
BIASED RANDOM-KEY GENETIC ALGORITHMS FORCOMBINATORIAL OPTIMIZATIONJOSÉ FERNANDO GONÇALVES AND MAURICIO G. C. RESENDEAbstrat. Random-key geneti algorithms were introdued by Bean (1994)for solving sequening problems in ombinatorial optimization. Sine then,they have been extended to handle a wide lass of ombinatorial optimizationproblems. This paper presents a tutorial on the implementation and use ofbiased random-key geneti algorithms for solving ombinatorial optimizationproblems. Biased random-key geneti algorithms are a variant of random-key geneti algorithms, where one of the parents used for mating is biasedto be of higher �tness than the other parent. After introduing the basisof biased random-key geneti algorithms, the paper disusses in some detailimplementation issues, illustrating the ease in whih sequential and parallelheuristis based on biased random-key geneti algorithms an be developed.A survey of appliations that have reently appeared in the literature is alsogiven. 1. IntrodutionCombinatorial optimization an be de�ned by a �nite ground set E = {1, . . . , n},a set of feasible solutions F ⊆ 2E, and an objetive funtion f : 2E → R. Through-out this paper, we onsider the minimization version of the problem, where wesearh for an optimal solution S∗ ∈ F suh that f(S)∗ ≤ f(S), ∀S ∈ F. Given aspei� ombinatorial optimization problem, one an de�ne the ground set E, theost funtion f, and the set of feasible solutions F . For instane, in the ase of thetraveling salesman problem on a graph, the ground set E is that of all edges in thegraph, f(S) is the sum of the osts of all edges e ∈ S, and F is formed by all edgesubsets that determine a Hamiltonian yle.Combinatorial optimization �nds appliations in many settings, inluding rout-ing, sheduling, inventory ontrol, prodution planning, and loation problems.These problems arise in real-world situations (Pardalos and Resende, 2002) suh asin transportation (air, rail, truking, shipping), energy (eletrial power, petroleum,natural gas), and teleommuniations (design, loation, operation).While muh progress has been made in �nding provably optimal solutions to om-binatorial optimization problems employing tehniques suh as branh and bound,utting planes, and dynami programming, as well as provably near-optimal solu-tions using approximation algorithms, many ombinatorial optimization problemsarising in pratie bene�t from heuristi methods that quikly produe good-qualityDate: Otober 9, 2009; revised April 11, 2010, July 7, 2010.Key words and phrases. Geneti algorithms, biased random-key geneti algorithms, random-key geneti algorithms, ombinatorial optimization, metaheuristis.This researh was partially supported by Fundação para a Ciênia e Tenologia (FCT) projetPTDC/GES/72244/2006. AT&T Labs Researh Tehnial Report.1



BRKGA FOR COMBINATORIAL OPTIMIZATION 2solutions. Many modern heuristis for ombinatorial optimization are based onguidelines provided by metaheuristis.Metaheuristis are high level proedures that oordinate simple heuristis, suhas loal searh, to �nd solutions that are of better quality than those found by thesimple heuristis alone. Many metaheuristis have been introdued in the last thirtyyears (Glover and Kohenberger, 2003). Among these, we �nd greedy randomizedadaptive searh proedures (GRASP), simulated annealing, tabu searh, variableneighborhood searh, satter searh, path-relinking, iterated loal searh, ant olonyoptimization, swarm optimization, and geneti algorithms.In this paper, we introdue a lass of heuristis alled biased random-key genetialgorithms. This framework for building heuristis for ombinatorial optimization isgeneral and an be applied to a wide range of problems. An important harateristiof the framework is the lear divide between the problem-independent omponentof the arhiteture and the problem-spei� part. This allows for reuse of softwareand permits the algorithm designer to onentrate on building the problem spei�deoder.The paper is organized as follows. In Setion 2 we introdue biased random-key geneti algorithms. Issues related to the e�ient implementation of sequentialand parallel versions of these heuristis are disussed in Setion 3. In Setion 4examples of biased random-key geneti algorithms on a wide range of ombinatorialoptimization problems are given. Conluding remarks are made in Setion 5.2. Biased random-key geneti algorithmsGeneti algorithms, or GAs, (Goldberg, 1989; Holland, 1975) apply the oneptof survival of the �ttest to �nd optimal or near-optimal solutions to ombinatorialoptimization problems. An analogy is made between a solution and an individualin a population. Eah individual has a orresponding hromosome that enodesthe solution. A hromosome onsists of a string of genes. Eah gene an takeon a value, alled an allele, from some alphabet. A hromosome has assoiatedwith it a �tness level whih is orrelated to the orresponding objetive funtionvalue of the solution it enodes. Geneti algorithms evolve a set of individuals thatmake up a population over a number of generations. At eah generation, a newpopulation is reated by ombining elements of the urrent population to produeo�spring that make up the next generation. Random mutation also takes plae ingeneti algorithms as a means to esape entrapment in loal minima. The oneptof survival of the �ttest plays into geneti algorithms when individuals are seletedto mate and produe o�spring. Individuals are seleted at random but those withbetter �tness are preferred over those that are less �t.Geneti algorithms with random keys were �rst introdued by Bean (1994) forsolving ombinatorial optimization problems involving sequening. In this paper werefer to this lass of geneti algorithms as random-key geneti algorithms (RKGA).In a RKGA, hromosomes are represented as a string, or vetor, of randomly gener-ated real numbers in the interval [0, 1]. A deterministi algorithm, alled a deoder,takes as input any hromosome and assoiates with it a solution of the ombinato-rial optimization problem for whih an objetive value or �tness an be omputed.In the ase of Bean (1994), the deoder sorts the vetor of random keys and uses theindies of the sorted keys to represent a sequene. As we will see shortly, deodersplay an important role in RKGAs.
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Figure 2.1. Transition from generation k to generation k + 1 in a BRKGA.A RKGA evolves a population of random-key vetors over a number of iterations,alled generations. The initial population is made up of p vetors of random-keys.Eah allele is generated independently at random in the real interval [0, 1]. After the�tness of eah individual is omputed by the deoder, the population is partitionedinto two groups of individuals: a small group of pe elite individuals, i.e. thosewith the best �tness values, and the remaining set of p− pe non-elite individuals,where pe < p− pe. To evolve the population, a new generation of individuals mustbe produed. A RKGA uses an elitist strategy sine all of the elite individualsof generation k are opied unhanged to generation k + 1. This strategy keepstrak of good solutions found during the iterations of the algorithm resulting in amonotonially improving heuristi. Mutation is an essential ingredient of genetialgorithms, used to enable GAs to esape from entrapment in loal minima. RKGAsimplement mutation by introduing mutants into the population. A mutant issimply a vetor of random keys generated in the same way that an element ofthe initial population is generated. At eah generation a small number pm ofmutants are introdued into the population. Mutant solutions are random-keyvetors and onsequently an de deoded into valid solutions of the ombinatorialoptimization problem. With the pe elite individuals and the pm mutants aountedfor in population k + 1, p− pe − pm additional individuals need to be produed toomplete the p individuals that make up the population of generation k + 1. Thisis done by produing p− pe − pm o�spring through the proess of mating.Figure 2.1 illustrates the evolution dynamis. On the left of the �gure is theurrent population. After all individuals are sorted by their �tness values, the best�t are plaed in the elite partition labeled ELITE and the remaining individualsare plaed in the partition labeled NON-ELITE. The elite random-key vetors areopied without hange to the partition labeled TOP in the next population (on theright side of the �gure). A number of mutant individuals are randomly generatedand plaed in the new population in the partition labeled BOT. The remainder ofthe population of the next generation is ompleted by rossover. In a RKGA, Bean
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Figure 2.2. Parametrized uniform rossover: mating in BRKGAs.(1994) selets two parents at random from the entire population. A biased random-key geneti algorithm, or BRKGA (Gonçalves and Almeida, 2002; Erisson et al.,2002; Gonçalves and Resende, 2004), di�ers from a RKGA in the way parents areseleted for mating. In a BRKGA, eah element is generated ombining one elementseleted at random from the partition labeled ELITE in the urrent population andone from the partition labeled NON-ELITE. In some ases, the seond parent isseleted from the entire population. Repetition in the seletion of a mate is allowedand therefore an individual an produe more than one o�spring. Sine we requirethat pe < p− pe, the probability that a given elite individual is seleted for mating(1/pe) is greater than that of a given non-elite individual (1/(p−pe)) and thereforethe given elite individual has a higher likelihood to pass on its harateristis tofuture generations than does a given non-elite individual. Also ontributing to thisend are parametrized uniform rossover (Spears and DeJong, 1991), the mehanismused to implement mating in BRKGAs, and the fat that one parent is alwaysseleted from the elite set. Let ρe > 0.5 be a user-hosen parameter. This parameteris the probability that an o�spring inherits the allele of its elite parent. Let n denotethe number of genes in the hromosome of an individual. For i = 1, . . . , n, the i-th allele c(i) of the o�spring c takes on the value of the i-th allele e(i) of theelite parent e with probability ρe and the value of the i-th allele ē(i) of the non-elite parent ē with probability 1 − ρe. In this way, the o�spring is more likely toinherit harateristis of the elite parent than those of the non-elite parent. Sinewe assume that any random key vetor an be deoded into a solution, then theo�spring resulting from mating is always valid, i.e. an be deoded into a solutionof the ombinatorial optimization problem.Figure 2.2 illustrates the rossover proess for two random-key vetors with fourgenes eah. Chromosome 1 refers to the elite individual and Chromosome 2 to thenon-elite one. In this example the value of ρe = 0.7, i.e. the o�spring inherits theallele of the elite parent with probability 0.7 and of the other parent with probability0.3. A randomly generated real in the interval [0, 1] simulates the toss of a biasedoin. If the outome is less than or equal to 0.7, then the hild inherits the alleleof the elite parent. Otherwise, it inherits the allele of the other parent. In this
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Figure 2.3. Deoder used to map solutions in the hyperube tosolutions in the solution spae where �tness is omputed.example, the o�spring inherits the allele of the elite parent in its �rst, third, andfourth genes. It resembles the elite parent more than it does the other parent.When the next population is omplete, i.e. when it has p individuals, �tnessvalues are omputed for all of the newly reated random-key vetors and the pop-ulation is partitioned into elite and non-elite individuals to start a new generation.A BRKGA searhes the solution spae of the ombinatorial optimization problemindiretly by searhing the ontinuous n-dimensional unit hyperube, using thedeoder to map solutions in the hyperube to solutions in the solution spae ofthe ombinatorial optimization problem where the �tness is evaluated. Figure 2.3illustrates the role of the deoder.BRKGA heuristis are based on a general-purpose metaheuristi framework.In this framework, depited in Figure 2.4, there is a lear divide between theproblem-independent portion of the algorithm and the problem-dependent part. Theproblem-independent portion has no knowledge of the problem being solved. It islimited to searhing the hyperube. The only onnetion to the ombinatorial opti-mization problem being solved is the problem-dependent portion of the algorithm,where the deoder produes solutions from the vetors of random-keys and om-putes the �tness of these solutions. Therefore, to speify a BRKGA heuristi oneneed only de�ne its hromosome representation and the deoder.Consider, for example, a set overing problem where one is given an m×n binarymatrix A = [ai,j ] and wants to selet the smallest over, i.e. the smallest subset ofolumns J∗ ⊆ {1, 2, . . . , n} suh that, for eah row i = 1, . . . , m, there is at least one
j ∈ J∗ suh that ai,j = 1. One possible BRKGA heuristi for this problem de�nesthe vetor of random keys x to have n random keys in the real interval [0, 1]. The
j-th key orresponds to the j-th olumn of A. The deoder selets olumn j to bein J∗ only if xj ≥ 0.5. If the resulting set J∗ is a valid over, then the �tness of theover is |J∗|. Otherwise, start with set J∗ and apply the standard greedy algorithmfor set overing: while there are unovered rows, �nd the unseleted olumn that ifadded to J∗ overs the largest number of yet-unovered rows, breaking ties by theindex of the olumn. Add this olumn to set J∗. When the resulting set J∗ is avalid over, san the olumns in the over from �rst to last to hek if eah olumn
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Figure 2.4. Flowhart of a BRKGA
j ∈ J∗ is redundant, i.e. if J∗ \ {j} is a over. If so, then remove j from J∗. Whenno olumn an be removed, stop. The �tness of the over is |J∗|. Note that, asrequired, this deoder is a deterministi algorithm. For a given vetor of randomkeys, applying the deoder will always result in the same over.Though BRKGAs only use randomly generated keys, they are muh better at�nding optimal or near-optimal solutions that a purely random algorithm. Fig-ure 2.5 provides strong evidene that there is learning taking plae in a BRKGA.The �gure shows the distributions of objetive funtion values of the 100-elementpopulation of a BRKGA and the repeated generation of sets of 100 random so-lutions for a set overing by pairs problem (Breslau et al., 2009). The randomsolutions are generated with the same ode using the BRKGA parameters p = 101,
pe = 1, and pm = 100. This way, the mutants are the random solutions, thebest solution is saved in the elite set, and no rossover is ever done. Let i, j, k ∈
{1, 2, . . . , 100}×{1, 2, . . . , 100}×{1, 2, . . . , 100}.The overing-by-pairs problem on-sidered here has 76,916 triplets, where a triplet {i, j, k} indiates that the pair
{i, j} overs element k. The objetive is to �nd the smallest ardinality subset
S∗ ⊆ {1, 2, . . . , 100} suh that the union of all pairs {i, j} with i, j ∈ S∗×S∗ oversall the 100 elements indiated by the k values. The optimal solution, whih we plotas a referene, is 21 and was omputed by solving an integer programming modelwith the ommerial integer programming solver CPLEX. As one an observe, whilethe BRKGA quikly �nds an optimal solution is less than 2 seonds, the randommultistart heuristi is still quite far from the optimal after 600 seonds having onlyfound a best solution of size 38.As disussed earlier in this paper, a biased random-key geneti algorithm andan (unbiased) random-key geneti algorithm di�er slightly in the way they seletparents for mating. The biased variant always selets one parent from the set ofelite solutions whereas the unbiased variant selets both parents from the entirepopulation. This way, o�spring produed by the biased version are more likelyto inherit harateristis of elite solutions. This likelihood is further emphasized
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Figure 2.5. Comparing a BRKGA with a random multistartheuristi on an instane of a overing by pairs problem.through the parametrized uniform rossover used by both variants to ombine theparents and produe the o�spring. Though this is apparently only a very slightdi�erene, it almost always leads to a big di�erene in how these variants perform.BRKGAs tend to �nd better solutions than RKGAs if given the same running timeand have a muh higher probability of �nding a solution with a spei�ed targetsolution value in less time. To illustrate this, onsider Figure 2.6 whih shows time-to-optimal plots for a overing-by-pairs problem with 220 elements and 456,156triplets. The plots ompare running times to �nd an optimal solution for 200independent runs of eah of three variants: a BRKGA, a RKGA1, and a heuristi(RKGA-ord) that is similar to a RKGA exept that the o�spring inherit the allele ofthe better �t of the two parents with probability ρe. The �gure learly shows thatthe BRKGA �nds optimal solutions in less time than its unbiased ounterparts.For example, by 325s, the time that the RKGA takes to solve any one of its 84attempts, the BRKGA solves 184 of its 200 attempts. Ordering the parents, as isdone in RKGA-ord, improves the RKGA, but not enough to do better than theBRKGA. For example, by 216s, the time that RKGA-ord takes to solve any one ofits 200 attempts, the BRKGA solves 176 of its 200 attempts. Though we illustratethis on only a single instane of a single problem type, we have observed that thisbehavior is typial for a wide range of problems (Gonçalves et al., 2009b).3. Implementation issuesIn this setion, we disuss some issues related to the implementation of BRKGAheuristis. We fous on the separation of the problem independent and depen-dent portions of the heuristi, types of deoders, initial population, population1Due to exessively long running time, we only arried out 84 independent runs with the RKGAvariant.
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BRKGA FOR COMBINATORIAL OPTIMIZATION 9For ease of desription, we assume in this disussion that the rows of popare atually moved to re�et the sorted values of fitness.(2) Mate p − pe − pm pairs of parents, one whose index in pop is an integerrandom number uniformly generated in the interval [1, pe] and the otherwhose index is an integer random number uniformly generated in the inter-val [pe +1, p]. The i-th o�spring resulting from the rossover is temporarilystored in row i of the real-valued (p− pe− pm)×n matrix tmppop. Matingis ahieved by generating n uniform random numbers {r1, . . . , rn} in theinterval [0, 1]. For j = 1, . . . , n, if rj ≤ ρe, then the j-th gene of the o�springinherits the j-th allele of the elite parent. Otherwise, it inherits the alleleof the other parent.(3) Generate at random pm mutant hromosomes of size n. These mutants aregenerated by the same module used to generate the initial population. The
i-th mutant hromosome is stored in row pm + i− 1 of matrix pop.(4) Copy the (p − pe − pm) × n matrix tmppop to rows pe + 1, . . . , p − pm ofmatrix pop.(5) Evaluate the �tness of the hromosomes in rows pe +1, . . . , p of matrix popand store these values in positions pe + 1, . . . , p of array fitness.This proess is applied repeatedly. Eah iteration is alled a generation. There aremany possible stopping riteria, inluding stopping after a �xed number of genera-tions from the beginning, after a �xed number of generations sine the generationof the last solution improvement, after a time limit is reahed, or after a solutionat least as good as a given threshold is found.3.2. Deoders. Deoders play an important role in BRKGA heuristis sine theymake the onnetion between the solutions in the hyperube and the �tness oftheir orresponding solutions in the solution spae of the ombinatorial optimiza-tion problem. They an range in omplexity from very simple, involving a diretmapping between the random key and the solution, to intriate, suh as random-keydriven onstrution heuristis with loal searh, or even blak box omputations.Suppose the solution spae is made up of all permutations of Πn = {1, 2, . . . n} asis the ase for the quadrati assignment problem. Bean (1994) showed that simplysorting the vetor of random keys results in a permutation of its indies. If onewants to selet p of n elements of a set, assign a random key to eah element ofthe set, sort the vetor of random keys, and selet the elements orresponding tothe p smallest keys. Composite vetors of random keys are also useful. Suppose nitems need to be arranged in order and that eah element an be plaed in one oftwo states, say up or down. De�ne a vetor of random keys of size 2n where the�rst n keys are sorted to de�ne the order in whih the items are plaed and thelast n keys determine if the item is plaed in the up or down position. In this ase,a key greater than or equal to one half indiates the up position while a key lessthan half orresponds to the down position. In Setion 4 we give more examples ofsimple and omplex deoders.3.3. Parameter setting. Random-key geneti algorithms have few parametersthat need to be set. These parameters are the number of genes in a hromosome(n), the population size (p), the size of the elite solution population (pe), the sizeof the mutant solution population (pm), and the elite allele inheritane probability(ρe), i.e. the probability that the gene of the o�spring inherits the allele of the elite



BRKGA FOR COMBINATORIAL OPTIMIZATION 10Table 1. Reommended parameter value settingsparameter desription reommended value
p size of population p = an, where 1 ≤ a ∈ R is a onstantand n is the length of the hromosome
pe size of elite population 0.10p ≤ pe ≤ 0.25p

pm size of mutant population 0.10p ≤ pm ≤ 0.30p

ρe elite allele inheritaneprobability 0.5 < ρe ≤ 0.8

parent. Though setting these parameters is sort of an art-form, our experiene hasled us to set the parameters as shown in Table 1.Below, we illustrate the e�et of population size, elite solution population size,mutant solution population size, and elite allele inheritane probability on the ran-dom variable time-to-optimal solution. We use the 100-element overing-by-pairsinstane used earlier to ompare the BRKGA and the random multi-start heuristi.The basi parameter setting uses a population of size p = 100, a population of elitesolutions of size pe = 15, a mutant population size of pm = 10, and an elite alleleinheritane probability of ρe = 0.7.Figure 3.1 ompares four settings for population size: 10, 40, 70, and 100. Foreah setting, the BRKGA was independently run 50 times and CPU times to opti-mal solution were reorded. While there is not muh di�erene between the smallpopulation settings of 10 and 40, one an begin to observe speedups for the pop-ulation of 70 and even more on the population of 100. Sine time per generationinreases with population size, in those instanes that many generations are neededto �nd an optimal solution, the large-population BRKGAs tend to take longer thantheir small population ounterparts. This is learly made up for by the many moreshort running times of the large population variants.Figure 3.2 shows time-to-optimal solution plots for four di�erent elite populationsizes: 5, 15, 25, and 50. The �gure shows that elite sets of 15 to 25% of the fullpopulation tend to ause the BRKGA to perform better that a large set of 50% ofthe population and muh better than a small set with only 5% of the population.Figure 3.3 illustrates the e�et of the size of the set of mutant solutions on thetime taken by the BRKGA to �nd an optimal solution. Four sizes were used: 3%,10%, 30%, and 50% of the full population. The �gure shows that it does not payo� to use either a too small or too large set of mutant solutions. The runs using10% of the full population as the mutant set appear to lead to the BRKGA withthe best performane. The large mutant set of half of the population led to theBRKGA with the worse performane.Figure 3.4 illustrates the e�et of di�erent values of inheritane probability onthe time to �nd an optimal solution. Four values were used for ρe: 30%, 50%, 70%,and 90%. While ρe = 30% violates the requirement that ρe > 50% and does notlead to a BRKGA with good performane, it is not as bad a being very greedy andusing ρe = 90%. The greedy variant turned out to have the worst performane
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BRKGA FOR COMBINATORIAL OPTIMIZATION 13opposite, i.e. �nding a vetor of random keys from a solution of the ombinatorialoptimization problem, may not be straightforward. This, however, was not the asein Buriol et al. (2005) where the solution spae onsists of vetors of integer weightsin the range [1, wmax] and therefore reovering vetors of random keys is trivial.Another type of solution representation that is easy to map bak to a vetor ofrandom keys is a permutation array.3.5. Parallel implementation. Biased random key geneti algorithms have a nat-ural parallel implementation. Candidates for parallelization inlude the operations
• generate p vetors of random keys,
• generate pm mutants in next population,
• ombine elite parent with other parent to produe o�spring,
• deode eah vetor of random keys and ompute its �tness.Sine eah of these four operations involves independent omputations, they aneah be omputed in parallel. The �rst three of these operations are not as om-putationally intensive as the fourth and on those operations parallelization is notexpeted to ontribute to signi�antly speedup the overall algorithm. On the otherhand, the last operation (deoding and �tness evaluation) an easily aount formost of the overall yles and one should expet a signi�ant speedup in the exe-ution of the program by parallelizing it.Another type of parallelization is the use of multiple populations. This typeof parallelization of a BRKGA was done, for example, in Gonçalves and Resende(2009) where a multi-population BRKGA for a onstrained paking problem is de-sribed. Multiple populations evolve independently of one another and periodiallyexhange solutions.3.6. Comparing BRKGAs and standard GAs. To onlude this setion, wereport on experimental results where biased random-key geneti algorithms havebeen ompared with standard geneti algorithms. We all a geneti algorithm stan-dard if it uses tailored rossover and mutation operators. We limit the omparisonto the quality of the solutions obtained. Our objetive is to show that BRKGAsare ompetitive with other geneti algorithms, on average produing results thatare as good or better than those found by the standard geneti algorithms. In allases listed below, the BRKGAs were able to ahieve ost redutions averaged overall tested instanes.We onsider here studies where omparisons between a BRKGA and one or morestandard geneti algorithms were made. Namely, these are papers on manufaturingell formation (Gonçalves and Resende, 2004), two-dimensional paking (Gonçalves,2007; Gonçalves and Resende, 2009), job-shop sheduling (Gonçalves et al., 2005),and resoure onstrained projet sheduling (Gonçalves et al., 2009a).In Gonçalves and Resende (2004), a BRKGA for manufaturing ell formationwas ompared with the geneti algorithms GATSP (Cheng et al., 1998) and GA(Onwubolu and Mutingi, 2001). On the 24 instanes for whih the BRKGA andGATSP were ompared, the biased random-key variant found solutions on average2.88% better than GATSP. On the eight instanes where the BRKGA and GA wereompared, the BRKGA found solutions having, on average, a redution of 0.11%with respet to GA.In Gonçalves (2007), a BRKGA was ompared with two standard geneti algo-rithms, SGA and SAGA, of Leung et al. (2003) on 19 instanes of a two-dimensional



BRKGA FOR COMBINATORIAL OPTIMIZATION 14orthogonal paking problem. The BRKGA found better solutions, on average,than either standard geneti algorithm. With respet to SGA, the redution was0.24% while for SAGA it was 0.36%. In Gonçalves and Resende (2009), a BRKGAwas ompared with the standard geneti algorithm of Hadjionstantinou and Iori(2007a) on 630 instanes of a onstrained two-dimensional orthogonal paking prob-lem. The biased random-key geneti algorithm was able to �nd solutions that were,on average, 0.49% better than those of the standard geneti algorithm.In Gonçalves et al. (2005), a BRKGA was ompared with six standard genetialgorithms for job-shop sheduling. On the 12 instanes where it was omparedwith GA (Della Croe et al., 1995), an average redution in ost of 2.02% wasobserved. On the 37 and 35 instanes where it was ompared, respetively, withGLS1 and GLS2 (Aarts et al., 1994), average redutions of 3.79% and 0.58% wereobserved. The BRKGA was ompared with the standard geneti algorithms P-GA, SBGA(40), and SBGA(60) of Dorndorf and Pesh (1995) on, respetively, 20,42, and 42 instanes with respetive solution ost redutions of 0.48%, 1.27%, and1.01%.In Gonçalves et al. (2009a), a BRKGA was ompared with several standard ge-neti algorithms on 600 instanes of the resoure onstrained projet shedulingproblem having 120 ativities eah. Solution ost redutions of 12.02% with re-spet to GA-DBH-Serial (Debels and Vanhouke, 2005), 11.71% with respet toGA�Hybrid-FBI-Serial of Valls et al. (2003), 15% with respet to GA-FBI-Serialof Valls et al. (2005), 13.41% with respet to the evolutionary loal searh based ontabu searh and path-relinking of Kohetov and Stolyar (2003), 19.12% with respetto the self adapting geneti algorithm of Hartmann (2002), 23.6% with respet tothe ativity list geneti algorithm of Hartmann (1998), 24.67% with respet to thepriority rule geneti algorithm of Hartmann (1998), 29.90% with respet to theproblem spae geneti algorithm of Leon and Ramamoorthy (1995), and 34.35%with respet to the random-key geneti algorithm of Hartmann (1998).4. AppliationsIn this setion, we give examples of biased random-key geneti algorithms. Foreah appliation, we provide a brief desription of the problem and desriptions ofthe hromosome (solution enoding) and the deoder, followed by a brief ommenton experimental results. We begin by onsidering some appliations in ommuni-ation networks, inluding OSPF routing, survivable network design, and routingand wavelength assignment. We then onsider the problem of assigning tolls in atransportation network to minimize road ongestion. This is followed by a num-ber of sheduling appliations, inluding job shop sheduling, resoure onstrainedsingle- and multi-projet sheduling, single mahine sheduling, and assembly linebalaning. We onlude with appliations to manufaturing ell formation, two-dimensional paking, and onave-ost network �ow optimization.4.1. Weight setting for routing in IP networks. Erisson et al. (2002) andBuriol et al. (2005) desribe BRKGA heuristis for a routing problem in InternetProtool networks. They address the weight-setting problem in Open Shortest PathFirst (OSPF) routing. A related BRKGA is desribed in Reis et al. (2009), whereDistributed Exponentially-Weighted Flow Splitting (DEFT), a di�erent routing pro-tool, is used.



BRKGA FOR COMBINATORIAL OPTIMIZATION 154.1.1. Problem de�nition. Consider a direted network graph G = (N, A) where
N denotes the set of nodes (where routers are loated) and A denotes the set oflinks onneting the routers with a apaity ca for eah a ∈ A, and a demandmatrix D that, for eah pair (s, t) ∈ N × N , gives the demand ds,t in tra� �owfrom node s to node t. The OSPF weight-setting problem onsists in assigningpositive integer weights wa ∈ [1, wmax] to eah ar a ∈ A, suh that a measureof routing ost is minimized when the demands are routed aording to the rulesof the OSPF protool. The routing ost is a funtion of the link apaities andthe total tra� that traverses eah link. In OSPF, tra� between nodes s and tis routed on a shortest-weight path onneting these nodes. The OSPF protoolallows for wmax ≤ 65535.4.1.2. Solution enoding. Eah solution is enoded as a vetor x of random keys oflength n = |A|, where the i-th gene orresponds to the i-th link of G.4.1.3. Chromosome deoder. To deode a link weight wi from xi (for i = 1, . . . , n),simply ompute wi = ⌈xi × wmax⌉. One link weights are omputed, shortestweight (path) graphs from eah node to all other nodes in the graph an be derived,tra� an be routed on least weight paths, the total tra� on eah link omputed,resulting in a routing ost whih is the �tness of the solution. Buriol et al. (2005)apply a fast loal searh to the solution in an attempt to further redue the routingost of OSPF routing. Let A∗ be the set of �ve links with the highest routing ostvalues. For eah link i ∈ A∗, a loal improvement heuristi attempts to inrease wiby one unit at a time in a spei�ed range and adjust the tra� aordingly. If thetotal routing ost an be redued this way, the new weight is aepted, a new set
A∗ is onstruted, and the proess repeats itself. If, after sanning the �ve links,the ost annot be redued, then the proedure stops. This fast loal searh wasadapted for DEFT routing in Reis et al. (2009).4.1.4. Experimental results. Erisson et al. (2002) ompare routing solutions pro-dued by their BRKGA for the 13 test problems proposed by Fortz and Thorup(2004) with lower bounds derived by solving a multiommodity �ow linear program(LP), the tabu searh heuristi of Fortz and Thorup, and the simple heuristis Uni-tOSPF, InvCapOSPF, and RandomOSPF. The BRKGA was run for 700 generationson eah instane and easily outperformed the simple heuristis, �nding solutionsomparable with those of Fortz and Thorup. These solutions were lose to the LPlower bounds for a wide range of tra� demands. By running BRKGA indepen-dently 10 times for 8000 generations on eah one of the instanes, the BRKGA wasshown to produe better solutions than Fortz and Thorup on all 10 runs. The bestsolution found was loser to the LP lower bound than to the solution produed bythe searh heuristi of Fortz and Thorup.Buriol et al. (2005) test their BRKGA on the same 13 test instanes onsid-ered by Fortz and Thorup (2004) and Erisson et al. (2002). They show that thenew deoder with the fast loal searh �nds better solutions than the BRKGAof Erisson et al. Furthermore, they show that given a target solution value, thenew BRKGA is also faster than the BRKGA of Erisson et al. Finally, they showresults of experiments omparing run-time distributions for the BRKGA and thetabu searh of Fortz and Thorup. Using three target values on a large real instane,the experiments show that the tabu searh distribution has a long tail while thedistribution for the BRKGA does not.



BRKGA FOR COMBINATORIAL OPTIMIZATION 16Reis et al. (2009) ompare their BRKGA for DEFT routing with the BRKGA ofBuriol et al. (2005) for OSPF routing. They show results for the 13 test problemsused by previous papers and on�rm that DEFT routing an ahieve solutions thatresult in less ongestion than OSPF routing.4.2. Survivable network design. Given a set of nodes in a network, a tra�matrix estimating the demand, or tra�, between pairs of these nodes, a set ofars, eah having endpoints at a pair of the given nodes, a set of possible �ber linktypes, eah with an assoiated apaity and ost per unit of length, and a set offailure on�gurations, the survivable network design problem seeks to determinehow many units of eah able type will be installed in eah link suh that all of thedemand an be routed on the network under the no failure and all failure modessuh that the total ost of the installed �ber is minimized. Buriol et al. (2007)proposed a BRKGA to design survivable networks where tra� is routed using theOpen Shortest Path First (OSPF) protool and there is only one link type. Andradeet al. (2006) extended this BRKGA to handle omposite links, i.e. the ase wherethere are several �ber types. Four deoders are proposed by Andrade et al.4.2.1. Problem de�nition. Given a direted graph G = (V, E), where V is the setof routers and E is the set of potential ars where �ber an be installed, and ademand matrix D, that for eah pair (u, v) ∈ V × V , spei�es the demand Du,vbetween u and v. Ar e ∈ E has length de. Link types are numbered 1, . . . , T . Linktype i has apaity ci and ost per unit of length pi. We wish to determine integerOSPF weights we ∈ [1, 65535] as well as the number of opies of eah link type tobe deployed at eah ar suh that when tra� is routed aording to the OSPFprotool in a no-failure or any single ar failure situation there is enough installedapaity to move all of the demand and the total ost of the installed apaity isminimized.4.2.2. Solution enoding. Assume ars in E are numbered 1, . . . , |E|. A solution ofthe survivable network design problem is enoded as a vetor x of |E| random keys.The i-th key orresponds to the i-th ar.4.2.3. Chromosome deoder. To produe the OSPF weight wi of the i-th ar, salethe random key by the maximum weight, i.e. set wi = ⌈xi × 65535⌉. For the no-failure mode and eah failure mode, route the tra� using the OSPF protool usingthe omputed ar weights, ompute the loads on eah ar and reord the maximumload over the no-failure and all failure modes. For eah ar, determine an optimalalloation of link types suh that the resulting apaity of the set of omposite linksis enough to aommodate the maximum load on the ar. Compute the ost of therequired links.4.2.4. Experimental results. Sine this was the �rst heuristi proposed in the lit-erature for this problem, Buriol et al. (2007) ompare network designs produedwith their BRKGA with those produed by a similar proess where instead of �nd-ing good OSPF weights with the BRKGA, link weights are set in one ase to unit(UNIT ) and randomly (RAND) in another. They also ompare their solutions witha simple lower bound (LB). Four networks of sizes varying from 10 nodes and 90links to 71 nodes and 350 links make up the benhmark test set. For eah net-work, four instanes were reated: one with no failures, one with both single routerand single link failures, one with single link failures and no router failure, and one



BRKGA FOR COMBINATORIAL OPTIMIZATION 17with single router failures and no link failure. The results show that the solutionsprodued by the BRKGA are superior to those produed with the other heuristis.For example, a 1000-generation run with a 500-element population produed forone of the instanes with no failure the following ratios of solution values: 1.64 forRAND :BRKGA, 1.82 for RAND :BRKGA, and 1.94 for BRKGA:LB.Andrade et al. (2006) show the results of an experiment on a real network with54 routers and 278 ars. Three link types were onsidered. All four deoders weretested and the so-alled min ost deoder ahieved the best results among thedeoders tested.4.3. Routing and wavelength assignment. The problem of routing and wave-length assignment (RWA) in wavelength division multiplexing (WDM) optial net-works onsists in routing a set of lightpaths (a lightpath is an all-optial point-to-point onnetion between two nodes) and assigning a wavelength to eah of them,suh that lightpaths whose routes share a ommon �ber are assigned di�erent wave-lengths. Noronha et al. (2010) propose a BRKGA for routing and wavelength as-signment with the goal of minimizing the number of di�erent wavelengths used inthe assignment (this variant of the RWA is alled min-RWA). This BRKGA extendsthe best heuristi in the literature (Skorin-Kapov, 2007) by embedding it into anevolutionary framework.4.3.1. Problem de�nition. We are given a bidireted graph G = (V, E) that rep-resents the physial topology of the optial network, where V is the set of nodesand E is the set of �ber links, and a set T of lightpaths to be established. Eahlightpath is haraterized by its pair of endpoints {s, t} ∈ V × V, s 6= t. Eahlightpath is routed on a single path from s to t and is assigned the same wavelengthfor the entire path. If two lightpaths share an ar, they must be assigned di�erentwavelengths. The objetive is to minimize the number of wavelengths used.4.3.2. Solution enoding. A solution of the routing and wavelength assignmentproblem is enoded in a vetor x of |T | random keys, where |T | is the numberof lightpaths. The key xi orresponds to the i-th lightpath, for i = 1, . . . , |T |.4.3.3. Chromosome deoder. Skorin-Kapov (2007) proposed the urrent state-of-the-art heuristi for min-RWA. Eah wavelength is assoiated with a di�erent opyof the graph G. Lightpaths that are ar disjointly routed on the same opy of Gare assigned the same wavelength. Copies of G are assoiated with the bins andlightpaths with the items of an instane of the bin paking problem. Therefore,min-RWA an be reformulated as the problem of paking all the lightpath requestsin a minimum number of bins. Let minlength(i) be the number of hops in the pathwith the smallest number of ars between the endnodes of lightpath i in G. Thesevalues are only used for sorting the lightpaths in the deoding heuristis, eventhough the lightpaths are not neessarily routed on shortest paths. This oursbeause whenever a lightpath is routed on a opy of G (or, equivalently, plaedin the orresponding bin), all ars in its route are deleted from this opy to avoidthat other lightpaths use them. Therefore, the next lightpaths routed in this opyof G might be routed on a path that is not a shortest path in the original graph
G. The lassial best �t dereasing heuristi is used to pak the lightpaths. Sinethe number of lightpaths is usually muh greater than the diameter of the graph,there are many lightpaths with the same minlength value. In the ase of ties,



BRKGA FOR COMBINATORIAL OPTIMIZATION 18Skorin-Kapov (2007) reommended breaking them randomly. The BRKGA usesthe vetor of random keys to randomly perturb the values of minlength(i) and getrid of the ties. These values are adjusted as minlength(i)← minlength(i) + x(i).4.3.4. Experimental results. Noronha et al. (2010) test their BRKGA extensively ona set of hard instanes of the RWA problem. The BRKGA is ompared with a multi-start variantMS-RWA of the heuristi BFD-RWA of Skorin-Kapov (2007) as well asthe tabu searh based heuristi 2-EDR+TS-PCP of Noronha and Ribeiro (2006).Noronha et al. observe in their omputational experiments that the multi-startheuristiMS-RWA was able to improve the results of BFD-RWA and also that theirBRKGA identi�es the relationships between keys and good solutions, onverging tobetter solutions, on average, in 23% less time than MS-RWA. The average solutiongap observed with the BRKGA was almost 50% of that presented by 2-EDR+TS-PCP. The experiments also illustrated the robustness of the BRKGA, sine allversions of the BRKGA (using di�erent parameter settings) obtained good andsimilar results.4.4. Tollbooth loation and tari� assignment. In transportation networks, itis desirable to diret tra� so as to minimize ongestion, thus dereasing user traveltimes and improving network utilization. One way to persuade drivers to avoid er-tain routes and favor others is by harging toll for drivers to use ertain segments ofthe network. The objetive of the tollbooth loation and tari� assignment problemis to loate a given number of tollbooths on links of the network and determine tollvalues to impose on users of those links suh that the average user travel time isminimized. Buriol et al. (2009) desribe a BRKGA for this problem.4.4.1. Problem de�nition. Given a network topology and ertain tra� �ow de-mands, we levy tolls on ars, seeking an e�ient system suh that the resulting setof least-ost user paths is optimal for the overall system. Consider a direted graph
G = (N, A), with N representing the set of nodes and A the set of ars. Eah ar
a ∈ A has an assoiated apaity ca and ost Φa, whih is a funtion of the load
ℓa (or �ow) on the ar, the time ta to traverse the ar when there is no tra� onthe ar, a power parameter na, and a parameter Γa. In real-world tra� networks,ar (road segment) delays are generally desribed by nonlinear funtions assoiatedwith these network ongestion parameters. We assume that Φa is a stritly inreas-ing, onvex funtion. In addition, de�ne K ⊆ N ×N to be the set of ommodities,or origin-destination (O-D) pairs, having o(k) and d(k) as origin and destinationnodes, respetively, for all k ∈ K = {1, . . . , |K|}. Eah ommodity k ∈ K has anassoiated demand of tra� �ow ∆k de�ned, i.e. for eah O-D pair {o(k), d(k)},there is an assoiated amount of �ow ∆k that emanates from node o(k) and termi-nates at node d(k). Furthermore, de�ne xk

a to be the ontribution of ommodity kto the �ow on ar a. The tra� optimization problem an be written as
min Φ =

∑
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xk
a ≥ 0, ∀ a ∈ A, k ∈ K.Given a number κ of tolls to plae in the network, the objetive is to determine aset of κ ars in A where tolls will be plaed and tari�s for eah toll suh that ifusers travel on least-ost routes, the resulting xk

a deision variables (for all a ∈ Aand k ∈ K) will be suh that the above tra� optimization problem is solved.4.4.2. Solution enoding. A solution of the tollbooth loation and tari� assignmentproblem is enoded in a vetor χ of 2×|A| random keys. The �rst |A| random keysorrespond to the tari�s on the ars while the last |A| keys are used to indiatewhether a toll is to be plaed on an ar or not.4.4.3. Chromosome deoder. De�ne a binary variable ya for eah ar a ∈ A whihtakes on value 1 if and only if a toll is levied on ar a. For eah ar a ∈ A, let
πa denote the tari� levied by the toll on ar a. Finally, let Ta be the value of themaximum toll that an be levied on ar a. Given a hromosome χ with 2 × |A|random keys, let ya = 1 if and only if χ|A|+a ≥ 0.5. The orresponding tari� onar a is πa = ⌈χa × Ta⌉ × ya. To ompute the deision variables xk

a of the tra�assignment problem, all demands are routed on least-ost routes in the network.A loal searh proedure is applied on the tari�s to attempt to derease the valueof the objetive funtion of the tra� assignment model. The rossover operatorhandles the last |A| random keys in a way that is slightly di�erent from the standardparametrized uniform rossover that is applied to the �rst |A| random keys. Forall ars on whih both parent solutions agree on whether or not to plae a toll,the hild inherits the random key of any one of the parents. If the parents do notagree on all loations, then additional tolls will need to be assigned in the hildhromosome to guarantee that κ ars have tolls. For eah additional toll, the hildinherits the hromosome of a parent having χa ≥ 0.5 with probability that favorsinheritane from the elite parent.4.4.4. Experimental results. Sine this BRKGA is the �rst heuristi proposed inthe literature to solve this problem, Buriol et al. (2009) limit their experiments totesting two versions of the BRKGA, one using the deoder desribed above andanother with a similar deoder without loal searh. The heuristis are tested onthe transportation networks of the ities of Sioux Falls, Winnipeg, Stokholm, andBarelona. These networks vary in size from 24 nodes and 76 links with 528 O-Dpairs (Sioux Falls) to 1052 nodes and 2836 links with 4345 O-D pairs (Winnipeg).For eah instane, the BRKGA was run with the number of tollbooths varyingfrom one to the number of nodes in the network. For the smallest instane, SiouxFalls, the system optimal solution, a lower bound on the tollbooth loation andtari� assignment problem, was omputed. By plaing tollbooths on 60 of the 76links of the Sioux Falls example, the BRKGA was able to produe solutions within10% of the system optimal. System optimal ould not be omputed for the largerinstanes. On the network of Stokholm, the BRKGA with the loal searh deoderwas shown to produe better solutions than the variant without loal searh. OnWinnipeg and Barelona, however, the variant without loal searh found bettersolutions.



BRKGA FOR COMBINATORIAL OPTIMIZATION 204.5. Job-shop sheduling. Gonçalves et al. (2005) present a BRKGA heuristifor the job-shop sheduling problem.4.5.1. Problem de�nition. We are given n jobs, eah omposed of several operationsthat must be proessed on m mahines. Eah operation uses one of the m mahinesfor a �xed duration. Eah mahine an proess at most one operation at a timeand one an operation initiates proessing on a given mahine it must ompleteproessing on that mahine without interruption. The operations of a given jobhave to be proessed in a spei�ed order. The problem onsists in �nding a sheduleof the operations on the mahines that minimizes the makespan Cmax , i.e. the�nish time of the last operation ompleted in the shedule, taking into aount thepreedene onstraints.4.5.2. Solution enoding. Let p be the number of operations. The proposed random-key vetor x used to enode a solution has size 2p. Its �rst p genes determine thepriorities of the operations, i.e. xi orresponds to the priority of operation i, for
i = 1, . . . , p. The last p genes are used to enode the delay used to shedule anoperation, i.e. for i = 1, . . . , p, xp+i is used to ompute the delay of operation i.The delay of operation i is de�ned to be xp+i ×D, where D is the duration of thelongest operation.4.5.3. Chromosome deoder. A parametrized ative shedule is onstruted usingthe priorities and delays enoded in the hromosome. This shedule is an ativeshedule, i.e. it allows a mahine to be idle even when there is an operation availablefor it to proess. Among all operations i that would require a delay at most xp+i×D,the operation i with the highest priority xi is sheduled on the mahine.4.5.4. Experimental results. To show the e�etiveness of their algorithm, Gonçalveset al. (2005) onsidered 43 instanes from two lasses of standard job-shop shedul-ing test problems: Fisher and Thompson (1963) instanes FT06, FT10, FT20, andLawrene (1984) instanes LA01 through LA40.The BRKGA was ompared with the problem spae geneti algorithm of Storeret al. (1992), the geneti algorithms of Aarts et al. (1994), Della Croe et al. (1995),Dorndorf and Pesh (1995), and Gonçalves and Beirão (1999), the GRASP heuris-tis of Binato et al. (2002) and Aiex et al. (2003), the hybrid geneti/simulatedannealing heuristi of Wang and Zheng (2001), and the tabu searh of Nowiki andSmutniki (1996).All 43 instanes were solved with the BRKGA. The BRKGA found the best-known solution for 31 instanes (72% of the problems) and had an average relativedeviation from the best-known solution of 0.39%. It showed an improvement withrespet to all others algorithms with the exeption of the tabu searh algorithmof Nowiki and Smutniki that had a slightly better performane, mainly on the
15× 15 problems.4.6. Resoure onstrained projet sheduling. In projet sheduling a set ofativities needs to be sheduled. Preedene relations between ativities onstrainthe start of an ativity to our after the ompletion of another. The objetive isto minimize the makespan, i.e. minimize the ompletion time of the last sheduledativity. When ativities require resoures with limited apaities we have a re-soure onstrained projet sheduling problem (RCPSP). Mendes et al. (2009) andGonçalves et al. (2009a) desribe BRKGA heurstis for the RCPSP.



BRKGA FOR COMBINATORIAL OPTIMIZATION 214.6.1. Problem de�nition. A projet onsists of n + 2 ativities. To omplete theprojet, eah ativity has to be proessed. Let J = {0, 1, . . . , n, n + 1} denote theset of ativities to be sheduled and K = {1, . . . , k} the set of resoures. Ativities
0 and n + 1 are dummies, have no duration, and represent the initial and �nalativities. The ativities are interrelated by two kinds of onstraints: (1) Preedeneonstraints fore eah ativity j to be sheduled after all predeessor ativities Pjare ompleted; (2) Ativities require resoures with limited apaities. While beingproessed, ativity j requires rj,k units of resoure type k ∈ K during every timeinstant of its non-preemptable duration dj . Resoure type k has a limited apaityof Rk at any point in time. The parameters dj , rj,k, and Rk are assumed to beinteger, nonnegative, and deterministi. For the projet start and end ativities,we have d0 = dn+1 = 0 and r0,k = rn+1,k = 0 for all k ∈ K. Let Fj representthe �nish time of ativity j. A shedule an be represented by a vetor of �nishtimes (F1, . . . , Fn+1) and its makespan is Cmax = max{F1, . . . , Fn+1}. The problemonsists in �nding a shedule of the ativities, taking into aount the resoures andthe preedene onstraints, that minimizes the makespan.4.6.2. Solution enoding. A solution is enoded with a vetor x of 2n random keys.The �rst n keys orrespond to the priorities of the ativities while the last n areused to determine the delay when sheduling an ativity.4.6.3. Chromosome deoder. For eah ativity j ∈ J not yet sheduled, the delay
δj = xn+j × 1.5× δ̄ is omputed, where δ̄ is the maximum duration of any ativity.Ativities are sheduled, one at a time, at disrete points in time, starting fromtime t = 0. At time t, all ativities j ∈ J whose predeessors have ompletedproessing or will have ompleted proessing by time t + δj are onsidered to beandidates to be sheduled. These ativities are sheduled in the order determinedby their priorities (the priority of ativity j is xj). Eah is sheduled as soon as allof its predeessors omplete proessing and all resoures it requires are available.The next shedule time is the earliest ompletion time among all ativities beingproessed at and after time t. This proess is repeated until all ativities havebeen sheduled. The makespan Cmax is the ompletion time of the last ativity toomplete proessing. A new and more e�etive deoder for this problem is desribedin Gonçalves et al. (2009a).4.6.4. Experimental results. To illustrate the e�etiveness of the BRKGA for RCPSP,Gonçalves et al. (2009a) onsider a total of 600 instanes from the standard RCPSPtest problem set J120. In this test set eah instane has 120 ativities and requiresfour resoure types. Instane details are desribed by Kolish et al. (1995) and ouldbe obtained at http://129.187.106.231/psplib/datasm.html (Last visited onApril 8, 2010). The BRKGA was ompared with the variable neighborhood searhof Fleszar and Hindi (2004), the large neighborhood searh of Palpant et al. (2004),the hybrid satter searh/eletromagnetism heuristi of Debels et al. (2006), thepopulation based approah of Valls et al. (2004), the sampling methods of Tormosand Lova (2003), Shirmer and Riesenberg (1998), Kolish and Drexl (1996), andKolish (1995; 1996a;b), the geneti algorithms of Leon and Ramamoorthy (1995),Mendes et al. (2009), Valls et al. (2005), Debels and Vanhouke (2005), Valls et al.(2003), Kohetov and Stolyar (2003), Hartmann (1998; 2002), the simulated an-nealing heuristi of Bouleimen and Leoq (2003), the tabu searh heuristis of



BRKGA FOR COMBINATORIAL OPTIMIZATION 22Nonobe and Ibaraki (2002) and Baar et al. (1998), and the Lagrangian relaxationheuristi of Möhring et al. (2003).Gonçalves et al. (2009a) showed in the above experiment that no algorithmdominated the BRKGA. The approah of Debels et al. (2006) is the one thatseems to have had the most similar performane. With this BRKGA, Gonçalveset al. improved the best known solution for 11 instanes in test problem reposi-tory PSPLIB (http://129.187.106.231/psplib/files/j120hrs.sm, last visitedon April 8, 2010).4.7. Resoure onstrained multi-projet sheduling. In the resoure on-strained multi-projet sheduling problem (RCMPSP), ativities that make up sev-eral projets must be sheduled. These ativities share one or more resoures havinglimited apaities. Assoiated with eah projet are its release and due dates. Theprojet annot begin proessing before the release date and should �nish as loseas possible to its due date. There are penalties assoiated with earliness, tardiness,and total proessing time of the projet and the objetive is to shedule the a-tivities suh that the sum of the penalties of the projets is minimized. Gonçalveset al. (2008) desribe three BRKGA variants for resoure onstrained multi-projetsheduling that they name GA-SlakMod, GA-Basi, and GA-SlakND.4.7.1. Problem de�nition. The problem onsists of a set I of projets, where eahprojet i ∈ I is omposed of ativities j = {Ni−1 + 1, . . . , Ni}, where ativities
Ni−1+1 and Ni are dummies and represent the initial and �nal ativities of projet
i. J is the set of ativities and K = {1, . . . , k} is a set of renewable resoures types.The ativities are interrelated by two kinds of onstraints. First, preedene on-straints fore eah ativity j ∈ J to be sheduled after all its predeessor ativities
Pj are ompleted. Seond, proessing of the ativities is subjet to the availabilityof resoures with limited apaities. While being proessed, ativity j ∈ J requires
rj,k units of resoure type k ∈ K during every time instant of its non-preemptableduration dj . Resoure type k ∈ K has a limited availability of Rk at any point intime. Parameters dj , rj,k, and Rk are assumed to be non-negative and deterministi.We assume that start and end ativities of eah projet have zero proessing timesand do not require any resoure. Ativities 0 and N +1 are dummy ativities, haveno duration, and orrespond to the start and end of all projets. Ativity 0 preedesall of the dummy initial ativities of the individual projets and ativity N + 1 ispreeded by all of the dummy �nal ativities of all the jobs. Using these dummyativities, the multi-projet sheduling problem an be treated as if it were a singleprojet. The objetive is to minimize a
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2/CPDi),where Ti, Ei, CDi , BDi , and CPDi are, respetively, the tardiness, earliness, on-lusion time, start time, and ritial path duration of projet i.4.7.2. Solution enoding. The enoding of the solution is idential to the one usedin the BRKGA for single-projet sheduling desribed in Setion 4.6, i.e. a vetor

x of 2n random keys. The �rst n keys orrespond to the priorities of the ativitieswhile the last n are used to determine the delay when sheduling an ativity.4.7.3. Chromosome deoder. The deoder is idential to the one used in the BRKGAfor single-projet sheduling desribed in Setion 4.6 exept that instead of om-puting the makespan, this deoder omputes the penalty a
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2/CPDi) as the �tness of the hromosome.



BRKGA FOR COMBINATORIAL OPTIMIZATION 234.7.4. Experimental results. Sine no prior experimental work on RCMPSP in-luded tardiness, earliness, and �owtime deviations as measures of performane,Gonçalves et al. (2008) generated multi-projet instanes with known optimal val-ues to ompare the three BRKGA variants proposed in their paper. Five types ofmulti-projet instanes where generated with 10, 20, 30, 40, and 50 single projetseah. For eah problem type, 20 instanes were generated. Sine eah single projetinstane had 120 ativities, the multi-projet instanes had 1200, 2400, 3600, 4800,and 6000 ativities eah. Eah ativity was allowed to use up to four resoures.Finally, the average number of overlapping projets in exeution was 3, 6, 9, 12,and 15, respetively.Algorithm GA-SlakMod was the winner in all aspets relative to the other two.For all instanes, in absolute terms, algorithm GA-SlakMod obtained earliness,tardiness, and �ow time deviation lose to the optimum value.4.8. Early tardy sheduling. Valente et al. (2006) desribe a BRKGA for a singlemahine sheduling problem with earliness and tardiness osts and no unforedmahine idle time. Suh problems arise in just-in-time prodution, where goodsare produed only when they are needed, sine jobs are sheduled to onlude aslose as possible to their due dates. The early ost an be seen, for example, asthe ost of ompleting a projet early in PERT-CPM analyzes, deterioration in theprodution of perishable goods, or a holding ost for �nished goods. The tardyost is often assoiated with rush shipping osts, lost sales, or loss of goodwill. It isassumed that no unfored mahine idle time is allowed, and therefore the mahineis only idle when no jobs are available for proessing. This assumption representsa type of prodution environment where the mahine idleness ost is higher thanthe ost inurred by ompleting a job early, or the mahine is heavily loaded, so itmust be kept running in order to satisfy the demand.4.8.1. Problem de�nition. A set of n independent jobs {J1, . . . , Jn} must be shed-uled without preemption on a single mahine that an handle at most one job ata time. The mahine and the jobs are assumed to be ontinuously available fromtime zero onwards and mahine idle time is not allowed. Job Jj , j = 1, . . . , n,requires a proessing time pj and should ideally be ompleted on its due date dj .For any shedule, the earliness and tardiness of Jj an be respetively de�ned as
Ej = max {0, dj − Cj} and Tj = max {0, Cj − dj}, where Cj is the ompletion timeof Jj . The objetive is to �nd the shedule that minimizes the sum of the earli-ness and tardiness osts of all jobs, i.e. ∑n

j=1(hjEj + wjTj), where hj and wj are,respetively, the per unit earliness and tardiness osts of job Jj .4.8.2. Solution enoding. A solution of the early tardy sheduling problem is en-oded in a vetor x of n random keys that, when sorted, orresponds to the orderingthat the jobs are proessed on the mahine.4.8.3. Chromosome deoder. Given a vetor x of n random keys, a solution is pro-dued by �rst sorting the vetor to produe an ordering of the jobs. The jobs aresheduled on the mahine and the total ost is omputed. A simple loal searhsans the jobs, from �rst to last, testing if onseutive jobs an be swapped in theorder of proessing. If a swap dereases the ost of the shedule, the swap is done,the ost reomputed, and the san ontinues from that job until the last two jobsare tested.



BRKGA FOR COMBINATORIAL OPTIMIZATION 244.8.4. Experimental results. Valente et al. (2006) tested six BRKGA variants forthe early tardy sheduling problem. The geneti algorithms were ompared with theNSearh heuristi of Li (1997). The algorithms were tested on randomly generatedproblems having 15, 50, 75, and 100 jobs. The objetive funtion values obtainedby the heuristi proedures were ompared with the optimal solution for the 15-jobproblems, and with the best known solution for the remaining problems.As far as solution quality is onerned, the proposed BRKGA heuristis (withfew exeptions) found better solutions than NSearh, both with respet averageperent deviation and in the number of instanes for whih better results wereobtained.The run time of the geneti algorithms were greater (partiularly for the versionsthat inorporate more sophistiated loal searh proedures), but these times werefor the full 500 generations. The experiments showed also that inreased loal searhat the �tness-evaluation level of the BRKGA provided better solution values. Therun times inreased as the loal searh omplexity itself inreased, but one againthese results an be misleading, and need to be omplemented by an analysis of thenumber of generations needed to reah the best solution. Inluding the �nal roundof multiple non-adjaent interhange is barely notieable in terms of run time andan provide a further improvement in solution quality.4.9. Single mahine sheduling with linear earliness and quadrati tar-diness penalties. Valente and Gonçalves (2008) present a BRKGA for a singlemahine sheduling problem with linear earliness and quadrati tardiness penalties.They onsider an objetive funtion with linear earliness and quadrati tardinessosts. A linear penalty is then used for the early jobs, sine the osts of maintainingand managing this inventory tend to be proportional to the quantity held in stok.However, late deliveries an result in lost sales, loss of goodwill, and disruptions instages further down the supply hain. A quadrati tardiness penalty is used for thetardy jobs. In many situations this is preferable to the more usual linear tardinessor maximum tardiness funtions. Finally, no mahine idle time is allowed.4.9.1. Problem de�nition. A set of n independent jobs {J1, . . . , Jn} must be shed-uled on a single mahine that an handle at most a single job at a time. Themahine is assumed to be ontinuously available from time zero onwards, and pre-emption is not allowed. Job Jj , for j = 1, . . . , n, requires a proessing time pjand should ideally be ompleted on its due date dj . For any shedule, the earli-ness and tardiness of Jj an be respetively de�ned as Ej = max {0, dj − Cj} and
Tj = max {0, Cj − dj}, where Cj is the ompletion time of Jj . The objetive is to�nd a shedule that minimizes the sum of linear earliness and quadrati tardinessosts ∑n

j=1(Ej +T 2
j ), subjet to the onstraint that no mahine idle time is allowed.4.9.2. Solution enoding. A solution of the single mahine sheduling problem withlinear earliness and quadrati tardiness penalties is enoded in a vetor x of n ran-dom keys that, when sorted, orresponds to the ordering that the jobs are proessedon the mahine.4.9.3. Chromosome deoder. Given a vetor x of n random keys, a solution is pro-dued by �rst sorting the vetor to produe an ordering of the jobs. The jobsare sheduled on the mahine and the total ost is omputed. Then three sim-ple loal searh proedures, adjaent pairwise interhange (API ), 3-swaps (3SW ),



BRKGA FOR COMBINATORIAL OPTIMIZATION 25and largest ost insertion (LCI ) are applied. At eah iteration, API onsiders insuession all adjaent job positions. A pair of adjaent jobs is swapped if suhan interhange improves the objetive funtion value. If neessary, the solution isupdated. This proess is repeated until no improvement is found in a ompleteiteration. Next, 3SW is applied. It is similar to API, exept that it onsiders threeonseutive job positions instead of an adjaent pair of jobs. All possible permu-tations of these three jobs are analyzed, and the best on�guration is seleted. Ifneessary, the solution is updated. One more, the proedure is applied repeatedlyuntil no improvement is possible. Finally LCI is applied. At eah iteration, LCIselets the job with the largest objetive funtion value. The seleted job is removedfrom its position i in the shedule, and inserted at position j, for all j 6= i. Thebest insertion is performed if it improves the objetive funtion value. If neessary,the solution is updated. This proess is also repeated until no improving move isfound.4.9.4. Experimental results. Valente and Gonçalves (2008) ompare several BRKGAvariants with existing heuristis, namely the EQTP dispathing rule of Valente(2007) and the reovering beam searh(RBS) proedure of Valente (2009). Finally,the results found by the heuristis are evaluated with respet to the optimum ob-jetive funtion values for some instane sizes. The instanes used in the omputa-tional tests are available online at http://www.fep.up.pt/doentes/jvalente/benhmarks.html (Last visited on April 8, 2010).The experiments show that two of the BRKGA variants (MA_IN and MA) �ndthe best results, and are learly superior to existing heuristis for this problem.They �nd optimal solutions for over 90% of the test instanes. The improvementsin performane provided by the BRKGA heuristis are larger for the more di�ultinstanes. Furthermore, the improvements over the best existing heuristi proe-dures inrease with size of the the instane. The performane of the proposedBRKGA approah was improved by both the initialization of the �rst populationand the addition of a loal searh proedure.4.10. Assembly line balaning. Assembly or fabriation lines are used to man-ufature large quantities of standardized produts. An assembly line onsists of asequene of m workstations, onneted by a onveyor belt, through whih the prod-ut units �ow. Eah workstation performs a subset of the n operations neessaryfor manufaturing the produts. Eah produt unit remains at eah station for a�xed time C alled the yle time. In traditional assembly lines, workstations areonseutively arranged in a straight line. Eah produt unit proeeds along thisline and visits eah workstation one. The major deision onsists in de�ning anassignment of operations to workstations suh that the line e�ieny is maximized.Gonçalves and Almeida (2002) desribe a BRKGA for assembly line balaning.4.10.1. Problem de�nition. In the assembly line problem, a single produt is man-ufatured in large quantities in a proess involving n operations, eah of whihtakes tj time units to proess, for j = 1, . . . , n. Operations are partially ordered bypreedene relations, i.e. when an operation j is assigned to a station k, eah oper-ation i whih preedes j must be assigned to one of the workstations 1, . . . , k. Eahoperation must be assigned to exatly one workstation. The sets of operations Sk,assigned to workstations k = 1, . . . , m, are alled workstation loads. Workstations



BRKGA FOR COMBINATORIAL OPTIMIZATION 26are numbered onseutively along the line. The total operation time of the oper-ations assigned to a station k, alled workstation time t(Sk), must not exeed theyle time, i.e. t(Sk) =
∑

{j∈Sk}
tj ≤ C, for k = 1, . . . , m. Gonçalves and Almeida(2002) deal with the SALBP-1 variant of the problem, where we are given the yletime C and the objetive is to minimize the number m of stations.4.10.2. Solution enoding. A solution of the assembly line problem is enoded ina vetor x of n random keys, where n is the number of operations. The key xiorresponds to the priority of the i-th operation.4.10.3. Chromosome deoder. The deoder takes as input a vetor x of n randomkeys and returns an assignment of operations to work stations. The random key

xi is the priority of operation i. Given a set of operation priorities, a station-oriented heuristi is used to assign operations to workstations. This proedurestarts with station 1 and onsiders the other stations suessively. In eah iteration,the operation with highest priority in the andidate set is hosen and assigned tothe urrent station. The urrent station is losed and the next station is openedwhen the andidate set is empty, i.e. when adding any operation to the stationwould exeed the yle time. Subsequently, a loal searh proedure is used totry to improve the solution obtained by the station-oriented heuristi. The loalsearh attempts to swap long operations sheduled in downstream workstationswith shorter operations in upstream workstations with the objetive of freeing upa downstream workstation.4.10.4. Experimental results. To demonstrate the e�etiveness and robustness ofthe approah, Gonçalves and Almeida (2002) present omputational results usingthree sets of test problems found in the literature: the 64 instanes of the Talbot-Set (Talbot et al., 1986), the the 50 instanes of the Ho�man-Set (Ho�mann, 1990;1992), and the 168 of the Sholl-Set (Sholl, 1993). The ombined set onsistsof 269 instanes (minus 13 instanes whih are in both the Talbot-Set and theHo�mann-Set). The soures of the problems as well as a detailed desription aregiven by Sholl (1993) (these datasets an be downloaded from http://www.bwl.th-darmstadt.de/bwl3/forsh/projekte/alb/salb1dat.htm, last visted on April8, 2010).Two experiments were arried out. In the �rst, the BRKGA was omparedwith the heuristi EUREKA of Ho�mann (1992) and in the seond it is omparedwith the tabu searh heuristis PrioTabu and EurTabu Sholl and Voÿ (1997). Theproposed BRKGA produed solutions that are as good as those found by EUREKA.For problem instane Arus-111 the BRKGA found a solution whih is better thanthe one found with EUREKA. The BRKGA found approximately 7% more bestsolutions than PrioTabu and same number of best solutions as EurTabu.4.11. Manufaturing ell formation. The fundamental problem in ellular man-ufaturing is the formation of produt families and mahine ells. Gonçalves andResende (2004) present a BRKGA for manufaturing ell formation.4.11.1. Problem de�nition. Given P produts and M mahines, we wish to assignproduts and mahines to a number of produt-mahine ells suh that inter-ellularmovement is minimized and mahine utilization within a ell is maximized. Let thebinary matrix A = [a]i,j be suh that ai,j = 1 if and only if produt i uses mahine
j. By reordering the rows and olumns of A and moving the ells so they are loated



BRKGA FOR COMBINATORIAL OPTIMIZATION 27on or near the diagonal of the reordered matrix, a measure of e�ay of the solutionan be de�ned to be µ = (n1− nout
1 )/(n1 + nin

0 ), where n1 is the number of ones in
A, nout

1 is the number of ones outside the diagonal bloks, and nin
0 is the numberof zeroes inside the diagonal bloks. We seek to maximize µ.4.11.2. Solution enoding. A solution to the ellular manufaturing problem is en-oded as a vetor x of M +1 random keys, where the �rst M random keys are usedto assign the mahines to ells and the last random key determines the numberof ells. Assuming that the smallest ell allowed has dimension 2 × 2, the maxi-mum number of ells is C̄ = ⌊M/2⌋. The number of ells in a solution is therefore

C = ⌈xM+1 × C̄⌉ and mahine i is assigned to ell ⌈xi × C⌉.4.11.3. Chromosome deoder. The deoder �rst assigns produts to the ell thatmaximizes the e�ay with respet to the mahine-ell assignments. One produtsare assigned, then mahines are reassigned to the ells that maximize the e�ay.This proess of reassigning produts and mahines is repeated until there is nofurther inrease in the e�ay measure.4.11.4. Experimental results. To show the performane of the proposed BRKGA,Gonçalves and Resende (2004) used 35 group tehnology instanes olleted fromthe literature. The seleted matries range from dimension 5 × 7 to 40 × 100 andomprise well-strutured as well as unstrutured matries. The grouping e�aiesobtained by the BRKGA were ompared with the ones obtained by the approahesZODIAC of Chandrasekharan and Rajagopalan (1987), GRAFICS of Srinivasanand Narendran (1991), the lustering algorithm MST of Srinivasan (1994), the ge-neti algorithms GATSP of Cheng et al. (1998), the geneti algorithm of Onwuboluand Mutingi (2001), and the geneti programming proedure of Dimopoulos andMort (2001). In 2004, these six approahes orresponded to the best publishedresults for these 35 test problems.The experiments showed that the proposed BRKGA omputed mahine/produtgroupings having a grouping e�ay that was never smaller than any of the bestreported results. It found grouping e�aies that were equal to the best ones foundin the literature for 14 (40%) problems and improved the values of the grouping e�-aies for 21 (60%) problems. On 11 (31%) problems, the perentage improvementwas over 5%.4.12. Constrained two-dimensional orthogonal paking. In the onstrainedtwo-dimensional (2D), non-guillotine restrited, paking problem, a �xed set ofsmall weighted retangles has to be plaed, without overlap, into a larger stok re-tangle so as to maximize the sum of the weights of the retangles paked. Gonçalves(2007) proposed the �rst BRKGA for this problem. This was improved in Gonçalvesand Resende (2009), where a new BRKGA, that uses a novel plaement proedureand a new �tness funtion to drive the optimization, was proposed.4.12.1. Problem de�nition. The two-dimensional paking problem onsists in pak-ing into a single large planar stok retangle (W, H), of width W and height H ,
n smaller retangles (wi, hi), i = 1, . . . , n, eah of width wi and height hi. Eahretangle i has a �xed orientation (i.e. annot be rotated), must be paked withits edges parallel to the edges of the stok retangle, and the number xi of pieesof eah retangle type that are to be paked must lie between Pi and Qi, i.e.
0 ≤ Pi ≤ xi ≤ Qi, for all i = 1, . . . , n. Eah retangle i = 1, . . . , n has an assoiated



BRKGA FOR COMBINATORIAL OPTIMIZATION 28value equal to vi and the objetive is to maximize the total value ∑n

i=1 vixi of theretangles paked. Without signi�ant loss of generality, it is usual to assume thatall dimensions W, H, and (wi, hi), i = 1, . . . , n, are integers.4.12.2. Solution enoding. A solution of the two-dimensional paking problem isenoded in a vetor x of 2N random keys, where N =
∑n

i=1 ni. The �rst Nrandom keys orrespond to the ordering that the retangles are paked while thelast N keys indiate how the retangles are to be plaed in the stok retangle.4.12.3. Chromosome deoder. Given a vetor x of random keys, the retangles arepaked by sanning x starting from the �rst omponent. For i = 1, . . . , N, let
t = ⌈xi × n⌉ denote the type of retangle to be paked next. If there are no moreretangles of type t available to be paked, the deoder proeeds to the next value of
i.Otherwise it proeeds to pak one or more retangles of type t, up to the maximumnumber of available retangles of that type using a heuristi determined by thevalue of xN+i. If xN+i ≤ 0.5, then the left-bottom heuristi is used. Otherwise, theretangle is plaed using the bottom-left heuristi. If the left-bottom heuristi isapplied, a vertial layer of retangles is plaed. Similarly, if the bottom-left heuristiis used, a horizontal layer of retangles is plaed. The �tness of the hromosomeis the total weight of the paked retangles plus a term that tries to apture theimprovement potential of di�erent pakings whih have the same total value.4.12.4. Experimental results. Gonçalves (2007) arried out two types of experi-ments to evaluate the proposed BRKGA. In the �rst, the performane of theBRKGA was evaluated against other metaheuristi approahes while in the se-ond he evaluated the deviation from the optimal of the trim loss values obtainedby the BRKGA. In the �rst set of experiments, the BRKGA was ompared withthe geneti algorithm SGA and the mixed simulated annealing-geneti algorithmMSAGA of Leung et al. (2003), as well as with the GRASP of Alvarez-Valdes et al.(2005). 21 instanes were used in this experiment: three instanes from Lai andChan (1997), �ve instanes from Jakobs (1996), two instanes from Leung et al.(2003), and nine instanes from Hopper and Turton (2001). All these problem in-stanes have known optimal solution where the trim loss is zero. In the seond setof experiments, instanes were taken from Hi� (1998), Beasley (1985), Hadjion-stantinou and Christo�des (1995), Wang (1983), Christo�des and Whitlok (1977),Fekete and Shepers (1997), and Hopper and Turton (2001).The �rst set of experiments showed that the BRKGA learly outperforms, interms of solution quality, all of the other heuristis. The BRKGA obtained the bestaverage values for all of the 19 problem instanes and obtained the best minimumtrim loss values for 17 of the problem instanes. On the Hi� (1998) instanes, theBRKGA found the optimal trim loss for all the 25 instanes and for all the 10repliations. Sine the problem instanes of this set have only 7 to 22 retangles,the fat that the optimal solutions were found is not as relevant as the fat that theywere obtained on all the 10 repliations. On the Beasley (1985), Hadjionstantinouand Christo�des (1995), Wang (1983), Christo�des andWhitlok (1977), and Feketeand Shepers (1997) instanes, the optimal or best known trim loss values wereobtained from Oliveira (2004). For this set, the BRKGA obtained the optimaltrim loss values for all the 19 instanes with known optimal value, obtained threetrim loss values equal to best known trim loss values, and was able to improve thebest known trim loss for instane 2 of Fekete and Shepers (1997). For 18 problem



BRKGA FOR COMBINATORIAL OPTIMIZATION 29instanes, the optimal/best known value was obtained on all 10 repliations. Forthe Hopper and Turton (2001) test problems, the BRKGA found the optimal trimloss values for eight of the 21 problem instanes. For all the other instanes therelative deviation from the minimum trim loss value was always under 1%. For theHopper and Turton (2001) instanes, the BRKGA obtained the optimal trim lossvalues for �ve of the 35 problems. For all the other instanes the relative deviationsfrom the optimal trim loss value were always under 3.17%.Gonçalves and Resende (2009) ompare the proposed BRKGA with four reentlyproposed heuristis, whih presented the best omputational results to date. Theseheuristis are a population heuristi (PH ) proposed by Beasley (2004), a genetialgorithm (GA) proposed by Hadjionstantinou and Iori (2007b), a GRASP heuris-ti proposed by Alvarez-Valdes et al. (2005), and a tabu searh approah (TABU )proposed by Alvarez-Valdes et al. (2007). The algorithms are ompared with a setof 630 large random instanes generated by Beasley (2004) following Fekete andShepers (2004).The results showed that the BRKGA produed overall average deviations fromthe upper bound that were always lower than those produed by all the otherheuristis on all instane lasses, inluding the BRKGA of Gonçalves (2007). Alose look at the results shows that BRKGA outperformed the other heuristis notonly beause it obtained smaller average deviations from the upper bound (PH=1.67%, GA= 1.32%, GRASP= 1.07%, TABU= 0.98% and BRKGA = 0.83%) butalso beause it obtained a larger number of best results for the 21 ombinationsof sizes and types (PH= 0/21, GA= 0/21, GRASP= 5/21, TABU= 8/21, andBRKGA = 20/21).4.13. General onave minimum ost �ow. Fontes and Gonçalves (2007) pro-posed a BRKGA for the general minimum onave ost network �ow problem(MCNFP). Conave ost funtions in network �ow problems arise in pratie asa onsequene of taking into aount eonomi onsiderations. For example, �xedosts may arise and eonomies of sale often lead to a derease in marginal osts.The geneti algorithm makes use of a loal searh heuristi to solve the problem.The loal searh algorithm tries to improve the solutions in the population by us-ing domain-spei� information. The BRKGA is used to solve instanes with bothonave routing osts and �xed osts.4.13.1. Problem de�nition. Given a graph G = (W, A), where W is a set of n + 1nodes (node n+1 denotes the soure node and nodes 1, . . . , n denote demand nodes)and a set A of m direted ars, A ⊆ {(i, j) : i, j ∈W}. Eah node i ∈ W \ {n + 1}has an assoiated nonnegative integer demand value ri. The supply at the sourenode equals the sum of the demands required by the n demand nodes. A generalnondereasing and nonnegative onave ost funtion gij is assoiated with eah ar
(i, j) and satis�es gij(0) = 0. The objetive is to �nd a subset S of ars to be usedand the �ow xij routed through these ars, suh that the demands are satis�ed andat minimum ost. A onave MCNFP has the property that it has a �nite solutionif and only if there exists a diret path going from the soure node to every demandnode and if there are no negative ost yles. Therefore, a �ow solution is a treerooted at the single soure spanning all demand nodes. Thus, the objetive is to�nd an optimal tree rooted at the soure node that satis�es all ustomers demandat minimum ost.



BRKGA FOR COMBINATORIAL OPTIMIZATION 304.13.2. Solution enoding. A solution of the MCNFP is enoded in a vetor x of
n random keys that orresponds to the priorities of the demand nodes used in thetree-onstrutor proedure of the deoder.4.13.3. Chromosome deoder. The deoder builds a tree rooted at the soure node.The node priorities in x are used to determine the order by whih nodes are onsid-ered by the tree onstrutor. The algorithm repeatedly performs three steps untileither a tree or an infeasible solution is produed. The �rst step onsists in �ndingthe highest priority node not yet supplied. In the seond step, the algorithm seeksthe set of nodes that an at as a parent for the node found in the �rst step. Inthe third and last step, the parent is hosen as the highest priority node that doesnot reate an infeasibility, if one exists. A potential solution beomes infeasible ifa yle annot be avoided. In this ase, a high ost is assoiated with the solution.After a solution is onstruted, a loal searh proedure is applied to it. The loalsearh tries to improve upon a given solution by omparing it with solutions ob-tained by replaing an ar urrently in the solution by an ar not in the solutionsuh that the new solution is still a tree.4.13.4. Experimental results. To test the BRKGA heuristi, Fontes and Gonçalves(2007) onsidered the Eulidean problem set desribed in Fontes et al. (2003).This set of instanes an be downloaded from http://people.brunel.a.uk/~mastjjb/jeb/orlib/netflowinfo.html (Last visited on April 8, 2010). Theresults obtained by the BRKGA were ompared with optimal solutions found by adynami programming approah (Fontes et al., 2006) for problem instanes with upto 19 nodes and, for larger instanes, to heuristi solutions found by a loal searhalgorithm (Fontes et al., 2003).The experiments showed the BRKGA to improve upon the e�ieny and e�e-tiveness of existing methods. Optimal solutions were found for all but one of the600 problems with sizes ranging from 10 to 19 nodes. For larger instanes, havingfrom 25 to 50 nodes, optimal solutions were found for all �xed-harge problems. Forthe onave problems, optimal solution values were unknown. On these instanes,omparisons were made with upper bound values reported in the literature. Theresults show the proposed BRKGA to be very e�ient and e�etive. The qualityof the solutions obtained by the BRKGA heuristi is quite similar to the ones re-ported by Fontes et al. (2003). However, the omputational time requirements forthe BRKGA were muh smaller.5. Conluding remarksThis paper addressed biased random key geneti algorithms (BRKGA), a heuris-ti framework for ombinatorial optimization. The framework is well-suited to im-plement the proess of learning the assoiation between vetors of random keys andgood solutions of the ombinatorial optimization problems they are trying to solve.Solutions in a BRKGA are enoded as n-dimensional vetors of random keys.A population of p suh vetors is evolved through the iterations of the algorithm.Initially p vetors of keys are randomly generated with keys in the real interval[0,1℄. At eah iteration, the population is partitioned into a smaller elite set withthe best solutions and a larger non-elite set with the remaining solutions. Note thatto partition the population we require that eah random vetor be deoded and theost of its orresponding solution evaluated. All of the elite solutions are opied



BRKGA FOR COMBINATORIAL OPTIMIZATION 31to the population of the next iteration. In addition, a small number of mutantsolutions is generated in the same way that the initial population was generated.These mutants are responsible for making the heuristi esape loal optima andassure asymptoti onvergene of the method to a global optimum. Note that thenumber of elite and mutant solutions are input parameters, but our experienehas shown that having around 10-25% of the population as elite solutions and10-30% as mutants is an appropriate hoie. Given the elite and mutants in thenew population, one only needs to omplete the population through the proessof rossover. Crossover is simple: one parent is seleted at random from the eliteset and the other from either the non-elite or the entire population. Repetition isallowed so a parent an produe more than one o�spring in a given iteration. Thebest �t of the two parents is alled parent A while the other one is parent B. Theo�spring C is generated at random in suh a way that it has a higher probability ofinheriting the harateristis of parent A. This is done by �ipping a biased oin ntimes. The oin �ip results in heads (parent A) with higher probability than tails(parent B). The probability of resulting in heads is an input parameter greaterthan half. Our experiene has shown that a value between 0.5 and 0.8 works well.The result of the i-th �ip of the oin determines if the o�spring inherits the i-thrandom key of parent A or B. Note that all of the above steps, with the exeptionof omputing the �tness of the population to make the partitioning, are problemindependent.One of the appealing aspets of the BRKGA onept is the division betweenproblem dependent and problem independent parts of the algorithm. Where in astandard GA one needs to de�ne di�erent rossover and mutation operators foreah problem to be solved, in a BRKGA one does not worry about rossover andmutation. They are pre-spei�ed. In fat, one one odes a BRKGA, most ofthe ode an be reused in future implementations. In a BRKGA one need onlyworry about omputing the �tness of a solution as, by the way, one also needs todo in a standard GA. We show that one one has a heuristi for a problem, it iseasy to plae this heuristi in an evolutionary framework as a BRKGA. A BRKGAoordinates simple heuristis to �nd solutions that are better than those found bythe simple heuristis alone.This is not always the ase for a standard GA.The BRKGA is a slight modi�ation of the random-key GA of Bean (1994). Ina BRKGA one parent is always hosen from the elite set, while this is not the asein the algorithm of Bean. Though slight, this modi�ation ontributes to a bigimprovement in the performane of these random-key GAs. This is, in some sense,similar to the addition of greediness to a pure randomized onstrution proedureas was done in the semi-greedy heuristi (Hart and Shogan, 1987) and GRASP (Feoand Resende, 1989; 1995), both of whih result in muh better solutions on averagethan a pure randomized onstrution.The omponents of BRKGAs are desribed in the paper and their integrationinto a heuristi framework is proposed. This framework separates the problem-independent part of the proedure from the part that is problem dependent. Thisway, a BRKGA an be de�ned by speifying how solutions are enoded and deoded,making it easy to tailor BRKGAs for solving spei� ombinatorial optimizationproblems. Implementation issues, inluding parallelization of the heuristi, areaddressed. The paper onludes with a number of appliations, where for eah one,the enoding and deoding is desribed in detail.
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