (3)
>0, Vae A VEkeK, (4)

The objective function (1) represents the mean delay timéh® system which is based on the
Bureau of Public Roads (BPR) function for travel costs. Tisction may vary according to a
specific network.® uses the volume delay (time) on ar@as a function of total flow. Our goal is
to allocate tolls on arcs such that the delay values minimized and we have a system efficient
solution. In this function/, /¢, describes the utilization of akc In Section 4 we describe in more
detail the delay function for some real-world problems. §aaint (2) defines the load on each arc
as the sum of flow on are arising from each commodity. Constraint (3) defines flow eovetion
on the network, which is equivalent to the system of equati®n* = dj,, V k € K, whereB is the
arc-node incidence matrix for the network anftl = {2}, 4 is the flow vector corresponding to
commodityk € K. Constraint (4) specifies that the flow on each arc must benegative.

As seen in the next section, we distribute tollsroof the arcs of the network, leading to a traffic
balance and congestion minimization.

3 A Hybrid Genetic Algorithm for the Toll Booth Problem

In this section we summarize the description of the hybridegie algorithm used for solving
the toll booth problem.

A Genetic Algorithm was successfully applied to Open Stbfath FirstQSPH intra-domain
Internet routing problems (Ericsson et al., 2002), and in@wet al. (2005) a Hybrid Genetic Algo-
rithm (HGA) was proposed to solve the same problem with @mitht local improvements. In the
present work, we take advantage of some similarities betwleeOSPFrouting problem and the
traffic assignment problem, and apply the HGA proposed indBat al. (2005) adjusted to optimize
the traffic network.

A genetic algorithm is a population-based metaheuristexdus obtain high quality solutions
for combinatorial optimization problems. In this contextpopulation is a set of feasible solutions.
Solutions in a population are combined (through crosscued)perturbed (by mutation) to produce
a new generation of solutions. When solutions are combiatdbutes of higher-quality solutions
have a greater probability to be passed down to the next giémer This process is repeated over
many generations as long as the quality of the solutionsam#w population improves over time.
We next show how this idea can be explored for the toll bootiblem.

Each solution is represented by two arrayandb. Array w stores the integer arc weights, while
b is a binary array indicating the set of tolls. An arof the network has weight equal i@, in case
b, = true and zero in casé, = false. Each individual weight belongs to the interVal w,ax].

A solutionw defines a total flow,,a € A by means of an equal-cost multipath routing. In OSPF
routing, there is no link weight equal to zero, and the shbrpath is the one with the shortest
distance. In our implementation, non tolled links are cdesed to have weight zero. Moreover, two
paths are considered of equal cost if they have the samealistahce and the same number of hops.
In case they have the same total distance, but different bopts, the shortest path is considered
the one with less hops. Each demand is routed forward to gsndgion. Traffic at intermediate
nodes is split equally among all outgoing links on shorteshgto the destination. After the flow is
defined, the solution is associated with a fithess value debgehe objective functiod.

The initial population is randomly generated, with arc virggselected uniformly in the interval
[1, wmax/3]. A number of K links, chosen at random, are set as having tolls, &;ds, set totrue
for K links. The population is partitioned into three sgtsBB, andC. The best solutions are kept in
A, while the worst ones are . All solutions in.4 are promoted to the next generation. Solutions
in B are replaced by crossover of one parent frdnwith another from3 U C using therandom
keyscrossover scheme of Bean (1994). All solution€ iare replaced by new randomly generated
solutions with arc weights selected in the interMakv,ax].

In the random-keys scheme, crossover is carried out on atedleair of parent solutions to
produce an offspring solution. Unlike Bean (1994), we uséaadud random-keys scheme, where

each selected pair consists of an elite parent and a nengalitent. The elite parent is selected,
uniformly at random, from solutions in se, while the non-elite parent is selected, at random,
uniformly from solutions in seB U C. Each weight of thev array in the offspring solution is either
inherited from one of its parents or is reset by mutation.hfiutation probabilityp,,,, the weight
from w is reset to a value selected at random in the inteivaly,,.«]. If mutation does not occur,
then the child inherits the weight from its elite parent watigiven probabilityp 4 > 1/2. After the
crossover, array is adjusted:

e b; istruein case the correspondent values in both parentiraee

e 50% of the position$;, chosen at random, which only one of the parents has thespameling
position equal to true, are set to true in the child solution;

¢ all other positions ob; are set tdalse

In this fashion, we generate a child with exactly the samebmmof tolls than as the parents.
Next we describe the solution evaluation.

3.1 Solution Evaluation

Depending on the problem, the main effort of the algorithm loa in the crossover operator or
in the solution evaluation. For the case of the weight sgftiroblem the solution evaluation takes
longer than the crossover operator. In this section, weritesthe procedure used for evaluating a
solution. This procedure is presented in Figure 1.

Let T" be the set of destination nodes. We comgtesingle-destination shortest path graphs
gt. Eachg!, with destinationt € T', has an A|-vector, L, associated with the arcs, that stores the
partial loads flowing ta traversing each ar¢ € A. The total load on each arc is represented in
the | A|-vectorl, which stores the total load traversing eachare A. For each destinatioty the
|V |-vectorsr! andé are associated with its nodes. The distance from each ndds $tored inr?,
while §¢ keeps the number of arc multiplicities (links) outgoingnfr@ach node i’.

procedure Eval uat eSol uti on(w, If, rf)
1 forall a € Adope =1;

2 forall t € T do

3 mt « Rever seDi j kstra(w);

4 gt — Conput eSPGw, 7t);

5 5t «— Conput eDel t a(g?);

6 L' < Conput ePar ti al Loads(u,d, 7, gt);
7 end forall

8 |« Conput eTot al Loads(L);

9 S« UpdateMul tiandDel t a();

10 if |S| > 0 Updat eSol uti on();

11 forall a € Aif I, = 0then pu, = 0;

12 f « ZaeA Ha;

13 return (f, w);

end procedure

Figure 1: Pseudo-code for the solution evaluation proaadur

In order to update the system by means of the new arc loadspmpute the shortest paths to
all destination nodes € T and arrive at a grapti® = (N, A?), V¢ € T. This is achieved using
Dijkstra’s well-known shortest path algorithm (Ahuja et, d1993) with a simple change. A small
cost is added to the node distances for each traversed linth tis modification, two paths are
considered of equal cost if they have the same total distandehe same hop counts. Since in our
network we are computing shortest paths to all destinatmdes (i.e. sink nodes), we reverse the
direction of all arcs in and compute the distance§, V « € N to destination iril” (Buriol et al.,

5

2005). Given the shortest paths to each destination, weatanlate the flowd.! for all OD demand
pairs with destinatiort and finally the total flow$. The cost of a solution is computed according
to (1). Next the local search procedure is presented.

3.2 Local Improvement Procedure

In this section, we describe the local improvement proceguoposed in Buriol et al. (2005) and
adapted for this problem. Starting from a given solutioe, Ital improvement procedure analyzes
solutions in the neighborhood of a current solutioisearching for a solution having a smaller cost.
If such a solution exists, then it replaces the current smiut Otherwise, the current solution is
returned as a local minimum.

The local improvement procedure is incorporated in the tigadgorithm to enhance its ability
to find better-quality solutions with less computationdbgf Local improvement is applied to
each solution generated by the crossover operator. Bes@leg computationally demanding, the
use of large neighborhoods in a hybrid genetic algorithmlead to loss of population diversity,
and consequently premature convergence to low-qualil lminima. We next describe the local
improvement procedure using a reduced neighborhood.

As before, let, denote the total load on atce A in the solution defined by the current weight
settingsw. We recall that®,(l,) denotes the routing cost on this arc. The local improvement
procedure examines the effect of increasing the weightssafbaet of the arcs. These candidate
arcs are selected among those with the highest routing aodteshose weight is smaller than, ..

To reduce the routing cost of a candidate arc, the procedtempts to increase its weight, in case
there is a toll installed on the arc, in order to induce a rédoof its load. If the selected arc has no
toll installed, a toll is installed on it with initial weighine, and the procedure attemps to increase
its weight, and a toll is removed from some other link. To sethe link to have its toll removed, a
subset of ten tolled arcs are tested in circular order tadateésiting an arc twice without having tested
all tolled arcs. Initially, tolled arcs are tested in ordéircreasing routing cost, but once a change
is performed, the new tolled arc is placed in the positiorupad by the previous tolled arc, and the
the order can be not respected anymore, since the vector isswted. In case the solution did not
improve, the solution returns to the previous state. If kbégls to a reduction in the overall routing
cost, the change is accepted and the procedure is restaltegrocedure stops at a local minimum
when no improvement results from changing the weights ot#helidate arcs. The pseudo-code in
Figure 2 describes the local improvement procedure inldetai

The proceduré.ocal | npr ovenent takes as input parameters the current solution defined by
the weightsaw, the vectom that indicates which are the tolled arcs, and a parametdrich specifies
the maximum number of candidate arcs to be examined at eeahifoprovement iteration.

The counter of candidate arcs is initialized in line 2. Thaplin lines 2 to 25 investigates at most
q selected candidate arcs for weight increase in the curofutien. The arc indexes are renumbered
in line 3 such that the arcs are considered in non-increasitgr of routing cost.

Arc d’ is selected in line 8. If are’ has no toll installed on it, we install a toll of weight one on
it (lines 6 and 7), and mark Alag that this operation was performed.

The loop in lines 10 to 16 examines all possible weight charigearca’ in the ranggw, +
L, wy + [(wmax — we)/4]]. A neighbor solutiony’, keeping all arc weights unchanged except for
arca’, is built in lines 11 and 12. If the new solutian’ has a smaller routing cost than the current
solution (test in line 13), then the current solution is updan line 14, ar@’ is unmarked in line 15,
and the arc counteiris reset in line 162

The loop in lines 17 to 23 are executed only if the current aindpanalised was previously not
tolled. In line 18, each arc belonging to the eof tolled arcs, are tested one by one, always testing
arcs with lower testing costs first. In line 20 we test if theution is better than the current solution
in the beginning of loop in line 2. In case the new solutionatdr, it is taken as the current solution,
and the for loop stops. If there is no better solution, thendirrent solution is reset to the solution

procedure Local | npr ovenent (q,w, b)
1 i« 1;
2 while 7 < g do
3 Renumber the arc indexes such that
Vo(la) > Yat+1(lat1),YVa=1,..., |[Al —1;
4 a' + 1; flag « F;
5 if by = F
6 ba’ — T
7 Weor +— 1
8 flag <V
9 end if
10 for w = Wer +1,..., Wer +]—(wmax — wa/)/4] do
11 wh — wq,Va € A,a # d';
12 w;, —
13 if \I/w’,b/ < \I/w,b then
14 w — w’;
15 end if
16 end for
17 if flag then
18 for tena” € R do
19 ba” — F;
20 if W,y < Wy then break
21 end for
22 end if
23 if not | mproved(w, w ') thenrestoreOriginal Sol(a', a'', w')
24 i—1+1;
25 end while
endLocal | nprovenent.

Figure 2: Pseudo-code of procedlrecal | npr ovenent .

considered in the beginning of loop of line 2 to 25.

The routing costb(w’) associated with the neighbor solutiary must be evaluated in lines 13,
20, and 23. Instead of computing it from scratch, we use fagate procedures for recomputing the
shortest path graphs as well as the arc loads. These preseahar considered in the next section of
the paper. Once the new arc loads are known, the total roatisgis computed as the sum of the
individual arc routing costs.

3.3 Dynamic Updates

We denote byG* = (N, A') the shortest paths graph associated with each destinatide n
t € T. When the weight of a single aré is changed, the grapf’ does not have to be recomputed
from scratch. Instead, we update the part of it which is édi@dy the weight change.

In Buriol et al. (2005), dynamic shortest path algorithmgeavgresented for the case of positive
arc weights. In this paper we deal with non-negative weighdsarcs with zero or positive weights.

When a toll is installed in an arc, or a toll is removed from ar ar the weight of a tolled arc
changes, we used the dynamic shortest paths describedioi Bual. (2005) to update the shortest
path graph, instead of recomputing it from scratch.

The possibility of having weights with cost zero cost alldies cycles of cost zero. To avoid
that, we add the valué/|E| to the distance for each arc traversed. So, for alternatieetest
paths with cost zero, it is possible to know which has fewgrshmomparing the real values of their
distances. Since a direct path is always shorter in numbeos than a path with cycles, the cycles
are eliminated. Using this rule, all alternative shortesthp of cost zero, but longer in number of
hops, are also eliminated. Thus, if a node has multiple skbpath of cost zero, just one with the
fewest hops will remain.

The loads are also updated, instead of being calculated $atch. The approach used for
updating the affect part of the graph is presented in Burichle(2005), and we use the same

algorithm. Only the part of the graph whose loads were afidty the arc weight increase is
explored.

4 Computational Results

4.1 The Nine Node Example

To provide an example on how our HGA works, in comparison ® MINTB approach, we
discuss the nine node problem generated in Hearn and Rat288) (The objective function used
for this problem is based on the BPR data and is the same ustestoibe cost delay for larger
instances. The associated network hasinks, and four O-D pairs, namely (1,3), (1,4), (2,3) and
(2,4). Figure 3 displays the optimality gap obtained fos #tample when running HGA for different
number of tolls.

75 ——

70

65

60

optimality gap [%]

55

50 - .

45 ! ! ! ! ! ! ! !
0 2 4 6 8 10 12 14 16 18

number of tolls

Figure 3: Number of tolls installed vs. optimality gap foethine node example.

The objective function value of the optimal solution forghmstance i22.59314 (Hearn and
Ramana, 1988). It is important to note that our HGA does notiyice the optimal configuration.
The solution found by the HGA was about the same found by the TS is due to the fact, that
in small networks, a system optimal solution can signifigatieviate from an equal-cost multi-path
routing.

4.2 Realistic Problems

Some realistic problems where attributes are known in @irgsportation science literature have
a particular objective function. We consider for exam@epux Fal | s, North Dakota (LeBlanc
et al., 1975). In this case, the delay function on each arm@wk as®, = > .4 lata[l +
Ba(€a/ca)?]. Other instances, such 8sockhol m W nni peg, andBar cel ona are also studied
in this paper, and have a similar delay function for theiksin Their attributes (number of nodes,
number of links, number of O-D pairs) are displayed in Talble.

4.3 Optimal solutions

The traffic optimization problem (1)—(4) has a convex olijecfunction and linear constraints.
Therefore it can, in principle, be solved by standard methafdconvex optimization. We imple-
mented a solver for the traffic optimization problem basedweropt (Dahl and Vandenberghe,
2005), a freely available solver for convex programs.

Table 1: Attributes of realistic problem instances.

Instance Vertices Arcs OD pairs Destinations
Sioux Falls 24 76 528 24
Stockholm 416 962 1623 45
Barcelona 1020 2522 7922 108
Winnipeg 1052 2836 4345 138

Table 2: Optimal solutions.

Instance Optimal value Solution time [s]
Nine node problem 22.539181 <1
Sioux Falls 19.950794 22
Stockholm - > 86400

Our implementation uses a more compact, but equivalentuitation of (1)—(4), which repre-
sents the flows of all O-D pairs with the same destination asglescommodity. This reduces the
number of variables fromd| | K| to|A| D, whereD = |{d | (o,d) € K}|is the number of different
destinations. Table 1 shows that this number is a factordmt@2 to 73 lesser than the number of
O-D pairs.

The solver has been able to produce optimal values only #two smallest instances shown
in Table 2. On the next larger instance, Stockholm, the saliet not terminate within three days
of CPU time. Thus, the results of the GA and HGA for the nineenptbblem and the Sioux Falls
instance in Fig. 3 and 4 show the optimality gap (in perceotzatihe optimal solution), while the
results for the remaining instances are absolute valuggiréi4 shows that for a sufficient number
of installed tolls, the heuristic solution lies withi®% of the SO solution.

4.4 Quality of the HGA solutions

We compared the best solution values and the optimality géyere possible) obtained by the
HGA and by the GA (HGA without local search). For each inseanee used different numbers
of tolled arcs, varying from a few tolled arcs up to tolls ohacs. For each number of tolled
arcs, we ran the GA and the HGA three times with different cemdeeds fob000 generations,
but at most up to a time limit of one hour. The results repret@naverage of these runs. For the
experiments, we used a Intel Pentium Core2 Duo, runnirigdaGHz, with 3 GB of RAM. Each
run of instanceSi oux Fal | s spent in average abo@tminutes of CPU time, while the runs of
instanceSt ockhol mspent aboui8 minutes. Runs for instanc&4 nni peg andBar cel ona
stopped always by the time limit 6 minutes. The HGA spent betwe&6 to 70 percent of its time
in the local search.

Figures 4 to 7 show computational results for instan8esux Fal | s, St ockhol m and
W nni peg, respectively. On the-axis are presented the number of tolls installed, whilegthe
axis presents the solution value. For each instance, wemntressults found by the GA and HGA
algorithms.

By the experimental results we can observe that the solutiiained by the HGA and GA
algorithms are competitive. For instancgisoux Fal | s and St ockhol mthe HGA presented
better results, while for instanc®$ nni peg andBar cel ona the GA presented better solutions.

For most of the instances, the quality of the results immavith larger toll sets. The solution
value almost decreases monotonically with an increasingoeu of tolls, with exception of instance
W nni peg (instanceBar cel ona presented this behavior only for the HGA algorithm).

Given that in almost all cases the solution is better for gdanumber of tolled links, one can
choose the optimal trade-off between the number of toliekkliand the quality of the solution.

250

GA —+—
HGA--x---

150 g

Optimality gap [%]

100 X \\

10 20 30 40 50 60 70 80
Number of tolls

Figure 4: Number of tolls installed vs. quality of resultsy the GA and HGA algorithms, for
instanceSi oux Fal | s. The number of installed tolls tested varies from 10 up toif&easing
five by five.

5 Conclusions

In the present work, we have adapted the evolutionary dlgorfrom Buriol et al. (2005) to a
transportation problem. We tested both the genetic algoraind the hybrid genetic algorithm. By
means of computing a solution that minimizes the mean ddl#tyecsystem, we deal with bot®O
andUE problems simultaneously. As we have applied a heuristiot@eshis problem, there is no
guarantee that the system optimal solution is achievededds an efficient solution for the overall
transportation system is obtained. We show the genetiaittigo as well as the hybrid genetic
algorithm obtain solutions of good quality. For tBeoux Fal | s we were able to confirm an
optimality gap of less thah0%. Solutions for other three large instances were presgsteaving
the ability of the GA and HGA algorithms to deal with largetanrsces.

6 Acknowledgements

Luciana S. Buriol and Marcus Ritt have received support ftoeBrazilian government (CNPQ)
under project no. 481256/2008-3.

References

Ahuja, R. K., Magnanti, T. L. and Orlin., J. B. (1993etwork Flows — theory, algorithms, and applicatipons
Prentice Hall.

Arnott, R. and Small, K. (1994). The economics of traffic cestipn, American Scienti32: 446—455.

Bai, L. (2004).Computational methods for toll pricing modgelhD thesis, University of Florida, Gainesville,
Florida.

Bai, L., Hearn, D. W. and Lawphongpanich, S. (2006). Relardicets for congestion pricing problemis,
S. L. D.W. Hearn and M. Smith (edd)lathematical and Computational Models for Congestion @Qivag,
Springer.

Bean, J. C. (1994). Genetic algorithms and random keys tpresecing and optimizatiol@RSA J. on Comp.
6: 154-160.

10

700 T
GA —+—
i HGA---X-—-

600 -
500 \ 4

400

Solution value

300

200

100

0 100 200 300 400 500 600 700 800 900 1000
Number of tolls

Figure 5: Number of tolls installed vs. quality of resultsy the GA and HGA algorithms, for
instanceSt ockhol m The number of installed tolls tested were 10, 100, 300, 800, and 900.

Buriol, L. S., Resende, M. G. C., Ribiero, C. C. and Thorup(2005). A hybrid genetic algorithm for the
weight setting problem in OSPF/IS-IS routindgtworks46: 36-56.

Dahl and Vandenberghe (2005). CVXOPT.
URL: http://abel.ee.ucla.edu/cvxopt

Dial, R. B. (1999a). Minimal-revenue congestion pricingtpgaA fast algorithm for the single origin case,
Transportation Research Part B: 189-202.

Dial, R. B. (1999b). Minimal-revenue congestion pricingtda An efficient algorithm for the general case,
Transportation Research Part B 645-665.

Ericsson, M., Resende, M. G. C. and Pardalos, P. M. (2002).erfetic algorithm for the weight setting
problem in OSPF routinglournal of Combinatorial Optimizatio6: 299-2002.

Florian, M. and Hearn, D. (1995). Network equilibrium maglahd algorithmsin M. O. Ball et al. (eds),
Network RoutingElsevier Science, pp. 485-550.

Hearn, D. W. and Ramana, M. (1988olving congestion toll pricing modeEBquilibrium and Advances in
Transportation Modeling, North-Holland, New York.

Hearn, D. W. and Ribera, J. (1980). Bounded flow equilibriygnpbnalty methodsroceedings of the IEEE
International Conference on Circuits and Computérd 62—164.

Kim, D. and Pardalos, P. (1999). A solution approach to thedfigharge network flow problem using a
dynamic slope scaling proceduf@perations Research Lette24: 195-203.

Lawphongpanich, S. and Hearn, D. W. (2004). An MPEC apprt@skcond-best toll pricindflathematical
Programming, Series Bp. 33-55.

LeBlanc, L. J., Morlok, E. K., and Pierskalla, W. P. (1975 éfficient approach to solving the road network
equilibrium traffic assignment probleMransportation Researcht 309—-318.

Shepherd, S. and Sumalee, S. (2004). A genetic algorithedbasproach to optimal toll level and location
problemsNetworks and Spatial Economid€): 161-179.

11

45
GA —+—
HGA---%-—
a0 [y N
v 35
]
s
>
=
S .
5 et
2 \ -~ \\‘x
9 30 e Treess
‘\‘ //'l \ h \\\
/ \\\
25 \{
20
0 500 1000 1500 2000 2500 3000

Number of tolls

Figure 6: Number of tolls installed vs. quality of resultsy the GA and HGA algorithms, for
instanceW nni peg. The number of installed tolls tested were 10, 500, 1000012000, 2500,
and 2800.

24 T
GA —+—

HGA-~-%-—~
22 [0
20 \
[
=2
[
>
5 18
S
3
0
16
14
B -
,,,,,,,,,,,,,,,,,, "
12
0 200 400 600 800 1000 1200 1400 1600

Number of tolls

Figure 7: Number of tolls installed vs. quality of resultsy the GA and HGA algorithms, for
instanceBar cel ona. The number of installed tolls tested were 10, 500, 1000012000, and
2500.

12

