
TIE Breaking: Tunable Interdomain
Egress Selection

Renata Teixeira Timothy G. Griffin Mauricio G. C. Resende Jennifer Rexford
Univ. Pierre et Marie Curie University of Cambridge AT&T Labs–Research Princeton University

Paris, France Cambridge, UK Florham Park, NJ Princeton, NJ
renata.teixeira@lip6.fr Timothy.Griffin@cl.cam.ac.uk mgcr@research.att.com jrex@cs.princeton.edu

Abstract— The separation of intradomain and interdomain
routing has been a key feature of the Internet’s routing architec-
ture from the early days of the ARPAnet. However, the appro-
priate “division of labor” between the two protocols becomes
unclear when an Autonomous System (AS) has interdomain
routes to a destination prefix through multiple border routers—a
situation that is extremely common today because neighboring
domains often connect in several locations. We believe that the
current mechanism of early-exit or hot-potato routing—where
each router in an AS directs traffic to the “closest” border
router based on the intradomain path costs—is convoluted,
restrictive, and sometimes quite disruptive. In this paper, we
propose a flexible mechanism for routers to select the egress point
for each destination prefix, allowing network administrators to
satisfy diverse goals, such as traffic engineering and robustness
to equipment failures. We present two example optimization
problems that use integer-programming and multicommodity-
flow techniques, respectively, to tune our mechanism to satisfy
network-wide objectives. Experiments with traffic, topology, and
routing data from two backbone networks demonstrate that our
solution is both simple (for the routers) and expressive (for the
network administrators).

I. INTRODUCTION

The Internet’s two-tiered routing architecture was designed
to have a clean separation between the intradomain and
interdomain routing protocols. For example, the interdomain
routing protocol allows the border routers to learn how to
reach external destinations, whereas the intradomain protocol
determines how to direct traffic from one router in the AS to
another. However, the appropriate roles of the two protocols
becomes unclear when the AS learns routes to a destination
at multiple border routers—a situation that arises quite often
today. Since service providers peer at multiple locations,
essentially all of the traffic from customers to the rest of
the Internet has multiple egress routers. In addition, many
customers connect to their provider in multiple locations for
fault tolerance and more flexible load balancing, resulting in
multiple egress routers for these destinations as well. In this

An earlier version of this paper appeared at CoNEXT’05. The current paper
adds the solution of the traffic engineering problem with TIE. We discuss and
evaluate how to balance load in the network without changing the IGP metrics
or BGP policies, by using multicommodity-flow techniques to move some
traffic to different egress points. We have removed several simple examples
of how to set the configurable parameters to manage a simple network to make
space for the detailed analysis of the traffic engineering problem. AT&T Labs
Research Technical Report TD-69EJBE. February 8, 2005. Revised February
10, 2006.

paper, we argue that selecting among multiple egress points
is now a fundamental part of the Internet routing architecture,
independent of the current set of routing protocols.

In the Internet today, border routers learn routes to destina-
tion prefixes via the Border Gateway Protocol (BGP). When
multiple border routers have routes that are “equally good” in
the BGP sense (e.g., local preference, AS path length, etc.),
each router in the AS directs traffic to its closest border router,
in terms of the Interior Gateway Protocol (IGP) distances.
This policy of early-exit or hot-potato routing is hard-coded
in the BGP decision process implemented on each router [1].
Hot-potato routing is an appealing mechanism for two main
reasons. First, hot-potato routing can limit the consumption
of bandwidth resources in the network by shuttling traffic to
the next AS as early as possible. Second, under hot-potato
routing, a router’s choice of egress point is guaranteed to be
consistent with the other routers along the forwarding path,
because packets are forwarded to neighboring routers that have
selected a BGP route with the same (closest) egress point.

Although consistent forwarding is clearly an important
property for any routing system, routers now have other ways
of achieving this goal. In particular, the greater availabil-
ity of tunneling technology allows for more sophisticated
egress-selection rules, which are not tied to the IGP metrics.
Internet Service Providers (ISPs) increasingly use tunneling
technologies—such as IP-in-IP encapsulation or MultiProtocol
Label Switching (MPLS)—to support Virtual Private Net-
works (VPNs) or to avoid running BGP on their internal
routers. We capitalize on tunneling techniques to revisit the
hard-coded policy of selecting egress points based on IGP
distances, because we believe that hot-potato routing is:

• Too restrictive: The underlying mechanism dictates a
particular policy rather than supporting the diverse per-
formance objectives important to network administrators.

• Too disruptive: Small changes in IGP distances can
sometimes lead to large shifts in traffic, long convergence
delays, and BGP updates to neighboring domains [2], [3].

• Too convoluted: Network administrators are forced to
select IGP metrics that make “BGP sense,” rather than
viewing the two parts of the routing system separately.

Selecting the egress point and computing the forwarding path
to the egress point are two very distinct functions, and we
believe that they should be decoupled. Paths inside the network

2

should be selected based on some meaningful performance ob-
jective, whereas egress selection should be flexible to support a
broader set of traffic-engineering goals. These objectives vary
by network and destination prefix; therefore a mechanism that
imposes a single egress selection policy cannot satisfy this
diverse set of requirements.

In this paper, we propose a new mechanism for each router
to select an egress point for a destination, by comparing the
candidate egress points based on a weighted sum of the IGP
distance and a constant term. The configurable weights provide
flexibility in deciding whether (and how much) to base BGP
decisions on the IGP metrics. Network-management systems
can apply optimization techniques to automatically set these
weights to satisfy network-level objectives, such as balancing
load and minimizing propagation delays. To ensure consistent
forwarding through the network, our mechanism relies on the
use of tunnels to direct traffic from the ingress router to the
chosen egress point. Our new mechanism, called TIE (Tunable
Interdomain Egress) because it controls how routers break ties
between multiple equally-good BGP routes, is both simple (for
the routers) and expressive (for the network administrators).
Our solution does not introduce any new protocols or any
changes to today’s routing protocols, making it possible to
deploy our ideas at one AS at a time and with only minimal
changes to the BGP decision logic on IP routers. The paper
makes the following research contributions:

• Flexible mechanism for egress-point selection: TIE is:
(i) flexible in balancing the trade-off between sensitivity
to IGP changes and adaptability to network events, (ii)
computationally easy for the routers to execute in real
time, and (iii) easy for a management system to optimize
based on diverse network objectives.

• Optimization of network-wide objectives: We present
example problems that can be solved easily using TIE.
First, we show how to minimize sensitivity to internal
topology changes, subject to a bound on propagation
delay, using integer programming to tune the weights
in our mechanism. Second, we show how to balance
load in the network without changing the IGP metrics or
BGP policies, by using multicommodity-flow techniques
to move some traffic to different egress points.

• Evaluation on two backbone networks: We evaluate
the effectiveness of TIE for the two optimization prob-
lems, using traffic, topology, and routing data from two
backbone networks (i.e., Abilene and a large tier-1 ISP).
Our experiments show that TIE reduces sensitivity to
internal topology changes while satisfying network-wide
objectives for load and delay.

In the next section, we discuss the problems caused by hot-
potato routing, and describe an alternative where each router
has a fixed ranking of the egress points. Then, Section III
presents the TIE mechanism for selecting egress points. Sec-
tions IV and V present the two optimization problems and
evaluate our solutions on topology, traffic, and routing data
from two backbone networks. In Section VI, we discuss how to
limit the number of configurable parameters and how to deploy
TIE without changing the existing routing protocols. After a

brief overview of related work in Section VII, we conclude
the paper in Section VIII. An Appendix describes how we
determine the network topology and egress sets from the
measurement data collected from the two backbone networks.

II. A CLOSE LOOK AT THE
IGP/BGP BOUNDARY

The Internet routing architecture has three main compo-
nents: (i) interdomain routing, which determines the set of
border (or egress) routers that direct traffic toward a destina-
tion, (ii) intradomain routing, which determines the path from
an ingress router to an egress router, and (iii) egress-point
selection, which determines which egress router is chosen by
each ingress router for each destination. In this section, we
first describe how tying egress selection to IGP distances leads
to harmful disruptions and over-constrained traffic-engineering
problems. Then we explain how the alternative of allowing
each ingress router to have a fixed ranking of egress points is
not flexible enough (for traffic engineering) or adaptive enough
(to large changes in the network topology).

B

C

ED

A

AS 3AS 2

AS 1

51
5

1

before failure after failure

4

AS 0

s

p

failure of link C−D

Fig. 1. Link failure causes router C to switch egress points from A to B for
destination prefix p.

Our discussion of the two approaches draws on the example
network in Figure 1. AS 1 has five routers (A, B, C, D, and E)
and each internal link has an IGP metric. Routers A and B are
both egress points for destination prefix p, because they learn
routes to p via external BGP (eBGP). Each of them selects
a best route1, and propagates it via internal BGP (iBGP)
to routers inside the AS. Routers A and B propagate their
best route to p to router C. Under hot-potato routing, router
C chooses the BGP route learned from A because the IGP
distance to A is 2, which is smaller than the distance of 9
to B. However, if the C–D link fails, all traffic from C to p
would shift to egress router B, with an IGP distance of 9 that is
smaller than the new IGP distance of 10 to A. In this section,
we argue that these kinds of routing changes are disruptive.
Yet, continuing to use egress-point A might not be the right
thing to do, either, depending on the propagation delay, traffic
demands, and link capacities. Instead, network administrators
need a mechanism that is flexible enough to support sound
performance trade-offs.

1A has the choice between the route through AS 2 and AS 3. In this
example, we assume that the two routes are equivalent when comparing BGP
attributes, so A decides which route to pick based on a tie break such as the
age of the route or the router ID.

3

A. Hot-Potato Routing

Hot-potato routing adapts automatically to topology changes
that affect the relative distances to the egress points. Although
hot-potato routing seems like a reasonable way to minimize
resource consumption, IGP link weights do not express re-
source usage directly. The IGP distances do not necessarily
have any relationship to hop count, propagation delay, or
link capacity, and selecting the closer egress point does not
necessarily improve network performance. In addition, small
topology changes can lead to performance disruptions:
• Large shifts in traffic within and between ASes: A

single link failure can affect the egress-point selection
for tens of thousands of destinations at the same time,
leading to large shifts in traffic [2]. In fact, hot-potato
routing changes are responsible for many of the largest
traffic variations in a large backbone [3].

• Changes in the downstream path: When the egress
point changes, the traffic moves to a different downstream
forwarding path that may have a different round-trip time
or available bandwidth, which may disrupt the commu-
nicating applications. In addition, the abrupt increase in
traffic entering the neighboring AS may cause congestion.

• BGP update messages for neighboring domains: A
change in egress point may also change the AS path.
If A selects the route via AS 2 in Figure 1, the failure
of the C–D link causes router C to switch from a path
through AS 2 to one through AS 3, forcing C to send a
BGP update message to AS 0. Global BGP convergence
may take several minutes [4]. If AS 0 switches to a BGP
route announced by another provider, the traffic entering
AS 1 at router C would change.

Even if the hot-potato routing change does not lead to new
BGP update messages, long convergence delays can occur in-
side the AS depending on how the router implements the BGP
decision process. An earlier measurement study [2] discovered
long convergence delays because the underlying routers in
the network only revisited the influence of IGP distances
on BGP decisions once per minute; during the convergence
period, data packets may be lost, delayed, or delivered out of
order. This particular problem, while serious, can be addressed
by having routers use an event-driven implementation that
immediately revisits the BGP routing decisions after a change
in the intradomain topology. In contrast, the three problems
listed above are fundamental.

In a large network, IGP changes that affect multiple desti-
nation prefixes happen several times a day, sometimes leading
to very large shifts in traffic [3]. Not all of these events are
caused by unexpected equipment failures—a large fraction of
them are caused by planned events, such as routine mainte-
nance2. A recent study of the Sprint backbone showed that
almost half of IGP events happened during the maintenance
window [5]. Often, shifts in egress points are not necessary.
The new intradomain path to the old egress point, although a

2Maintenance activities happen very frequently to upgrade the operating
system on the routers, replace line cards, or repair optical amplifiers. In
addition, construction activities may require moving fibers or temporarily
disabling certain links.

little longer IGP-wise, may offer comparable (or even better)
performance than the path to the new egress point. Following
the failure of the C–D link in Figure 1, the path C,E,D,A
might be less congested or have lower propagation delay than
the path C,E,B. Moreover, many internal network changes are
short-lived; a study of the Sprint backbone showed that 96% of
failures were repaired in less than 15 minutes [5]. Maintenance
activities are often done in periods of lower traffic demands.
During these periods the network would comfortably have
extra capacity to tolerate the temporary use of non-closest
egress points, which would avoid disrupting the non-negligible
number of connections that are active during maintenance.

Besides being disruptive, the tight coupling between egress
selection and IGP metrics makes traffic engineering and main-
tenance planning extremely difficult. Network administrators
indirectly control the flow of traffic by tuning the IGP met-
rics [6], [7], [8], [9], [10], [11] and BGP policies [12], [13].
Finding good settings that result in the desired behavior is
computationally challenging, due to the large search space
and the need to model the effects on egress-point selec-
tion. Finding settings that are robust to a range of possible
equipment failures is even more difficult [14], [15], [16].
Imposing even more constraints, such as minimizing egress-
point changes across all routers and destination prefixes, makes
the problem increasingly untenable. In addition, once the local
search identifies a better setting of the IGP metrics or BGP
policies, changing these parameters in the routers requires the
network to go through routing-protocol convergence, leading
to transient performance disruptions.

B. Fixed Ranking of Egresses at Each Ingress

A natural alternative would be to configure each router
with a fixed ranking of the egress points, where the router
would select the highest-ranked element in the set of egress
routers for each destination. This solution can be realized using
today’s technology by establishing a tunnel from each ingress
router to each egress router, and assigning an IGP metric
to the tunnel3. The data packets would follow the shortest
underlying IGP path from the ingress router to the chosen
egress router. The hot-potato mechanism would still dictate
the selection of egress points, but the metric associated with
each tunnel would be defined statically at configuration time
rather than automatically computed by the IGP. Thus, this
technique allows network administrators to rank the egress
points from each router’s perspective. Each ingress router
selects the highest-ranked egress point independent of internal
network events, short of the extreme cases where the egress
point becomes unreachable or the BGP route is withdrawn and
the router is forced to switch to the egress point with the next
highest rank.

For the example in Figure 1, router C could be configured
to prefer egress A over B. Then, when the C–D link fails,
C would continue to direct traffic toward router A, though

3For example, network administrators can use MPLS [17], [18] to create
label-switched paths (LSPs) between all ingress-egress pairs. Configuring each
LSP as an IGP virtual link ensures that each tunnel appears in the intradomain
routing protocol. The metric assigned to the tunnel would then drive the hot-
potato routing decision hard-coded in the routers.

4

now using the path C,E,D,A. This would avoid triggering the
traffic shift to B, changes in the downstream forwarding path,
and BGP updates to neighboring domains. However, although
the fixed ranking is extremely robust to internal changes,
sometimes switching to a different egress point is a good idea.
For example, the path C,E,D,A may have limited bandwidth
or a long propagation delay, making it more attractive to
switch to egress-point B, even at the expense of causing a
transient disruption. In the long term, network administrators
could conceivably change the configuration of the ranking to
force the traffic to move to a new egress point, but the reaction
would not be immediate. Similarly, the administrators could
reconfigure the IGP metrics or BGP policies to redistribute the
traffic load, at the expense of searching for a suitable solution,
reconfiguring the routers, and waiting for the routing protocol
to converge. All these approaches react too slowly to network
changes.

The mechanisms available today for selecting egress points
represent two extremes in the trade-off between robustness
and automatic adaptation. Hot-potato routing adapts imme-
diately to internal routing changes (however small), leading
to frequent disruptions. Imposing a fixed ranking of egress
points, while robust to topology changes, cannot adapt in real
time to critical events. Neither mechanism offers sufficient
control for network administrators to engineer the flow of
traffic and plan for maintenance. In this paper, we ask a natural
question: Is there a mechanism for egress-point selection that
is flexible enough to control the flow of traffic in steady state,
while responding automatically to network events that would
degrade performance?

III. TIE: TUNABLE INTERDOMAIN
EGRESS SELECTION

In this section, we propose a mechanism for selecting an
egress point for each ingress router and destination prefix in
a network. Ideally, an optimization routine could compute
the egress points directly based on the current topology,
egress sets, and traffic, subject to a network-wide performance
objective. However, the routers must adapt in real time to
events such as changes in the underlying topology and egress
sets, leading us to design a simple mechanism that allows a
separation of timescales—enabling both rapid adaptation to
unforeseen events and longer-term optimization of network-
wide objectives. In addition, the design of our mechanism
places an emphasis on generality to allow us to support a wide
variety of network objectives, rather than tailoring our solution
to one particular scenario. In this section, we first describe
our simple mechanism and then our proposal for using it in
operational networks.

A. TIE Ranking Metric

Our mechanism allows each router to have a ranking of the
egress points for each destination prefix. That is, router i has
a metric m(i, p,e), across all prefixes p and egress points e.
For each prefix, the router considers the set of possible egress
points and selects the one with the smallest rank, and then
forwards packets over a tunnel that follows the shortest path

through the network to that egress point. Although we propose
using tunnels between every pair of routers to guarantee
consistent forwarding, our approach differs from the scheme in
Section II-B in several key ways. First, our ranking metric has
finer granularity, in that we allow an ingress router to have a
different ranking for different destination prefixes. Second, our
ranking metric is computed rather than statically configured,
allowing the ranking to adapt to changes in the network
topology and egress set. Third, our metric is not tied directly
to the underlying tunnel that directs traffic from an ingress
point to the chosen egress point, allowing us to achieve the
finer granularity of control without increasing the number of
tunnels. Our approach is also more flexible than tuning BGP
routing policies, in that one router can start using a new egress
point while other routers continue to use the old one.

Undirected graph G = (N,L), nodes N and links L
Ingress and egress nodes i ∈ N and e ∈ N
IGP distance on graph d(G, i,e), i,e ∈ N
Destination prefix p ∈ P
Egress set E(p)⊆ N
Ranking metric m(i, p,e), i,e ∈ N, p ∈ P
Tunable parameters α(i, p,e) and β(i, p,e)

TABLE I
SUMMARY OF NOTATION.

To support flexible policy while adapting automatically
to network changes, the metric m(i, p,e) must include both
configurable parameters and values computed directly from
a real-time view of the topology. We represent intradomain
routing topology as an undirected weighted graph G = (N,L),
where N is the set of nodes and L is the set of IP links, as
summarized in Table I. Based on the link weights, each router
i ∈ N can compute the IGP distance d(G, i,e) to every other
router e ∈ N. The egress set E(p) ⊆ N consists of the edge
nodes that have equally-good BGP routes for prefix p. For
prefix p, node i selects the egress point argmine{m(i, p,e) |e∈
E(p)}. The metric is computed as a weighted sum of the IGP
distance and a constant term:

m(i, p,e) = α(i, p,e) ·d(G, i,e) + β(i, p,e),

where α and β are configurable values. The first component
of the equation supports automatic adaptation to topology
changes, whereas the second represents a static ranking of
routes for that prefix. Together, these two parameters can
balance the trade-off between adaptability and robustness. This
simple metric satisfies our three main goals:
• Flexible policies: By tuning the values of α and β,

network administrators can cover the entire spectrum
of egress-selection policies from hot-potato routing to
static rankings of egress points. Hot-potato routing can be
implemented by setting α = 1 and β = 0 for all nodes and
prefixes. A static ranking can be represented by setting
α = 0 and, for each node i, β(i, p,e) to a constant value
for all values of p. Our mechanism can also realize a
diverse set of policies in between.

5

• Simple computation: The metric is computationally
simple—one multiplication and one addition—based on
information readily available to the routers (i.e., the
IGP distances and the α and β values). This allows
routers to compute the appropriate egress point for all
destination prefixes immediately after a change in the
network topology or egress set.

• Ease of optimization: The mechanism offers two knobs
(α and β) that can be easily optimized by a management
system based on diverse network objectives. In Section IV
and V, we explore the power of this mechanism to express
two different policies, and we demonstrate that it is easy
to optimize by showing that the optimization problems
we define are tractable.

In addition, when the network-management system changes
the α and β values, the affected routers can move traffic from
one path to another without incurring any convergence delays.
This fast convergence is possible because the network already
has tunnels between each pair of routers. Changing the α and
β values merely changes which paths carry the traffic.

B. Using TIE

We do not envision that network administrators will con-
figure all values of α and β by hand. Instead, we propose an
architecture as presented in Figure 2. The upper box represents
the tasks of a management system that configures the routers,
and the lower box captures the tasks running on each router in
the network. Network administrators define the high-level goal
of the egress-selection policy for the network or for a set of
destination prefixes (such as minimizing sensitivity to failures,
minimizing delay, or balancing link load). The management
system takes as input the current network design and the
administrator’s specifications, runs an optimization routine
to find the appropriate values for the parameters α and β,
and configures the routers accordingly. Once the management
system configures the TIE parameters, the routers apply the
BGP decision process as usual, except for using the metric m
to select between multiple equally-good BGP routes.

With TIE the egress-point selection can change for two
reasons: high-level policy changes (expressed by changes in
α and β) or routing changes. Policy changes happen because
of changes in network objectives or the network design. Rout-
ing changes—changes in the IGP distances or egress sets—
happen in response to network events such as link failures or
BGP updates from neighboring domains. Reaction to routing
changes must be done in real time to avoid bad network
performance, whereas policy changes happen less often and
can be implemented slowly. Our architecture benefits from this
separation of timescales. Policy changes require running an
optimization routine, which is executed completely off line by
the management system running on a separate machine. Under
routing or policy changes, routers only need to perform one
addition and one multiplication to recompute m. This simple
on-line computation also happens under BGP updates. Routers
can be pre-configured with default values of α and β for newly
announced prefixes. The management system will revisit these
values at the time of the next optimization.

routing change
Upon change or

Runs optimization

α, β

Configures routers

Management

Network administrator defines policy

System

Path selection
using m

Forwarding table

Routers

α, β

Fig. 2. A management system optimizes α and β for a high-level policy
and configure routers. Routing adapts the egress-point selection at real time
in reaction to network events.

In the next two sections, we give examples of two useful
polcies for network administrators and present management
systems that select suitable values of α and β for each
policy. Then, Section VI addresses implementation issues
for deploying TIE. In particular, we discuss techniques for
reducing the number of parameters that need to be configured
in practice and the use of tunnels to allow independent egress-
point selection to be made at each router.

IV. MINIMIZING SENSITIVITY

In this section, we present a prototype of a management
system to select values of α and β to minimize the sensitivity
of egress-point selection to equipment failures, subject to re-
strictions on increasing the propagation delay. After presenting
a precise formulation of the problem, we present a solution that
has two phases—simulating the effects of equipment failures
to determine the constraints on the α and β values and applying
integer-programming techniques to identify optimal settings.
Then, we evaluate the resulting solution using topology and
routing data from two backbone networks.

A. Problem Definition

Consider a well-provisioned backbone network that supports
interactive applications, such as voice-over-IP and online gam-
ing. The network administrators want to avoid the transient
disruptions that would arise when an internal failure causes
a change in the egress point for reaching a destination, as
long as continuing to use the old egress point would not incur
large delays. By setting the IGP link weights according to
geographic distance, the shortest IGP path between two nodes
would correspond to the smallest delay and the closest egress
point would be the best choice. Hence, for this problem, the
best egress point b(G, i, p) for node i and prefix p is the
node e ∈ E(p) with the smallest IGP distance d(G, i,e). If
an internal failure occurs, the administrators want node i to
continue directing traffic to b(G, i, p) unless the delay to this
egress point exceeds T · d(G, i,b(G, i, p)) for some threshold
T > 1. If the delay to reach the egress point exceeds the
threshold, the administrators want node i to switch to using the
(new) closest egress point to minimize the propagation delay.
Table II summarizes the notation.

6

Threshold for tolerable delay ratio T
Set of topology changes ∆G
Topology change δ ∈ ∆G
Network topology after change δ(G)

Best egress point for (i, p) on G b(G, i, p)

TABLE II
NOTATION FOR THE PROBLEM OF MINIMIZING SENSITIVITY TO TOPOLOGY

CHANGES WITH BOUNDED DELAY.

In an ideal world, the routers could be programmed to
implement this policy directly. For example, upon each IGP
topology change δ, each node i could revisit its egress selection
for each prefix by performing a simple test for the new
topology δ(G):

if (d(δ(G), i,b(G, i, p))≤ T ·d(G, i,b(G, i, p))),
then b(δ(G), i, p) = b(G, i, p)
else b(δ(G), i, p) = argmine{d(δ(G), i,e) |e ∈ E(p)}.

Modifying every router in the network to implement this
egress-selection policy would guarantee that the network
always behaves according to the specified goal. However,
supporting a wide variety of decision rules directly in the
routers would be extremely complicated, and ultimately net-
work administrators would want to apply a policy that is not
supported in the routers. In the next subsection, we show that
TIE is expressive enough to implement this policy. Instead of
having the routers apply the test in real time, the network-
management system configures the TIE parameters at design
time based on the policy, and the routers adapt automatically
when internal changes occur.

B. Solving the Sensitivity Problem with TIE

Solving the problem with our mechanism requires us to
find values of α(i, p,e) and β(i, p,e), for each i,e ∈ N and
p ∈ P, that lead to the desired egress-point selections over all
topology changes ∆G. Our solution has two main steps. First,
a simulation phase determines the desired egress selection
both at design time (under graph G) and after each topology
change (under graph δ(G)). The output of this phase is a set
of constraints on the α and β values for each (i, p) pair. Then,
an optimization phase determines the values of α and β that
satisfy these constraints. For this problem, the egress-point
selection for each (i, p) pair can be made independently.

1) Simulation Phase: To illustrate how we construct the
constraints on α and β for the initial topology G and each
topology change δ, consider the example in Figure 3(a). In
the initial topology, node A would select node B as the egress
point because B is closer than C. We can express this by
m(A, p,B) < m(A, p,C) for topology G, as shown by the first
constraint in Figure 3(b). Then, we consider each topology
change δ and determine the preferred egress selection with
the policy in mind, where T = 2 and δ1 is the failure of the
link with cost 4 and δ2 is the failure of the links with costs 4
and 6. In the new graph δ1(G), A is closer to C (with a distance
d(δ1(G),A,C) of 5) than to B (with a distance d(δ1(G),A,B)

of 6). However, since d(δ1(G),A,B)< 2 ·d(G,A,B), A should
continue to select egress-point B. This decision is expressed
by the second equation in Figure 3(b). We use the same
methodology to evaluate the best egress selection after δ2. In
this case, the distance from A to B is above the threshold, so
A should switch to using egress-point C, as expressed by the
third equation.

αB βB αC βC
 4 . + < 5 . +
αB βB αC βC

 6 . + < 5 . +
αB βB

αC βC
 12 . + > 5 . +

p

4
6

12

5

(b)(a)

Constraints for (A,p):
B

A

C

Fig. 3. Example illustrating constraints on values of α and β.

More generally, our algorithm consists of two main steps.
First, we compute the distances d(·, i,e) for the original graph
G and all topology changes δ ∈ ∆G using an all-pairs shortest
path algorithm. (For simple topology changes, such as all
single-link failures, an incremental Dijkstra algorithm can
reduce the overhead of computing the |∆G|+ 1 instances of
the all-pairs shortest paths.) Then, we generate the constraints
for each (i, p) pair as presented in Figure 4.

1) Identify the closest egress point in the original graph:
b = argmine{d(G, i,e) |e ∈ E(p)},

2) For each e ∈ E(p) \ {b}, generate the constraint
“α(i, p,b) · d(G, i,b) + β(i, p,b) < α(i, p,e) · d(G, i,e) +
β(i, p,e)”

3) For each δ ∈ ∆G
a) Identify the preferred egress point b′: If

d(δ(G), i,b) ≤ T · d(G, i,b), then b′ = b. Else,
b′ = argmine{d(δ(G), i,e) |e ∈ E(p)}.

b) For each e ∈ E(p) \ {b′}, generate the constraint
“α(i, p,b′) · d(δ(G), i,b′) + β(i, p,b′) < α(i, p,e) ·
d(δ(G), i,e) + β(i, p,e)”

Fig. 4. Algorithm of the simulation phase.

Step 2 runs once (on the original graph) and step 3(b)
runs |∆G| times (on each topology change), generating a
constraint for each alternative to the desired egress point
for that configuration. As a result, the algorithm produces
(|∆G|+ 1) · (|E(p)| − 1) constraints for each pair (i, p). The
size of E(p) is limited by the number of edge nodes that have
best BGP routes for a prefix; in practice, the size is usually
one, two, or three, or at most ten. Fortunately, any prefixes
that have the same egress set produce the same constraints,
and the same values of α and β. The number of unique egress
sets is typically orders of magnitude less than the number
of prefixes, which substantially reduces the running time of
the algorithm. In order to reduce the complexity and number
of configurable parameters, we group all routers in the same
PoP into a single node; these routers typically make the same
BGP routing decisions anyway, since they essentially act as

7

one larger router. Ultimately, the running time of the algorithm
is dominated by the number of topology changes in ∆G.

2) Optimization Phase: In the optimization phase, we com-
pute α and β values that satisfy the constraints for each pair
(i, p). In theory, any settings that satisfy the constraints would
achieve our optimization goal. However, several practical
issues drive how we set up the optimization problem:
• Finite-precision parameter values: The α and β values

should have finite precision to be configured and stored
on the routers. Since the parameter values only have
meaning relative to each other, we can limit ourselves
to considering integer solutions. This leads us to apply
integer programming to solve the problem.

• Robustness to unplanned events: Although we optimize
the parameters based on the topology changes in ∆G,
the real network might experience events outside of our
model. If optimizing based on ∆G results in solutions
with α = 0 for an (i, p) pair, then router i would never
adapt to a change in IGP distance, however large. To
increase the robustness to unplanned events, we add an
extra constraint that α(i, p,e)≥ 1 for all i, p, and e.

• Limiting the number of unique parameter values: To
reduce the overhead of configuring and storing the α and
β parameters, we prefer solutions that reduce the number
of unique values. As such, we attempt to minimize an
objective function that is the sum across all of the α and
β values, which favors solutions with α = 1 and β = 0,
selecting different values only when necessary to satisfy
the constraints.

For each (i, p) pair, the simulation phase generates a set
of linear inequalities and a linear objective function. Since
we want our variables (α and β) to have integer values,
we need to solve an integer-programming problem. We use
the CPLEX [19] solver with the AMPL interpreter to find
the α and β values for each (i, p) pair. Although integer-
programming problems are sometimes difficult to solve, our
constraints are typically easy to satisfy because many con-
straints are identical or are subsumed by other constraints.
For instance, the second constraint in Figure 3(b) is stricter
than the first constraint (i.e., because 4αB < 6αB). In fact,
for most of the (i, p) pairs, CPLEX computes the values
of α and β during a pre-processing phase that analyzes the
constraints. Very few (i, p) pairs required more than three
simplex iterations in the root node of the branch-and-bound
tree to identify parameters that satisfy the constraints and min-
imize the objective function. Still, for arbitrary topologies and
topology changes, we could conceivably encounter a scenario
where no parameter setting would satisfy every constraint.
A scenario like this, should it arise, could be handled by
an extension to the integer program to minimize the number
of constraints that are violated. This could be achieved by
including an extra error term in each constraint and selecting
an objective function that minimizes the total error.

C. Evaluation

We evaluate the effectiveness of TIE for achieving our goal
of minimizing sensitivity to equipment failures on the Abilene

network and a tier-1 ISP backbone. We obtain the network
topology G and the egress sets {E(p)} as described in the
Appendix. For this problem, we set the IGP link weights to
the geographic distance between the PoPs to approximate the
propagation delay. We optimize TIE for two sets of topology
changes ∆G (single link failures and single node failures) and
three different delay thresholds T (1.5, 2, and 3).

We ran the simulation and the optimization phases on dif-
ferent machines because the raw measurement data could only
be stored on one machine, and the CPLEX license resides on
another. The simulation phase ran on a 900MHz Ultrasparc-III
Copper processor of a Sun Fire 15000. This phase consumed
3.2 MB of RAM and took 0.5 and 31.1 seconds to build the
constraints for all pairs (i, p) for the Abilene and ISP networks,
respectively. The optimization phase ran on a 196 MHz MIPS
R10000 processor on an SGI Challenge. This phase consumed
just under 4 MB of RAM and took 37 seconds and 12 minutes
to run for the Abilene and ISP networks, respectively. The
management system selects new α and β parameters very
infrequently, and this selection does not delay the routers from
picking routes. Thus, 12 minutes of running time is perfectly
reasonable. In addition, we expect that the optimization phase
would complete much faster if we invoke the CPLEX library
directly from a C program rather than the AMPL interpreter
and if we run it on more powerful machine.

In the resulting configuration for the Abilene network, α
was equal to 1 for 93% of the (i, p,e) tuples and had only
four distinct values (α ∈ [1,4]); β was zero for 90% of
the (i, p,e) tuples and had only three distinct values (β ∈
{0,1,3251}). The ISP network has a much larger number of
destination prefixes and distinct egress sets, which resulted in
a broader range of values for the parameters (α ∈ [1,19] and
β∈ {0,1,3411,4960,5185,5009}). However, the vast majority
of α values (88%) were equal to one, and 69% of β values were
zero. The small number of distinct values for the parameters,
and the large number of α(i, p,e) = 1 and β(i, p,e) = 0, help
reduce the overhead of configuring and storing the parameters,
as discussed in more detail in Section VI. The fact that
most (i, p) pairs have α(i, p,e) = 1 and β(i, p,e) = 0 reveals
that there are just a few points in the network that need
some hysteresis to keep them from over-reacting to small IGP
changes. TIE provides enough flexibility for the management
system to identify the specific places where this hysteresis is
needed to achieve the network-wide goals.

After generating the values of α(i, p,e) and β(i, p,e) for
each one of these scenarios, we simulate the behavior of
each network with this configuration. For comparison, we also
simulate the behavior of the network using hot-potato routing
(by setting α(i, p,e) = 1 and β(i, p,e) = 0 for all (i, p,e)), and
the fixed ranking egress selection (by setting α(i, p,e) = 0 for
all (i, p,e), and β(i, p,e) = d(G, i,b(G, i, p))). We simulate the
behavior of these egress-selection policies under the set of
all single-link failures and the set of all single-node failures.
For conciseness, we only present the results for single-node
failures, the results for the other instances lead to the same
conclusions. We compare the three mechanisms using two
metrics:
• Delay ratio: For each (i, p,δ) we compute the delay for

8

0

0.2

0.4

0.6

0.8

1

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

C
C

D
F

 o
f (

no
de

,p
re

fix
,fa

ilu
re

)
tu

pl
es

ratio of delay after failure to design time delay

Fixed ranking
TIE (link failures,2)

Hot-potato

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.2 0.4 0.6 0.8 1

C
C

D
F

 o
f (

no
de

,fa
ilu

re
)

pa
irs

routing sensitivity

Fixed ranking
TIE (link failures,2)

Hot-potato

(a) Propagation delay ratio (CCDF) (b) Routing sensitivity (CCDF)
Fig. 5. Comparison of egress-selection schemes on the Abilene network under single-node failures with TIE optimized for single-link failures and T = 2.

i to reach the best egress point for p after the topology
change δ (d(δ(G), i,b(δ(G), i, p))), and divide it by the
delay to reach the best egress in the original topology
(d(G, i,b(G, i, p))).

• Routing sensitivity: For each (i,δ) the routing sensitivity
represents the fraction of prefixes at i that change egress
point after a topology change δ. This metric is the routing-
shift function (H RM) defined in [20] and represents the
fraction of a router’s BGP table that changes egress points
after an intradomain routing change.

Figure 5(a) presents the complementary cumulative distri-
bution function (CCDF) of the delay ratio for the Abilene
network. A delay ratio equal to one means that the delay after
the failure is the same as the delay in the original network.
Many of the node failures do not affect the path between an
ingress node and a best egress node for a prefix. Therefore, we
omit all values that had a delay ratio of one. Given that the link
weights are set according to geographic distance, the delay
ratio achieved by hot-potato routing represents the smallest
feasible delay ratio. Fixed ranking represents the delay to reach
the old egress point after the failure. In this plot, we present
the results for TIE optimized for single-link failures and T = 2,
and evaluate the schemes against single-node failures. The
results of TIE optimized for single-node failures were very
similar (in fact most of the values of α and β were the same).

Despite being optimized for a different set of topology
changes, TIE still behaves according to the original goal. TIE
exceeds the delay threshold of 2 for only 20% of the (i, p,δ),
and hot-potato routing also exceeds the threshold in each of
these cases. Fixing the ranking of egress points leads to delays
that are higher than the delay achieved by TIE in the majority
of instances. Whenever the fixed-ranking scheme lies below
the threshold of 2, TIE is below it as well. When the fixed-
ranking scheme exceeds the threshold, TIE shifts to an egress
point that is at or below the threshold. This is the reason why
the TIE curve lies below the fixed-ranking curve for delay
ratios under 2.

Below the threshold of 2, TIE has higher delay than hot-
potato routing in exchange for lower sensitivity values as
shown in Figure 5(b). This graph plots the CCDF of routing

sensitivity for all (i,δ) pairs. Fixing the ranking of egress
points has the lowest sensitivity. In fact, the fixed-ranking
scheme has a non-zero sensitivity only when the best egress
point fails, forcing even this scheme to change to the second-
ranked egress point (i.e., the one that was second-closest in
the initial topology). The TIE curve follows the fixed ranking
for most points. TIE only experiences egress changes when
they are unavoidable. The gap between the hot-potato and
the TIE curve—around 15% of the (i,δ) pairs—represents
the scenarios for which egress-selection disruptions could be
avoided without violating the delay threshold.

Although we observe similar behavior in the results for the
large ISP network (presented in Figures 6(a) and 6(b)), the
gap between the curves is not as large as for the Abilene
network. In this case, we optimize TIE for single-link failures
with a delay threshold T = 3. The ISP network has many more
choices of egress points per prefixes than the Abilene network.
Therefore, the delay to reach the closest egress point in the
original topology is likely to be very small, and setting the
threshold to three times this delay still gives reasonably short
delays. This network also has more path diversity than the
Abilene network. In a more diverse graph, it is more likely
that there is still a low-delay path to the initial egress point,
even after the failure. Contrasting the delay ratio and routing
sensitivity of the two networks illustrates that there is not a
single policy that fits all networks. Compared to the Abilene
network, the ISP network could safely put more emphasis
on setting the β values, because its rich connectivity makes
it unlikely that equipment failures would lead to significant
changes in the IGP distance between a pair of routers. The
TIE mechanism is flexible enough to accommodate both of
these networks.

In this section, we assume that the egress set for each
destination prefix is stable when determining the values of α
and β. Our evaluation shows that even when an egress node is
removed from the egress set (which can represent either a node
failure or a BGP route withdrawal), TIE behaves as expected.
We can extend the formulation of this problem to find solutions
that are robust to egress-set changes. For instance, we can
configure TIE to react slowly to the announcement of new

9

0

0.2

0.4

0.6

0.8

1

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

C
C

D
F

 o
f (

no
de

,p
re

fix
,fa

ilu
re

)
tu

pl
es

ratio of delay after failure to design time delay

Fixed ranking
TIE (link failures,3)

Hot-potato

0

0.05

0.1

0.15

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
C

D
F

 o
f (

no
de

,fa
ilu

re
)

pa
irs

routing sensitivity

Fixed ranking
TIE (link failures,3)

Hot-potato

(a) Propagation delay ratio (CCDF) (b) Routing sensitivity (CCDF)
Fig. 6. Comparison of egress-selection schemes on the ISP network under single-node failures for TIE optimized for single-link failures and T = 3.

routes (i.e., additions to the egress set) by setting the values
of α(·, p,e) and β(·, p,e) to be very high for all e 6∈ E(p).
We can also model BGP dynamics by extending our notion of
topology change δ to include changes to the egress sets.

V. TRAFFIC ENGINEERING

This section demonstrates the expressiveness of TIE for
doing traffic engineering. We propose an optimization problem
that balances link utilization on the network only by selecting
the appropriate egress point for each pair (i, p) (i.e., by setting
the values of β(i, p,e)). This is in contrast with the common
practice of optimizing link utilization by either tweaking IGP
link weights or BGP policies. After defining the optimization
problem and presenting our solution, we evaluate our solution
by comparing the link utilizations achieved using TIE to that
using the current network configuration.

A. Problem Definition: Balancing Link Utilization

Traffic engineering—adapting the flow of traffic to the
prevailing network conditions—is a common task that can
be performed in several ways. Traffic engineering considers
a network topology (G) with the capacity of each link (c(`)),
and the traffic demands v(i, p) (i.e., the volume of traffic to
destination prefix p that enters the network at ingress router
i), as summarized in Table III. The effects of the IGP weights
on the intradomain paths can be represented by the routing
matrix R(i,e, `), which captures the fraction of traffic from
router i to router e that traverses link `. If the network has one
shortest path between i and e, R(i,e, `) is one for any link ` on
that path, or zero otherwise; if multiple shortest paths exist,
R(i,e, `) may be fractional. The flow of traffic also depends
on the egress set E(p) and the egress point b(i, p) that router
i uses to reach prefix p.

Traffic engineering involves tuning the network configura-
tion to minimize some function of the load on the links. The
load t(`) on link ` can be determined as follows:

t(`) = ∑
i∈N

∑
p ∈ P,

b(i, p) = e,
e ∈ E(p)

v(i, p) ·R(i,e, `)

Link capacity c(`), for ` ∈ L
Traffic demand v(i, p) for i ∈ N, p ∈ P
Routing matrix R(i,e, `), for i,e ∈ N, ` ∈ L
Egress selection b(i, p) ∈ E(p) for i ∈ N, p ∈ P
Link traffic load t(`) for ` ∈ L
Link utilization u(`) = t(`)/c(`), ` ∈ L
Multicommodity flow path τ(i,e, p)⊂ G
Decision variable x(i,e, p) ∈ {0,1}
Link congestion penalty φ(u(`)), ` ∈ L
Objective function Φ = ∑`∈L φ(u(`))

TABLE III
NOTATION FOR THE TRAFFIC-ENGINEERING PROBLEM

and the resulting link utilization is u(`) = t(`)/c(`). The
common approach to traffic engineering is to formulate an
optimization problem that minimizes an objective function that
penalizes solutions in terms of the load they place on each link.
In our work, we consider the function φ(u(`)) in Figure 7 that
increasingly penalizes loads as they near or pass the link’s
capacity. This piecewise-linear function can be expressed by
the equation

φ(u(`)) =





u(`), u(`) ∈ [0,1/3)
3 ·u(`)−2/3, u(`) ∈ [1/3,2/3),
10 ·u(`)−16/3, u(`) ∈ [2/3,9/10),
70 ·u(`)−178/3, u(`) ∈ [9/10,1),
500 ·u(`)−1468/3, u(`) ∈ [1,11/10),
5000 ·u(`)−16318/3, u(`) ∈ [11/10,∞)

(1)

that was introduced in [21] and used in several other traffic-
engineering studies. The network-wide objective function Φ is
the sum of the link penalties—i.e., Φ = ∑`∈L φ(u(`)).

Network administrators can minimize the objective function
by changing the intradomain paths (R(i,e, `)), interdomain
routes (E(p)), or the egress-point selection (b(i, p)). Tuning
the IGP link weights (to influence the intradomain paths)
and the BGP policies (to influence the interdomain routes)
lead to NP-complete optimization problems [8], [6], [11], [7],

10

0

10

20

30

40

50

60

70

0 0.2 0.4 0.6 0.8 1 1.2

co
st

 p
er

 u
ni

t o
f c

ap
ac

ity

link utilization

Fig. 7. Piecewise-linear penalty function φ(u(`)) versus link utilization

[22]. The computational intractability of these problems forces
the use of local-search techniques that repeatedly evaluate
parameter settings in the hope of finding a good solution.
Although local-search heuristics often produce good parameter
values [8], [14], the solutions are not optimal and are not
guaranteed to have performance that is close to optimal. In
addition, the solutions require changing the IGP weights or
BGP policies, which triggers routing-protocol convergence
and leads to transient disruptions. In contrast, using TIE to
control the egress-point selections b(i, p) leads to a simpler
optimization problem that does not require changes to the
routing-protocol configuration. Since we are simply selecting
among existing paths and not changing the configuration
of routing protocols, our approach does not trigger routing
convergence.

B. Solving the Traffic-Engineering Problem with TIE

Traffic engineering with TIE involves assigning each (i, p)
pair to an egress point b(i, p) ∈ E(p) in a way that minimizes
the objective function Φ. A solution can be realized by setting
β(i, p,b(i, p)) to a low value, while setting β(i, p,e) to a
high value for all e 6= b(i, p), and all α values to zero. In
contrast to the fixed-ranking scheme in Section II-B, we allow
a router’s ranking of egress points to differ across the prefixes.
In practice, we envision solving richer optimization problems
that consider robustness to changes in the network topology
G, the egress sets E(p), and the traffic demands v(i, p), which
would lead to solutions that assign values to both α and β. In
this paper, we focus on fixed topology, egress sets, and traffic
demands, to illustrate how TIE provides the flexibility needed
to balance load across the links.

We formulate the egress-selection problem as a path-based
multicommodity-flow problem that accounts for the constraints
that the routing matrix R(i,e, `) imposes on the flow of traffic.
For a router i and prefix p, we consider the topology τ(i,e, p)
induced by the links ` ∈ L for which R(i,e, `) > 0. All links
in the graph τ(i,e, p) can be used to route traffic from i to
p through the egress point e ∈ E(p). We call τ a path in
the multicommodity-flow formulation. We represent the actual
routing of the traffic from i to p by a (0,1)-decision variable
x(i,e, p), such that x(i,e, p) = 1 if and only if the path τ(i,e, p)
is selected to send traffic from i to p. The choice of a path

τ determines the egress point e ∈ E(p) selected. For all pairs
(i, p), the egress-selection problem requires that a single egress
point e ∈ E(p) be chosen (i.e., no more than one x(i,e, p) of
1 for each (i, p) pair). We express this requirement by the
following equation:

∑
e∈E(p)

x(i,e, p) = 1.

The contribution of the traffic going from i to p to the load on
link ` is the product of the traffic demand v(i, p), the routing-
matrix element R(i,e, `), and the decision variable x(i,e, p).
The total load on a link is the sum of all the contributions, i.e.

t(`) = ∑
i∈N

∑
p∈P

∑
e∈E(p)

v(i, p) ·R(i,e, `) · x(i,e, p).

A piecewise-linear integer-programming formulation for the
single egress-selection problem is to minimize the objective
function Φ = ∑`∈L φ(u(`)) such that the (0,1)-decision vari-
ables x(i,e, p) sum to 1 for each (i, p) pair. Defining φ(u(`))
to be a linear variable and applying a standard transformation
results in the linear integer-programming formulation:

min ∑̀
∈L

φ(u(`))

s.t.

u(`) =
(

∑
i∈N

∑
p∈P

∑
e∈E(p)

v(i, p) ·R(i,e, l) · x(i,e, p)
)
/c(`), ∀l ∈ L,

∑
e∈E(p)

x(i,e, p) = 1, ∀i ∈ N, p ∈ P,

φ(u(`))≥ u(`), ∀l ∈ L,

φ(u(`))≥ 3 ·u(`)−2/3, ∀l ∈ L,

φ(u(`))≥ 10 ·u(`)−16/3, ∀l ∈ L,

φ(u(`))≥ 70 ·u(`)−178/3, ∀l ∈ L,

φ(u(`))≥ 500 ·u(`)−1468/3, ∀l ∈ L,

φ(u(`))≥ 5000 ·u(`)−16318/3, ∀l ∈ L,

x(i,e, p) ∈ {0,1}, ∀i ∈ N, p ∈ P,e ∈ E(p),

φ(u(`))≥ 0, ∀l ∈ L.

However, in general, this integer multicommodity-flow prob-
lem is intractable. Instead, we consider its linear-programming
relaxation obtained by relaxing the integrality constraints
x(i,e, p) ∈ {0,1} to simply x(i,e, p) ≥ 0. For both networks
we consider, the CPLEX solver produced solutions with only
integer values of x(i,e, p), thus solving the integer program-
ming problem and allowing us to configure the β(i, p,e) values
to pick the single egress point b(i, p) for each (i, p) pair.
For situations where the solution of the linear-programming
relaxation is fractional, applying a simple heuristic based on
randomized rounding can produce a valid egress selection. For
each pair (i, p) with fractional x(i,e, p) values, egress point
e ∈ E(p) is selected with probability x(i,e, p). Randomized
rounding is repeatedly applied and the best solution found is
output by the algorithm.

C. Evaluation

We evaluate the link utilization achieved by TIE on both the
Abilene and ISP networks. We obtained the network topology

11

G, the egress sets {E(p)}, and the traffic demands v(i, p),
as explained in the Appendix. We aggregate all traffic from
an ingress i to all destination prefixes p that share the same
egress set E(p) to build the ingress to egress set traffic demand
v(i,E) for each unique egress set E. For this problem, we
use the IGP link weights as configured in each network. The
CPLEX solver took 0.1 and 1.5 seconds to run on the 196 MHz
MIPS R10000 processor for the Abilene and ISP networks,
respectively. The current network IGP configuration is set to
achieve good link utilization assuming that the egress-selection
mechanism is hot-potato routing. Therefore, we compare the
utilization achieved using TIE with that achieved by hot-potato
routing.

Table IV presents the value of the objective function Φ
for both topologies under both egress-selection policies. TIE’s
flexibility in balancing load allows us to find an optimal
solution for both networks using the linear-programming re-
laxation. The solution using hot-potato routing is 40% worse
than that found using TIE for the ISP network. Hot-potato
routing has a congestion function close to TIE for the Abi-
lene network. However, even though the Abilene network is
significantly under-utilized, TIE does offer some (admittedly
modest) improvements to the objective function.

Abilene Network ISP Network
Hot-potato routing 0.4513510071 8.990353677
TIE 0.4425879808 5.557480707

TABLE IV
COMPARISON OF THE NETWORK CONGESTION FUNCTION Φ BETWEEN

HOT-POTATO ROUTING AND TIE.

Figure 8 shows the ratio of link utilization between hot-
potato routing and TIE, for the ten most heavily-loaded links
under hot-potato routing; link number 1 is the most utilized
link and number 10 is the tenth most utilized. The TIE solution
reduces the utilization of the most utilized link by 40.9%.
Although TIE increases the load on some links (as illustrated
by link 8 in the figure), our solution reduces the utilization of
two-thirds of the links, and the most utilized link in the TIE
solution has 26.3% less utilization than the most utilized link
under hot-potato routing.

D. Extensions

In this section, we assume that each router i can select any
e ∈ E(p) for each destination prefix p. However, this could
conceivably lead to long propagation delays if i selects a far-
away egress point, or to unnecessary BGP update messages to
neighboring domains. We can address these concerns simply
by removing certain egress points from consideration if they
have high propagation delay or a BGP route with a different
AS path. For instance, egresses where d(G, i,e) exceeds a
threshold could be removed from consideration for router i, or
we could consider only the egress points that have BGP routes
with the same AS path. Our solution can also treat destination
prefixes for sensitive applications (such as VoIP) separately.
For instance, the egress selection for such prefixes can be done

0

1

2

3

4

5

6

7

0 2 4 6 8 10

R
at

io
 o

f l
in

k
ut

ili
za

tio
n

fo
r

 h
ot

-p
ot

at
o

ro
ut

in
g

ov
er

 T
IE

links

Fig. 8. Comparison of link utilization with hot-potato routing and TIE.

to minimize sensitivity and delay as discussed in Section IV,
and the demands to these prefixes considered as immutable
background load for the traffic-engineering problem.

The traffic-engineering optimization problem as defined in
this section only considers the utilization of internal links. A
natural extension is to use TIE to balance outbound load on
the edge links. We can formulate this problem by adding an
artificial node for each destination prefix p, with each peering
link connecting to it, and solve it using the same methodology
presented here. In addition, our traffic-engineering optimiza-
tion problem currently does not set the values of α. This
prevents the egress selection to automatically adapt to changes
in the network topology. We can combine our methodology
for solving the problem presented in Section IV with the
one presented here to find a solution to the robust traffic-
engineering problem. In steps 1 and 3(a) in Figure 4, instead
of identifying the best egress point according to the shortest
distance, we can achieve robust traffic engineering by selecting
the best egress according to the solution of the path-based
multicommodity-flow problem specified in Section V-B. TIE
can also be configured before planned maintenance activities
to ensure low link utilizations during the event. In this case,
the topology change δ is known in advance, so the network
administrators can compute the optimal egress selection in the
modified topology δ(G) and adjust α and β to achieve the
desired traffic-engineering goal.

VI. IMPLEMENTATION ISSUES

An AS can deploy the TIE mechanism without changing the
intradomain or interdomain routing protocols, and without the
cooperation of other domains. In this section, we first describe
how to ensure that each router can apply TIE independently
of other routers in the AS. Next we discuss how to configure
the α and β parameters and how a router applies the TIE
mechanism to select a BGP route for each destination prefix.
Then, we discuss how moving the responsibility for BGP path
selection from the routers to separate servers [23], [24] would
make it possible to implement our TIE scheme without any
modification to the decision logic running on the routers.

12

A. Independent Decisions at Each Node

Throughout the paper, we have assumed that each node
applies the TIE mechanism to select a single best route from
the set of equally-good BGP routes chosen by the border
routers. In a network with a “full mesh” internal BGP (iBGP)
configuration, each router learns these routes directly from
the border routers. However, large networks typically employ
route reflectors to overcome the scaling problems of having an
iBGP session for each pair of routers. A route reflector runs
the BGP decision process and propagates a single best route to
its clients; as a result, the clients may choose a different best
route than they would with all of the options at their disposal4.
Consider the common scenario with a full mesh of top-level
route reflectors, with one or more route reflectors in each PoP.
In this scenario, we recommend applying the TIE mechanism
only on the route reflectors to allow decisions based on a
complete view of the BGP routes. The client routers (i.e., other
routers in the same PoP) would inherit the choice made by
their common route reflector. This has the added advantage
that only the route reflectors would need to be upgraded to
implement the TIE mechanism.

The TIE mechanism also relies on the underlying network
to forward data packets from the ingress router to the chosen
egress point. However, the routers along the forwarding path
do not necessarily select the same egress point, depending on
how their α and β parameters are configured. This problem
does not arise in hot-potato routing because each router selects
the closest egress point, which ensures that the routers along
the shortest path have chosen the same egress point. Rather
than constraining the way α and β are set on different
routers, we advocate that the network employ some form
of lightweight tunneling to direct traffic over the shortest
IGP path(s) from the ingress point to the egress point. For
example, the ingress router could encapsulate each data packet
in an IP packet where the destination corresponds to the IP
address of the chosen egress router. Alternatively, the network
may employ MPLS [17], [18] to create label-switched paths
(LSPs) between all ingress-egress pairs, as discussed earlier
in Section II-B. Tunneling IP packets over the underlying IGP
paths is a common usage of MPLS since it obviates the need
for interior routers to speak BGP or have a large forwarding
table, while also allowing the network to forward VPN and
non-IP traffic.

B. Configuring and Applying TIE in Routers

Using the TIE mechanism requires configuring the routers
with the values of α and β selected by the optimization
routine. As discussed in Section III-B, rather than configuring
these values by hand, we envision that a network-management
system would have an automated procedure to connect to each
router to set or modify the parameters. Still, configuring a

4The way route reflectors affect the BGP decisions of their clients leads to
a variety of operational problems, such as protocol oscillation and forwarding
loops [25], [26], [27]. An appealing way to avoid these problems, while
retaining most of the scalability advantages, is to have the route reflectors
forward all of the equally-good BGP routes to their clients [26]. This
enhancement to route reflectors would allow each router in the AS to apply
the TIE mechanism based on a complete view of the egress set for each prefix.

large number of values may introduce significant overhead
and delay. In the worst case, each router would need to be
configured with two integer values for every destination prefix
and edge router. For a network with 500 edge routers and
150,000 destination prefixes, this would require configuring 75
billion parameters (i.e., 500 ·500 ·2 ·150,000), which is clearly
excessive. Fortunately, a router often has the same values of α
and β across many destination prefixes and egress points. To
capitalize on this observation, the TIE mechanism could have
default values of α = 1 and β = 0 (corresponding to hot-potato
routing) for each prefix, allowing the management system to
specify only the parameters that differ from these values. For
example, in Section IV only 10% of the β values were non-
zero for the tier-1 ISP backbone, which would reduce the
configuration overhead by an order of magnitude.

Another way to reduce the overhead is to assign α and β
at a coarser granularity than individual routers and destination
prefixes. For example, the parameters could be defined for
PoPs, rather than routers, particularly if TIE is implemented
only at the route reflector(s) in each PoP. If the 500-router
network has (say) 25 PoPs, the number of parameters would
drop by a factor of 400 (i.e., 25 PoPs would be configured with
two parameters per prefix for 25 egress PoPs). In addition,
the parameters could be based on the destination AS (i.e.,
the origin AS that initially announced the BGP route), rather
than the destination prefix. If the Internet has (say) 20,000
ASes and 150,000 prefixes, this would reduce the number of
parameters by an additional factor of 7.5. Together, these two
optimizations would reduce the number of parameters by a
factor of 3000, from 75 billion down to 25 million across all
the routers in the network, which seems acceptable particularly
if the management system need only specify exceptions to the
default α and β values. Further reductions can be achieved
by associating α and β values with the next-hop AS or other
route attributes.

When α and β are not associated directly with particular
prefixes and egress routers, the ingress router needs some way
to know which parameters to use in selecting a BGP route
for a prefix. The BGP community attribute [28] provides an
effective way to communicate which parameters should be
used. For example, the border routers could be configured to
tag each BGP advertisement with a unique community value
that identifies the PoP. Another community could be used to
identify the origin AS or next-hop AS associated with the
advertisement. Upon receiving these tagged routes via internal
BGP (iBGP), a router can use these community values to index
into a table that stores the α and β values5.

Once the router knows which α and β values to use, the
router can compute the metric m based on these parameters and
the IGP distance to the egress router. Rather than applying the
traditional IGP tie-breaking step, the router can implement a
modified BGP decision process that uses the m metric to select
the route with the most-preferred egress point. Ultimately,
the TIE mechanism requires only a change in one step of
the BGP decision process implemented on the routers, rather

5Using BGP communities in this way is quite common. For example,
policy-based accounting uses community attributes to determine which pre-
fixes should have their traffic measured together by a single counter [29].

13

than any protocol modifications. We note that router vendors
already provide features that allow network administrators to
modify the operation of the BGP decision process [30], which
significantly reduces the barrier to deploying TIE.

C. TIE in a Separate Path-Selection Platform

Rather than modifying the BGP decision process imple-
mented on the routers, an AS could move the entire responsi-
bility for BGP path selection to a separate software platform,
as proposed in [23], [24]. In this setting, dedicated servers
receive the eBGP advertisements and run decision logic to
select BGP routes on behalf of the routers in the AS. The
servers use iBGP sessions to send each router a customized
routing decision for each prefix, essentially overriding the
influence of the BGP decision process running on the routers.

These servers could implement the TIE mechanism for
selecting the routes in real time, and might also run the offline
optimization routines that set the α and β parameters; this
would allow the parameters to exist only on the servers, rather
than in the routers or other management systems. Even though
the servers could conceivably implement any decision logic,
in practice they need some separation of functionality between
the real-time adaptation to network events and the longer-term
optimization of the path-selection process based on network-
wide goals. TIE provides a way to achieve that separation.

VII. RELATED WORK

Our work relates to several ongoing threads of research in
Internet routing:

Hot-potato disruptions: Measurement studies have shown
that hot-potato routing changes can lead to long conver-
gence delays, large shifts in traffic, and external BGP rout-
ing changes [2], [3]. Subsequent work proposed metrics of
network sensitivity to internal changes to assist network ad-
ministrators in minimizing hot-potato disruptions [20]. Rather
than trying to control disruptions using routing protocols as
they are defined today, we redesign the boundary between the
two tiers of the routing system to achieve a broader set of
traffic-engineering goals (including minimizing disruptions).

Traffic engineering: Controlling the flow of traffic with
TIE gives more flexibility for solving the traffic engineering
problem. TIE represents one more control knob beyond the
conventional approach of tuning the IGP link weights [6],
[7], [8], [9], [10], [11] and BGP policies [12], [13]. Whereas
TIE can set α and β independently for each (i, p) pair,
tuning an IGP weight can affect the IGP distances between
multiple pairs of routers and affect the egress-point selection
for many prefixes. Similarly, tuning a BGP policy often
impacts the route preferences for many routers at once. IGP
and BGP changes also lead to routing-protocol messages
and convergence delays. TIE also provides an alternative to
deploying a load-sensitive routing protocol, such as the traffic-
engineering extensions to OSPF and IS-IS [31], [32], [33].
Load-sensitive routing leads to higher protocol overhead and
can sometimes introduce instability. More recent work [34]
solves this instability problem by balancing load over a set of
pre-defined paths between ingress and egress. However, none

of these proposals explicitly addresses the problem of egress-
point selection, making it appealing to implement TIE even
in networks that already support load-sensitive routing. In our
future work, we plan to compare the benefits of TIE with these
alternative approaches [33].

Optimizing egress-point selection: Previous research con-
sidered an optimization problem similar to our ongoing work
discussed in Section V. The work in [35] focused on selecting
egress points such that traffic loads do not exceed the egress-
point capacities, with the secondary objective of minimizing
the total distance traveled by the traffic. In contrast, we
formulate an optimization problem that minimizes congestion
over the links in the network, using the objective function used
in earlier traffic-engineering studies [9].

Multi-homing: In recent years, an increasing number of
stub ASes, such as large enterprise and campus networks,
connect to multiple upstream providers for improved reliability
and flexibility. In response, several research studies have
considered how these networks should balance load over the
multiple access links [36], [37]. However, our problem is
different because we focus on networks where each destination
prefix has a (possibly different) set of egress points, and the
choice of egress point affects the load on links inside the AS.

Inter-AS negotiation: Other research has considered how
a pair of neighboring ASes could coordinate to select egress
points in a mutually advantageous manner [38], [39]. Where
these papers focus on the negotiation process, and on the
important question of what information the ASes should
exchange, we propose a tunable mechanism for selecting the
egress points and a way for each AS to determine its preferred
egress points based on network-wide objectives.

VIII. CONCLUSION

IP networks are under increasing pressure to provide pre-
dictable communication performance for applications such as
voice over IP, interactive gaming, and commercial transactions.
These applications are sensitive to both transient disruptions
(i.e., during routing changes) and persistent congestion (i.e.,
when the routing does not match the prevailing traffic). In
this paper, we propose a new mechanism for selecting egress
points that satisfies both requirements. TIE avoids the disrup-
tions caused by hot-potato routing changes while supporting
diverse network-wide objectives such as traffic engineering
and maintenance planning.

TIE is simple enough for routers to adapt in real time
to network events, and yet is much more amenable to opti-
mization than today’s routing protocols. In addition, TIE can
be deployed in an AS without changing the intradomain or
interdomain routing protocols, and without the cooperation of
other domains. Our experiment for two network-management
problems, using data from two backbone networks, demon-
strates the effectiveness of our new mechanism and the ease
of applying conventional optimization techniques to determine
the best settings for the tunable parameters.

APPENDIX

In Section IV and V, we evaluate TIE on data from two
operational networks. In this appendix, we present our method-

14

ology for obtaining the input data—the internal topology and
the egress sets—from passive measurements. Since routers in
the same Point-of-Presence (PoP) essentially act as one larger
node, we model the topology of both networks at the PoP
level.

Abilene Network. Abilene is the backbone for U.S. re-
search network [40]. The network has 11 PoPs with one router
each. The vast majority of the links are OC192, with only
one OC48. For our study, we used data from April 2003.
We obtained the topology G (both with designed weights and
geographic distance) and link capacities c(l) from the publicly-
available map of the network. This map has the location of
each router, as well as the link capacities and IGP weights.
Each BGP speaker has around 7,500 prefixes in its routing
table. We obtained the egress set E(p) for each prefix from
a dump of the BGP table for a monitor that peers with every
router. The network had only 23 distinct egress sets.

Tier-1 ISP Network. We also used data collected from
a tier-1 service-provider backbone on January 10, 2005. We
extracted the router-level topology and IGP link weights from
the link-state advertisements logged by a routing monitor. We
used router configuration data to map each router to a PoP
and determine the link capacities. The resulting topology has
a few dozen nodes. For simplicity, we combine parallel links
between a pair of PoPs into one link with the aggregate ca-
pacity. We used the PoP locations to determine the geographic
distance traversed by each inter-PoP link. The network learns
BGP routes for approximately 150,000 prefixes. We build the
egress set E(p) for each prefix from the BGP table dumps
from all top-level route reflectors in the network. The network
has a few hundred distinct egress sets.

REFERENCES

[1] Y. Rekhter, T. Li, and S. Hares, “A Border Gateway Protocol 4 (BGP-
4).” Internet Draft draft-ietf-idr-bgp4-26.txt, October 2004.

[2] R. Teixeira, A. Shaikh, T. Griffin, and J. Rexford, “Dynamics of Hot-
Potato Routing in IP Networks,” in Proc. ACM SIGMETRICS, June
2004.

[3] R. Teixeira, N. Duffield, J. Rexford, and M. Roughan, “Traffic matrix
reloaded: Impact of routing changes,” in Proc. Passive and Active
Measurement Workshop, March/April 2005.

[4] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian, “Delayed Internet
Routing Convergence,” IEEE/ACM Trans. Networking, vol. 9, pp. 293–
306, June 2001.

[5] G. Iannaccone, C.-N. Chuah, S. Bhattacharyya, and C. Diot, “Feasibility
of IP Restoration in a Tier-1 Backbone,” IEEE Network Magazine,
March 2004.

[6] B. Fortz and M. Thorup, “Optimizing OSPF/IS-IS Weights in a Chang-
ing World,” IEEE J. Selected Areas in Communications, vol. 20, no. 4,
pp. 756–767, 2002.

[7] D. H. Lorenz, A. Orda, D. Raz, and Y. Shavitt, “How good can IP
routing be?,” Tech. Rep. 2001-17, DIMACS, May 2001.

[8] B. Fortz and M. Thorup, “Internet traffic engineering by optimizing
OSPF weights,” in Proc. IEEE INFOCOM, March 2000.

[9] B. Fortz, J. Rexford, and M. Thorup, “Traffic Engineering with Tradi-
tional IP Routing Protocols,” IEEE Communication Magazine, October
2002.

[10] M. Ericsson, M. Resende, and P. Pardalos, “A genetic algorithm for
the weight setting problem in OSPF routing,” Journal of Combinatorial
Optimization, vol. 6, pp. 299–333, 2002.

[11] L. Buriol, M. Resende, C. Ribeiro, and M. Thorup, “A hybrid genetic
algorithm for the weight setting problem in OSPF/IS-IS routing,” Tech.
Rep. TD-5NTN5G, AT&T Labs Research, 2003.

[12] N. Feamster, J. Winick, and J. Rexford, “A Model of BGP Routing for
Network Engineering,” in Proc. ACM SIGMETRICS, June 2004.

[13] S. Uhlig, “A multiple-objectives evolutionary perspective to interdomain
traffic engineering in the Internet,” in Workshop on Nature Inspired
Approaches to Networks and Telecommunications, September 2004.

[14] A. Nucci, B. Schroeder, N. Taft, and C. Diot, “IGP Link Weight As-
signment for Transient Link Failures,” in Proc. International Teletraffic
Congress, August 2003.

[15] B. Fortz and M. Thorup, “Robust optimization of OSPF/IS-IS weights,”
in Proc. International Network Optimization Conference, pp. 225–230,
October 2003.

[16] A. Sridharan and R. Guerin, “Making OSPF/IS-IS routing robust to link
failures,” in Proc. Networking, (Ontario, Canada), May 2005.

[17] E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol Label Switch-
ing Architecture.” RFC 3031, January 2001.

[18] B. S. Davie and Y. Rekhter, MPLS: Technology and Applications.
Morgan Kaufmann, May 2000.

[19] Ilog S.A., ”Ilog Cplex 9.0 User’s Manual”, October 2003.
[20] R. Teixeira, T. Griffin, A. Shaikh, and G. Voelker, “Network sensitivity

to hot-potato disruptions,” in Proc. ACM SIGCOMM, September 2004.
[21] B. Fortz and M. Thorup, “Increasing internet capacity using local

search,” Computational Optimization and Applications, vol. 29, no. 1,
pp. 13–48, 2004.

[22] J. Rexford, “Route optimization in IP networks,” in Handbook of
Optimization in Telecommunications (P. Pardalos and M. Resende, eds.),
Springer Science + Business Media, February 2006.

[23] N. Feamster, H. Balakrishnan, J. Rexford, A. Shaikh, and J. van der
Merwe, “The Case for Separating Routing from Routers,” in ACM
SIGCOMM Workshop on Future Directions in Network Architecture,
August 2004.

[24] O. Bonaventure, S. Uhlig, and B. Quoitin, “The Case for More Versatile
BGP Route Reflectors.” Expired Internet Draft draft-bonaventure-bgp-
route-reflectors-00.txt, July 2004.

[25] T. G. Griffin and G. Wilfong, “On the Correctness of IBGP Configura-
tion,” in Proc. ACM SIGCOMM, August 2002.

[26] A. Basu, A. Rasala, C.-H. L. Ong, F. B. Shepherd, and G. Wilfong,
“Route Oscillations in I-BGP with Route Reflection,” in Proc. ACM
SIGCOMM, August 2002.

[27] D. McPherson, V. Gill, D. Walton, and A. Retana, “Border gateway pro-
tocol (BGP) persistent route oscillation condition.” RFC 3345, August
2002.

[28] R. Chandra, P. Traina, and T. Li, “BGP communities attribute.” RFC
1997, August 1996.

[29] “BGP policy accounting.” http://www.cisco.com/univercd/cc/
td/doc/product/software/ios122/122newf%t/122t/122t13/ft_
bgppa.htm.

[30] “BGP cost community.” http://www.cisco.com/en/
US/products/sw/iosswrel/ps5207/products_feature%
_guide09186a00801a7f74.html.

[31] D. Katz, K. Kompela, and D. Yeung, “Traffic Engineering (TE) Exten-
sions to OSPF Version 2.” RFC 3630, September 2003.

[32] H. Smit, “Intermediate System to Intermediate System (IS-IS) Exten-
sions for Traffic Engineering (TE).” RFC 3784, June 2004.

[33] D. Awduche, “MPLS and Traffic Engineering in IP Networks,” IEEE
Communication Magazine, December 1999.

[34] S. Kandula, D. Katabi, B. Davie, and A. Charny, “Walking the Tightrope:
Responsive and Yet Stable Traffic Engineering,” in Proc. ACM SIG-
COMM, August 2005.

[35] T. Bressoud, R. Rastogi, and M. Smith, “Optimal configuration of BGP
route selection,” in Proc. IEEE INFOCOM, 2003.

[36] A. Akella, B. Maggs, S. Seshan, A. Shaikh, and R. Sitaraman, “A
measurement-based analysis of multi-homing,” in Proc. ACM SIG-
COMM, August 2003.

[37] D. K. Goldenberg, L. Qiu, H. Xie, Y. R. Yang, and Y. Zhang, “Optimiz-
ing cost and performance for multihoming,” in Proc. ACM SIGCOMM,
September 2004.

[38] R. Mahajan, D. Wetherall, and T. Anderson, “Negotiation-based routing
between neighboring ISPs,” in Proc. USENIX Symposium on Networked
Systems Design and Implementation, May 2005.

[39] J. Winick, S. Jamin, and J. Rexford, “Traffic engineering between neigh-
boring domains.” http://www.cs.princeton.edu/˜jrex/papers/
interAS.pdf, July 2002.

[40] “Abilene Backbone Network.” http://abilene.internet2.edu/.

