
BIASED RANDOM-KEY GENETIC ALGORITHMS FORCOMBINATORIAL OPTIMIZATIONJOSÉ FERNANDO GONÇALVES AND MAURICIO G. C. RESENDEAbstra
t. Random-key geneti
 algorithms were introdu
ed by Bean (1994)for solving sequen
ing problems in 
ombinatorial optimization. Sin
e then,they have been extended to handle a wide 
lass of 
ombinatorial optimizationproblems. This paper presents a tutorial on the implementation and use ofbiased random-key geneti
 algorithms for solving 
ombinatorial optimizationproblems. Biased random-key geneti
 algorithms are a variant of random-key geneti
 algorithms, where one of the parents used for mating is biasedto be of higher �tness than the other parent. After introdu
ing the basi
sof biased random-key geneti
 algorithms, the paper dis
usses in some detailimplementation issues, illustrating the ease in whi
h sequential and parallelheuristi
s based on biased random-key geneti
 algorithms 
an be developed.A survey of appli
ations that have re
ently appeared in the literature is alsogiven. 1. Introdu
tionCombinatorial optimization 
an be de�ned by a �nite ground set E = {1, . . . , n},a set of feasible solutions F ⊆ 2E, and an obje
tive fun
tion f : 2E → R. Through-out this paper, we 
onsider the minimization version of the problem, where wesear
h for an optimal solution S∗ ∈ F su
h that f(S)∗ ≤ f(S), ∀S ∈ F. Given aspe
i�
 
ombinatorial optimization problem, one 
an de�ne the ground set E, the
ost fun
tion f, and the set of feasible solutions F . For instan
e, in the 
ase of thetraveling salesman problem on a graph, the ground set E is that of all edges in thegraph, f(S) is the sum of the 
osts of all edges e ∈ S, and F is formed by all edgesubsets that determine a Hamiltonian 
y
le.Combinatorial optimization �nds appli
ations in many settings, in
luding rout-ing, s
heduling, inventory 
ontrol, produ
tion planning, and lo
ation problems.These problems arise in real-world situations (Pardalos and Resende, 2002) su
h asin transportation (air, rail, tru
king, shipping), energy (ele
tri
al power, petroleum,natural gas), and tele
ommuni
ations (design, lo
ation, operation).While mu
h progress has been made in �nding provably optimal solutions to 
om-binatorial optimization problems employing te
hniques su
h as bran
h and bound,
utting planes, and dynami
 programming, as well as provably near-optimal solu-tions using approximation algorithms, many 
ombinatorial optimization problemsarising in pra
ti
e bene�t from heuristi
 methods that qui
kly produ
e good-qualityDate: O
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BRKGA FOR COMBINATORIAL OPTIMIZATION 2solutions. Many modern heuristi
s for 
ombinatorial optimization are based onguidelines provided by metaheuristi
s.Metaheuristi
s are high level pro
edures that 
oordinate simple heuristi
s, su
has lo
al sear
h, to �nd solutions that are of better quality than those found by thesimple heuristi
s alone. Many metaheuristi
s have been introdu
ed in the last thirtyyears (Glover and Ko
henberger, 2003). Among these, we �nd greedy randomizedadaptive sear
h pro
edures (GRASP), simulated annealing, tabu sear
h, variableneighborhood sear
h, s
atter sear
h, path-relinking, iterated lo
al sear
h, ant 
olonyoptimization, swarm optimization, and geneti
 algorithms.In this paper, we introdu
e a 
lass of heuristi
s 
alled biased random-key geneti
algorithms. This framework for building heuristi
s for 
ombinatorial optimization isgeneral and 
an be applied to a wide range of problems. An important 
hara
teristi
of the framework is the 
lear divide between the problem-independent 
omponentof the ar
hite
ture and the problem-spe
i�
 part. This allows for reuse of softwareand permits the algorithm designer to 
on
entrate on building the problem spe
i�
de
oder.The paper is organized as follows. In Se
tion 2 we introdu
e biased random-key geneti
 algorithms. Issues related to the e�
ient implementation of sequentialand parallel versions of these heuristi
s are dis
ussed in Se
tion 3. In Se
tion 4examples of biased random-key geneti
 algorithms on a wide range of 
ombinatorialoptimization problems are given. Con
luding remarks are made in Se
tion 5.2. Biased random-key geneti
 algorithmsGeneti
 algorithms, or GAs, (Goldberg, 1989; Holland, 1975) apply the 
on
eptof survival of the �ttest to �nd optimal or near-optimal solutions to 
ombinatorialoptimization problems. An analogy is made between a solution and an individualin a population. Ea
h individual has a 
orresponding 
hromosome that en
odesthe solution. A 
hromosome 
onsists of a string of genes. Ea
h gene 
an takeon a value, 
alled an allele, from some alphabet. A 
hromosome has asso
iatedwith it a �tness level whi
h is 
orrelated to the 
orresponding obje
tive fun
tionvalue of the solution it en
odes. Geneti
 algorithms evolve a set of individuals thatmake up a population over a number of generations. At ea
h generation, a newpopulation is 
reated by 
ombining elements of the 
urrent population to produ
eo�spring that make up the next generation. Random mutation also takes pla
e ingeneti
 algorithms as a means to es
ape entrapment in lo
al minima. The 
on
eptof survival of the �ttest plays into geneti
 algorithms when individuals are sele
tedto mate and produ
e o�spring. Individuals are sele
ted at random but those withbetter �tness are preferred over those that are less �t.Geneti
 algorithms with random keys were �rst introdu
ed by Bean (1994) forsolving 
ombinatorial optimization problems involving sequen
ing. In this paper werefer to this 
lass of geneti
 algorithms as random-key geneti
 algorithms (RKGA).In a RKGA, 
hromosomes are represented as a string, or ve
tor, of randomly gener-ated real numbers in the interval [0, 1]. A deterministi
 algorithm, 
alled a de
oder,takes as input any 
hromosome and asso
iates with it a solution of the 
ombinato-rial optimization problem for whi
h an obje
tive value or �tness 
an be 
omputed.In the 
ase of Bean (1994), the de
oder sorts the ve
tor of random keys and uses theindi
es of the sorted keys to represent a sequen
e. As we will see shortly, de
odersplay an important role in RKGAs.
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Figure 2.1. Transition from generation k to generation k + 1 in a BRKGA.A RKGA evolves a population of random-key ve
tors over a number of iterations,
alled generations. The initial population is made up of p ve
tors of random-keys.Ea
h allele is generated independently at random in the real interval [0, 1]. After the�tness of ea
h individual is 
omputed by the de
oder, the population is partitionedinto two groups of individuals: a small group of pe elite individuals, i.e. thosewith the best �tness values, and the remaining set of p− pe non-elite individuals,where pe < p− pe. To evolve the population, a new generation of individuals mustbe produ
ed. A RKGA uses an elitist strategy sin
e all of the elite individualsof generation k are 
opied un
hanged to generation k + 1. This strategy keepstra
k of good solutions found during the iterations of the algorithm resulting in amonotoni
ally improving heuristi
. Mutation is an essential ingredient of geneti
algorithms, used to enable GAs to es
ape from entrapment in lo
al minima. RKGAsimplement mutation by introdu
ing mutants into the population. A mutant issimply a ve
tor of random keys generated in the same way that an element ofthe initial population is generated. At ea
h generation a small number pm ofmutants are introdu
ed into the population. Mutant solutions are random-keyve
tors and 
onsequently 
an de de
oded into valid solutions of the 
ombinatorialoptimization problem. With the pe elite individuals and the pm mutants a

ountedfor in population k + 1, p− pe − pm additional individuals need to be produ
ed to
omplete the p individuals that make up the population of generation k + 1. Thisis done by produ
ing p− pe − pm o�spring through the pro
ess of mating.Figure 2.1 illustrates the evolution dynami
s. On the left of the �gure is the
urrent population. After all individuals are sorted by their �tness values, the best�t are pla
ed in the elite partition labeled ELITE and the remaining individualsare pla
ed in the partition labeled NON-ELITE. The elite random-key ve
tors are
opied without 
hange to the partition labeled TOP in the next population (on theright side of the �gure). A number of mutant individuals are randomly generatedand pla
ed in the new population in the partition labeled BOT. The remainder ofthe population of the next generation is 
ompleted by 
rossover. In a RKGA, Bean
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Figure 2.2. Parametrized uniform 
rossover: mating in BRKGAs.(1994) sele
ts two parents at random from the entire population. A biased random-key geneti
 algorithm, or BRKGA (Gonçalves and Almeida, 2002; Eri
sson et al.,2002; Gonçalves and Resende, 2004), di�ers from a RKGA in the way parents aresele
ted for mating. In a BRKGA, ea
h element is generated 
ombining one elementsele
ted at random from the partition labeled ELITE in the 
urrent population andone from the partition labeled NON-ELITE. In some 
ases, the se
ond parent issele
ted from the entire population. Repetition in the sele
tion of a mate is allowedand therefore an individual 
an produ
e more than one o�spring. Sin
e we requirethat pe < p− pe, the probability that a given elite individual is sele
ted for mating(1/pe) is greater than that of a given non-elite individual (1/(p−pe)) and thereforethe given elite individual has a higher likelihood to pass on its 
hara
teristi
s tofuture generations than does a given non-elite individual. Also 
ontributing to thisend are parametrized uniform 
rossover (Spears and DeJong, 1991), the me
hanismused to implement mating in BRKGAs, and the fa
t that one parent is alwayssele
ted from the elite set. Let ρe > 0.5 be a user-
hosen parameter. This parameteris the probability that an o�spring inherits the allele of its elite parent. Let n denotethe number of genes in the 
hromosome of an individual. For i = 1, . . . , n, the i-th allele c(i) of the o�spring c takes on the value of the i-th allele e(i) of theelite parent e with probability ρe and the value of the i-th allele ē(i) of the non-elite parent ē with probability 1 − ρe. In this way, the o�spring is more likely toinherit 
hara
teristi
s of the elite parent than those of the non-elite parent. Sin
ewe assume that any random key ve
tor 
an be de
oded into a solution, then theo�spring resulting from mating is always valid, i.e. 
an be de
oded into a solutionof the 
ombinatorial optimization problem.Figure 2.2 illustrates the 
rossover pro
ess for two random-key ve
tors with fourgenes ea
h. Chromosome 1 refers to the elite individual and Chromosome 2 to thenon-elite one. In this example the value of ρe = 0.7, i.e. the o�spring inherits theallele of the elite parent with probability 0.7 and of the other parent with probability0.3. A randomly generated real in the interval [0, 1] simulates the toss of a biased
oin. If the out
ome is less than or equal to 0.7, then the 
hild inherits the alleleof the elite parent. Otherwise, it inherits the allele of the other parent. In this
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Figure 2.3. De
oder used to map solutions in the hyper
ube tosolutions in the solution spa
e where �tness is 
omputed.example, the o�spring inherits the allele of the elite parent in its �rst, third, andfourth genes. It resembles the elite parent more than it does the other parent.When the next population is 
omplete, i.e. when it has p individuals, �tnessvalues are 
omputed for all of the newly 
reated random-key ve
tors and the pop-ulation is partitioned into elite and non-elite individuals to start a new generation.A BRKGA sear
hes the solution spa
e of the 
ombinatorial optimization problemindire
tly by sear
hing the 
ontinuous n-dimensional unit hyper
ube, using thede
oder to map solutions in the hyper
ube to solutions in the solution spa
e ofthe 
ombinatorial optimization problem where the �tness is evaluated. Figure 2.3illustrates the role of the de
oder.BRKGA heuristi
s are based on a general-purpose metaheuristi
 framework.In this framework, depi
ted in Figure 2.4, there is a 
lear divide between theproblem-independent portion of the algorithm and the problem-dependent part. Theproblem-independent portion has no knowledge of the problem being solved. It islimited to sear
hing the hyper
ube. The only 
onne
tion to the 
ombinatorial opti-mization problem being solved is the problem-dependent portion of the algorithm,where the de
oder produ
es solutions from the ve
tors of random-keys and 
om-putes the �tness of these solutions. Therefore, to spe
ify a BRKGA heuristi
 oneneed only de�ne its 
hromosome representation and the de
oder.Consider, for example, a set 
overing problem where one is given an m×n binarymatrix A = [ai,j ] and wants to sele
t the smallest 
over, i.e. the smallest subset of
olumns J∗ ⊆ {1, 2, . . . , n} su
h that, for ea
h row i = 1, . . . , m, there is at least one
j ∈ J∗ su
h that ai,j = 1. One possible BRKGA heuristi
 for this problem de�nesthe ve
tor of random keys x to have n random keys in the real interval [0, 1]. The
j-th key 
orresponds to the j-th 
olumn of A. The de
oder sele
ts 
olumn j to bein J∗ only if xj ≥ 0.5. If the resulting set J∗ is a valid 
over, then the �tness of the
over is |J∗|. Otherwise, start with set J∗ and apply the standard greedy algorithmfor set 
overing: while there are un
overed rows, �nd the unsele
ted 
olumn that ifadded to J∗ 
overs the largest number of yet-un
overed rows, breaking ties by theindex of the 
olumn. Add this 
olumn to set J∗. When the resulting set J∗ is avalid 
over, s
an the 
olumns in the 
over from �rst to last to 
he
k if ea
h 
olumn
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Figure 2.4. Flow
hart of a BRKGA
j ∈ J∗ is redundant, i.e. if J∗ \ {j} is a 
over. If so, then remove j from J∗. Whenno 
olumn 
an be removed, stop. The �tness of the 
over is |J∗|. Note that, asrequired, this de
oder is a deterministi
 algorithm. For a given ve
tor of randomkeys, applying the de
oder will always result in the same 
over.Though BRKGAs only use randomly generated keys, they are mu
h better at�nding optimal or near-optimal solutions that a purely random algorithm. Fig-ure 2.5 provides strong eviden
e that there is learning taking pla
e in a BRKGA.The �gure shows the distributions of obje
tive fun
tion values of the 100-elementpopulation of a BRKGA and the repeated generation of sets of 100 random so-lutions for a set 
overing by pairs problem (Breslau et al., 2009). The randomsolutions are generated with the same 
ode using the BRKGA parameters p = 101,
pe = 1, and pm = 100. This way, the mutants are the random solutions, thebest solution is saved in the elite set, and no 
rossover is ever done. Let i, j, k ∈
{1, 2, . . . , 100}×{1, 2, . . . , 100}×{1, 2, . . . , 100}.The 
overing-by-pairs problem 
on-sidered here has 76,916 triplets, where a triplet {i, j, k} indi
ates that the pair
{i, j} 
overs element k. The obje
tive is to �nd the smallest 
ardinality subset
S∗ ⊆ {1, 2, . . . , 100} su
h that the union of all pairs {i, j} with i, j ∈ S∗×S∗ 
oversall the 100 elements indi
ated by the k values. The optimal solution, whi
h we plotas a referen
e, is 21 and was 
omputed by solving an integer programming modelwith the 
ommer
ial integer programming solver CPLEX. As one 
an observe, whilethe BRKGA qui
kly �nds an optimal solution is less than 2 se
onds, the randommultistart heuristi
 is still quite far from the optimal after 600 se
onds having onlyfound a best solution of size 38.As dis
ussed earlier in this paper, a biased random-key geneti
 algorithm andan (unbiased) random-key geneti
 algorithm di�er slightly in the way they sele
tparents for mating. The biased variant always sele
ts one parent from the set ofelite solutions whereas the unbiased variant sele
ts both parents from the entirepopulation. This way, o�spring produ
ed by the biased version are more likelyto inherit 
hara
teristi
s of elite solutions. This likelihood is further emphasized
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Figure 2.5. Comparing a BRKGA with a random multistartheuristi
 on an instan
e of a 
overing by pairs problem.through the parametrized uniform 
rossover used by both variants to 
ombine theparents and produ
e the o�spring. Though this is apparently only a very slightdi�eren
e, it almost always leads to a big di�eren
e in how these variants perform.BRKGAs tend to �nd better solutions than RKGAs if given the same running timeand have a mu
h higher probability of �nding a solution with a spe
i�ed targetsolution value in less time. To illustrate this, 
onsider Figure 2.6 whi
h shows time-to-optimal plots for a 
overing-by-pairs problem with 220 elements and 456,156triplets. The plots 
ompare running times to �nd an optimal solution for 200independent runs of ea
h of three variants: a BRKGA, a RKGA1, and a heuristi
(RKGA-ord) that is similar to a RKGA ex
ept that the o�spring inherit the allele ofthe better �t of the two parents with probability ρe. The �gure 
learly shows thatthe BRKGA �nds optimal solutions in less time than its unbiased 
ounterparts.For example, by 325s, the time that the RKGA takes to solve any one of its 84attempts, the BRKGA solves 184 of its 200 attempts. Ordering the parents, as isdone in RKGA-ord, improves the RKGA, but not enough to do better than theBRKGA. For example, by 216s, the time that RKGA-ord takes to solve any one ofits 200 attempts, the BRKGA solves 176 of its 200 attempts. Though we illustratethis on only a single instan
e of a single problem type, we have observed that thisbehavior is typi
al for a wide range of problems (Gonçalves et al., 2009b).3. Implementation issuesIn this se
tion, we dis
uss some issues related to the implementation of BRKGAheuristi
s. We fo
us on the separation of the problem independent and depen-dent portions of the heuristi
, types of de
oders, initial population, population1Due to ex
essively long running time, we only 
arried out 84 independent runs with the RKGAvariant.
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ompare running times neededto �nd the optimal solution of a 220 element 
overing by pairsproblem with a BRKGA and two variants of a RKGA.partitioning, parallel implementations, and post-optimization based on pairwisepath-relinking between elite set solutions.3.1. Components of a BRKGA heuristi
. As dis
ussed earlier in this paper,RKGAs have problem-independent and problem-dependent modules. This makesit possible to design a general-purpose problem-independent solver that 
an bereused to implement di�erent heuristi
s. That way, when designing a new heuristi
for a spe
i�
 
ombinatorial optimization problem, one need only implement theproblem-dependent part, namely the de
oder.The problem-independent module has few basi
 
omponents. These 
omponentsdepend on the number of genes in the 
hromosome of an individual (n), the numberof elements in the population (p), the number of elite elements in the population(pe), the number of mutants introdu
ed at ea
h generation into the population(pm), and the probability that an o�spring inherits the allele of its elite parent(ρe). The population is stored in the p × n real-valued matrix pop, where the
i-th 
hromosome is stored in row i of pop. After populating matrix pop withreal-valued random numbers generated uniformly in the interval [0, 1], the �tnessof ea
h 
hromosome is evaluated by the problem-dependent de
oder. The �tnessvalue of the i-th 
hromosome is stored in the i-th position of the p-dimensionalarray fitness.Ea
h generation of an BRKGA heuristi
 
onsists of the following �ve steps:(1) Sort array fitness in in
reasing order and reorder the rows of pop a

ord-ing to the sorted values of array fitness. The elements of pop do nota
tually need to be moved. Only an array with their positions is needed.



BRKGA FOR COMBINATORIAL OPTIMIZATION 9For ease of des
ription, we assume in this dis
ussion that the rows of popare a
tually moved to re�e
t the sorted values of fitness.(2) Mate p − pe − pm pairs of parents, one whose index in pop is an integerrandom number uniformly generated in the interval [1, pe] and the otherwhose index is an integer random number uniformly generated in the inter-val [pe +1, p]. The i-th o�spring resulting from the 
rossover is temporarilystored in row i of the real-valued (p− pe− pm)×n matrix tmppop. Matingis a
hieved by generating n uniform random numbers {r1, . . . , rn} in theinterval [0, 1]. For j = 1, . . . , n, if rj ≤ ρe, then the j-th gene of the o�springinherits the j-th allele of the elite parent. Otherwise, it inherits the alleleof the other parent.(3) Generate at random pm mutant 
hromosomes of size n. These mutants aregenerated by the same module used to generate the initial population. The
i-th mutant 
hromosome is stored in row pm + i− 1 of matrix pop.(4) Copy the (p − pe − pm) × n matrix tmppop to rows pe + 1, . . . , p − pm ofmatrix pop.(5) Evaluate the �tness of the 
hromosomes in rows pe +1, . . . , p of matrix popand store these values in positions pe + 1, . . . , p of array fitness.This pro
ess is applied repeatedly. Ea
h iteration is 
alled a generation. There aremany possible stopping 
riteria, in
luding stopping after a �xed number of genera-tions from the beginning, after a �xed number of generations sin
e the generationof the last solution improvement, after a time limit is rea
hed, or after a solutionat least as good as a given threshold is found.3.2. De
oders. De
oders play an important role in BRKGA heuristi
s sin
e theymake the 
onne
tion between the solutions in the hyper
ube and the �tness oftheir 
orresponding solutions in the solution spa
e of the 
ombinatorial optimiza-tion problem. They 
an range in 
omplexity from very simple, involving a dire
tmapping between the random key and the solution, to intri
ate, su
h as random-keydriven 
onstru
tion heuristi
s with lo
al sear
h, or even bla
k box 
omputations.Suppose the solution spa
e is made up of all permutations of Πn = {1, 2, . . . n} asis the 
ase for the quadrati
 assignment problem. Bean (1994) showed that simplysorting the ve
tor of random keys results in a permutation of its indi
es. If onewants to sele
t p of n elements of a set, assign a random key to ea
h element ofthe set, sort the ve
tor of random keys, and sele
t the elements 
orresponding tothe p smallest keys. Composite ve
tors of random keys are also useful. Suppose nitems need to be arranged in order and that ea
h element 
an be pla
ed in one oftwo states, say up or down. De�ne a ve
tor of random keys of size 2n where the�rst n keys are sorted to de�ne the order in whi
h the items are pla
ed and thelast n keys determine if the item is pla
ed in the up or down position. In this 
ase,a key greater than or equal to one half indi
ates the up position while a key lessthan half 
orresponds to the down position. In Se
tion 4 we give more examples ofsimple and 
omplex de
oders.3.3. Parameter setting. Random-key geneti
 algorithms have few parametersthat need to be set. These parameters are the number of genes in a 
hromosome(n), the population size (p), the size of the elite solution population (pe), the sizeof the mutant solution population (pm), and the elite allele inheritan
e probability(ρe), i.e. the probability that the gene of the o�spring inherits the allele of the elite
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ommended parameter value settingsparameter des
ription re
ommended value
p size of population p = an, where 1 ≤ a ∈ R is a 
onstantand n is the length of the 
hromosome
pe size of elite population 0.10p ≤ pe ≤ 0.25p

pm size of mutant population 0.10p ≤ pm ≤ 0.30p

ρe elite allele inheritan
eprobability 0.5 < ρe ≤ 0.8

parent. Though setting these parameters is sort of an art-form, our experien
e hasled us to set the parameters as shown in Table 1.Below, we illustrate the e�e
t of population size, elite solution population size,mutant solution population size, and elite allele inheritan
e probability on the ran-dom variable time-to-optimal solution. We use the 100-element 
overing-by-pairsinstan
e used earlier to 
ompare the BRKGA and the random multi-start heuristi
.The basi
 parameter setting uses a population of size p = 100, a population of elitesolutions of size pe = 15, a mutant population size of pm = 10, and an elite alleleinheritan
e probability of ρe = 0.7.Figure 3.1 
ompares four settings for population size: 10, 40, 70, and 100. Forea
h setting, the BRKGA was independently run 50 times and CPU times to opti-mal solution were re
orded. While there is not mu
h di�eren
e between the smallpopulation settings of 10 and 40, one 
an begin to observe speedups for the pop-ulation of 70 and even more on the population of 100. Sin
e time per generationin
reases with population size, in those instan
es that many generations are neededto �nd an optimal solution, the large-population BRKGAs tend to take longer thantheir small population 
ounterparts. This is 
learly made up for by the many moreshort running times of the large population variants.Figure 3.2 shows time-to-optimal solution plots for four di�erent elite populationsizes: 5, 15, 25, and 50. The �gure shows that elite sets of 15 to 25% of the fullpopulation tend to 
ause the BRKGA to perform better that a large set of 50% ofthe population and mu
h better than a small set with only 5% of the population.Figure 3.3 illustrates the e�e
t of the size of the set of mutant solutions on thetime taken by the BRKGA to �nd an optimal solution. Four sizes were used: 3%,10%, 30%, and 50% of the full population. The �gure shows that it does not payo� to use either a too small or too large set of mutant solutions. The runs using10% of the full population as the mutant set appear to lead to the BRKGA withthe best performan
e. The large mutant set of half of the population led to theBRKGA with the worse performan
e.Figure 3.4 illustrates the e�e
t of di�erent values of inheritan
e probability onthe time to �nd an optimal solution. Four values were used for ρe: 30%, 50%, 70%,and 90%. While ρe = 30% violates the requirement that ρe > 50% and does notlead to a BRKGA with good performan
e, it is not as bad a being very greedy andusing ρe = 90%. The greedy variant turned out to have the worst performan
e
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tion 2, we initialize the population with p ve
torsof random keys. An alternative, is to populate the starting population with a fewsolutions obtained with another heuristi
 for the problem being solved. This was
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e probability on time to �nd anoptimal solution.done, for example, in Buriol et al. (2005), where a BRKGA is proposed for solvingthe weight setting problem in OSPF routing. The initial population is made up ofone element with the solution found by the heuristi
 InvCap while the remainingelements are randomly generated. While for all BRKGAs it is easy to apply thede
oder to �nd the solution 
orresponding to a given ve
tor of random keys, the
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tor of random keys from a solution of the 
ombinatorialoptimization problem, may not be straightforward. This, however, was not the 
asein Buriol et al. (2005) where the solution spa
e 
onsists of ve
tors of integer weightsin the range [1, wmax] and therefore re
overing ve
tors of random keys is trivial.Another type of solution representation that is easy to map ba
k to a ve
tor ofrandom keys is a permutation array.3.5. Parallel implementation. Biased random key geneti
 algorithms have a nat-ural parallel implementation. Candidates for parallelization in
lude the operations
• generate p ve
tors of random keys,
• generate pm mutants in next population,
• 
ombine elite parent with other parent to produ
e o�spring,
• de
ode ea
h ve
tor of random keys and 
ompute its �tness.Sin
e ea
h of these four operations involves independent 
omputations, they 
anea
h be 
omputed in parallel. The �rst three of these operations are not as 
om-putationally intensive as the fourth and on those operations parallelization is notexpe
ted to 
ontribute to signi�
antly speedup the overall algorithm. On the otherhand, the last operation (de
oding and �tness evaluation) 
an easily a

ount formost of the overall 
y
les and one should expe
t a signi�
ant speedup in the exe-
ution of the program by parallelizing it.Another type of parallelization is the use of multiple populations. This typeof parallelization of a BRKGA was done, for example, in Gonçalves and Resende(2009) where a multi-population BRKGA for a 
onstrained pa
king problem is de-s
ribed. Multiple populations evolve independently of one another and periodi
allyex
hange solutions.3.6. Comparing BRKGAs and standard GAs. To 
on
lude this se
tion, wereport on experimental results where biased random-key geneti
 algorithms havebeen 
ompared with standard geneti
 algorithms. We 
all a geneti
 algorithm stan-dard if it uses tailored 
rossover and mutation operators. We limit the 
omparisonto the quality of the solutions obtained. Our obje
tive is to show that BRKGAsare 
ompetitive with other geneti
 algorithms, on average produ
ing results thatare as good or better than those found by the standard geneti
 algorithms. In all
ases listed below, the BRKGAs were able to a
hieve 
ost redu
tions averaged overall tested instan
es.We 
onsider here studies where 
omparisons between a BRKGA and one or morestandard geneti
 algorithms were made. Namely, these are papers on manufa
turing
ell formation (Gonçalves and Resende, 2004), two-dimensional pa
king (Gonçalves,2007; Gonçalves and Resende, 2009), job-shop s
heduling (Gonçalves et al., 2005),and resour
e 
onstrained proje
t s
heduling (Gonçalves et al., 2009a).In Gonçalves and Resende (2004), a BRKGA for manufa
turing 
ell formationwas 
ompared with the geneti
 algorithms GATSP (Cheng et al., 1998) and GA(Onwubolu and Mutingi, 2001). On the 24 instan
es for whi
h the BRKGA andGATSP were 
ompared, the biased random-key variant found solutions on average2.88% better than GATSP. On the eight instan
es where the BRKGA and GA were
ompared, the BRKGA found solutions having, on average, a redu
tion of 0.11%with respe
t to GA.In Gonçalves (2007), a BRKGA was 
ompared with two standard geneti
 algo-rithms, SGA and SAGA, of Leung et al. (2003) on 19 instan
es of a two-dimensional
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king problem. The BRKGA found better solutions, on average,than either standard geneti
 algorithm. With respe
t to SGA, the redu
tion was0.24% while for SAGA it was 0.36%. In Gonçalves and Resende (2009), a BRKGAwas 
ompared with the standard geneti
 algorithm of Hadji
onstantinou and Iori(2007a) on 630 instan
es of a 
onstrained two-dimensional orthogonal pa
king prob-lem. The biased random-key geneti
 algorithm was able to �nd solutions that were,on average, 0.49% better than those of the standard geneti
 algorithm.In Gonçalves et al. (2005), a BRKGA was 
ompared with six standard geneti
algorithms for job-shop s
heduling. On the 12 instan
es where it was 
omparedwith GA (Della Cro
e et al., 1995), an average redu
tion in 
ost of 2.02% wasobserved. On the 37 and 35 instan
es where it was 
ompared, respe
tively, withGLS1 and GLS2 (Aarts et al., 1994), average redu
tions of 3.79% and 0.58% wereobserved. The BRKGA was 
ompared with the standard geneti
 algorithms P-GA, SBGA(40), and SBGA(60) of Dorndorf and Pes
h (1995) on, respe
tively, 20,42, and 42 instan
es with respe
tive solution 
ost redu
tions of 0.48%, 1.27%, and1.01%.In Gonçalves et al. (2009a), a BRKGA was 
ompared with several standard ge-neti
 algorithms on 600 instan
es of the resour
e 
onstrained proje
t s
hedulingproblem having 120 a
tivities ea
h. Solution 
ost redu
tions of 12.02% with re-spe
t to GA-DBH-Serial (Debels and Vanhou
ke, 2005), 11.71% with respe
t toGA�Hybrid-FBI-Serial of Valls et al. (2003), 15% with respe
t to GA-FBI-Serialof Valls et al. (2005), 13.41% with respe
t to the evolutionary lo
al sear
h based ontabu sear
h and path-relinking of Ko
hetov and Stolyar (2003), 19.12% with respe
tto the self adapting geneti
 algorithm of Hartmann (2002), 23.6% with respe
t tothe a
tivity list geneti
 algorithm of Hartmann (1998), 24.67% with respe
t to thepriority rule geneti
 algorithm of Hartmann (1998), 29.90% with respe
t to theproblem spa
e geneti
 algorithm of Leon and Ramamoorthy (1995), and 34.35%with respe
t to the random-key geneti
 algorithm of Hartmann (1998).4. Appli
ationsIn this se
tion, we give examples of biased random-key geneti
 algorithms. Forea
h appli
ation, we provide a brief des
ription of the problem and des
riptions ofthe 
hromosome (solution en
oding) and the de
oder, followed by a brief 
ommenton experimental results. We begin by 
onsidering some appli
ations in 
ommuni-
ation networks, in
luding OSPF routing, survivable network design, and routingand wavelength assignment. We then 
onsider the problem of assigning tolls in atransportation network to minimize road 
ongestion. This is followed by a num-ber of s
heduling appli
ations, in
luding job shop s
heduling, resour
e 
onstrainedsingle- and multi-proje
t s
heduling, single ma
hine s
heduling, and assembly linebalan
ing. We 
on
lude with appli
ations to manufa
turing 
ell formation, two-dimensional pa
king, and 
on
ave-
ost network �ow optimization.4.1. Weight setting for routing in IP networks. Eri
sson et al. (2002) andBuriol et al. (2005) des
ribe BRKGA heuristi
s for a routing problem in InternetProto
ol networks. They address the weight-setting problem in Open Shortest PathFirst (OSPF) routing. A related BRKGA is des
ribed in Reis et al. (2009), whereDistributed Exponentially-Weighted Flow Splitting (DEFT), a di�erent routing pro-to
ol, is used.



BRKGA FOR COMBINATORIAL OPTIMIZATION 154.1.1. Problem de�nition. Consider a dire
ted network graph G = (N, A) where
N denotes the set of nodes (where routers are lo
ated) and A denotes the set oflinks 
onne
ting the routers with a 
apa
ity ca for ea
h a ∈ A, and a demandmatrix D that, for ea
h pair (s, t) ∈ N × N , gives the demand ds,t in tra�
 �owfrom node s to node t. The OSPF weight-setting problem 
onsists in assigningpositive integer weights wa ∈ [1, wmax] to ea
h ar
 a ∈ A, su
h that a measureof routing 
ost is minimized when the demands are routed a

ording to the rulesof the OSPF proto
ol. The routing 
ost is a fun
tion of the link 
apa
ities andthe total tra�
 that traverses ea
h link. In OSPF, tra�
 between nodes s and tis routed on a shortest-weight path 
onne
ting these nodes. The OSPF proto
olallows for wmax ≤ 65535.4.1.2. Solution en
oding. Ea
h solution is en
oded as a ve
tor x of random keys oflength n = |A|, where the i-th gene 
orresponds to the i-th link of G.4.1.3. Chromosome de
oder. To de
ode a link weight wi from xi (for i = 1, . . . , n),simply 
ompute wi = ⌈xi × wmax⌉. On
e link weights are 
omputed, shortestweight (path) graphs from ea
h node to all other nodes in the graph 
an be derived,tra�
 
an be routed on least weight paths, the total tra�
 on ea
h link 
omputed,resulting in a routing 
ost whi
h is the �tness of the solution. Buriol et al. (2005)apply a fast lo
al sear
h to the solution in an attempt to further redu
e the routing
ost of OSPF routing. Let A∗ be the set of �ve links with the highest routing 
ostvalues. For ea
h link i ∈ A∗, a lo
al improvement heuristi
 attempts to in
rease wiby one unit at a time in a spe
i�ed range and adjust the tra�
 a

ordingly. If thetotal routing 
ost 
an be redu
ed this way, the new weight is a

epted, a new set
A∗ is 
onstru
ted, and the pro
ess repeats itself. If, after s
anning the �ve links,the 
ost 
annot be redu
ed, then the pro
edure stops. This fast lo
al sear
h wasadapted for DEFT routing in Reis et al. (2009).4.1.4. Experimental results. Eri
sson et al. (2002) 
ompare routing solutions pro-du
ed by their BRKGA for the 13 test problems proposed by Fortz and Thorup(2004) with lower bounds derived by solving a multi
ommodity �ow linear program(LP), the tabu sear
h heuristi
 of Fortz and Thorup, and the simple heuristi
s Uni-tOSPF, InvCapOSPF, and RandomOSPF. The BRKGA was run for 700 generationson ea
h instan
e and easily outperformed the simple heuristi
s, �nding solutions
omparable with those of Fortz and Thorup. These solutions were 
lose to the LPlower bounds for a wide range of tra�
 demands. By running BRKGA indepen-dently 10 times for 8000 generations on ea
h one of the instan
es, the BRKGA wasshown to produ
e better solutions than Fortz and Thorup on all 10 runs. The bestsolution found was 
loser to the LP lower bound than to the solution produ
ed bythe sear
h heuristi
 of Fortz and Thorup.Buriol et al. (2005) test their BRKGA on the same 13 test instan
es 
onsid-ered by Fortz and Thorup (2004) and Eri
sson et al. (2002). They show that thenew de
oder with the fast lo
al sear
h �nds better solutions than the BRKGAof Eri
sson et al. Furthermore, they show that given a target solution value, thenew BRKGA is also faster than the BRKGA of Eri
sson et al. Finally, they showresults of experiments 
omparing run-time distributions for the BRKGA and thetabu sear
h of Fortz and Thorup. Using three target values on a large real instan
e,the experiments show that the tabu sear
h distribution has a long tail while thedistribution for the BRKGA does not.
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ompare their BRKGA for DEFT routing with the BRKGA ofBuriol et al. (2005) for OSPF routing. They show results for the 13 test problemsused by previous papers and 
on�rm that DEFT routing 
an a
hieve solutions thatresult in less 
ongestion than OSPF routing.4.2. Survivable network design. Given a set of nodes in a network, a tra�
matrix estimating the demand, or tra�
, between pairs of these nodes, a set ofar
s, ea
h having endpoints at a pair of the given nodes, a set of possible �ber linktypes, ea
h with an asso
iated 
apa
ity and 
ost per unit of length, and a set offailure 
on�gurations, the survivable network design problem seeks to determinehow many units of ea
h 
able type will be installed in ea
h link su
h that all of thedemand 
an be routed on the network under the no failure and all failure modessu
h that the total 
ost of the installed �ber is minimized. Buriol et al. (2007)proposed a BRKGA to design survivable networks where tra�
 is routed using theOpen Shortest Path First (OSPF) proto
ol and there is only one link type. Andradeet al. (2006) extended this BRKGA to handle 
omposite links, i.e. the 
ase wherethere are several �ber types. Four de
oders are proposed by Andrade et al.4.2.1. Problem de�nition. Given a dire
ted graph G = (V, E), where V is the setof routers and E is the set of potential ar
s where �ber 
an be installed, and ademand matrix D, that for ea
h pair (u, v) ∈ V × V , spe
i�es the demand Du,vbetween u and v. Ar
 e ∈ E has length de. Link types are numbered 1, . . . , T . Linktype i has 
apa
ity ci and 
ost per unit of length pi. We wish to determine integerOSPF weights we ∈ [1, 65535] as well as the number of 
opies of ea
h link type tobe deployed at ea
h ar
 su
h that when tra�
 is routed a

ording to the OSPFproto
ol in a no-failure or any single ar
 failure situation there is enough installed
apa
ity to move all of the demand and the total 
ost of the installed 
apa
ity isminimized.4.2.2. Solution en
oding. Assume ar
s in E are numbered 1, . . . , |E|. A solution ofthe survivable network design problem is en
oded as a ve
tor x of |E| random keys.The i-th key 
orresponds to the i-th ar
.4.2.3. Chromosome de
oder. To produ
e the OSPF weight wi of the i-th ar
, s
alethe random key by the maximum weight, i.e. set wi = ⌈xi × 65535⌉. For the no-failure mode and ea
h failure mode, route the tra�
 using the OSPF proto
ol usingthe 
omputed ar
 weights, 
ompute the loads on ea
h ar
 and re
ord the maximumload over the no-failure and all failure modes. For ea
h ar
, determine an optimalallo
ation of link types su
h that the resulting 
apa
ity of the set of 
omposite linksis enough to a

ommodate the maximum load on the ar
. Compute the 
ost of therequired links.4.2.4. Experimental results. Sin
e this was the �rst heuristi
 proposed in the lit-erature for this problem, Buriol et al. (2007) 
ompare network designs produ
edwith their BRKGA with those produ
ed by a similar pro
ess where instead of �nd-ing good OSPF weights with the BRKGA, link weights are set in one 
ase to unit(UNIT ) and randomly (RAND) in another. They also 
ompare their solutions witha simple lower bound (LB). Four networks of sizes varying from 10 nodes and 90links to 71 nodes and 350 links make up the ben
hmark test set. For ea
h net-work, four instan
es were 
reated: one with no failures, one with both single routerand single link failures, one with single link failures and no router failure, and one
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ed by the BRKGA are superior to those produ
ed with the other heuristi
s.For example, a 1000-generation run with a 500-element population produ
ed forone of the instan
es with no failure the following ratios of solution values: 1.64 forRAND :BRKGA, 1.82 for RAND :BRKGA, and 1.94 for BRKGA:LB.Andrade et al. (2006) show the results of an experiment on a real network with54 routers and 278 ar
s. Three link types were 
onsidered. All four de
oders weretested and the so-
alled min 
ost de
oder a
hieved the best results among thede
oders tested.4.3. Routing and wavelength assignment. The problem of routing and wave-length assignment (RWA) in wavelength division multiplexing (WDM) opti
al net-works 
onsists in routing a set of lightpaths (a lightpath is an all-opti
al point-to-point 
onne
tion between two nodes) and assigning a wavelength to ea
h of them,su
h that lightpaths whose routes share a 
ommon �ber are assigned di�erent wave-lengths. Noronha et al. (2010) propose a BRKGA for routing and wavelength as-signment with the goal of minimizing the number of di�erent wavelengths used inthe assignment (this variant of the RWA is 
alled min-RWA). This BRKGA extendsthe best heuristi
 in the literature (Skorin-Kapov, 2007) by embedding it into anevolutionary framework.4.3.1. Problem de�nition. We are given a bidire
ted graph G = (V, E) that rep-resents the physi
al topology of the opti
al network, where V is the set of nodesand E is the set of �ber links, and a set T of lightpaths to be established. Ea
hlightpath is 
hara
terized by its pair of endpoints {s, t} ∈ V × V, s 6= t. Ea
hlightpath is routed on a single path from s to t and is assigned the same wavelengthfor the entire path. If two lightpaths share an ar
, they must be assigned di�erentwavelengths. The obje
tive is to minimize the number of wavelengths used.4.3.2. Solution en
oding. A solution of the routing and wavelength assignmentproblem is en
oded in a ve
tor x of |T | random keys, where |T | is the numberof lightpaths. The key xi 
orresponds to the i-th lightpath, for i = 1, . . . , |T |.4.3.3. Chromosome de
oder. Skorin-Kapov (2007) proposed the 
urrent state-of-the-art heuristi
 for min-RWA. Ea
h wavelength is asso
iated with a di�erent 
opyof the graph G. Lightpaths that are ar
 disjointly routed on the same 
opy of Gare assigned the same wavelength. Copies of G are asso
iated with the bins andlightpaths with the items of an instan
e of the bin pa
king problem. Therefore,min-RWA 
an be reformulated as the problem of pa
king all the lightpath requestsin a minimum number of bins. Let minlength(i) be the number of hops in the pathwith the smallest number of ar
s between the endnodes of lightpath i in G. Thesevalues are only used for sorting the lightpaths in the de
oding heuristi
s, eventhough the lightpaths are not ne
essarily routed on shortest paths. This o

ursbe
ause whenever a lightpath is routed on a 
opy of G (or, equivalently, pla
edin the 
orresponding bin), all ar
s in its route are deleted from this 
opy to avoidthat other lightpaths use them. Therefore, the next lightpaths routed in this 
opyof G might be routed on a path that is not a shortest path in the original graph
G. The 
lassi
al best �t de
reasing heuristi
 is used to pa
k the lightpaths. Sin
ethe number of lightpaths is usually mu
h greater than the diameter of the graph,there are many lightpaths with the same minlength value. In the 
ase of ties,
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ommended breaking them randomly. The BRKGA usesthe ve
tor of random keys to randomly perturb the values of minlength(i) and getrid of the ties. These values are adjusted as minlength(i)← minlength(i) + x(i).4.3.4. Experimental results. Noronha et al. (2010) test their BRKGA extensively ona set of hard instan
es of the RWA problem. The BRKGA is 
ompared with a multi-start variantMS-RWA of the heuristi
 BFD-RWA of Skorin-Kapov (2007) as well asthe tabu sear
h based heuristi
 2-EDR+TS-PCP of Noronha and Ribeiro (2006).Noronha et al. observe in their 
omputational experiments that the multi-startheuristi
MS-RWA was able to improve the results of BFD-RWA and also that theirBRKGA identi�es the relationships between keys and good solutions, 
onverging tobetter solutions, on average, in 23% less time than MS-RWA. The average solutiongap observed with the BRKGA was almost 50% of that presented by 2-EDR+TS-PCP. The experiments also illustrated the robustness of the BRKGA, sin
e allversions of the BRKGA (using di�erent parameter settings) obtained good andsimilar results.4.4. Tollbooth lo
ation and tari� assignment. In transportation networks, itis desirable to dire
t tra�
 so as to minimize 
ongestion, thus de
reasing user traveltimes and improving network utilization. One way to persuade drivers to avoid 
er-tain routes and favor others is by 
harging toll for drivers to use 
ertain segments ofthe network. The obje
tive of the tollbooth lo
ation and tari� assignment problemis to lo
ate a given number of tollbooths on links of the network and determine tollvalues to impose on users of those links su
h that the average user travel time isminimized. Buriol et al. (2009) des
ribe a BRKGA for this problem.4.4.1. Problem de�nition. Given a network topology and 
ertain tra�
 �ow de-mands, we levy tolls on ar
s, seeking an e�
ient system su
h that the resulting setof least-
ost user paths is optimal for the overall system. Consider a dire
ted graph
G = (N, A), with N representing the set of nodes and A the set of ar
s. Ea
h ar

a ∈ A has an asso
iated 
apa
ity ca and 
ost Φa, whi
h is a fun
tion of the load
ℓa (or �ow) on the ar
, the time ta to traverse the ar
 when there is no tra�
 onthe ar
, a power parameter na, and a parameter Γa. In real-world tra�
 networks,ar
 (road segment) delays are generally des
ribed by nonlinear fun
tions asso
iatedwith these network 
ongestion parameters. We assume that Φa is a stri
tly in
reas-ing, 
onvex fun
tion. In addition, de�ne K ⊆ N ×N to be the set of 
ommodities,or origin-destination (O-D) pairs, having o(k) and d(k) as origin and destinationnodes, respe
tively, for all k ∈ K = {1, . . . , |K|}. Ea
h 
ommodity k ∈ K has anasso
iated demand of tra�
 �ow ∆k de�ned, i.e. for ea
h O-D pair {o(k), d(k)},there is an asso
iated amount of �ow ∆k that emanates from node o(k) and termi-nates at node d(k). Furthermore, de�ne xk

a to be the 
ontribution of 
ommodity kto the �ow on ar
 a. The tra�
 optimization problem 
an be written as
min Φ =

∑

a∈A

ℓata [1 + Γa(ℓa/ca)na ] /
∑

k∈K

∆ksubje
t to
ℓa =

∑

k∈K

xk
a, ∀a ∈ A,
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∑

i:(j,i)∈A

xk
(j,i) −

∑

i:(i,j)∈A

xk
(i,j) =











−∆k, ∀ j ∈ N, k ∈ K : j = d(k),

∆k, ∀ j ∈ N, k ∈ K : j = o(k),

0, ∀ j ∈ N, k ∈ K : j 6= o(k), j 6= d(k),

xk
a ≥ 0, ∀ a ∈ A, k ∈ K.Given a number κ of tolls to pla
e in the network, the obje
tive is to determine aset of κ ar
s in A where tolls will be pla
ed and tari�s for ea
h toll su
h that ifusers travel on least-
ost routes, the resulting xk

a de
ision variables (for all a ∈ Aand k ∈ K) will be su
h that the above tra�
 optimization problem is solved.4.4.2. Solution en
oding. A solution of the tollbooth lo
ation and tari� assignmentproblem is en
oded in a ve
tor χ of 2×|A| random keys. The �rst |A| random keys
orrespond to the tari�s on the ar
s while the last |A| keys are used to indi
atewhether a toll is to be pla
ed on an ar
 or not.4.4.3. Chromosome de
oder. De�ne a binary variable ya for ea
h ar
 a ∈ A whi
htakes on value 1 if and only if a toll is levied on ar
 a. For ea
h ar
 a ∈ A, let
πa denote the tari� levied by the toll on ar
 a. Finally, let Ta be the value of themaximum toll that 
an be levied on ar
 a. Given a 
hromosome χ with 2 × |A|random keys, let ya = 1 if and only if χ|A|+a ≥ 0.5. The 
orresponding tari� onar
 a is πa = ⌈χa × Ta⌉ × ya. To 
ompute the de
ision variables xk

a of the tra�
assignment problem, all demands are routed on least-
ost routes in the network.A lo
al sear
h pro
edure is applied on the tari�s to attempt to de
rease the valueof the obje
tive fun
tion of the tra�
 assignment model. The 
rossover operatorhandles the last |A| random keys in a way that is slightly di�erent from the standardparametrized uniform 
rossover that is applied to the �rst |A| random keys. Forall ar
s on whi
h both parent solutions agree on whether or not to pla
e a toll,the 
hild inherits the random key of any one of the parents. If the parents do notagree on all lo
ations, then additional tolls will need to be assigned in the 
hild
hromosome to guarantee that κ ar
s have tolls. For ea
h additional toll, the 
hildinherits the 
hromosome of a parent having χa ≥ 0.5 with probability that favorsinheritan
e from the elite parent.4.4.4. Experimental results. Sin
e this BRKGA is the �rst heuristi
 proposed inthe literature to solve this problem, Buriol et al. (2009) limit their experiments totesting two versions of the BRKGA, one using the de
oder des
ribed above andanother with a similar de
oder without lo
al sear
h. The heuristi
s are tested onthe transportation networks of the 
ities of Sioux Falls, Winnipeg, Sto
kholm, andBar
elona. These networks vary in size from 24 nodes and 76 links with 528 O-Dpairs (Sioux Falls) to 1052 nodes and 2836 links with 4345 O-D pairs (Winnipeg).For ea
h instan
e, the BRKGA was run with the number of tollbooths varyingfrom one to the number of nodes in the network. For the smallest instan
e, SiouxFalls, the system optimal solution, a lower bound on the tollbooth lo
ation andtari� assignment problem, was 
omputed. By pla
ing tollbooths on 60 of the 76links of the Sioux Falls example, the BRKGA was able to produ
e solutions within10% of the system optimal. System optimal 
ould not be 
omputed for the largerinstan
es. On the network of Sto
kholm, the BRKGA with the lo
al sear
h de
oderwas shown to produ
e better solutions than the variant without lo
al sear
h. OnWinnipeg and Bar
elona, however, the variant without lo
al sear
h found bettersolutions.



BRKGA FOR COMBINATORIAL OPTIMIZATION 204.5. Job-shop s
heduling. Gonçalves et al. (2005) present a BRKGA heuristi
for the job-shop s
heduling problem.4.5.1. Problem de�nition. We are given n jobs, ea
h 
omposed of several operationsthat must be pro
essed on m ma
hines. Ea
h operation uses one of the m ma
hinesfor a �xed duration. Ea
h ma
hine 
an pro
ess at most one operation at a timeand on
e an operation initiates pro
essing on a given ma
hine it must 
ompletepro
essing on that ma
hine without interruption. The operations of a given jobhave to be pro
essed in a spe
i�ed order. The problem 
onsists in �nding a s
heduleof the operations on the ma
hines that minimizes the makespan Cmax , i.e. the�nish time of the last operation 
ompleted in the s
hedule, taking into a

ount thepre
eden
e 
onstraints.4.5.2. Solution en
oding. Let p be the number of operations. The proposed random-key ve
tor x used to en
ode a solution has size 2p. Its �rst p genes determine thepriorities of the operations, i.e. xi 
orresponds to the priority of operation i, for
i = 1, . . . , p. The last p genes are used to en
ode the delay used to s
hedule anoperation, i.e. for i = 1, . . . , p, xp+i is used to 
ompute the delay of operation i.The delay of operation i is de�ned to be xp+i ×D, where D is the duration of thelongest operation.4.5.3. Chromosome de
oder. A parametrized a
tive s
hedule is 
onstru
ted usingthe priorities and delays en
oded in the 
hromosome. This s
hedule is an a
tives
hedule, i.e. it allows a ma
hine to be idle even when there is an operation availablefor it to pro
ess. Among all operations i that would require a delay at most xp+i×D,the operation i with the highest priority xi is s
heduled on the ma
hine.4.5.4. Experimental results. To show the e�e
tiveness of their algorithm, Gonçalveset al. (2005) 
onsidered 43 instan
es from two 
lasses of standard job-shop s
hedul-ing test problems: Fisher and Thompson (1963) instan
es FT06, FT10, FT20, andLawren
e (1984) instan
es LA01 through LA40.The BRKGA was 
ompared with the problem spa
e geneti
 algorithm of Storeret al. (1992), the geneti
 algorithms of Aarts et al. (1994), Della Cro
e et al. (1995),Dorndorf and Pes
h (1995), and Gonçalves and Beirão (1999), the GRASP heuris-ti
s of Binato et al. (2002) and Aiex et al. (2003), the hybrid geneti
/simulatedannealing heuristi
 of Wang and Zheng (2001), and the tabu sear
h of Nowi
ki andSmutni
ki (1996).All 43 instan
es were solved with the BRKGA. The BRKGA found the best-known solution for 31 instan
es (72% of the problems) and had an average relativedeviation from the best-known solution of 0.39%. It showed an improvement withrespe
t to all others algorithms with the ex
eption of the tabu sear
h algorithmof Nowi
ki and Smutni
ki that had a slightly better performan
e, mainly on the
15× 15 problems.4.6. Resour
e 
onstrained proje
t s
heduling. In proje
t s
heduling a set ofa
tivities needs to be s
heduled. Pre
eden
e relations between a
tivities 
onstrainthe start of an a
tivity to o

ur after the 
ompletion of another. The obje
tive isto minimize the makespan, i.e. minimize the 
ompletion time of the last s
heduleda
tivity. When a
tivities require resour
es with limited 
apa
ities we have a re-sour
e 
onstrained proje
t s
heduling problem (RCPSP). Mendes et al. (2009) andGonçalves et al. (2009a) des
ribe BRKGA heursti
s for the RCPSP.
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t 
onsists of n + 2 a
tivities. To 
omplete theproje
t, ea
h a
tivity has to be pro
essed. Let J = {0, 1, . . . , n, n + 1} denote theset of a
tivities to be s
heduled and K = {1, . . . , k} the set of resour
es. A
tivities
0 and n + 1 are dummies, have no duration, and represent the initial and �nala
tivities. The a
tivities are interrelated by two kinds of 
onstraints: (1) Pre
eden
e
onstraints for
e ea
h a
tivity j to be s
heduled after all prede
essor a
tivities Pjare 
ompleted; (2) A
tivities require resour
es with limited 
apa
ities. While beingpro
essed, a
tivity j requires rj,k units of resour
e type k ∈ K during every timeinstant of its non-preemptable duration dj . Resour
e type k has a limited 
apa
ityof Rk at any point in time. The parameters dj , rj,k, and Rk are assumed to beinteger, nonnegative, and deterministi
. For the proje
t start and end a
tivities,we have d0 = dn+1 = 0 and r0,k = rn+1,k = 0 for all k ∈ K. Let Fj representthe �nish time of a
tivity j. A s
hedule 
an be represented by a ve
tor of �nishtimes (F1, . . . , Fn+1) and its makespan is Cmax = max{F1, . . . , Fn+1}. The problem
onsists in �nding a s
hedule of the a
tivities, taking into a

ount the resour
es andthe pre
eden
e 
onstraints, that minimizes the makespan.4.6.2. Solution en
oding. A solution is en
oded with a ve
tor x of 2n random keys.The �rst n keys 
orrespond to the priorities of the a
tivities while the last n areused to determine the delay when s
heduling an a
tivity.4.6.3. Chromosome de
oder. For ea
h a
tivity j ∈ J not yet s
heduled, the delay
δj = xn+j × 1.5× δ̄ is 
omputed, where δ̄ is the maximum duration of any a
tivity.A
tivities are s
heduled, one at a time, at dis
rete points in time, starting fromtime t = 0. At time t, all a
tivities j ∈ J whose prede
essors have 
ompletedpro
essing or will have 
ompleted pro
essing by time t + δj are 
onsidered to be
andidates to be s
heduled. These a
tivities are s
heduled in the order determinedby their priorities (the priority of a
tivity j is xj). Ea
h is s
heduled as soon as allof its prede
essors 
omplete pro
essing and all resour
es it requires are available.The next s
hedule time is the earliest 
ompletion time among all a
tivities beingpro
essed at and after time t. This pro
ess is repeated until all a
tivities havebeen s
heduled. The makespan Cmax is the 
ompletion time of the last a
tivity to
omplete pro
essing. A new and more e�e
tive de
oder for this problem is des
ribedin Gonçalves et al. (2009a).4.6.4. Experimental results. To illustrate the e�e
tiveness of the BRKGA for RCPSP,Gonçalves et al. (2009a) 
onsider a total of 600 instan
es from the standard RCPSPtest problem set J120. In this test set ea
h instan
e has 120 a
tivities and requiresfour resour
e types. Instan
e details are des
ribed by Kolis
h et al. (1995) and 
ouldbe obtained at http://129.187.106.231/psplib/datasm.html (Last visited onApril 8, 2010). The BRKGA was 
ompared with the variable neighborhood sear
hof Fleszar and Hindi (2004), the large neighborhood sear
h of Palpant et al. (2004),the hybrid s
atter sear
h/ele
tromagnetism heuristi
 of Debels et al. (2006), thepopulation based approa
h of Valls et al. (2004), the sampling methods of Tormosand Lova (2003), S
hirmer and Riesenberg (1998), Kolis
h and Drexl (1996), andKolis
h (1995; 1996a;b), the geneti
 algorithms of Leon and Ramamoorthy (1995),Mendes et al. (2009), Valls et al. (2005), Debels and Vanhou
ke (2005), Valls et al.(2003), Ko
hetov and Stolyar (2003), Hartmann (1998; 2002), the simulated an-nealing heuristi
 of Bouleimen and Le
o
q (2003), the tabu sear
h heuristi
s of
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 of Möhring et al. (2003).Gonçalves et al. (2009a) showed in the above experiment that no algorithmdominated the BRKGA. The approa
h of Debels et al. (2006) is the one thatseems to have had the most similar performan
e. With this BRKGA, Gonçalveset al. improved the best known solution for 11 instan
es in test problem reposi-tory PSPLIB (http://129.187.106.231/psplib/files/j120hrs.sm, last visitedon April 8, 2010).4.7. Resour
e 
onstrained multi-proje
t s
heduling. In the resour
e 
on-strained multi-proje
t s
heduling problem (RCMPSP), a
tivities that make up sev-eral proje
ts must be s
heduled. These a
tivities share one or more resour
es havinglimited 
apa
ities. Asso
iated with ea
h proje
t are its release and due dates. Theproje
t 
annot begin pro
essing before the release date and should �nish as 
loseas possible to its due date. There are penalties asso
iated with earliness, tardiness,and total pro
essing time of the proje
t and the obje
tive is to s
hedule the a
-tivities su
h that the sum of the penalties of the proje
ts is minimized. Gonçalveset al. (2008) des
ribe three BRKGA variants for resour
e 
onstrained multi-proje
ts
heduling that they name GA-Sla
kMod, GA-Basi
, and GA-Sla
kND.4.7.1. Problem de�nition. The problem 
onsists of a set I of proje
ts, where ea
hproje
t i ∈ I is 
omposed of a
tivities j = {Ni−1 + 1, . . . , Ni}, where a
tivities
Ni−1+1 and Ni are dummies and represent the initial and �nal a
tivities of proje
t
i. J is the set of a
tivities and K = {1, . . . , k} is a set of renewable resour
es types.The a
tivities are interrelated by two kinds of 
onstraints. First, pre
eden
e 
on-straints for
e ea
h a
tivity j ∈ J to be s
heduled after all its prede
essor a
tivities
Pj are 
ompleted. Se
ond, pro
essing of the a
tivities is subje
t to the availabilityof resour
es with limited 
apa
ities. While being pro
essed, a
tivity j ∈ J requires
rj,k units of resour
e type k ∈ K during every time instant of its non-preemptableduration dj . Resour
e type k ∈ K has a limited availability of Rk at any point intime. Parameters dj , rj,k, and Rk are assumed to be non-negative and deterministi
.We assume that start and end a
tivities of ea
h proje
t have zero pro
essing timesand do not require any resour
e. A
tivities 0 and N +1 are dummy a
tivities, haveno duration, and 
orrespond to the start and end of all proje
ts. A
tivity 0 pre
edesall of the dummy initial a
tivities of the individual proje
ts and a
tivity N + 1 ispre
eded by all of the dummy �nal a
tivities of all the jobs. Using these dummya
tivities, the multi-proje
t s
heduling problem 
an be treated as if it were a singleproje
t. The obje
tive is to minimize a

∑

i∈I(aT 3
i + bE2

i + c(CDi − BDi)
2/CPDi),where Ti, Ei, CDi , BDi , and CPDi are, respe
tively, the tardiness, earliness, 
on-
lusion time, start time, and 
riti
al path duration of proje
t i.4.7.2. Solution en
oding. The en
oding of the solution is identi
al to the one usedin the BRKGA for single-proje
t s
heduling des
ribed in Se
tion 4.6, i.e. a ve
tor

x of 2n random keys. The �rst n keys 
orrespond to the priorities of the a
tivitieswhile the last n are used to determine the delay when s
heduling an a
tivity.4.7.3. Chromosome de
oder. The de
oder is identi
al to the one used in the BRKGAfor single-proje
t s
heduling des
ribed in Se
tion 4.6 ex
ept that instead of 
om-puting the makespan, this de
oder 
omputes the penalty a
∑

i∈I(aT 3
i + bE2

i +

c(CDi − BDi)
2/CPDi) as the �tness of the 
hromosome.
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e no prior experimental work on RCMPSP in-
luded tardiness, earliness, and �owtime deviations as measures of performan
e,Gonçalves et al. (2008) generated multi-proje
t instan
es with known optimal val-ues to 
ompare the three BRKGA variants proposed in their paper. Five types ofmulti-proje
t instan
es where generated with 10, 20, 30, 40, and 50 single proje
tsea
h. For ea
h problem type, 20 instan
es were generated. Sin
e ea
h single proje
tinstan
e had 120 a
tivities, the multi-proje
t instan
es had 1200, 2400, 3600, 4800,and 6000 a
tivities ea
h. Ea
h a
tivity was allowed to use up to four resour
es.Finally, the average number of overlapping proje
ts in exe
ution was 3, 6, 9, 12,and 15, respe
tively.Algorithm GA-Sla
kMod was the winner in all aspe
ts relative to the other two.For all instan
es, in absolute terms, algorithm GA-Sla
kMod obtained earliness,tardiness, and �ow time deviation 
lose to the optimum value.4.8. Early tardy s
heduling. Valente et al. (2006) des
ribe a BRKGA for a singlema
hine s
heduling problem with earliness and tardiness 
osts and no unfor
edma
hine idle time. Su
h problems arise in just-in-time produ
tion, where goodsare produ
ed only when they are needed, sin
e jobs are s
heduled to 
on
lude as
lose as possible to their due dates. The early 
ost 
an be seen, for example, asthe 
ost of 
ompleting a proje
t early in PERT-CPM analyzes, deterioration in theprodu
tion of perishable goods, or a holding 
ost for �nished goods. The tardy
ost is often asso
iated with rush shipping 
osts, lost sales, or loss of goodwill. It isassumed that no unfor
ed ma
hine idle time is allowed, and therefore the ma
hineis only idle when no jobs are available for pro
essing. This assumption representsa type of produ
tion environment where the ma
hine idleness 
ost is higher thanthe 
ost in
urred by 
ompleting a job early, or the ma
hine is heavily loaded, so itmust be kept running in order to satisfy the demand.4.8.1. Problem de�nition. A set of n independent jobs {J1, . . . , Jn} must be s
hed-uled without preemption on a single ma
hine that 
an handle at most one job ata time. The ma
hine and the jobs are assumed to be 
ontinuously available fromtime zero onwards and ma
hine idle time is not allowed. Job Jj , j = 1, . . . , n,requires a pro
essing time pj and should ideally be 
ompleted on its due date dj .For any s
hedule, the earliness and tardiness of Jj 
an be respe
tively de�ned as
Ej = max {0, dj − Cj} and Tj = max {0, Cj − dj}, where Cj is the 
ompletion timeof Jj . The obje
tive is to �nd the s
hedule that minimizes the sum of the earli-ness and tardiness 
osts of all jobs, i.e. ∑n

j=1(hjEj + wjTj), where hj and wj are,respe
tively, the per unit earliness and tardiness 
osts of job Jj .4.8.2. Solution en
oding. A solution of the early tardy s
heduling problem is en-
oded in a ve
tor x of n random keys that, when sorted, 
orresponds to the orderingthat the jobs are pro
essed on the ma
hine.4.8.3. Chromosome de
oder. Given a ve
tor x of n random keys, a solution is pro-du
ed by �rst sorting the ve
tor to produ
e an ordering of the jobs. The jobs ares
heduled on the ma
hine and the total 
ost is 
omputed. A simple lo
al sear
hs
ans the jobs, from �rst to last, testing if 
onse
utive jobs 
an be swapped in theorder of pro
essing. If a swap de
reases the 
ost of the s
hedule, the swap is done,the 
ost re
omputed, and the s
an 
ontinues from that job until the last two jobsare tested.
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heduling problem. The geneti
 algorithms were 
ompared with theNSear
h heuristi
 of Li (1997). The algorithms were tested on randomly generatedproblems having 15, 50, 75, and 100 jobs. The obje
tive fun
tion values obtainedby the heuristi
 pro
edures were 
ompared with the optimal solution for the 15-jobproblems, and with the best known solution for the remaining problems.As far as solution quality is 
on
erned, the proposed BRKGA heuristi
s (withfew ex
eptions) found better solutions than NSear
h, both with respe
t averageper
ent deviation and in the number of instan
es for whi
h better results wereobtained.The run time of the geneti
 algorithms were greater (parti
ularly for the versionsthat in
orporate more sophisti
ated lo
al sear
h pro
edures), but these times werefor the full 500 generations. The experiments showed also that in
reased lo
al sear
hat the �tness-evaluation level of the BRKGA provided better solution values. Therun times in
reased as the lo
al sear
h 
omplexity itself in
reased, but on
e againthese results 
an be misleading, and need to be 
omplemented by an analysis of thenumber of generations needed to rea
h the best solution. In
luding the �nal roundof multiple non-adja
ent inter
hange is barely noti
eable in terms of run time and
an provide a further improvement in solution quality.4.9. Single ma
hine s
heduling with linear earliness and quadrati
 tar-diness penalties. Valente and Gonçalves (2008) present a BRKGA for a singlema
hine s
heduling problem with linear earliness and quadrati
 tardiness penalties.They 
onsider an obje
tive fun
tion with linear earliness and quadrati
 tardiness
osts. A linear penalty is then used for the early jobs, sin
e the 
osts of maintainingand managing this inventory tend to be proportional to the quantity held in sto
k.However, late deliveries 
an result in lost sales, loss of goodwill, and disruptions instages further down the supply 
hain. A quadrati
 tardiness penalty is used for thetardy jobs. In many situations this is preferable to the more usual linear tardinessor maximum tardiness fun
tions. Finally, no ma
hine idle time is allowed.4.9.1. Problem de�nition. A set of n independent jobs {J1, . . . , Jn} must be s
hed-uled on a single ma
hine that 
an handle at most a single job at a time. Thema
hine is assumed to be 
ontinuously available from time zero onwards, and pre-emption is not allowed. Job Jj , for j = 1, . . . , n, requires a pro
essing time pjand should ideally be 
ompleted on its due date dj . For any s
hedule, the earli-ness and tardiness of Jj 
an be respe
tively de�ned as Ej = max {0, dj − Cj} and
Tj = max {0, Cj − dj}, where Cj is the 
ompletion time of Jj . The obje
tive is to�nd a s
hedule that minimizes the sum of linear earliness and quadrati
 tardiness
osts ∑n

j=1(Ej +T 2
j ), subje
t to the 
onstraint that no ma
hine idle time is allowed.4.9.2. Solution en
oding. A solution of the single ma
hine s
heduling problem withlinear earliness and quadrati
 tardiness penalties is en
oded in a ve
tor x of n ran-dom keys that, when sorted, 
orresponds to the ordering that the jobs are pro
essedon the ma
hine.4.9.3. Chromosome de
oder. Given a ve
tor x of n random keys, a solution is pro-du
ed by �rst sorting the ve
tor to produ
e an ordering of the jobs. The jobsare s
heduled on the ma
hine and the total 
ost is 
omputed. Then three sim-ple lo
al sear
h pro
edures, adja
ent pairwise inter
hange (API ), 3-swaps (3SW ),
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ost insertion (LCI ) are applied. At ea
h iteration, API 
onsiders insu

ession all adja
ent job positions. A pair of adja
ent jobs is swapped if su
han inter
hange improves the obje
tive fun
tion value. If ne
essary, the solution isupdated. This pro
ess is repeated until no improvement is found in a 
ompleteiteration. Next, 3SW is applied. It is similar to API, ex
ept that it 
onsiders three
onse
utive job positions instead of an adja
ent pair of jobs. All possible permu-tations of these three jobs are analyzed, and the best 
on�guration is sele
ted. Ifne
essary, the solution is updated. On
e more, the pro
edure is applied repeatedlyuntil no improvement is possible. Finally LCI is applied. At ea
h iteration, LCIsele
ts the job with the largest obje
tive fun
tion value. The sele
ted job is removedfrom its position i in the s
hedule, and inserted at position j, for all j 6= i. Thebest insertion is performed if it improves the obje
tive fun
tion value. If ne
essary,the solution is updated. This pro
ess is also repeated until no improving move isfound.4.9.4. Experimental results. Valente and Gonçalves (2008) 
ompare several BRKGAvariants with existing heuristi
s, namely the EQTP dispat
hing rule of Valente(2007) and the re
overing beam sear
h(RBS) pro
edure of Valente (2009). Finally,the results found by the heuristi
s are evaluated with respe
t to the optimum ob-je
tive fun
tion values for some instan
e sizes. The instan
es used in the 
omputa-tional tests are available online at http://www.fep.up.pt/do
entes/jvalente/ben
hmarks.html (Last visited on April 8, 2010).The experiments show that two of the BRKGA variants (MA_IN and MA) �ndthe best results, and are 
learly superior to existing heuristi
s for this problem.They �nd optimal solutions for over 90% of the test instan
es. The improvementsin performan
e provided by the BRKGA heuristi
s are larger for the more di�
ultinstan
es. Furthermore, the improvements over the best existing heuristi
 pro
e-dures in
rease with size of the the instan
e. The performan
e of the proposedBRKGA approa
h was improved by both the initialization of the �rst populationand the addition of a lo
al sear
h pro
edure.4.10. Assembly line balan
ing. Assembly or fabri
ation lines are used to man-ufa
ture large quantities of standardized produ
ts. An assembly line 
onsists of asequen
e of m workstations, 
onne
ted by a 
onveyor belt, through whi
h the prod-u
t units �ow. Ea
h workstation performs a subset of the n operations ne
essaryfor manufa
turing the produ
ts. Ea
h produ
t unit remains at ea
h station for a�xed time C 
alled the 
y
le time. In traditional assembly lines, workstations are
onse
utively arranged in a straight line. Ea
h produ
t unit pro
eeds along thisline and visits ea
h workstation on
e. The major de
ision 
onsists in de�ning anassignment of operations to workstations su
h that the line e�
ien
y is maximized.Gonçalves and Almeida (2002) des
ribe a BRKGA for assembly line balan
ing.4.10.1. Problem de�nition. In the assembly line problem, a single produ
t is man-ufa
tured in large quantities in a pro
ess involving n operations, ea
h of whi
htakes tj time units to pro
ess, for j = 1, . . . , n. Operations are partially ordered bypre
eden
e relations, i.e. when an operation j is assigned to a station k, ea
h oper-ation i whi
h pre
edes j must be assigned to one of the workstations 1, . . . , k. Ea
hoperation must be assigned to exa
tly one workstation. The sets of operations Sk,assigned to workstations k = 1, . . . , m, are 
alled workstation loads. Workstations
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onse
utively along the line. The total operation time of the oper-ations assigned to a station k, 
alled workstation time t(Sk), must not ex
eed the
y
le time, i.e. t(Sk) =
∑

{j∈Sk}
tj ≤ C, for k = 1, . . . , m. Gonçalves and Almeida(2002) deal with the SALBP-1 variant of the problem, where we are given the 
y
letime C and the obje
tive is to minimize the number m of stations.4.10.2. Solution en
oding. A solution of the assembly line problem is en
oded ina ve
tor x of n random keys, where n is the number of operations. The key xi
orresponds to the priority of the i-th operation.4.10.3. Chromosome de
oder. The de
oder takes as input a ve
tor x of n randomkeys and returns an assignment of operations to work stations. The random key

xi is the priority of operation i. Given a set of operation priorities, a station-oriented heuristi
 is used to assign operations to workstations. This pro
edurestarts with station 1 and 
onsiders the other stations su

essively. In ea
h iteration,the operation with highest priority in the 
andidate set is 
hosen and assigned tothe 
urrent station. The 
urrent station is 
losed and the next station is openedwhen the 
andidate set is empty, i.e. when adding any operation to the stationwould ex
eed the 
y
le time. Subsequently, a lo
al sear
h pro
edure is used totry to improve the solution obtained by the station-oriented heuristi
. The lo
alsear
h attempts to swap long operations s
heduled in downstream workstationswith shorter operations in upstream workstations with the obje
tive of freeing upa downstream workstation.4.10.4. Experimental results. To demonstrate the e�e
tiveness and robustness ofthe approa
h, Gonçalves and Almeida (2002) present 
omputational results usingthree sets of test problems found in the literature: the 64 instan
es of the Talbot-Set (Talbot et al., 1986), the the 50 instan
es of the Ho�man-Set (Ho�mann, 1990;1992), and the 168 of the S
holl-Set (S
holl, 1993). The 
ombined set 
onsistsof 269 instan
es (minus 13 instan
es whi
h are in both the Talbot-Set and theHo�mann-Set). The sour
es of the problems as well as a detailed des
ription aregiven by S
holl (1993) (these datasets 
an be downloaded from http://www.bwl.th-darmstadt.de/bwl3/fors
h/projekte/alb/salb1dat.htm, last visted on April8, 2010).Two experiments were 
arried out. In the �rst, the BRKGA was 
omparedwith the heuristi
 EUREKA of Ho�mann (1992) and in the se
ond it is 
omparedwith the tabu sear
h heuristi
s PrioTabu and EurTabu S
holl and Voÿ (1997). Theproposed BRKGA produ
ed solutions that are as good as those found by EUREKA.For problem instan
e Ar
us-111 the BRKGA found a solution whi
h is better thanthe one found with EUREKA. The BRKGA found approximately 7% more bestsolutions than PrioTabu and same number of best solutions as EurTabu.4.11. Manufa
turing 
ell formation. The fundamental problem in 
ellular man-ufa
turing is the formation of produ
t families and ma
hine 
ells. Gonçalves andResende (2004) present a BRKGA for manufa
turing 
ell formation.4.11.1. Problem de�nition. Given P produ
ts and M ma
hines, we wish to assignprodu
ts and ma
hines to a number of produ
t-ma
hine 
ells su
h that inter-
ellularmovement is minimized and ma
hine utilization within a 
ell is maximized. Let thebinary matrix A = [a]i,j be su
h that ai,j = 1 if and only if produ
t i uses ma
hine
j. By reordering the rows and 
olumns of A and moving the 
ells so they are lo
ated



BRKGA FOR COMBINATORIAL OPTIMIZATION 27on or near the diagonal of the reordered matrix, a measure of e�
a
y of the solution
an be de�ned to be µ = (n1− nout
1 )/(n1 + nin

0 ), where n1 is the number of ones in
A, nout

1 is the number of ones outside the diagonal blo
ks, and nin
0 is the numberof zeroes inside the diagonal blo
ks. We seek to maximize µ.4.11.2. Solution en
oding. A solution to the 
ellular manufa
turing problem is en-
oded as a ve
tor x of M +1 random keys, where the �rst M random keys are usedto assign the ma
hines to 
ells and the last random key determines the numberof 
ells. Assuming that the smallest 
ell allowed has dimension 2 × 2, the maxi-mum number of 
ells is C̄ = ⌊M/2⌋. The number of 
ells in a solution is therefore

C = ⌈xM+1 × C̄⌉ and ma
hine i is assigned to 
ell ⌈xi × C⌉.4.11.3. Chromosome de
oder. The de
oder �rst assigns produ
ts to the 
ell thatmaximizes the e�
a
y with respe
t to the ma
hine-
ell assignments. On
e produ
tsare assigned, then ma
hines are reassigned to the 
ells that maximize the e�
a
y.This pro
ess of reassigning produ
ts and ma
hines is repeated until there is nofurther in
rease in the e�
a
y measure.4.11.4. Experimental results. To show the performan
e of the proposed BRKGA,Gonçalves and Resende (2004) used 35 group te
hnology instan
es 
olle
ted fromthe literature. The sele
ted matri
es range from dimension 5 × 7 to 40 × 100 and
omprise well-stru
tured as well as unstru
tured matri
es. The grouping e�
a
iesobtained by the BRKGA were 
ompared with the ones obtained by the approa
hesZODIAC of Chandrasekharan and Rajagopalan (1987), GRAFICS of Srinivasanand Narendran (1991), the 
lustering algorithm MST of Srinivasan (1994), the ge-neti
 algorithms GATSP of Cheng et al. (1998), the geneti
 algorithm of Onwuboluand Mutingi (2001), and the geneti
 programming pro
edure of Dimopoulos andMort (2001). In 2004, these six approa
hes 
orresponded to the best publishedresults for these 35 test problems.The experiments showed that the proposed BRKGA 
omputed ma
hine/produ
tgroupings having a grouping e�
a
y that was never smaller than any of the bestreported results. It found grouping e�
a
ies that were equal to the best ones foundin the literature for 14 (40%) problems and improved the values of the grouping e�-
a
ies for 21 (60%) problems. On 11 (31%) problems, the per
entage improvementwas over 5%.4.12. Constrained two-dimensional orthogonal pa
king. In the 
onstrainedtwo-dimensional (2D), non-guillotine restri
ted, pa
king problem, a �xed set ofsmall weighted re
tangles has to be pla
ed, without overlap, into a larger sto
k re
-tangle so as to maximize the sum of the weights of the re
tangles pa
ked. Gonçalves(2007) proposed the �rst BRKGA for this problem. This was improved in Gonçalvesand Resende (2009), where a new BRKGA, that uses a novel pla
ement pro
edureand a new �tness fun
tion to drive the optimization, was proposed.4.12.1. Problem de�nition. The two-dimensional pa
king problem 
onsists in pa
k-ing into a single large planar sto
k re
tangle (W, H), of width W and height H ,
n smaller re
tangles (wi, hi), i = 1, . . . , n, ea
h of width wi and height hi. Ea
hre
tangle i has a �xed orientation (i.e. 
annot be rotated), must be pa
ked withits edges parallel to the edges of the sto
k re
tangle, and the number xi of pie
esof ea
h re
tangle type that are to be pa
ked must lie between Pi and Qi, i.e.
0 ≤ Pi ≤ xi ≤ Qi, for all i = 1, . . . , n. Ea
h re
tangle i = 1, . . . , n has an asso
iated
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tive is to maximize the total value ∑n

i=1 vixi of there
tangles pa
ked. Without signi�
ant loss of generality, it is usual to assume thatall dimensions W, H, and (wi, hi), i = 1, . . . , n, are integers.4.12.2. Solution en
oding. A solution of the two-dimensional pa
king problem isen
oded in a ve
tor x of 2N random keys, where N =
∑n

i=1 ni. The �rst Nrandom keys 
orrespond to the ordering that the re
tangles are pa
ked while thelast N keys indi
ate how the re
tangles are to be pla
ed in the sto
k re
tangle.4.12.3. Chromosome de
oder. Given a ve
tor x of random keys, the re
tangles arepa
ked by s
anning x starting from the �rst 
omponent. For i = 1, . . . , N, let
t = ⌈xi × n⌉ denote the type of re
tangle to be pa
ked next. If there are no morere
tangles of type t available to be pa
ked, the de
oder pro
eeds to the next value of
i.Otherwise it pro
eeds to pa
k one or more re
tangles of type t, up to the maximumnumber of available re
tangles of that type using a heuristi
 determined by thevalue of xN+i. If xN+i ≤ 0.5, then the left-bottom heuristi
 is used. Otherwise, there
tangle is pla
ed using the bottom-left heuristi
. If the left-bottom heuristi
 isapplied, a verti
al layer of re
tangles is pla
ed. Similarly, if the bottom-left heuristi
is used, a horizontal layer of re
tangles is pla
ed. The �tness of the 
hromosomeis the total weight of the pa
ked re
tangles plus a term that tries to 
apture theimprovement potential of di�erent pa
kings whi
h have the same total value.4.12.4. Experimental results. Gonçalves (2007) 
arried out two types of experi-ments to evaluate the proposed BRKGA. In the �rst, the performan
e of theBRKGA was evaluated against other metaheuristi
 approa
hes while in the se
-ond he evaluated the deviation from the optimal of the trim loss values obtainedby the BRKGA. In the �rst set of experiments, the BRKGA was 
ompared withthe geneti
 algorithm SGA and the mixed simulated annealing-geneti
 algorithmMSAGA of Leung et al. (2003), as well as with the GRASP of Alvarez-Valdes et al.(2005). 21 instan
es were used in this experiment: three instan
es from Lai andChan (1997), �ve instan
es from Jakobs (1996), two instan
es from Leung et al.(2003), and nine instan
es from Hopper and Turton (2001). All these problem in-stan
es have known optimal solution where the trim loss is zero. In the se
ond setof experiments, instan
es were taken from Hi� (1998), Beasley (1985), Hadji
on-stantinou and Christo�des (1995), Wang (1983), Christo�des and Whitlo
k (1977),Fekete and S
hepers (1997), and Hopper and Turton (2001).The �rst set of experiments showed that the BRKGA 
learly outperforms, interms of solution quality, all of the other heuristi
s. The BRKGA obtained the bestaverage values for all of the 19 problem instan
es and obtained the best minimumtrim loss values for 17 of the problem instan
es. On the Hi� (1998) instan
es, theBRKGA found the optimal trim loss for all the 25 instan
es and for all the 10repli
ations. Sin
e the problem instan
es of this set have only 7 to 22 re
tangles,the fa
t that the optimal solutions were found is not as relevant as the fa
t that theywere obtained on all the 10 repli
ations. On the Beasley (1985), Hadji
onstantinouand Christo�des (1995), Wang (1983), Christo�des andWhitlo
k (1977), and Feketeand S
hepers (1997) instan
es, the optimal or best known trim loss values wereobtained from Oliveira (2004). For this set, the BRKGA obtained the optimaltrim loss values for all the 19 instan
es with known optimal value, obtained threetrim loss values equal to best known trim loss values, and was able to improve thebest known trim loss for instan
e 2 of Fekete and S
hepers (1997). For 18 problem
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es, the optimal/best known value was obtained on all 10 repli
ations. Forthe Hopper and Turton (2001) test problems, the BRKGA found the optimal trimloss values for eight of the 21 problem instan
es. For all the other instan
es therelative deviation from the minimum trim loss value was always under 1%. For theHopper and Turton (2001) instan
es, the BRKGA obtained the optimal trim lossvalues for �ve of the 35 problems. For all the other instan
es the relative deviationsfrom the optimal trim loss value were always under 3.17%.Gonçalves and Resende (2009) 
ompare the proposed BRKGA with four re
entlyproposed heuristi
s, whi
h presented the best 
omputational results to date. Theseheuristi
s are a population heuristi
 (PH ) proposed by Beasley (2004), a geneti
algorithm (GA) proposed by Hadji
onstantinou and Iori (2007b), a GRASP heuris-ti
 proposed by Alvarez-Valdes et al. (2005), and a tabu sear
h approa
h (TABU )proposed by Alvarez-Valdes et al. (2007). The algorithms are 
ompared with a setof 630 large random instan
es generated by Beasley (2004) following Fekete andS
hepers (2004).The results showed that the BRKGA produ
ed overall average deviations fromthe upper bound that were always lower than those produ
ed by all the otherheuristi
s on all instan
e 
lasses, in
luding the BRKGA of Gonçalves (2007). A
lose look at the results shows that BRKGA outperformed the other heuristi
s notonly be
ause it obtained smaller average deviations from the upper bound (PH=1.67%, GA= 1.32%, GRASP= 1.07%, TABU= 0.98% and BRKGA = 0.83%) butalso be
ause it obtained a larger number of best results for the 21 
ombinationsof sizes and types (PH= 0/21, GA= 0/21, GRASP= 5/21, TABU= 8/21, andBRKGA = 20/21).4.13. General 
on
ave minimum 
ost �ow. Fontes and Gonçalves (2007) pro-posed a BRKGA for the general minimum 
on
ave 
ost network �ow problem(MCNFP). Con
ave 
ost fun
tions in network �ow problems arise in pra
ti
e asa 
onsequen
e of taking into a

ount e
onomi
 
onsiderations. For example, �xed
osts may arise and e
onomies of s
ale often lead to a de
rease in marginal 
osts.The geneti
 algorithm makes use of a lo
al sear
h heuristi
 to solve the problem.The lo
al sear
h algorithm tries to improve the solutions in the population by us-ing domain-spe
i�
 information. The BRKGA is used to solve instan
es with both
on
ave routing 
osts and �xed 
osts.4.13.1. Problem de�nition. Given a graph G = (W, A), where W is a set of n + 1nodes (node n+1 denotes the sour
e node and nodes 1, . . . , n denote demand nodes)and a set A of m dire
ted ar
s, A ⊆ {(i, j) : i, j ∈W}. Ea
h node i ∈ W \ {n + 1}has an asso
iated nonnegative integer demand value ri. The supply at the sour
enode equals the sum of the demands required by the n demand nodes. A generalnonde
reasing and nonnegative 
on
ave 
ost fun
tion gij is asso
iated with ea
h ar

(i, j) and satis�es gij(0) = 0. The obje
tive is to �nd a subset S of ar
s to be usedand the �ow xij routed through these ar
s, su
h that the demands are satis�ed andat minimum 
ost. A 
on
ave MCNFP has the property that it has a �nite solutionif and only if there exists a dire
t path going from the sour
e node to every demandnode and if there are no negative 
ost 
y
les. Therefore, a �ow solution is a treerooted at the single sour
e spanning all demand nodes. Thus, the obje
tive is to�nd an optimal tree rooted at the sour
e node that satis�es all 
ustomers demandat minimum 
ost.
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oding. A solution of the MCNFP is en
oded in a ve
tor x of
n random keys that 
orresponds to the priorities of the demand nodes used in thetree-
onstru
tor pro
edure of the de
oder.4.13.3. Chromosome de
oder. The de
oder builds a tree rooted at the sour
e node.The node priorities in x are used to determine the order by whi
h nodes are 
onsid-ered by the tree 
onstru
tor. The algorithm repeatedly performs three steps untileither a tree or an infeasible solution is produ
ed. The �rst step 
onsists in �ndingthe highest priority node not yet supplied. In the se
ond step, the algorithm seeksthe set of nodes that 
an a
t as a parent for the node found in the �rst step. Inthe third and last step, the parent is 
hosen as the highest priority node that doesnot 
reate an infeasibility, if one exists. A potential solution be
omes infeasible ifa 
y
le 
annot be avoided. In this 
ase, a high 
ost is asso
iated with the solution.After a solution is 
onstru
ted, a lo
al sear
h pro
edure is applied to it. The lo
alsear
h tries to improve upon a given solution by 
omparing it with solutions ob-tained by repla
ing an ar
 
urrently in the solution by an ar
 not in the solutionsu
h that the new solution is still a tree.4.13.4. Experimental results. To test the BRKGA heuristi
, Fontes and Gonçalves(2007) 
onsidered the Eu
lidean problem set des
ribed in Fontes et al. (2003).This set of instan
es 
an be downloaded from http://people.brunel.a
.uk/~mastjjb/jeb/orlib/netflow

info.html (Last visited on April 8, 2010). Theresults obtained by the BRKGA were 
ompared with optimal solutions found by adynami
 programming approa
h (Fontes et al., 2006) for problem instan
es with upto 19 nodes and, for larger instan
es, to heuristi
 solutions found by a lo
al sear
halgorithm (Fontes et al., 2003).The experiments showed the BRKGA to improve upon the e�
ien
y and e�e
-tiveness of existing methods. Optimal solutions were found for all but one of the600 problems with sizes ranging from 10 to 19 nodes. For larger instan
es, havingfrom 25 to 50 nodes, optimal solutions were found for all �xed-
harge problems. Forthe 
on
ave problems, optimal solution values were unknown. On these instan
es,
omparisons were made with upper bound values reported in the literature. Theresults show the proposed BRKGA to be very e�
ient and e�e
tive. The qualityof the solutions obtained by the BRKGA heuristi
 is quite similar to the ones re-ported by Fontes et al. (2003). However, the 
omputational time requirements forthe BRKGA were mu
h smaller.5. Con
luding remarksThis paper addressed biased random key geneti
 algorithms (BRKGA), a heuris-ti
 framework for 
ombinatorial optimization. The framework is well-suited to im-plement the pro
ess of learning the asso
iation between ve
tors of random keys andgood solutions of the 
ombinatorial optimization problems they are trying to solve.Solutions in a BRKGA are en
oded as n-dimensional ve
tors of random keys.A population of p su
h ve
tors is evolved through the iterations of the algorithm.Initially p ve
tors of keys are randomly generated with keys in the real interval[0,1℄. At ea
h iteration, the population is partitioned into a smaller elite set withthe best solutions and a larger non-elite set with the remaining solutions. Note thatto partition the population we require that ea
h random ve
tor be de
oded and the
ost of its 
orresponding solution evaluated. All of the elite solutions are 
opied



BRKGA FOR COMBINATORIAL OPTIMIZATION 31to the population of the next iteration. In addition, a small number of mutantsolutions is generated in the same way that the initial population was generated.These mutants are responsible for making the heuristi
 es
ape lo
al optima andassure asymptoti
 
onvergen
e of the method to a global optimum. Note that thenumber of elite and mutant solutions are input parameters, but our experien
ehas shown that having around 10-25% of the population as elite solutions and10-30% as mutants is an appropriate 
hoi
e. Given the elite and mutants in thenew population, one only needs to 
omplete the population through the pro
essof 
rossover. Crossover is simple: one parent is sele
ted at random from the eliteset and the other from either the non-elite or the entire population. Repetition isallowed so a parent 
an produ
e more than one o�spring in a given iteration. Thebest �t of the two parents is 
alled parent A while the other one is parent B. Theo�spring C is generated at random in su
h a way that it has a higher probability ofinheriting the 
hara
teristi
s of parent A. This is done by �ipping a biased 
oin ntimes. The 
oin �ip results in heads (parent A) with higher probability than tails(parent B). The probability of resulting in heads is an input parameter greaterthan half. Our experien
e has shown that a value between 0.5 and 0.8 works well.The result of the i-th �ip of the 
oin determines if the o�spring inherits the i-thrandom key of parent A or B. Note that all of the above steps, with the ex
eptionof 
omputing the �tness of the population to make the partitioning, are problemindependent.One of the appealing aspe
ts of the BRKGA 
on
ept is the division betweenproblem dependent and problem independent parts of the algorithm. Where in astandard GA one needs to de�ne di�erent 
rossover and mutation operators forea
h problem to be solved, in a BRKGA one does not worry about 
rossover andmutation. They are pre-spe
i�ed. In fa
t, on
e one 
odes a BRKGA, most ofthe 
ode 
an be reused in future implementations. In a BRKGA one need onlyworry about 
omputing the �tness of a solution as, by the way, one also needs todo in a standard GA. We show that on
e one has a heuristi
 for a problem, it iseasy to pla
e this heuristi
 in an evolutionary framework as a BRKGA. A BRKGA
oordinates simple heuristi
s to �nd solutions that are better than those found bythe simple heuristi
s alone.This is not always the 
ase for a standard GA.The BRKGA is a slight modi�
ation of the random-key GA of Bean (1994). Ina BRKGA one parent is always 
hosen from the elite set, while this is not the 
asein the algorithm of Bean. Though slight, this modi�
ation 
ontributes to a bigimprovement in the performan
e of these random-key GAs. This is, in some sense,similar to the addition of greediness to a pure randomized 
onstru
tion pro
edureas was done in the semi-greedy heuristi
 (Hart and Shogan, 1987) and GRASP (Feoand Resende, 1989; 1995), both of whi
h result in mu
h better solutions on averagethan a pure randomized 
onstru
tion.The 
omponents of BRKGAs are des
ribed in the paper and their integrationinto a heuristi
 framework is proposed. This framework separates the problem-independent part of the pro
edure from the part that is problem dependent. Thisway, a BRKGA 
an be de�ned by spe
ifying how solutions are en
oded and de
oded,making it easy to tailor BRKGAs for solving spe
i�
 
ombinatorial optimizationproblems. Implementation issues, in
luding parallelization of the heuristi
, areaddressed. The paper 
on
ludes with a number of appli
ations, where for ea
h one,the en
oding and de
oding is des
ribed in detail.
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an only provide insight into why BRKGA heuristi
s work well and showempiri
al eviden
e that they a
tually do. BRKGAs implement the idea of survivalof the �ttest though the elitist pro
ess and the biased 
rossover and are able toes
ape from lo
al optima through the use of mutants. In other papers, listed inSe
tion 4, we have 
ompared BRKGA heuristi
s with other standard GAs and haveshown that the BRKGA heuristi
s are indeed 
ompetitive.It is not our intention in this paper to 
reate a new metaheuristi
. However,we argue that the BRKGA framework is at least as general-purpose as standardgeneti
 algorithms. BRKGAs handle a wide range of 
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