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Abstra ct. Random-k ey genetic algorithms w ere in tro duced b y Bean (1994)

for solving sequencing problems in com binatorial optimization. Since then,

they ha v e b een extended to handle a wide class of com binatorial optimization

problems. This pap er presen ts a tutorial on the implemen tation and use of

biased random-k ey genetic algorithms for solving com binatorial optimization

problems. Biased random-k ey genetic algorithms are a v arian t of random-

k ey genetic algorithms, where one of the paren ts used for mating is biased

to b e of higher �tness than the other paren t. After in tro ducing the basics

of biased random-k ey genetic algorithms, the pap er discusses in some detail

implemen tation issues, illustrating the ease in whic h sequen tial and parallel

heuristics based on biased random-k ey genetic algorithms can b e dev elop ed.

A surv ey of applications that ha v e recen tly app eared in the literature is also

giv en.

1. Intr oduction

Com binatorial optimization can b e de�ned b y a �nite ground set E = f 1; : : : ; ng;
a set of feasible solutions F � 2E

, and an ob jectiv e function f : 2E ! R. Through-

out this pap er, w e consider the minimization v ersion of the problem, where w e

searc h for an optimal solution S� 2 F suc h that f (S)� � f (S); 8S 2 F: Giv en a

sp eci�c com binatorial optimization problem, one can de�ne the ground set E; the

cost function f; and the set of feasible solutions F . F or instance, in the case of the

tra v eling salesman problem on a graph, the ground set E is that of all edges in the

graph, f (S) is the sum of the costs of all edges e 2 S; and F is formed b y all edge

subsets that determine a Hamiltonian cycle.

Com binatorial optimization �nds applications in man y settings, including rout-

ing, sc heduling, in v en tory con trol, pro duction planning, and lo cation problems.

These problems arise in real-w orld situations (P ardalos and Resende, 2002) suc h as

in transp ortation (air, rail, truc king, shipping), energy (electrical p o w er, p etroleum,

natural gas), and telecomm unications (design, lo cation, op eration).

While m uc h progress has b een made in �nding pro v ably optimal solutions to com-

binatorial optimization problems emplo ying tec hniques suc h as branc h and b ound,

cutting planes, and dynamic programming, as w ell as pro v ably near-optimal solu-

tions using appro ximation algorithms, man y com binatorial optimization problems

arising in practice b ene�t from heuristic metho ds that quic kly pro duce go o d-qualit y
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solutions. Man y mo dern heuristics for com binatorial optimization are based on

guidelines pro vided b y metaheuristics.

Metaheuristics are high lev el pro cedures that co ordinate simple heuristics, suc h

as lo cal searc h, to �nd solutions that are of b etter qualit y than those found b y the

simple heuristics alone. Man y metaheuristics ha v e b een in tro duced in the last thirt y

y ears (Glo v er and K o c hen b erger, 2003). Among these, w e �nd greedy randomized

adaptiv e searc h pro cedures (GRASP), sim ulated annealing, tabu searc h, v ariable

neigh b orho o d searc h, scatter searc h, path-relinking, iterated lo cal searc h, an t colon y

optimization, sw arm optimization, and genetic algorithms.

In this pap er, w e in tro duce a class of heuristics called biase d r andom-key genetic

algorithms . This framew ork for building heuristics for com binatorial optimization is

general and can b e applied to a wide range of problems. An imp ortan t c haracteristic

of the framew ork is the clear divide b et w een the problem-indep enden t comp onen t

of the arc hitecture and the problem-sp eci�c part. This allo ws for reuse of soft w are

and p ermits the algorithm designer to concen trate on building the problem sp eci�c

deco der.

The pap er is organized as follo ws. In Section 2 w e in tro duce biased random-

k ey genetic algorithms. Issues related to the e�cien t implemen tation of sequen tial

and parallel v ersions of these heuristics are discussed in Section 3. In Section 4

examples of biased random-k ey genetic algorithms on a wide range of com binatorial

optimization problems are giv en. Concluding remarks are made in Section 5.

2. Biased random-key genetic algorithms

Genetic algorithms, or GAs, (Goldb erg, 1989; Holland, 1975) apply the concept

of survival of the �ttest to �nd optimal or near-optimal solutions to com binatorial

optimization problems. An analogy is made b et w een a solution and an individual

in a p opulation . Eac h individual has a corresp onding chr omosome that enco des

the solution. A c hromosome consists of a string of genes . Eac h gene can tak e

on a v alue, called an al lele , from some alphab et. A c hromosome has asso ciated

with it a �tness lev el whic h is correlated to the corresp onding ob jectiv e function

v alue of the solution it enco des. Genetic algorithms ev olv e a set of individuals that

mak e up a p opulation o v er a n um b er of gener ations . A t eac h generation, a new

p opulation is created b y com bining elemen ts of the curren t p opulation to pro duce

o�spring that mak e up the next generation. Random m utation also tak es place in

genetic algorithms as a means to escap e en trapmen t in lo cal minima. The concept

of surviv al of the �ttest pla ys in to genetic algorithms when individuals are selected

to mate and pro duce o�spring. Individuals are selected at random but those with

b etter �tness are preferred o v er those that are less �t.

Genetic algorithms with random k eys w ere �rst in tro duced b y Bean (1994) for

solving com binatorial optimization problems in v olving sequencing. In this pap er w e

refer to this class of genetic algorithms as r andom-key genetic algorithms (RK GA).

In a RK GA, c hromosomes are represen ted as a string, or v ector, of randomly gener-

ated real n um b ers in the in terv al [0; 1]. A deterministic algorithm, called a de c o der ,

tak es as input an y c hromosome and asso ciates with it a solution of the com binato-

rial optimization problem for whic h an ob jectiv e v alue or �tness can b e computed.

In the case of Bean (1994), the deco der sorts the v ector of random k eys and uses the

indices of the sorted k eys to represen t a sequence. As w e will see shortly , deco ders

pla y an imp ortan t role in RK GAs.
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Figure 2.1. T ransition from generation k to generation k + 1 in a BRK GA.

A RK GA ev olv es a p opulation of random-k ey v ectors o v er a n um b er of iterations,

called gener ations . The initial p opulation is made up of p v ectors of random-k eys.

Eac h allele is generated indep enden tly at random in the real in terv al [0; 1]. After the

�tness of eac h individual is computed b y the deco der, the p opulation is partitioned

in to t w o groups of individuals: a small group of pe elite individuals, i.e. those

with the b est �tness v alues, and the remaining set of p � pe non-elite individuals,

where pe < p � pe . T o ev olv e the p opulation, a new generation of individuals m ust

b e pro duced. A RK GA uses an elitist str ate gy since all of the elite individuals

of generation k are copied unc hanged to generation k + 1 . This strategy k eeps

trac k of go o d solutions found during the iterations of the algorithm resulting in a

monotonically impro ving heuristic. Mutation is an essen tial ingredien t of genetic

algorithms, used to enable GAs to escap e from en trapmen t in lo cal minima. RK GAs

implemen t m utation b y in tro ducing mutants in to the p opulation. A m utan t is

simply a v ector of random k eys generated in the same w a y that an elemen t of

the initial p opulation is generated. A t eac h generation a small n um b er pm of

m utan ts are in tro duced in to the p opulation. Mutan t solutions are random-k ey

v ectors and consequen tly can de deco ded in to v alid solutions of the com binatorial

optimization problem. With the pe elite individuals and the pm m utan ts accoun ted

for in p opulation k + 1 , p � pe � pm additional individuals need to b e pro duced to

complete the p individuals that mak e up the p opulation of generation k + 1 . This

is done b y pro ducing p � pe � pm o�spring through the pro cess of mating.

Figure 2.1 illustrates the ev olution dynamics. On the left of the �gure is the

curren t p opulation. After all individuals are sorted b y their �tness v alues, the b est

�t are placed in the elite partition lab eled ELITE and the remaining individuals

are placed in the partition lab eled NON-ELITE. The elite random-k ey v ectors are

copied without c hange to the partition lab eled TOP in the next p opulation (on the

righ t side of the �gure). A n um b er of m utan t individuals are randomly generated

and placed in the new p opulation in the partition lab eled BOT. The remainder of

the p opulation of the next generation is completed b y crosso v er. In a RK GA, Bean
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Figure 2.2. P arametrized uniform crosso v er: mating in BRK GAs.

(1994) selects t w o paren ts at random from the en tire p opulation. A biase d r andom-

key genetic algorithm, or BRK GA (Gonçalv es and Almeida, 2002; Ericsson et al.,

2002; Gonçalv es and Resende, 2004), di�ers from a RK GA in the w a y paren ts are

selected for mating. In a BRK GA, eac h elemen t is generated com bining one elemen t

selected at random from the partition lab eled ELITE in the curren t p opulation and

one from the partition lab eled NON-ELITE. In some cases, the second paren t is

selected from the en tire p opulation. Rep etition in the selection of a mate is allo w ed

and therefore an individual can pro duce more than one o�spring. Since w e require

that pe < p � pe , the probabilit y that a giv en elite individual is selected for mating

( 1=pe ) is greater than that of a giv en non-elite individual ( 1=(p� pe) ) and therefore

the giv en elite individual has a higher lik eliho o d to pass on its c haracteristics to

future generations than do es a giv en non-elite individual. Also con tributing to this

end are p ar ametrize d uniform cr ossover (Sp ears and DeJong, 1991), the mec hanism

used to implemen t mating in BRK GAs, and the fact that one paren t is alw a ys

selected from the elite set. Let � e > 0:5 b e a user-c hosen parameter. This parameter

is the probabilit y that an o�spring inherits the allele of its elite paren t. Let n denote

the n um b er of genes in the c hromosome of an individual. F or i = 1 ; : : : ; n; the i -

th allele c(i ) of the o�spring c tak es on the v alue of the i -th allele e(i ) of the

elite paren t e with probabilit y � e and the v alue of the i -th allele �e(i ) of the non-

elite paren t �e with probabilit y 1 � � e . In this w a y , the o�spring is more lik ely to

inherit c haracteristics of the elite paren t than those of the non-elite paren t. Since

w e assume that an y random k ey v ector can b e deco ded in to a solution, then the

o�spring resulting from mating is alw a ys v alid, i.e. can b e deco ded in to a solution

of the com binatorial optimization problem.

Figure 2.2 illustrates the crosso v er pro cess for t w o random-k ey v ectors with four

genes eac h. Chromosome 1 refers to the elite individual and Chromosome 2 to the

non-elite one. In this example the v alue of � e = 0 :7; i.e. the o�spring inherits the

allele of the elite paren t with probabilit y 0.7 and of the other paren t with probabilit y

0.3. A randomly generated real in the in terv al [0; 1] sim ulates the toss of a biased

coin. If the outcome is less than or equal to 0.7, then the c hild inherits the allele

of the elite paren t. Otherwise, it inherits the allele of the other paren t. In this
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Figure 2.3. Deco der used to map solutions in the h yp ercub e to

solutions in the solution space where �tness is computed.

example, the o�spring inherits the allele of the elite paren t in its �rst, third, and

fourth genes. It resem bles the elite paren t more than it do es the other paren t.

When the next p opulation is complete, i.e. when it has p individuals, �tness

v alues are computed for all of the newly created random-k ey v ectors and the p op-

ulation is partitioned in to elite and non-elite individuals to start a new generation.

A BRK GA searc hes the solution space of the com binatorial optimization problem

indirectly b y searc hing the con tin uous n -dimensional unit h yp ercub e, using the

deco der to map solutions in the h yp ercub e to solutions in the solution space of

the com binatorial optimization problem where the �tness is ev aluated. Figure 2.3

illustrates the role of the deco der.

BRK GA heuristics are based on a general-purp ose metaheuristic framew ork.

In this framew ork, depicted in Figure 2.4, there is a clear divide b et w een the

pr oblem-indep endent p ortion of the algorithm and the pr oblem-dep endent part. The

problem-indep enden t p ortion has no kno wledge of the problem b eing solv ed. It is

limited to searc hing the h yp ercub e. The only connection to the com binatorial opti-

mization problem b eing solv ed is the problem-dep enden t p ortion of the algorithm,

where the deco der pro duces solutions from the v ectors of random-k eys and com-

putes the �tness of these solutions. Therefore, to sp ecify a BRK GA heuristic one

need only de�ne its c hromosome represen tation and the deco der.

Consider, for example, a set co v ering problem where one is giv en an m� n binary

matrix A = [ ai;j ] and w an ts to select the smallest co v er, i.e. the smallest subset of

columns J � � f 1; 2; : : : ; ng suc h that, for eac h ro w i = 1 ; : : : ; m; there is at least one

j 2 J �
suc h that ai;j = 1 : One p ossible BRK GA heuristic for this problem de�nes

the v ector of random k eys x to ha v e n random k eys in the real in terv al [0; 1]. The

j -th k ey corresp onds to the j -th column of A: The deco der selects column j to b e

in J �
only if x j � 0:5: If the resulting set J �

is a v alid co v er, then the �tness of the

co v er is jJ � j . Otherwise, start with set J �
and apply the standard greedy algorithm

for set co v ering: while there are unco v ered ro ws, �nd the unselected column that if

added to J �
co v ers the largest n um b er of y et-unco v ered ro ws, breaking ties b y the

index of the column. A dd this column to set J �
. When the resulting set J �

is a

v alid co v er, scan the columns in the co v er from �rst to last to c hec k if eac h column
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Figure 2.4. Flo w c hart of a BRK GA

j 2 J �
is redundan t, i.e. if J � n f j g is a co v er. If so, then remo v e j from J � : When

no column can b e remo v ed, stop. The �tness of the co v er is jJ � j . Note that, as

required, this deco der is a deterministic algorithm. F or a giv en v ector of random

k eys, applying the deco der will alw a ys result in the same co v er.

Though BRK GAs only use randomly generated k eys, they are m uc h b etter at

�nding optimal or near-optimal solutions that a purely random algorithm. Fig-

ure 2.5 pro vides strong evidence that there is le arning taking place in a BRK GA.

The �gure sho ws the distributions of ob jectiv e function v alues of the 100-elemen t

p opulation of a BRK GA and the rep eated generation of sets of 100 random so-

lutions for a set co v ering b y pairs problem (Breslau et al., 2009). The random

solutions are generated with the same co de using the BRK GA parameters p = 101 ,

pe = 1 , and pm = 100: This w a y , the m utan ts are the random solutions, the

b est solution is sa v ed in the elite set, and no crosso v er is ev er done. Let i; j; k 2
f 1; 2; : : : ; 100g�f 1; 2; : : : ; 100g�f 1; 2; : : : ; 100g: The co v ering-b y-pairs problem con-

sidered here has 76,916 triplets, where a triplet f i; j; k g indicates that the pair

f i; j g co v ers elemen t k: The ob jectiv e is to �nd the smallest cardinalit y subset

S� � f 1; 2; : : : ; 100g suc h that the union of all pairs f i; j g with i; j 2 S� � S�
co v ers

all the 100 elemen ts indicated b y the k v alues. The optimal solution, whic h w e plot

as a reference, is 21 and w as computed b y solving an in teger programming mo del

with the commercial in teger programming solv er CPLEX. As one can observ e, while

the BRK GA quic kly �nds an optimal solution is less than 2 seconds, the random

m ultistart heuristic is still quite far from the optimal after 600 seconds ha ving only

found a b est solution of size 38.

As discussed earlier in this pap er, a biased random-k ey genetic algorithm and

an (un biased) random-k ey genetic algorithm di�er sligh tly in the w a y they select

paren ts for mating. The biased v arian t alw a ys selects one paren t from the set of

elite solutions whereas the un biased v arian t selects b oth paren ts from the en tire

p opulation. This w a y , o�spring pro duced b y the biased v ersion are more lik ely

to inherit c haracteristics of elite solutions. This lik eliho o d is further emphasized
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Figure 2.5. Comparing a BRK GA with a random m ultistart

heuristic on an instance of a co v ering b y pairs problem.

through the parametrized uniform crosso v er used b y b oth v arian ts to com bine the

paren ts and pro duce the o�spring. Though this is apparen tly only a v ery sligh t

di�erence, it almost alw a ys leads to a big di�erence in ho w these v arian ts p erform.

BRK GAs tend to �nd b etter solutions than RK GAs if giv en the same running time

and ha v e a m uc h higher probabilit y of �nding a solution with a sp eci�ed target

solution v alue in less time. T o illustrate this, consider Figure 2.6 whic h sho ws time-

to-optimal plots for a co v ering-b y-pairs problem with 220 elemen ts and 456,156

triplets. The plots compare running times to �nd an optimal solution for 200

indep enden t runs of eac h of three v arian ts: a BRK GA, a RK GA

1

, and a heuristic

(RK GA-ord) that is similar to a RK GA except that the o�spring inherit the allele of

the b etter �t of the t w o paren ts with probabilit y � e: The �gure clearly sho ws that

the BRK GA �nds optimal solutions in less time than its un biased coun terparts.

F or example, b y 325s, the time that the RK GA tak es to solv e an y one of its 84

attempts, the BRK GA solv es 184 of its 200 attempts. Ordering the paren ts, as is

done in RK GA-ord, impro v es the RK GA, but not enough to do b etter than the

BRK GA. F or example, b y 216s, the time that RK GA-ord tak es to solv e an y one of

its 200 attempts, the BRK GA solv es 176 of its 200 attempts. Though w e illustrate

this on only a single instance of a single problem t yp e, w e ha v e observ ed that this

b eha vior is t ypical for a wide range of problems (Gonçalv es et al., 2009b).

3. Implement a tion issues

In this section, w e discuss some issues related to the implemen tation of BRK GA

heuristics. W e fo cus on the separation of the problem indep enden t and dep en-

den t p ortions of the heuristic, t yp es of deco ders, initial p opulation, p opulation

1

Due to excessiv ely long running time, w e only carried out 84 indep enden t runs with the RK GA

v arian t.
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partitioning, parallel implemen tations, and p ost-optimization based on pairwise

path-relinking b et w een elite set solutions.

3.1. Comp onen ts of a BRK GA heuristic. As discussed earlier in this pap er,

RK GAs ha v e problem-indep enden t and problem-dep enden t mo dules. This mak es

it p ossible to design a general-purp ose problem-indep enden t solv er that can b e

reused to implemen t di�eren t heuristics. That w a y , when designing a new heuristic

for a sp eci�c com binatorial optimization problem, one need only implemen t the

problem-dep enden t part, namely the deco der.

The problem-indep enden t mo dule has few basic comp onen ts. These comp onen ts

dep end on the n um b er of genes in the c hromosome of an individual ( n ), the n um b er

of elemen ts in the p opulation ( p), the n um b er of elite elemen ts in the p opulation

( pe ), the n um b er of m utan ts in tro duced at eac h generation in to the p opulation

( pm ), and the probabilit y that an o�spring inherits the allele of its elite paren t

( � e ). The p opulation is stored in the p � n real-v alued matrix pop , where the

i -th c hromosome is stored in ro w i of pop . After p opulating matrix pop with

real-v alued random n um b ers generated uniformly in the in terv al [0; 1], the �tness

of eac h c hromosome is ev aluated b y the problem-dep enden t deco der. The �tness

v alue of the i -th c hromosome is stored in the i -th p osition of the p-dimensional

arra y fitness.

Eac h generation of an BRK GA heuristic consists of the follo wing �v e steps:

(1) Sort arra y fitness in increasing order and reorder the ro ws of pop accord-

ing to the sorted v alues of arra y fitness. The elemen ts of pop do not

actually need to b e mo v ed. Only an arra y with their p ositions is needed.
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F or ease of description, w e assume in this discussion that the ro ws of pop

are actually mo v ed to re�ect the sorted v alues of fitness.

(2) Mate p � pe � pm pairs of paren ts, one whose index in pop is an in teger

random n um b er uniformly generated in the in terv al [1; pe] and the other

whose index is an in teger random n um b er uniformly generated in the in ter-

v al [pe +1 ; p]. The i -th o�spring resulting from the crosso v er is temp orarily

stored in ro w i of the real-v alued (p � pe � pm ) � n matrix tmppop . Mating

is ac hiev ed b y generating n uniform random n um b ers f r1; : : : ; rn g in the

in terv al [0; 1]: F or j = 1 ; : : : ; n; if r j � � e; then the j -th gene of the o�spring

inherits the j -th allele of the elite paren t. Otherwise, it inherits the allele

of the other paren t.

(3) Generate at random pm m utan t c hromosomes of size n . These m utan ts are

generated b y the same mo dule used to generate the initial p opulation. The

i -th m utan t c hromosome is stored in ro w pm + i � 1 of matrix pop .

(4) Cop y the (p � pe � pm ) � n matrix tmppop to ro ws pe + 1 ; : : : ; p � pm of

matrix pop .

(5) Ev aluate the �tness of the c hromosomes in ro ws pe + 1 ; : : : ; p of matrix pop

and store these v alues in p ositions pe + 1 ; : : : ; p of arra y fitness.

This pro cess is applied rep eatedly . Eac h iteration is called a generation. There are

man y p ossible stopping criteria, including stopping after a �xed n um b er of genera-

tions from the b eginning, after a �xed n um b er of generations since the generation

of the last solution impro v emen t, after a time limit is reac hed, or after a solution

at least as go o d as a giv en threshold is found.

3.2. Deco ders. Deco ders pla y an imp ortan t role in BRK GA heuristics since they

mak e the connection b et w een the solutions in the h yp ercub e and the �tness of

their corresp onding solutions in the solution space of the com binatorial optimiza-

tion problem. They can range in complexit y from v ery simple, in v olving a direct

mapping b et w een the random k ey and the solution, to in tricate, suc h as random-k ey

driv en construction heuristics with lo cal searc h, or ev en blac k b o x computations.

Supp ose the solution space is made up of all p erm utations of � n = f 1; 2; : : : ng as

is the case for the quadratic assignmen t problem. Bean (1994) sho w ed that simply

sorting the v ector of random k eys results in a p erm utation of its indices. If one

w an ts to select p of n elemen ts of a set, assign a random k ey to eac h elemen t of

the set, sort the v ector of random k eys, and select the elemen ts corresp onding to

the p smallest k eys. Comp osite v ectors of random k eys are also useful. Supp ose n
items need to b e arranged in order and that eac h elemen t can b e placed in one of

t w o states, sa y up or down . De�ne a v ector of random k eys of size 2n where the

�rst n k eys are sorted to de�ne the order in whic h the items are placed and the

last n k eys determine if the item is placed in the up or down p osition. In this case,

a k ey greater than or equal to one half indicates the up p osition while a k ey less

than half corresp onds to the down p osition. In Section 4 w e giv e more examples of

simple and complex deco ders.

3.3. P arameter setting. Random-k ey genetic algorithms ha v e few parameters

that need to b e set. These parameters are the n um b er of genes in a c hromosome

( n ), the p opulation size ( p), the size of the elite solution p opulation ( pe ), the size

of the m utan t solution p opulation ( pm ), and the elite allele inheritance probabilit y

( � e ), i.e. the probabilit y that the gene of the o�spring inherits the allele of the elite
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T able 1. Recommended parameter v alue settings

parameter description recommended v alue

p size of p opulation p = an , where 1 � a 2 R is a constan t

and n is the length of the c hromosome

pe size of elite p opulation 0:10p � pe � 0:25p

pm size of m utan t p opulation 0:10p � pm � 0:30p

� e elite allele inheritance

probabilit y

0:5 < � e � 0:8

paren t. Though setting these parameters is sort of an art-form, our exp erience has

led us to set the parameters as sho wn in T able 1.

Belo w, w e illustrate the e�ect of p opulation size, elite solution p opulation size,

m utan t solution p opulation size, and elite allele inheritance probabilit y on the ran-

dom v ariable time-to-optimal solution. W e use the 100-elemen t co v ering-b y-pairs

instance used earlier to compare the BRK GA and the random m ulti-start heuristic.

The basic parameter setting uses a p opulation of size p = 100 , a p opulation of elite

solutions of size pe = 15 , a m utan t p opulation size of pm = 10; and an elite allele

inheritance probabilit y of � e = 0 :7:
Figure 3.1 compares four settings for p opulation size: 10, 40, 70, and 100. F or

eac h setting, the BRK GA w as indep enden tly run 50 times and CPU times to opti-

mal solution w ere recorded. While there is not m uc h di�erence b et w een the small

p opulation settings of 10 and 40, one can b egin to observ e sp eedups for the p op-

ulation of 70 and ev en more on the p opulation of 100. Since time p er generation

increases with p opulation size, in those instances that man y generations are needed

to �nd an optimal solution, the large-p opulation BRK GAs tend to tak e longer than

their small p opulation coun terparts. This is clearly made up for b y the man y more

short running times of the large p opulation v arian ts.

Figure 3.2 sho ws time-to-optimal solution plots for four di�eren t elite p opulation

sizes: 5, 15, 25, and 50. The �gure sho ws that elite sets of 15 to 25% of the full

p opulation tend to cause the BRK GA to p erform b etter that a large set of 50% of

the p opulation and m uc h b etter than a small set with only 5% of the p opulation.

Figure 3.3 illustrates the e�ect of the size of the set of m utan t solutions on the

time tak en b y the BRK GA to �nd an optimal solution. F our sizes w ere used: 3%,

10%, 30%, and 50% of the full p opulation. The �gure sho ws that it do es not pa y

o� to use either a to o small or to o large set of m utan t solutions. The runs using

10% of the full p opulation as the m utan t set app ear to lead to the BRK GA with

the b est p erformance. The large m utan t set of half of the p opulation led to the

BRK GA with the w orse p erformance.

Figure 3.4 illustrates the e�ect of di�eren t v alues of inheritance probabilit y on

the time to �nd an optimal solution. F our v alues w ere used for � e : 30%, 50%, 70%,

and 90%. While � e = 30% violates the requiremen t that � e > 50% and do es not

lead to a BRK GA with go o d p erformance, it is not as bad a b eing v ery greedy and

using � e = 90% . The greedy v arian t turned out to ha v e the w orst p erformance



BRK GA F OR COMBINA TORIAL OPTIMIZA TION 11

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60

cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty

time-to-optimal solution (seconds on a 2 GHz Intel Core 2 Duo)

popsize = 10
popsize = 40 
popsize = 70

popsize = 100
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while the t w o implemen tations using probabilities in the recommended range did

the b est.

3.4. Starting p opulation. In Section 2, w e initialize the p opulation with p v ectors

of random k eys. An alternativ e, is to p opulate the starting p opulation with a few

solutions obtained with another heuristic for the problem b eing solv ed. This w as
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done, for example, in Buriol et al. (2005), where a BRK GA is prop osed for solving

the w eigh t setting problem in OSPF routing. The initial p opulation is made up of

one elemen t with the solution found b y the heuristic InvCap while the remaining

elemen ts are randomly generated. While for all BRK GAs it is easy to apply the

deco der to �nd the solution corresp onding to a giv en v ector of random k eys, the



BRK GA F OR COMBINA TORIAL OPTIMIZA TION 13

opp osite, i.e. �nding a v ector of random k eys from a solution of the com binatorial

optimization problem, ma y not b e straigh tforw ard. This, ho w ev er, w as not the case

in Buriol et al. (2005) where the solution space consists of v ectors of in teger w eigh ts

in the range [1; wmax ] and therefore reco v ering v ectors of random k eys is trivial.

Another t yp e of solution represen tation that is easy to map bac k to a v ector of

random k eys is a p erm utation arra y .

3.5. P arallel implemen tation. Biased random k ey genetic algorithms ha v e a nat-

ural parallel implemen tation. Candidates for parallelization include the op erations

� generate p v ectors of random k eys,

� generate pm m utan ts in next p opulation,

� com bine elite paren t with other paren t to pro duce o�spring,

� deco de eac h v ector of random k eys and compute its �tness.

Since eac h of these four op erations in v olv es indep enden t computations, they can

eac h b e computed in parallel. The �rst three of these op erations are not as com-

putationally in tensiv e as the fourth and on those op erations parallelization is not

exp ected to con tribute to signi�can tly sp eedup the o v erall algorithm. On the other

hand, the last op eration (deco ding and �tness ev aluation) can easily accoun t for

most of the o v erall cycles and one should exp ect a signi�can t sp eedup in the exe-

cution of the program b y parallelizing it.

Another t yp e of parallelization is the use of m ultiple p opulations. This t yp e

of parallelization of a BRK GA w as done, for example, in Gonçalv es and Resende

(2009) where a m ulti-p opulation BRK GA for a constrained pac king problem is de-

scrib ed. Multiple p opulations ev olv e indep enden tly of one another and p erio dically

exc hange solutions.

3.6. Comparing BRK GAs and standard GAs. T o conclude this section, w e

rep ort on exp erimen tal results where biased random-k ey genetic algorithms ha v e

b een compared with standar d genetic algorithms. W e call a genetic algorithm stan-

dard if it uses tailored crosso v er and m utation op erators. W e limit the comparison

to the qualit y of the solutions obtained. Our ob jectiv e is to sho w that BRK GAs

are comp etitiv e with other genetic algorithms, on a v erage pro ducing results that

are as go o d or b etter than those found b y the standard genetic algorithms. In all

cases listed b elo w, the BRK GAs w ere able to ac hiev e cost reductions a v eraged o v er

all tested instances.

W e consider here studies where comparisons b et w een a BRK GA and one or more

standard genetic algorithms w ere made. Namely , these are pap ers on man ufacturing

cell formation (Gonçalv es and Resende, 2004), t w o-dimensional pac king (Gonçalv es,

2007; Gonçalv es and Resende, 2009), job-shop sc heduling (Gonçalv es et al., 2005),

and resource constrained pro ject sc heduling (Gonçalv es et al., 2009a).

In Gonçalv es and Resende (2004), a BRK GA for man ufacturing cell formation

w as compared with the genetic algorithms GA TSP (Cheng et al., 1998) and GA

(On wub olu and Mutingi, 2001). On the 24 instances for whic h the BRK GA and

GA TSP w ere compared, the biased random-k ey v arian t found solutions on a v erage

2.88% b etter than GA TSP . On the eigh t instances where the BRK GA and GA w ere

compared, the BRK GA found solutions ha ving, on a v erage, a reduction of 0.11%

with resp ect to GA .

In Gonçalv es (2007), a BRK GA w as compared with t w o standard genetic algo-

rithms, SGA and SA GA , of Leung et al. (2003) on 19 instances of a t w o-dimensional
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orthogonal pac king problem. The BRK GA found b etter solutions, on a v erage,

than either standard genetic algorithm. With resp ect to SGA , the reduction w as

0.24% while for SA GA it w as 0.36%. In Gonçalv es and Resende (2009), a BRK GA

w as compared with the standard genetic algorithm of Hadjiconstan tinou and Iori

(2007a) on 630 instances of a constrained t w o-dimensional orthogonal pac king prob-

lem. The biased random-k ey genetic algorithm w as able to �nd solutions that w ere,

on a v erage, 0.49% b etter than those of the standard genetic algorithm.

In Gonçalv es et al. (2005), a BRK GA w as compared with six standard genetic

algorithms for job-shop sc heduling. On the 12 instances where it w as compared

with GA (Della Cro ce et al., 1995), an a v erage reduction in cost of 2.02% w as

observ ed. On the 37 and 35 instances where it w as compared, resp ectiv ely , with

GLS1 and GLS2 (Aarts et al., 1994), a v erage reductions of 3.79% and 0.58% w ere

observ ed. The BRK GA w as compared with the standard genetic algorithms P-

GA , SBGA(40) , and SBGA(60) of Dorndorf and P esc h (1995) on, resp ectiv ely , 20,

42, and 42 instances with resp ectiv e solution cost reductions of 0.48%, 1.27%, and

1.01%.

In Gonçalv es et al. (2009a), a BRK GA w as compared with sev eral standard ge-

netic algorithms on 600 instances of the resource constrained pro ject sc heduling

problem ha ving 120 activities eac h. Solution cost reductions of 12.02% with re-

sp ect to GA-DBH-Serial (Deb els and V anhouc k e, 2005), 11.71% with resp ect to

GA�Hybrid-FBI-Serial of V alls et al. (2003), 15% with resp ect to GA-FBI-Serial

of V alls et al. (2005), 13.41% with resp ect to the ev olutionary lo cal searc h based on

tabu searc h and path-relinking of K o c heto v and Stoly ar (2003), 19.12% with resp ect

to the self adapting genetic algorithm of Hartmann (2002), 23.6% with resp ect to

the activit y list genetic algorithm of Hartmann (1998), 24.67% with resp ect to the

priorit y rule genetic algorithm of Hartmann (1998), 29.90% with resp ect to the

problem space genetic algorithm of Leon and Ramamo orth y (1995), and 34.35%

with resp ect to the random-k ey genetic algorithm of Hartmann (1998).

4. Applica tions

In this section, w e giv e examples of biased random-k ey genetic algorithms. F or

eac h application, w e pro vide a brief description of the problem and descriptions of

the c hromosome (solution enco ding) and the deco der, follo w ed b y a brief commen t

on exp erimen tal results. W e b egin b y considering some applications in comm uni-

cation net w orks, including OSPF routing, surviv able net w ork design, and routing

and w a v elength assignmen t. W e then consider the problem of assigning tolls in a

transp ortation net w ork to minimize road congestion. This is follo w ed b y a n um-

b er of sc heduling applications, including job shop sc heduling, resource constrained

single- and m ulti-pro ject sc heduling, single mac hine sc heduling, and assem bly line

balancing. W e conclude with applications to man ufacturing cell formation, t w o-

dimensional pac king, and conca v e-cost net w ork �o w optimization.

4.1. W eigh t setting for routing in IP net w orks. Ericsson et al. (2002) and

Buriol et al. (2005) describ e BRK GA heuristics for a routing problem in In ternet

Proto col net w orks. They address the weight-setting pr oblem in Op en Shortest Path

First (OSPF) routing. A related BRK GA is describ ed in Reis et al. (2009), where

Distribute d Exp onential ly-W eighte d Flow Splitting (DEFT), a di�eren t routing pro-

to col, is used.



BRK GA F OR COMBINA TORIAL OPTIMIZA TION 15

4.1.1. Pr oblem de�nition. Consider a directed net w ork graph G = ( N; A ) where

N denotes the set of no des (where routers are lo cated) and A denotes the set of

links connecting the routers with a capacit y ca for eac h a 2 A , and a demand

matrix D that, for eac h pair (s; t) 2 N � N , giv es the demand ds;t in tra�c �o w

from no de s to no de t: The OSPF weight-setting pr oblem consists in assigning

p ositiv e in teger w eigh ts wa 2 [1; wmax ] to eac h arc a 2 A , suc h that a measure

of routing cost is minimized when the demands are routed according to the rules

of the OSPF proto col. The routing cost is a function of the link capacities and

the total tra�c that tra v erses eac h link. In OSPF, tra�c b et w een no des s and t
is routed on a shortest-w eigh t path connecting these no des. The OSPF proto col

allo ws for wmax � 65535:

4.1.2. Solution enc o ding. Eac h solution is enco ded as a v ector x of random k eys of

length n = jAj , where the i -th gene corresp onds to the i -th link of G .

4.1.3. Chr omosome de c o der. T o deco de a link w eigh t wi from x i (for i = 1 ; : : : ; n ),

simply compute wi = dx i � wmax e. Once link w eigh ts are computed, shortest

w eigh t (path) graphs from eac h no de to all other no des in the graph can b e deriv ed,

tra�c can b e routed on least w eigh t paths, the total tra�c on eac h link computed,

resulting in a routing cost whic h is the �tness of the solution. Buriol et al. (2005)

apply a fast lo cal searc h to the solution in an attempt to further reduce the routing

cost of OSPF routing. Let A �
b e the set of �v e links with the highest routing cost

v alues. F or eac h link i 2 A �
, a lo cal impro v emen t heuristic attempts to increase wi

b y one unit at a time in a sp eci�ed range and adjust the tra�c accordingly . If the

total routing cost can b e reduced this w a y , the new w eigh t is accepted, a new set

A �
is constructed, and the pro cess rep eats itself. If, after scanning the �v e links,

the cost cannot b e reduced, then the pro cedure stops. This fast lo cal searc h w as

adapted for DEFT routing in Reis et al. (2009).

4.1.4. Exp erimental r esults. Ericsson et al. (2002) compare routing solutions pro-

duced b y their BRK GA for the 13 test problems prop osed b y F ortz and Thorup

(2004) with lo w er b ounds deriv ed b y solving a m ulticommo dit y �o w linear program

(LP), the tabu searc h heuristic of F ortz and Thorup, and the simple heuristics Uni-

tOSPF , InvCapOSPF , and R andomOSPF . The BRK GA w as run for 700 generations

on eac h instance and easily outp erformed the simple heuristics, �nding solutions

comparable with those of F ortz and Thorup. These solutions w ere close to the LP

lo w er b ounds for a wide range of tra�c demands. By running BRK GA indep en-

den tly 10 times for 8000 generations on eac h one of the instances, the BRK GA w as

sho wn to pro duce b etter solutions than F ortz and Thorup on all 10 runs. The b est

solution found w as closer to the LP lo w er b ound than to the solution pro duced b y

the searc h heuristic of F ortz and Thorup.

Buriol et al. (2005) test their BRK GA on the same 13 test instances consid-

ered b y F ortz and Thorup (2004) and Ericsson et al. (2002). They sho w that the

new deco der with the fast lo cal searc h �nds b etter solutions than the BRK GA

of Ericsson et al. F urthermore, they sho w that giv en a target solution v alue, the

new BRK GA is also faster than the BRK GA of Ericsson et al. Finally , they sho w

results of exp erimen ts comparing run-time distributions for the BRK GA and the

tabu searc h of F ortz and Thorup. Using three target v alues on a large real instance,

the exp erimen ts sho w that the tabu searc h distribution has a long tail while the

distribution for the BRK GA do es not.
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Reis et al. (2009) compare their BRK GA for DEFT routing with the BRK GA of

Buriol et al. (2005) for OSPF routing. They sho w results for the 13 test problems

used b y previous pap ers and con�rm that DEFT routing can ac hiev e solutions that

result in less congestion than OSPF routing.

4.2. Surviv able net w ork design. Giv en a set of no des in a net w ork, a tra�c

matrix estimating the demand, or tra�c, b et w een pairs of these no des, a set of

arcs, eac h ha ving endp oin ts at a pair of the giv en no des, a set of p ossible �b er link

t yp es, eac h with an asso ciated capacit y and cost p er unit of length, and a set of

failure con�gurations, the surviv able net w ork design problem seeks to determine

ho w man y units of eac h cable t yp e will b e installed in eac h link suc h that all of the

demand can b e routed on the net w ork under the no failure and all failure mo des

suc h that the total cost of the installed �b er is minimized. Buriol et al. (2007)

prop osed a BRK GA to design surviv able net w orks where tra�c is routed using the

Op en Shortest P ath First (OSPF) proto col and there is only one link t yp e. Andrade

et al. (2006) extended this BRK GA to handle comp osite links, i.e. the case where

there are sev eral �b er t yp es. F our deco ders are prop osed b y Andrade et al.

4.2.1. Pr oblem de�nition. Giv en a directed graph G = ( V; E); where V is the set

of routers and E is the set of p oten tial arcs where �b er can b e installed, and a

demand matrix D , that for eac h pair (u; v) 2 V � V , sp eci�es the demand Du;v

b et w een u and v: Arc e 2 E has length de: Link t yp es are n um b ered 1; : : : ; T . Link

t yp e i has capacit y ci and cost p er unit of length pi : W e wish to determine in teger

OSPF w eigh ts we 2 [1; 65535] as w ell as the n um b er of copies of eac h link t yp e to

b e deplo y ed at eac h arc suc h that when tra�c is routed according to the OSPF

proto col in a no-failure or an y single arc failure situation there is enough installed

capacit y to mo v e all of the demand and the total cost of the installed capacit y is

minimized.

4.2.2. Solution enc o ding. Assume arcs in E are n um b ered 1; : : : ; jE j: A solution of

the surviv able net w ork design problem is enco ded as a v ector x of jE j random k eys.

The i -th k ey corresp onds to the i -th arc.

4.2.3. Chr omosome de c o der. T o pro duce the OSPF w eigh t wi of the i -th arc, scale

the random k ey b y the maxim um w eigh t, i.e. set wi = dx i � 65535e: F or the no-

failure mo de and eac h failure mo de, route the tra�c using the OSPF proto col using

the computed arc w eigh ts, compute the loads on eac h arc and record the maxim um

load o v er the no-failure and all failure mo des. F or eac h arc, determine an optimal

allo cation of link t yp es suc h that the resulting capacit y of the set of comp osite links

is enough to accommo date the maxim um load on the arc. Compute the cost of the

required links.

4.2.4. Exp erimental r esults. Since this w as the �rst heuristic prop osed in the lit-

erature for this problem, Buriol et al. (2007) compare net w ork designs pro duced

with their BRK GA with those pro duced b y a similar pro cess where instead of �nd-

ing go o d OSPF w eigh ts with the BRK GA, link w eigh ts are set in one case to unit

( UNIT ) and randomly ( RAND ) in another. They also compare their solutions with

a simple lo w er b ound ( LB ). F our net w orks of sizes v arying from 10 no des and 90

links to 71 no des and 350 links mak e up the b enc hmark test set. F or eac h net-

w ork, four instances w ere created: one with no failures, one with b oth single router

and single link failures, one with single link failures and no router failure, and one
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with single router failures and no link failure. The results sho w that the solutions

pro duced b y the BRK GA are sup erior to those pro duced with the other heuristics.

F or example, a 1000-generation run with a 500-elemen t p opulation pro duced for

one of the instances with no failure the follo wing ratios of solution v alues: 1.64 for

RAND :BRK GA, 1.82 for RAND :BRK GA, and 1.94 for BRK GA: LB .

Andrade et al. (2006) sho w the results of an exp erimen t on a real net w ork with

54 routers and 278 arcs. Three link t yp es w ere considered. All four deco ders w ere

tested and the so-called min c ost deco der ac hiev ed the b est results among the

deco ders tested.

4.3. Routing and w a v elength assignmen t. The problem of routing and w a v e-

length assignmen t (R W A) in w a v elength division m ultiplexing (WDM) optical net-

w orks consists in routing a set of ligh tpaths (a lightp ath is an all-optical p oin t-to-

p oin t connection b et w een t w o no des) and assigning a w a v elength to eac h of them,

suc h that ligh tpaths whose routes share a common �b er are assigned di�eren t w a v e-

lengths. Noronha et al. (2010) prop ose a BRK GA for routing and w a v elength as-

signmen t with the goal of minimizing the n um b er of di�eren t w a v elengths used in

the assignmen t (this v arian t of the R W A is called min-R W A ). This BRK GA extends

the b est heuristic in the literature (Sk orin-Kap o v, 2007) b y em b edding it in to an

ev olutionary framew ork.

4.3.1. Pr oblem de�nition. W e are giv en a bidirected graph G = ( V; E) that rep-

resen ts the ph ysical top ology of the optical net w ork, where V is the set of no des

and E is the set of �b er links, and a set T of ligh tpaths to b e established. Eac h

ligh tpath is c haracterized b y its pair of endp oin ts f s; tg 2 V � V; s 6= t: Eac h

ligh tpath is routed on a single path from s to t and is assigned the same w a v elength

for the en tire path. If t w o ligh tpaths share an arc, they m ust b e assigned di�eren t

w a v elengths. The ob jectiv e is to minimize the n um b er of w a v elengths used.

4.3.2. Solution enc o ding. A solution of the routing and w a v elength assignmen t

problem is enco ded in a v ector x of jT j random k eys, where jT j is the n um b er

of ligh tpaths. The k ey x i corresp onds to the i -th ligh tpath, for i = 1 ; : : : ; jT j .

4.3.3. Chr omosome de c o der. Sk orin-Kap o v (2007) prop osed the curren t state-of-

the-art heuristic for min-R W A. Eac h w a v elength is asso ciated with a di�eren t cop y

of the graph G . Ligh tpaths that are arc disjoin tly routed on the same cop y of G
are assigned the same w a v elength. Copies of G are asso ciated with the bins and

ligh tpaths with the items of an instance of the bin pac king problem. Therefore,

min-R W A can b e reform ulated as the problem of pac king all the ligh tpath requests

in a minim um n um b er of bins. Let minlength(i ) b e the n um b er of hops in the path

with the smallest n um b er of arcs b et w een the endno des of ligh tpath i in G . These

v alues are only used for sorting the ligh tpaths in the deco ding heuristics, ev en

though the ligh tpaths are not necessarily routed on shortest paths. This o ccurs

b ecause whenev er a ligh tpath is routed on a cop y of G (or, equiv alen tly , placed

in the corresp onding bin), all arcs in its route are deleted from this cop y to a v oid

that other ligh tpaths use them. Therefore, the next ligh tpaths routed in this cop y

of G migh t b e routed on a path that is not a shortest path in the original graph

G . The classical b est �t decreasing heuristic is used to pac k the ligh tpaths. Since

the n um b er of ligh tpaths is usually m uc h greater than the diameter of the graph,

there are man y ligh tpaths with the same minlength v alue. In the case of ties,
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Sk orin-Kap o v (2007) recommended breaking them randomly . The BRK GA uses

the v ector of random k eys to randomly p erturb the v alues of minlength(i ) and get

rid of the ties. These v alues are adjusted as minlength(i )  minlength(i ) + x(i ) .

4.3.4. Exp erimental r esults. Noronha et al. (2010) test their BRK GA extensiv ely on

a set of hard instances of the R W A problem. The BRK GA is compared with a m ulti-

start v arian t MS-R W A of the heuristic BFD-R W A of Sk orin-Kap o v (2007) as w ell as

the tabu searc h based heuristic 2-EDR+TS-PCP of Noronha and Rib eiro (2006).

Noronha et al. observ e in their computational exp erimen ts that the m ulti-start

heuristic MS-R W A w as able to impro v e the results of BFD-R W A and also that their

BRK GA iden ti�es the relationships b et w een k eys and go o d solutions, con v erging to

b etter solutions, on a v erage, in 23% less time than MS-R W A . The a v erage solution

gap observ ed with the BRK GA w as almost 50% of that presen ted b y 2-EDR+TS-

PCP . The exp erimen ts also illustrated the robustness of the BRK GA, since all

v ersions of the BRK GA (using di�eren t parameter settings) obtained go o d and

similar results.

4.4. T ollb o oth lo cation and tari� assignmen t. In transp ortation net w orks, it

is desirable to direct tra�c so as to minimize congestion, th us decreasing user tra v el

times and impro ving net w ork utilization. One w a y to p ersuade driv ers to a v oid cer-

tain routes and fa v or others is b y c harging toll for driv ers to use certain segmen ts of

the net w ork. The ob jectiv e of the tollb o oth lo cation and tari� assignmen t problem

is to lo cate a giv en n um b er of tollb o oths on links of the net w ork and determine toll

v alues to imp ose on users of those links suc h that the a v erage user tra v el time is

minimized. Buriol et al. (2009) describ e a BRK GA for this problem.

4.4.1. Pr oblem de�nition. Giv en a net w ork top ology and certain tra�c �o w de-

mands, w e levy tolls on arcs, seeking an e�cien t system suc h that the resulting set

of least-cost user paths is optimal for the o v erall system. Consider a directed graph

G = ( N; A ) , with N represen ting the set of no des and A the set of arcs. Eac h arc

a 2 A has an asso ciated capacit y ca and cost � a , whic h is a function of the load

`a (or �o w) on the arc, the time ta to tra v erse the arc when there is no tra�c on

the arc, a p o w er parameter na , and a parameter � a . In real-w orld tra�c net w orks,

arc (road segmen t) dela ys are generally describ ed b y nonlinear functions asso ciated

with these net w ork congestion parameters. W e assume that � a is a strictly increas-

ing, con v ex function. In addition, de�ne K � N � N to b e the set of commo dities,

or origin-destination (O-D) pairs, ha ving o(k) and d(k) as origin and destination

no des, resp ectiv ely , for all k 2 K = f 1; : : : ; jK jg: Eac h commo dit y k 2 K has an

asso ciated demand of tra�c �o w � k de�ned, i.e. for eac h O-D pair f o(k); d(k)g,

there is an asso ciated amoun t of �o w � k that emanates from no de o(k) and termi-

nates at no de d(k) . F urthermore, de�ne xk
a to b e the con tribution of commo dit y k

to the �o w on arc a. The tra�c optimization problem can b e written as

min � =
X

a2 A

`a ta [1 + � a(`a=ca)n a ] =
X

k2 K

� k

sub ject to

`a =
X

k2 K

xk
a ; 8a 2 A;



BRK GA F OR COMBINA TORIAL OPTIMIZA TION 19

X

i :( j;i )2 A

xk
( j;i ) �

X

i :( i;j )2 A

xk
( i;j ) =

8
><

>:

� � k ; 8 j 2 N; k 2 K : j = d(k);
� k ; 8 j 2 N; k 2 K : j = o(k);

0; 8 j 2 N; k 2 K : j 6= o(k); j 6= d(k);

xk
a � 0; 8 a 2 A; k 2 K:

Giv en a n um b er � of tolls to place in the net w ork, the ob jectiv e is to determine a

set of � arcs in A where tolls will b e placed and tari�s for eac h toll suc h that if

users tra v el on least-cost routes, the resulting xk
a decision v ariables (for all a 2 A

and k 2 K ) will b e suc h that the ab o v e tra�c optimization problem is solv ed.

4.4.2. Solution enc o ding. A solution of the tollb o oth lo cation and tari� assignmen t

problem is enco ded in a v ector � of 2� j Aj random k eys. The �rst jAj random k eys

corresp ond to the tari�s on the arcs while the last jAj k eys are used to indicate

whether a toll is to b e placed on an arc or not.

4.4.3. Chr omosome de c o der. De�ne a binary v ariable ya for eac h arc a 2 A whic h

tak es on v alue 1 if and only if a toll is levied on arc a: F or eac h arc a 2 A; let

� a denote the tari� levied b y the toll on arc a: Finally , let Ta b e the v alue of the

maxim um toll that can b e levied on arc a. Giv en a c hromosome � with 2 � j Aj
random k eys, let ya = 1 if and only if � jA j+ a � 0:5: The corresp onding tari� on

arc a is � a = d� a � Ta e � ya : T o compute the decision v ariables xk
a of the tra�c

assignmen t problem, all demands are routed on least-cost routes in the net w ork.

A lo cal searc h pro cedure is applied on the tari�s to attempt to decrease the v alue

of the ob jectiv e function of the tra�c assignmen t mo del. The crosso v er op erator

handles the last jAj random k eys in a w a y that is sligh tly di�eren t from the standard

parametrized uniform crosso v er that is applied to the �rst jAj random k eys. F or

all arcs on whic h b oth paren t solutions agree on whether or not to place a toll,

the c hild inherits the random k ey of an y one of the paren ts. If the paren ts do not

agree on all lo cations, then additional tolls will need to b e assigned in the c hild

c hromosome to guaran tee that � arcs ha v e tolls. F or eac h additional toll, the c hild

inherits the c hromosome of a paren t ha ving � a � 0:5 with probabilit y that fa v ors

inheritance from the elite paren t.

4.4.4. Exp erimental r esults. Since this BRK GA is the �rst heuristic prop osed in

the literature to solv e this problem, Buriol et al. (2009) limit their exp erimen ts to

testing t w o v ersions of the BRK GA, one using the deco der describ ed ab o v e and

another with a similar deco der without lo cal searc h. The heuristics are tested on

the transp ortation net w orks of the cities of Sioux F alls, Winnip eg, Sto c kholm, and

Barcelona. These net w orks v ary in size from 24 no des and 76 links with 528 O-D

pairs (Sioux F alls) to 1052 no des and 2836 links with 4345 O-D pairs (Winnip eg).

F or eac h instance, the BRK GA w as run with the n um b er of tollb o oths v arying

from one to the n um b er of no des in the net w ork. F or the smallest instance, Sioux

F alls, the system optimal solution, a lo w er b ound on the tollb o oth lo cation and

tari� assignmen t problem, w as computed. By placing tollb o oths on 60 of the 76

links of the Sioux F alls example, the BRK GA w as able to pro duce solutions within

10% of the system optimal. System optimal could not b e computed for the larger

instances. On the net w ork of Sto c kholm, the BRK GA with the lo cal searc h deco der

w as sho wn to pro duce b etter solutions than the v arian t without lo cal searc h. On

Winnip eg and Barcelona, ho w ev er, the v arian t without lo cal searc h found b etter

solutions.
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4.5. Job-shop sc heduling. Gonçalv es et al. (2005) presen t a BRK GA heuristic

for the job-shop sc heduling problem.

4.5.1. Pr oblem de�nition. W e are giv en n jobs, eac h comp osed of sev eral op erations

that m ust b e pro cessed on m mac hines. Eac h op eration uses one of the m mac hines

for a �xed duration. Eac h mac hine can pro cess at most one op eration at a time

and once an op eration initiates pro cessing on a giv en mac hine it m ust complete

pro cessing on that mac hine without in terruption. The op erations of a giv en job

ha v e to b e pro cessed in a sp eci�ed order. The problem consists in �nding a sc hedule

of the op erations on the mac hines that minimizes the mak espan Cmax , i.e. the

�nish time of the last op eration completed in the sc hedule, taking in to accoun t the

precedence constrain ts.

4.5.2. Solution enc o ding. Let p b e the n um b er of op erations. The prop osed random-

k ey v ector x used to enco de a solution has size 2p: Its �rst p genes determine the

priorities of the op erations, i.e. x i corresp onds to the priorit y of op eration i , for

i = 1 ; : : : ; p: The last p genes are used to enco de the dela y used to sc hedule an

op eration, i.e. for i = 1 ; : : : ; p; xp+ i is used to compute the dela y of op eration i .

The dela y of op eration i is de�ned to b e xp+ i � D , where D is the duration of the

longest op eration.

4.5.3. Chr omosome de c o der. A parametrized activ e sc hedule is constructed using

the priorities and dela ys enco ded in the c hromosome. This sc hedule is an activ e

sc hedule, i.e. it allo ws a mac hine to b e idle ev en when there is an op eration a v ailable

for it to pro cess. Among all op erations i that w ould require a dela y at most xp+ i � D;
the op eration i with the highest priorit y x i is sc heduled on the mac hine.

4.5.4. Exp erimental r esults. T o sho w the e�ectiv eness of their algorithm, Gonçalv es

et al. (2005) considered 43 instances from t w o classes of standard job-shop sc hedul-

ing test problems: Fisher and Thompson (1963) instances FT06, FT10, FT20, and

La wrence (1984) instances LA01 through LA40.

The BRK GA w as compared with the problem space genetic algorithm of Storer

et al. (1992), the genetic algorithms of Aarts et al. (1994), Della Cro ce et al. (1995),

Dorndorf and P esc h (1995), and Gonçalv es and Beirão (1999), the GRASP heuris-

tics of Binato et al. (2002) and Aiex et al. (2003), the h ybrid genetic/sim ulated

annealing heuristic of W ang and Zheng (2001), and the tabu searc h of No wic ki and

Sm utnic ki (1996).

All 43 instances w ere solv ed with the BRK GA. The BRK GA found the b est-

kno wn solution for 31 instances (72% of the problems) and had an a v erage relativ e

deviation from the b est-kno wn solution of 0.39%. It sho w ed an impro v emen t with

resp ect to all others algorithms with the exception of the tabu searc h algorithm

of No wic ki and Sm utnic ki that had a sligh tly b etter p erformance, mainly on the

15� 15 problems.

4.6. Resource constrained pro ject sc heduling. In pro ject sc heduling a set of

activities needs to b e sc heduled. Precedence relations b et w een activities constrain

the start of an activit y to o ccur after the completion of another. The ob jectiv e is

to minimize the mak espan, i.e. minimize the completion time of the last sc heduled

activit y . When activities require resources with limited capacities w e ha v e a re-

source constrained pro ject sc heduling problem (R CPSP). Mendes et al. (2009) and

Gonçalv es et al. (2009a) describ e BRK GA heurstics for the R CPSP .
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4.6.1. Pr oblem de�nition. A pro ject consists of n + 2 activities. T o complete the

pro ject, eac h activit y has to b e pro cessed. Let J = f 0; 1; : : : ; n; n + 1 g denote the

set of activities to b e sc heduled and K = f 1; : : : ; kg the set of resources. A ctivities

0 and n + 1 are dummies, ha v e no duration, and represen t the initial and �nal

activities. The activities are in terrelated b y t w o kinds of constrain ts: (1) Precedence

constrain ts force eac h activit y j to b e sc heduled after all predecessor activities Pj

are completed; (2) A ctivities require resources with limited capacities. While b eing

pro cessed, activit y j requires r j;k units of resource t yp e k 2 K during ev ery time

instan t of its non-preemptable duration dj : Resource t yp e k has a limited capacit y

of Rk at an y p oin t in time. The parameters dj ; r j;k ; and Rk are assumed to b e

in teger, nonnegativ e, and deterministic. F or the pro ject start and end activities,

w e ha v e d0 = dn +1 = 0 and r0;k = rn +1 ;k = 0 for all k 2 K . Let Fj represen t

the �nish time of activit y j . A sc hedule can b e represen ted b y a v ector of �nish

times (F1; : : : ; Fn +1 ) and its mak espan is Cmax = max f F1; : : : ; Fn +1 g. The problem

consists in �nding a sc hedule of the activities, taking in to accoun t the resources and

the precedence constrain ts, that minimizes the mak espan.

4.6.2. Solution enc o ding. A solution is enco ded with a v ector x of 2n random k eys.

The �rst n k eys corresp ond to the priorities of the activities while the last n are

used to determine the dela y when sc heduling an activit y .

4.6.3. Chr omosome de c o der. F or eac h activit y j 2 J not y et sc heduled, the dela y

� j = xn + j � 1:5 � �� is computed, where

�� is the maxim um duration of an y activit y .

A ctivities are sc heduled, one at a time, at discrete p oin ts in time, starting from

time t = 0 . A t time t , all activities j 2 J whose predecessors ha v e completed

pro cessing or will ha v e completed pro cessing b y time t + � j are considered to b e

candidates to b e sc heduled. These activities are sc heduled in the order determined

b y their priorities (the priorit y of activit y j is x j ). Eac h is sc heduled as so on as all

of its predecessors complete pro cessing and all resources it requires are a v ailable.

The next sc hedule time is the earliest completion time among all activities b eing

pro cessed at and after time t . This pro cess is rep eated un til all activities ha v e

b een sc heduled. The mak espan Cmax is the completion time of the last activit y to

complete pro cessing. A new and more e�ectiv e deco der for this problem is describ ed

in Gonçalv es et al. (2009a).

4.6.4. Exp erimental r esults. T o illustrate the e�ectiv eness of the BRK GA for R CPSP ,

Gonçalv es et al. (2009a) consider a total of 600 instances from the standard R CPSP

test problem set J120. In this test set eac h instance has 120 activities and requires

four resource t yp es. Instance details are describ ed b y K olisc h et al. (1995) and could

b e obtained at http://129.187.1 06 .2 31/ ps pl ib/ da ta sm. ht ml (Last visited on

April 8, 2010). The BRK GA w as compared with the v ariable neigh b orho o d searc h

of Fleszar and Hindi (2004), the large neigh b orho o d searc h of P alpan t et al. (2004),

the h ybrid scatter searc h/electromagnetism heuristic of Deb els et al. (2006), the

p opulation based approac h of V alls et al. (2004), the sampling metho ds of T ormos

and Lo v a (2003), Sc hirmer and Riesen b erg (1998), K olisc h and Drexl (1996), and

K olisc h (1995; 1996a;b), the genetic algorithms of Leon and Ramamo orth y (1995),

Mendes et al. (2009), V alls et al. (2005), Deb els and V anhouc k e (2005), V alls et al.

(2003), K o c heto v and Stoly ar (2003), Hartmann (1998; 2002), the sim ulated an-

nealing heuristic of Bouleimen and Leco cq (2003), the tabu searc h heuristics of
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Nonob e and Ibaraki (2002) and Baar et al. (1998), and the Lagrangian relaxation

heuristic of Möhring et al. (2003).

Gonçalv es et al. (2009a) sho w ed in the ab o v e exp erimen t that no algorithm

dominated the BRK GA. The approac h of Deb els et al. (2006) is the one that

seems to ha v e had the most similar p erformance. With this BRK GA, Gonçalv es

et al. impro v ed the b est kno wn solution for 11 instances in test problem rep osi-

tory PSPLIB ( http://129.187.10 6. 231 /p sp lib /f il es/ j1 20h rs .s m , last visited

on April 8, 2010).

4.7. Resource constrained m ulti-pro ject sc heduling. In the resource con-

strained m ulti-pro ject sc heduling problem (R CMPSP), activities that mak e up sev-

eral pro jects m ust b e sc heduled. These activities share one or more resources ha ving

limited capacities. Asso ciated with eac h pro ject are its release and due dates. The

pro ject cannot b egin pro cessing b efore the release date and should �nish as close

as p ossible to its due date. There are p enalties asso ciated with earliness, tardiness,

and total pro cessing time of the pro ject and the ob jectiv e is to sc hedule the ac-

tivities suc h that the sum of the p enalties of the pro jects is minimized. Gonçalv es

et al. (2008) describ e three BRK GA v arian ts for resource constrained m ulti-pro ject

sc heduling that they name GA-SlackMo d , GA-Basic , and GA-SlackND .

4.7.1. Pr oblem de�nition. The problem consists of a set I of pro jects, where eac h

pro ject i 2 I is comp osed of activities j = f N i � 1 + 1 ; : : : ; N i g, where activities

N i � 1 +1 and N i are dummies and represen t the initial and �nal activities of pro ject

i . J is the set of activities and K = f 1; : : : ; kg is a set of renew able resources t yp es.

The activities are in terrelated b y t w o kinds of constrain ts. First, precedence con-

strain ts force eac h activit y j 2 J to b e sc heduled after all its predecessor activities

Pj are completed. Second, pro cessing of the activities is sub ject to the a v ailabilit y

of resources with limited capacities. While b eing pro cessed, activit y j 2 J requires

r j;k units of resource t yp e k 2 K during ev ery time instan t of its non-preemptable

duration dj . Resource t yp e k 2 K has a limited a v ailabilit y of Rk at an y p oin t in

time. P arameters dj , r j;k , and Rk are assumed to b e non-negativ e and deterministic.

W e assume that start and end activities of eac h pro ject ha v e zero pro cessing times

and do not require an y resource. A ctivities 0 and N + 1 are dumm y activities, ha v e

no duration, and corresp ond to the start and end of all pro jects. A ctivit y 0 precedes

all of the dumm y initial activities of the individual pro jects and activit y N + 1 is

preceded b y all of the dumm y �nal activities of all the jobs. Using these dumm y

activities, the m ulti-pro ject sc heduling problem can b e treated as if it w ere a single

pro ject. The ob jectiv e is to minimize a
P

i 2I (aT3
i + bE2

i + c(CDi � BD i )2 =CPDi );
where Ti , E i , CDi , BD i , and CPDi are, resp ectiv ely , the tardiness, earliness, con-

clusion time, start time, and critical path duration of pro ject i .

4.7.2. Solution enc o ding. The enco ding of the solution is iden tical to the one used

in the BRK GA for single-pro ject sc heduling describ ed in Section 4.6, i.e. a v ector

x of 2n random k eys. The �rst n k eys corresp ond to the priorities of the activities

while the last n are used to determine the dela y when sc heduling an activit y .

4.7.3. Chr omosome de c o der. The deco der is iden tical to the one used in the BRK GA

for single-pro ject sc heduling describ ed in Section 4.6 except that instead of com-

puting the mak espan, this deco der computes the p enalt y a
P

i 2I (aT3
i + bE2

i +
c(CDi � BD i )2 =CPDi ) as the �tness of the c hromosome.
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4.7.4. Exp erimental r esults. Since no prior exp erimen tal w ork on R CMPSP in-

cluded tardiness, earliness, and �o wtime deviations as measures of p erformance,

Gonçalv es et al. (2008) generated m ulti-pro ject instances with kno wn optimal v al-

ues to compare the three BRK GA v arian ts prop osed in their pap er. Fiv e t yp es of

m ulti-pro ject instances where generated with 10, 20, 30, 40, and 50 single pro jects

eac h. F or eac h problem t yp e, 20 instances w ere generated. Since eac h single pro ject

instance had 120 activities, the m ulti-pro ject instances had 1200, 2400, 3600, 4800,

and 6000 activities eac h. Eac h activit y w as allo w ed to use up to four resources.

Finally , the a v erage n um b er of o v erlapping pro jects in execution w as 3, 6, 9, 12,

and 15, resp ectiv ely .

Algorithm GA-SlackMo d w as the winner in all asp ects relativ e to the other t w o.

F or all instances, in absolute terms, algorithm GA-SlackMo d obtained earliness,

tardiness, and �o w time deviation close to the optim um v alue.

4.8. Early tardy sc heduling. V alen te et al. (2006) describ e a BRK GA for a single

mac hine sc heduling problem with earliness and tardiness costs and no unforced

mac hine idle time. Suc h problems arise in just-in-time pro duction, where go o ds

are pro duced only when they are needed, since jobs are sc heduled to conclude as

close as p ossible to their due dates. The early cost can b e seen, for example, as

the cost of completing a pro ject early in PER T-CPM analyzes, deterioration in the

pro duction of p erishable go o ds, or a holding cost for �nished go o ds. The tardy

cost is often asso ciated with rush shipping costs, lost sales, or loss of go o dwill. It is

assumed that no unforced mac hine idle time is allo w ed, and therefore the mac hine

is only idle when no jobs are a v ailable for pro cessing. This assumption represen ts

a t yp e of pro duction en vironmen t where the mac hine idleness cost is higher than

the cost incurred b y completing a job early , or the mac hine is hea vily loaded, so it

m ust b e k ept running in order to satisfy the demand.

4.8.1. Pr oblem de�nition. A set of n indep enden t jobs f J1; : : : ; Jn g m ust b e sc hed-

uled without preemption on a single mac hine that can handle at most one job at

a time. The mac hine and the jobs are assumed to b e con tin uously a v ailable from

time zero on w ards and mac hine idle time is not allo w ed. Job J j , j = 1 ; : : : ; n;
requires a pro cessing time pj and should ideally b e completed on its due date dj .

F or an y sc hedule, the earliness and tardiness of J j can b e resp ectiv ely de�ned as

E j = max f 0; dj � Cj g and Tj = max f 0; Cj � dj g, where Cj is the completion time

of J j . The ob jectiv e is to �nd the sc hedule that minimizes the sum of the earli-

ness and tardiness costs of all jobs, i.e.

P n
j =1 (hj E j + wj Tj ) , where hj and wj are,

resp ectiv ely , the p er unit earliness and tardiness costs of job J j .

4.8.2. Solution enc o ding. A solution of the early tardy sc heduling problem is en-

co ded in a v ector x of n random k eys that, when sorted, corresp onds to the ordering

that the jobs are pro cessed on the mac hine.

4.8.3. Chr omosome de c o der. Giv en a v ector x of n random k eys, a solution is pro-

duced b y �rst sorting the v ector to pro duce an ordering of the jobs. The jobs are

sc heduled on the mac hine and the total cost is computed. A simple lo cal searc h

scans the jobs, from �rst to last, testing if consecutiv e jobs can b e sw app ed in the

order of pro cessing. If a sw ap decreases the cost of the sc hedule, the sw ap is done,

the cost recomputed, and the scan con tin ues from that job un til the last t w o jobs

are tested.
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4.8.4. Exp erimental r esults. V alen te et al. (2006) tested six BRK GA v arian ts for

the early tardy sc heduling problem. The genetic algorithms w ere compared with the

NSe ar ch heuristic of Li (1997). The algorithms w ere tested on randomly generated

problems ha ving 15, 50, 75, and 100 jobs. The ob jectiv e function v alues obtained

b y the heuristic pro cedures w ere compared with the optimal solution for the 15-job

problems, and with the b est kno wn solution for the remaining problems.

As far as solution qualit y is concerned, the prop osed BRK GA heuristics (with

few exceptions) found b etter solutions than NSe ar ch , b oth with resp ect a v erage

p ercen t deviation and in the n um b er of instances for whic h b etter results w ere

obtained.

The run time of the genetic algorithms w ere greater (particularly for the v ersions

that incorp orate more sophisticated lo cal searc h pro cedures), but these times w ere

for the full 500 generations. The exp erimen ts sho w ed also that increased lo cal searc h

at the �tness-ev aluation lev el of the BRK GA pro vided b etter solution v alues. The

run times increased as the lo cal searc h complexit y itself increased, but once again

these results can b e misleading, and need to b e complemen ted b y an analysis of the

n um b er of generations needed to reac h the b est solution. Including the �nal round

of m ultiple non-adjacen t in terc hange is barely noticeable in terms of run time and

can pro vide a further impro v emen t in solution qualit y .

4.9. Single mac hine sc heduling with linear earliness and quadratic tar-

diness p enalties. V alen te and Gonçalv es (2008) presen t a BRK GA for a single

mac hine sc heduling problem with linear earliness and quadratic tardiness p enalties.

They consider an ob jectiv e function with linear earliness and quadratic tardiness

costs. A linear p enalt y is then used for the early jobs, since the costs of main taining

and managing this in v en tory tend to b e prop ortional to the quan tit y held in sto c k.

Ho w ev er, late deliv eries can result in lost sales, loss of go o dwill, and disruptions in

stages further do wn the supply c hain. A quadratic tardiness p enalt y is used for the

tardy jobs. In man y situations this is preferable to the more usual linear tardiness

or maxim um tardiness functions. Finally , no mac hine idle time is allo w ed.

4.9.1. Pr oblem de�nition. A set of n indep enden t jobs f J1; : : : ; Jn g m ust b e sc hed-

uled on a single mac hine that can handle at most a single job at a time. The

mac hine is assumed to b e con tin uously a v ailable from time zero on w ards, and pre-

emption is not allo w ed. Job J j ; for j = 1 ; : : : ; n , requires a pro cessing time pj

and should ideally b e completed on its due date dj . F or an y sc hedule, the earli-

ness and tardiness of J j can b e resp ectiv ely de�ned as E j = max f 0; dj � Cj g and

Tj = max f 0; Cj � dj g, where Cj is the completion time of J j . The ob jectiv e is to

�nd a sc hedule that minimizes the sum of linear earliness and quadratic tardiness

costs

P n
j =1 (E j + T 2

j ) , sub ject to the constrain t that no mac hine idle time is allo w ed.

4.9.2. Solution enc o ding. A solution of the single mac hine sc heduling problem with

linear earliness and quadratic tardiness p enalties is enco ded in a v ector x of n ran-

dom k eys that, when sorted, corresp onds to the ordering that the jobs are pro cessed

on the mac hine.

4.9.3. Chr omosome de c o der. Giv en a v ector x of n random k eys, a solution is pro-

duced b y �rst sorting the v ector to pro duce an ordering of the jobs. The jobs

are sc heduled on the mac hine and the total cost is computed. Then three sim-

ple lo cal searc h pro cedures, adjacen t pairwise in terc hange ( API ), 3-sw aps ( 3SW ),
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and largest cost insertion ( LCI ) are applied. A t eac h iteration, API considers in

succession all adjacen t job p ositions. A pair of adjacen t jobs is sw app ed if suc h

an in terc hange impro v es the ob jectiv e function v alue. If necessary , the solution is

up dated. This pro cess is rep eated un til no impro v emen t is found in a complete

iteration. Next, 3SW is applied. It is similar to API , except that it considers three

consecutiv e job p ositions instead of an adjacen t pair of jobs. All p ossible p erm u-

tations of these three jobs are analyzed, and the b est con�guration is selected. If

necessary , the solution is up dated. Once more, the pro cedure is applied rep eatedly

un til no impro v emen t is p ossible. Finally LCI is applied. A t eac h iteration, LCI

selects the job with the largest ob jectiv e function v alue. The selected job is remo v ed

from its p osition i in the sc hedule, and inserted at p osition j , for all j 6= i . The

b est insertion is p erformed if it impro v es the ob jectiv e function v alue. If necessary ,

the solution is up dated. This pro cess is also rep eated un til no impro ving mo v e is

found.

4.9.4. Exp erimental r esults. V alen te and Gonçalv es (2008) compare sev eral BRK GA

v arian ts with existing heuristics, namely the EQTP disp atching rule of V alen te

(2007) and the r e c overing b e am se ar ch (RBS) pro cedure of V alen te (2009). Finally ,

the results found b y the heuristics are ev aluated with resp ect to the optim um ob-

jectiv e function v alues for some instance sizes. The instances used in the computa-

tional tests are a v ailable online at http://www.fep.u p. pt /do ce nt es/ jv ale nt e/

benchmarks.html (Last visited on April 8, 2010).

The exp erimen ts sho w that t w o of the BRK GA v arian ts ( MA_IN and MA ) �nd

the b est results, and are clearly sup erior to existing heuristics for this problem.

They �nd optimal solutions for o v er 90% of the test instances. The impro v emen ts

in p erformance pro vided b y the BRK GA heuristics are larger for the more di�cult

instances. F urthermore, the impro v emen ts o v er the b est existing heuristic pro ce-

dures increase with size of the the instance. The p erformance of the prop osed

BRK GA approac h w as impro v ed b y b oth the initialization of the �rst p opulation

and the addition of a lo cal searc h pro cedure.

4.10. Assem bly line balancing. Assem bly or fabrication lines are used to man-

ufacture large quan tities of standardized pro ducts. An assem bly line consists of a

sequence of m w orkstations, connected b y a con v ey or b elt, through whic h the pro d-

uct units �o w. Eac h w orkstation p erforms a subset of the n op erations necessary

for man ufacturing the pro ducts. Eac h pro duct unit remains at eac h station for a

�xed time C called the cycle time. In traditional assem bly lines, w orkstations are

consecutiv ely arranged in a straigh t line. Eac h pro duct unit pro ceeds along this

line and visits eac h w orkstation once. The ma jor decision consists in de�ning an

assignmen t of op erations to w orkstations suc h that the line e�ciency is maximized.

Gonçalv es and Almeida (2002) describ e a BRK GA for assem bly line balancing.

4.10.1. Pr oblem de�nition. In the assem bly line problem, a single pro duct is man-

ufactured in large quan tities in a pro cess in v olving n op erations, eac h of whic h

tak es t j time units to pro cess, for j = 1 ; : : : ; n: Op erations are partially ordered b y

precedence relations, i.e. when an op eration j is assigned to a station k , eac h op er-

ation i whic h precedes j m ust b e assigned to one of the w orkstations 1; : : : ; k . Eac h

op eration m ust b e assigned to exactly one w orkstation. The sets of op erations Sk ,

assigned to w orkstations k = 1 ; : : : ; m , are called w orkstation loads. W orkstations
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are n um b ered consecutiv ely along the line. The total op eration time of the op er-

ations assigned to a station k , called w orkstation time t(Sk ) , m ust not exceed the

cycle time, i.e. t(Sk ) =
P

f j 2 Sk g t j � C , for k = 1 ; : : : ; m: Gonçalv es and Almeida

(2002) deal with the SALBP-1 v arian t of the problem, where w e are giv en the cycle

time C and the ob jectiv e is to minimize the n um b er m of stations.

4.10.2. Solution enc o ding. A solution of the assem bly line problem is enco ded in

a v ector x of n random k eys, where n is the n um b er of op erations. The k ey x i

corresp onds to the priorit y of the i -th op eration.

4.10.3. Chr omosome de c o der. The deco der tak es as input a v ector x of n random

k eys and returns an assignmen t of op erations to w ork stations. The random k ey

x i is the priorit y of op eration i . Giv en a set of op eration priorities, a station-

orien ted heuristic is used to assign op erations to w orkstations. This pro cedure

starts with station 1 and considers the other stations successiv ely . In eac h iteration,

the op eration with highest priorit y in the candidate set is c hosen and assigned to

the curren t station. The curren t station is closed and the next station is op ened

when the candidate set is empt y , i.e. when adding an y op eration to the station

w ould exceed the cycle time. Subsequen tly , a lo cal searc h pro cedure is used to

try to impro v e the solution obtained b y the station-orien ted heuristic. The lo cal

searc h attempts to sw ap long op erations sc heduled in do wnstream w orkstations

with shorter op erations in upstream w orkstations with the ob jectiv e of freeing up

a do wnstream w orkstation.

4.10.4. Exp erimental r esults. T o demonstrate the e�ectiv eness and robustness of

the approac h, Gonçalv es and Almeida (2002) presen t computational results using

three sets of test problems found in the literature: the 64 instances of the T alb ot-

Set (T alb ot et al., 1986), the the 50 instances of the Ho�man-Set (Ho�mann, 1990;

1992), and the 168 of the Schol l-Set (Sc holl, 1993). The com bined set consists

of 269 instances (min us 13 instances whic h are in b oth the T alb ot-Set and the

Ho�mann-Set ). The sources of the problems as w ell as a detailed description are

giv en b y Sc holl (1993) (these datasets can b e do wnloaded from http://www.bwl.

th- darmstadt.de /bw l3 /f ors ch /p roj ek te /al b/ sal b1 da t.h tm , last visted on April

8, 2010).

T w o exp erimen ts w ere carried out. In the �rst, the BRK GA w as compared

with the heuristic EUREKA of Ho�mann (1992) and in the second it is compared

with the tabu searc h heuristics PrioT abu and EurT abu Sc holl and V oÿ (1997). The

prop osed BRK GA pro duced solutions that are as go o d as those found b y EUREKA .

F or problem instance A r cus-111 the BRK GA found a solution whic h is b etter than

the one found with EUREKA . The BRK GA found appro ximately 7% more b est

solutions than PrioT abu and same n um b er of b est solutions as EurT abu .

4.11. Man ufacturing cell formation. The fundamen tal problem in cellular man-

ufacturing is the formation of pro duct families and mac hine cells. Gonçalv es and

Resende (2004) presen t a BRK GA for man ufacturing cell formation.

4.11.1. Pr oblem de�nition. Giv en P pro ducts and M mac hines, w e wish to assign

pro ducts and mac hines to a n um b er of pro duct-mac hine cells suc h that in ter-cellular

mo v emen t is minimized and mac hine utilization within a cell is maximized. Let the

binary matrix A = [ a]i;j b e suc h that ai;j = 1 if and only if pro duct i uses mac hine

j: By reordering the ro ws and columns of A and mo ving the cells so they are lo cated
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on or near the diagonal of the reordered matrix, a measure of e�cacy of the solution

can b e de�ned to b e � = ( n1 � nout
1 )=(n1 + nin

0 ); where n1 is the n um b er of ones in

A; n out
1 is the n um b er of ones outside the diagonal blo c ks, and nin

0 is the n um b er

of zero es inside the diagonal blo c ks. W e seek to maximize �:

4.11.2. Solution enc o ding. A solution to the cellular man ufacturing problem is en-

co ded as a v ector x of M + 1 random k eys, where the �rst M random k eys are used

to assign the mac hines to cells and the last random k ey determines the n um b er

of cells. Assuming that the smallest cell allo w ed has dimension 2 � 2; the maxi-

m um n um b er of cells is

�C = bM=2c: The n um b er of cells in a solution is therefore

C = dxM +1 � �Ce and mac hine i is assigned to cell dx i � Ce:

4.11.3. Chr omosome de c o der. The deco der �rst assigns pro ducts to the cell that

maximizes the e�cacy with resp ect to the mac hine-cell assignmen ts. Once pro ducts

are assigned, then mac hines are reassigned to the cells that maximize the e�cacy .

This pro cess of reassigning pro ducts and mac hines is rep eated un til there is no

further increase in the e�cacy measure.

4.11.4. Exp erimental r esults. T o sho w the p erformance of the prop osed BRK GA,

Gonçalv es and Resende (2004) used 35 group tec hnology instances collected from

the literature. The selected matrices range from dimension 5 � 7 to 40 � 100 and

comprise w ell-structured as w ell as unstructured matrices. The grouping e�cacies

obtained b y the BRK GA w ere compared with the ones obtained b y the approac hes

ZODIA C of Chandrasekharan and Ra jagopalan (1987), GRAFICS of Sriniv asan

and Narendran (1991), the clustering algorithm MST of Sriniv asan (1994), the ge-

netic algorithms GA TSP of Cheng et al. (1998), the genetic algorithm of On wub olu

and Mutingi (2001), and the genetic programming pro cedure of Dimop oulos and

Mort (2001). In 2004, these six approac hes corresp onded to the b est published

results for these 35 test problems.

The exp erimen ts sho w ed that the prop osed BRK GA computed mac hine/pro duct

groupings ha ving a grouping e�cacy that w as nev er smaller than an y of the b est

rep orted results. It found grouping e�cacies that w ere equal to the b est ones found

in the literature for 14 (40%) problems and impro v ed the v alues of the grouping e�-

cacies for 21 (60%) problems. On 11 (31%) problems, the p ercen tage impro v emen t

w as o v er 5%.

4.12. Constrained t w o-dimensional orthogonal pac king. In the constrained

t w o-dimensional (2D), non-guillotine restricted, pac king problem, a �xed set of

small w eigh ted rectangles has to b e placed, without o v erlap, in to a larger sto c k rec-

tangle so as to maximize the sum of the w eigh ts of the rectangles pac k ed. Gonçalv es

(2007) prop osed the �rst BRK GA for this problem. This w as impro v ed in Gonçalv es

and Resende (2009), where a new BRK GA, that uses a no v el placemen t pro cedure

and a new �tness function to driv e the optimization, w as prop osed.

4.12.1. Pr oblem de�nition. The t w o-dimensional pac king problem consists in pac k-

ing in to a single large planar sto c k rectangle (W; H ) , of width W and heigh t H ,

n smaller rectangles (wi ; hi ); i = 1 ; : : : ; n; eac h of width wi and heigh t hi : Eac h

rectangle i has a �xed orien tation (i.e. cannot b e rotated), m ust b e pac k ed with

its edges parallel to the edges of the sto c k rectangle, and the n um b er x i of pieces

of eac h rectangle t yp e that are to b e pac k ed m ust lie b et w een Pi and Qi , i.e.

0 � Pi � x i � Qi ; for all i = 1 ; : : : ; n: Eac h rectangle i = 1 ; : : : ; n has an asso ciated
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v alue equal to vi and the ob jectiv e is to maximize the total v alue

P n
i =1 vi x i of the

rectangles pac k ed. Without signi�can t loss of generalit y , it is usual to assume that

all dimensions W; H; and (wi ; hi ); i = 1 ; : : : ; n; are in tegers.

4.12.2. Solution enc o ding. A solution of the t w o-dimensional pac king problem is

enco ded in a v ector x of 2N random k eys, where N =
P n

i =1 ni . The �rst N
random k eys corresp ond to the ordering that the rectangles are pac k ed while the

last N k eys indicate ho w the rectangles are to b e placed in the sto c k rectangle.

4.12.3. Chr omosome de c o der. Giv en a v ector x of random k eys, the rectangles are

pac k ed b y scanning x starting from the �rst comp onen t. F or i = 1 ; : : : ; N; let

t = dx i � ne denote the t yp e of rectangle to b e pac k ed next. If there are no more

rectangles of t yp e t a v ailable to b e pac k ed, the deco der pro ceeds to the next v alue of

i: Otherwise it pro ceeds to pac k one or more rectangles of t yp e t , up to the maxim um

n um b er of a v ailable rectangles of that t yp e using a heuristic determined b y the

v alue of xN + i : If xN + i � 0:5; then the left-b ottom heuristic is used. Otherwise, the

rectangle is placed using the b ottom-left heuristic. If the left-b ottom heuristic is

applied, a v ertical la y er of rectangles is placed. Similarly , if the b ottom-left heuristic

is used, a horizon tal la y er of rectangles is placed. The �tness of the c hromosome

is the total w eigh t of the pac k ed rectangles plus a term that tries to capture the

impro v emen t p oten tial of di�eren t pac kings whic h ha v e the same total v alue.

4.12.4. Exp erimental r esults. Gonçalv es (2007) carried out t w o t yp es of exp eri-

men ts to ev aluate the prop osed BRK GA. In the �rst, the p erformance of the

BRK GA w as ev aluated against other metaheuristic approac hes while in the sec-

ond he ev aluated the deviation from the optimal of the trim loss v alues obtained

b y the BRK GA. In the �rst set of exp erimen ts, the BRK GA w as compared with

the genetic algorithm SGA and the mixed sim ulated annealing-genetic algorithm

MSA GA of Leung et al. (2003), as w ell as with the GRASP of Alv arez-V aldes et al.

(2005). 21 instances w ere used in this exp erimen t: three instances from Lai and

Chan (1997), �v e instances from Jak obs (1996), t w o instances from Leung et al.

(2003), and nine instances from Hopp er and T urton (2001). All these problem in-

stances ha v e kno wn optimal solution where the trim loss is zero. In the second set

of exp erimen ts, instances w ere tak en from Hi� (1998), Beasley (1985), Hadjicon-

stan tinou and Christo�des (1995), W ang (1983), Christo�des and Whitlo c k (1977),

F ek ete and Sc hep ers (1997), and Hopp er and T urton (2001).

The �rst set of exp erimen ts sho w ed that the BRK GA clearly outp erforms, in

terms of solution qualit y , all of the other heuristics. The BRK GA obtained the b est

a v erage v alues for all of the 19 problem instances and obtained the b est minim um

trim loss v alues for 17 of the problem instances. On the Hi� (1998) instances, the

BRK GA found the optimal trim loss for all the 25 instances and for all the 10

replications. Since the problem instances of this set ha v e only 7 to 22 rectangles,

the fact that the optimal solutions w ere found is not as relev an t as the fact that they

w ere obtained on all the 10 replications. On the Beasley (1985), Hadjiconstan tinou

and Christo�des (1995), W ang (1983), Christo�des and Whitlo c k (1977), and F ek ete

and Sc hep ers (1997) instances, the optimal or b est kno wn trim loss v alues w ere

obtained from Oliv eira (2004). F or this set, the BRK GA obtained the optimal

trim loss v alues for all the 19 instances with kno wn optimal v alue, obtained three

trim loss v alues equal to b est kno wn trim loss v alues, and w as able to impro v e the

b est kno wn trim loss for instance 2 of F ek ete and Sc hep ers (1997). F or 18 problem
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instances, the optimal/b est kno wn v alue w as obtained on all 10 replications. F or

the Hopp er and T urton (2001) test problems, the BRK GA found the optimal trim

loss v alues for eigh t of the 21 problem instances. F or all the other instances the

relativ e deviation from the minim um trim loss v alue w as alw a ys under 1%. F or the

Hopp er and T urton (2001) instances, the BRK GA obtained the optimal trim loss

v alues for �v e of the 35 problems. F or all the other instances the relativ e deviations

from the optimal trim loss v alue w ere alw a ys under 3.17%.

Gonçalv es and Resende (2009) compare the prop osed BRK GA with four recen tly

prop osed heuristics, whic h presen ted the b est computational results to date. These

heuristics are a p opulation heuristic ( PH ) prop osed b y Beasley (2004), a genetic

algorithm ( GA ) prop osed b y Hadjiconstan tinou and Iori (2007b), a GRASP heuris-

tic prop osed b y Alv arez-V aldes et al. (2005), and a tabu searc h approac h ( T ABU )

prop osed b y Alv arez-V aldes et al. (2007). The algorithms are compared with a set

of 630 large random instances generated b y Beasley (2004) follo wing F ek ete and

Sc hep ers (2004).

The results sho w ed that the BRK GA pro duced o v erall a v erage deviations from

the upp er b ound that w ere alw a ys lo w er than those pro duced b y all the other

heuristics on all instance classes, including the BRK GA of Gonçalv es (2007) . A

close lo ok at the results sho ws that BRK GA outp erformed the other heuristics not

only b ecause it obtained smaller a v erage deviations from the upp er b ound ( PH =

1.67%, GA = 1.32%, GRASP = 1.07%, T ABU = 0.98% and BRK GA = 0.83%) but

also b ecause it obtained a larger n um b er of b est results for the 21 com binations

of sizes and t yp es ( PH = 0/21, GA = 0/21, GRASP = 5/21, T ABU = 8/21, and

BRK GA = 20/21).

4.13. General conca v e minim um cost �o w. F on tes and Gonçalv es (2007) pro-

p osed a BRK GA for the general minim um conca v e cost net w ork �o w problem

(MCNFP). Conca v e cost functions in net w ork �o w problems arise in practice as

a consequence of taking in to accoun t economic considerations. F or example, �xed

costs ma y arise and economies of scale often lead to a decrease in marginal costs.

The genetic algorithm mak es use of a lo cal searc h heuristic to solv e the problem.

The lo cal searc h algorithm tries to impro v e the solutions in the p opulation b y us-

ing domain-sp eci�c information. The BRK GA is used to solv e instances with b oth

conca v e routing costs and �xed costs.

4.13.1. Pr oblem de�nition. Giv en a graph G = ( W; A) , where W is a set of n + 1
no des (no de n+1 denotes the source no de and no des 1; : : : ; n denote demand no des)

and a set A of m directed arcs, A � f (i; j ) : i; j 2 W g. Eac h no de i 2 W n f n + 1 g
has an asso ciated nonnegativ e in teger demand v alue r i . The supply at the source

no de equals the sum of the demands required b y the n demand no des. A general

nondecreasing and nonnegativ e conca v e cost function gij is asso ciated with eac h arc

(i; j ) and satis�es gij (0) = 0 . The ob jectiv e is to �nd a subset S of arcs to b e used

and the �o w x ij routed through these arcs, suc h that the demands are satis�ed and

at minim um cost. A conca v e MCNFP has the prop ert y that it has a �nite solution

if and only if there exists a direct path going from the source no de to ev ery demand

no de and if there are no negativ e cost cycles. Therefore, a �o w solution is a tree

ro oted at the single source spanning all demand no des. Th us, the ob jectiv e is to

�nd an optimal tree ro oted at the source no de that satis�es all customers demand

at minim um cost.
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4.13.2. Solution enc o ding. A solution of the MCNFP is enco ded in a v ector x of

n random k eys that corresp onds to the priorities of the demand no des used in the

tree-constructor pro cedure of the deco der.

4.13.3. Chr omosome de c o der. The deco der builds a tree ro oted at the source no de.

The no de priorities in x are used to determine the order b y whic h no des are consid-

ered b y the tree constructor. The algorithm rep eatedly p erforms three steps un til

either a tree or an infeasible solution is pro duced. The �rst step consists in �nding

the highest priorit y no de not y et supplied. In the second step, the algorithm seeks

the set of no des that can act as a paren t for the no de found in the �rst step. In

the third and last step, the paren t is c hosen as the highest priorit y no de that do es

not create an infeasibilit y , if one exists. A p oten tial solution b ecomes infeasible if

a cycle cannot b e a v oided. In this case, a high cost is asso ciated with the solution.

After a solution is constructed, a lo cal searc h pro cedure is applied to it. The lo cal

searc h tries to impro v e up on a giv en solution b y comparing it with solutions ob-

tained b y replacing an arc curren tly in the solution b y an arc not in the solution

suc h that the new solution is still a tree.

4.13.4. Exp erimental r esults. T o test the BRK GA heuristic, F on tes and Gonçalv es

(2007) considered the Euclidean problem set describ ed in F on tes et al. (2003).

This set of instances can b e do wnloaded from http://people.b run el .ac .u k/

~mastjjb/jeb/or li b/n et fl owc ci nf o.h tm l (Last visited on April 8, 2010). The

results obtained b y the BRK GA w ere compared with optimal solutions found b y a

dynamic programming approac h (F on tes et al., 2006) for problem instances with up

to 19 no des and, for larger instances, to heuristic solutions found b y a lo cal searc h

algorithm (F on tes et al., 2003).

The exp erimen ts sho w ed the BRK GA to impro v e up on the e�ciency and e�ec-

tiv eness of existing metho ds. Optimal solutions w ere found for all but one of the

600 problems with sizes ranging from 10 to 19 no des. F or larger instances, ha ving

from 25 to 50 no des, optimal solutions w ere found for all �xed-c harge problems. F or

the conca v e problems, optimal solution v alues w ere unkno wn. On these instances,

comparisons w ere made with upp er b ound v alues rep orted in the literature. The

results sho w the prop osed BRK GA to b e v ery e�cien t and e�ectiv e. The qualit y

of the solutions obtained b y the BRK GA heuristic is quite similar to the ones re-

p orted b y F on tes et al. (2003). Ho w ev er, the computational time requiremen ts for

the BRK GA w ere m uc h smaller.

5. Concluding remarks

This pap er addressed biased random k ey genetic algorithms (BRK GA), a heuris-

tic framew ork for com binatorial optimization. The framew ork is w ell-suited to im-

plemen t the pro cess of learning the asso ciation b et w een v ectors of random k eys and

go o d solutions of the com binatorial optimization problems they are trying to solv e.

Solutions in a BRK GA are enco ded as n -dimensional v ectors of random k eys.

A p opulation of p suc h v ectors is ev olv ed through the iterations of the algorithm.

Initially p v ectors of k eys are randomly generated with k eys in the real in terv al

[0,1]. A t eac h iteration, the p opulation is partitioned in to a smaller elite set with

the b est solutions and a larger non-elite set with the remaining solutions. Note that

to partition the p opulation w e require that eac h random v ector b e deco ded and the

cost of its corresp onding solution ev aluated. All of the elite solutions are copied
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to the p opulation of the next iteration. In addition, a small n um b er of m utan t

solutions is generated in the same w a y that the initial p opulation w as generated.

These m utan ts are resp onsible for making the heuristic escap e lo cal optima and

assure asymptotic con v ergence of the metho d to a global optim um. Note that the

n um b er of elite and m utan t solutions are input parameters, but our exp erience

has sho wn that ha ving around 10-25% of the p opulation as elite solutions and

10-30% as m utan ts is an appropriate c hoice. Giv en the elite and m utan ts in the

new p opulation, one only needs to complete the p opulation through the pro cess

of crosso v er. Crosso v er is simple: one paren t is selected at random from the elite

set and the other from either the non-elite or the en tire p opulation. Rep etition is

allo w ed so a paren t can pro duce more than one o�spring in a giv en iteration. The

b est �t of the t w o paren ts is called paren t A while the other one is paren t B . The

o�spring C is generated at random in suc h a w a y that it has a higher probabilit y of

inheriting the c haracteristics of paren t A . This is done b y �ipping a biased coin n
times. The coin �ip results in heads (paren t A ) with higher probabilit y than tails

(paren t B ). The probabilit y of resulting in heads is an input parameter greater

than half. Our exp erience has sho wn that a v alue b et w een 0.5 and 0.8 w orks w ell.

The result of the i -th �ip of the coin determines if the o�spring inherits the i -th

random k ey of paren t A or B . Note that all of the ab o v e steps, with the exception

of computing the �tness of the p opulation to mak e the partitioning, are problem

indep enden t.

One of the app ealing asp ects of the BRK GA concept is the division b et w een

problem dep enden t and problem indep enden t parts of the algorithm. Where in a

standar d GA one needs to de�ne di�eren t crosso v er and m utation op erators for

eac h problem to b e solv ed, in a BRK GA one do es not w orry ab out crosso v er and

m utation. They are pre-sp eci�ed. In fact, once one co des a BRK GA, most of

the co de can b e reused in future implemen tations. In a BRK GA one need only

w orry ab out computing the �tness of a solution as, b y the w a y , one also needs to

do in a standar d GA. W e sho w that once one has a heuristic for a problem, it is

easy to place this heuristic in an ev olutionary framew ork as a BRK GA. A BRK GA

co ordinates simple heuristics to �nd solutions that are b etter than those found b y

the simple heuristics alone.This is not alw a ys the case for a standar d GA.

The BRK GA is a sligh t mo di�cation of the random-k ey GA of Bean (1994). In

a BRK GA one paren t is alw a ys c hosen from the elite set, while this is not the case

in the algorithm of Bean. Though sligh t, this mo di�cation con tributes to a big

impro v emen t in the p erformance of these random-k ey GAs. This is, in some sense,

similar to the addition of greediness to a pure randomized construction pro cedure

as w as done in the semi-greedy heuristic (Hart and Shogan, 1987) and GRASP (F eo

and Resende, 1989; 1995), b oth of whic h result in m uc h b etter solutions on a v erage

than a pure randomized construction.

The comp onen ts of BRK GAs are describ ed in the pap er and their in tegration

in to a heuristic framew ork is prop osed. This framew ork separates the problem-

indep enden t part of the pro cedure from the part that is problem dep enden t. This

w a y , a BRK GA can b e de�ned b y sp ecifying ho w solutions are enco ded and deco ded,

making it easy to tailor BRK GAs for solving sp eci�c com binatorial optimization

problems. Implemen tation issues, including parallelization of the heuristic, are

addressed. The pap er concludes with a n um b er of applications, where for eac h one,

the enco ding and deco ding is describ ed in detail.
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W e can only pro vide insigh t in to wh y BRK GA heuristics w ork w ell and sho w

empirical evidence that they actually do. BRK GAs implemen t the idea of surviv al

of the �ttest though the elitist pro cess and the biased crosso v er and are able to

escap e from lo cal optima through the use of m utan ts. In other pap ers, listed in

Section 4, w e ha v e compared BRK GA heuristics with other standar d GAs and ha v e

sho wn that the BRK GA heuristics are indeed comp etitiv e.

It is not our in ten tion in this pap er to create a new metaheuristic. Ho w ev er,

w e argue that the BRK GA framew ork is at least as general-purp ose as standard

genetic algorithms. BRK GAs handle a wide range of com binatorial optimization

problems without m uc h programming e�ort b y the user.
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