
Random-key genetic algorithms

José Fernando Gonçalves

LIAAD, INESC TEC, Faculdade de Economia do Porto, Universidade do Porto

Porto, Portugal

Mauricio G. C. Resende

Network Evolution Research Department, AT&T Labs Research

Middletown, New Jersey, U.S.A.

August 18, 2014

Abstract

A random-key genetic algorithm is an evolutionary metaheuristic
for discrete and global optimization. Each solution is encoded as a
vector of n random keys, where a random key is a real number, ran-
domly generated, in the continuous interval [0, 1). A decoder maps
each vector of random keys to a solution of the optimization prob-
lem being solved and computes its cost. The algorithm starts with a
population of p vectors of random keys. At each iteration, the vec-
tors are partitioned into two sets, a smaller set of high-valued elite
solutions, and the remaining non-elite solutions. All elite elements are
copied, without change, to the next population. A small number of
random-key vectors (the mutants) is added to the population of the
next iteration. The remaining elements of the population of the next
iteration are generated by combining, with the parametrized uniform
crossover of Spears and DeJong [58], pairs of solutions. This chap-
ter reviews random-key genetic algorithms and describes an effective
variant called biased random-key genetic algorithms.

Keywords – Genetic algorithm, Random keys, Optimization.

1

1 Genetic algorithm with random keys

Bean [6] described a new class of genetic algorithms for combinatorial op-

timization problems whose solutions can be represented by a permutation

vector. These algorithms, called random-key genetic algorithms (RKGA),

represent a solution of the optimization problem as a vector of random keys.

A random key is a real number, generated at random in the continuous

interval [0, 1).

A decoder is a procedure that maps a vector of random keys into a

solution of the optimization problem and computes the cost of this solution.

The decoder proposed by Bean [6] simply orders the elements of the vector

of random keys, thus producing a permutation corresponding to the indices

of the sorted elements.

A RKGA evolves a population, or set, of p vectors of random keys ap-

plying the Darwinian principle of survival of the fittest, where the fittest

individuals (or solutions) of a population are more likely to find a mate and

pass on their genetic material to future generations. The algorithm starts

with an initial population of p vectors of n random keys and produces a

series of populations. In the k-th generation, the p vectors of the popu-

lation are partitioned into a small set of pe < p/2 vectors corresponding

to the best solutions (this set is called the elite set) and another set with

the remainder of the population (called the non-elite set). All elite vectors

are copied, unchanged, to the population of the k + 1-st generation. This

elitism characterizes the Darwinian principle in an RKGA. Next, pm vectors

of random keys are introduced into the population of the k + 1-st genera-

tion. These vectors, called mutants or immigrants, and play the same role as

the mutation operators of classical genetic algorithms, i.e. they help avoid

2

convergence of the population to a non-global local optimum. To complete

the p elements of the population of the k + 1-st generation, p − pe − pm

vectors are generated, combining pairs of solutions from the population of

the k-th generation, with a parametrized uniform crossover [58]. Let a and b

be the vectors chosen for mating and let c be the offspring produced. In the

crossover of Spears and DeJong [58], c[i], the i-th component of the offspring

vector, receives the i-th key of one of its parents. It receives the key a[i]

with probability ρa and b[i] with probability ρb = 1− ρa.

2 Biased random-key genetic algorithms

As seen in Section 1 of this chapter, Bean’s algorithm limits itself to elitism

to simulate Darwinism. A biased random-key genetic algorithm (or BRKGA

[24]), on the other hand, not only uses elitism to simulate survival of the

fitness, but also makes use of mating. A BRKGA differs from Bean’s al-

gorithm in the way parents are selected for crossover and how crossover is

applied.

Both algorithms choose parents at random and with replacement. This

way a parent can have more than one offpring per generation. While in

Bean’s algorithm both parents are chosen from the entire population, in a

BRKGA one parent is always chosen from the elite set while the other is

chosen from the non-elite set (or, in some cases, from the entire population).

Since pe < p/2, an elite vector in a BRKGA has a probability of 1/pe of being

selected for each crossover. This is greater than 1/(p − pe), the probability

that a non-elite vector has of being selected. For the same reason, the

probability that a specific elite vector is chosen in a BRKGA is greater than

1/p, the probability that a given elite vector is chosen in Bean’s algorithm.

3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

iterations to target solution

BRKGA
RKGA

Figure 1: Iteration count distributions to a given target solution value for a

BRKGA and Bean’s algorithm.

Both algorithms combine parents a and b using parametrized uniform

crossover [58] to produce the offspring c. While in Bean’s algorithm each

parent can be parent a or b, in a BRKGA a is always the elite parent and

b is the non-elite parent. Since ρa > 1/2, in a BRKGA the offspring c has

greater probability of inheriting the keys of the elite parent, while in Bean’s

algorithm this is not necessarily true.

This small difference between the two algorithms almost always results in

BRKGA outperforming Bean’s algorithm [33]. Figure 1 compares iteration

count distributions to a given target value for a BRKGA and an implemen-

tation of Bean’s for a covering by pairs problem [7]. The figure clearly shows

the dominance of the biased variant of the RKGA over the unbiased variant

on this instance and for this target value. Though there has been at least

one instance where the unbiased variant was slightly superior to the biased

variant, the dominance of the biased variant over the unbiased variant is

4

well established [33].

3 A model for the implementation of a BRKGA

Algorithm 1 shows a pseudo-code of a BRKGA for the minimization of

f(x), where x ∈ X and X is a discrete set of solutions and f : X → R.

This implementation is a multi-start variant of a BRKGA where several

populations are evolved in sequence and a best solution among all in the

population is returned as the output of the algorithm. After describing the

pseudo-code, we will justify its multi-start nature.

In line 2, the value f∗ of the best solution found is initialized to a large

value, i.e. not smaller than f(x0), where x0 ∈ X is some feasible solution

to the problem. Evolution of each population is done in lines 3 to 28. The

algorithm halts when some stopping criterion in line 3 is satisfied. This

criterion can be, for example, number of evolved populations, total time, or

quality of the best solution found.

In line 4, the population being evolved is initialized with p = |P| vectors

of random keys. Evolution of population P takes place in lines 5 to 27. This

evolution ends when a restart criterion is satisfied in line 5. This criterion can

be, for example, a maximum number of generations without improvement

in the value of the best solution in P. At each generation, or iteration, the

following operations are carried out: In line 6 all new solutions (offspring and

mutants) are decoded and their costs evaluated. Note that each decoding

and evaluation in this step can be computed simultaneously, i.e. in parallel.

In line 7, population P is partitioned into two subpopulations Pe (elite) and

Pē (non-elite), where Pe is such that |Pe| < |P|/2 and contains |Pe| of the

best solutions in P and Pē consists of the remaining solutions in P, that is

5

1 BRKGA(|P|, |Pe|, |Pm|, n, ρa)
2 Initialize value of the best solution found: f∗ ←∞;
3 while stopping criterion not satisfied do

4 Generate a population P with n vectors of random keys;
5 while restart criterion not satisfied do

6 Evaluate the cost of each new solution in P;
7 Partition P into two sets: Pe and Pē;
8 Initialize population of next generation: P+ ← Pe;
9 Generate set Pm of mutants, each mutant with n

random keys;
10 Add Pm to population of next generation:

P+ ← P+ ∪ Pm;
11 foreach i← 1 to |P| − |Pe| − |Pm| do
12 Select parent a at random from Pe;
13 Select parent b at random from Pē;
14 foreach j ← 1 to n do

15 Throw a biased coin with probability
ρa > 0.5 of resulting heads;

16 if heads then c[j]← a[j] ;
17 else c[j]← b[j];

18 end

19 Add offspring c to population of next
generation: P+ ← P+ ∪ {c};

20 end

21 Update population: P ← P+;
22 Find best solution χ+ in P:

χ+ ← argmin{f(χ) | χ ∈ P};
23 if f(χ+) < f∗ then

24 χ∗ ← χ+;
25 f∗ ← f(χ+);

26 end

27 end

28 end

29 return χ∗

Algorithm 1: Model for biased random-key genetic algo-
rithm with restart.

6

Pē = P \Pe. P
+ is the population of the next generation. It is initialized in

line 8 with the elite solutions of the current generation. In line 9, the mutant

subpopulation Pm is generated. Each mutant is a vector of n random keys.

The number of generated mutants in general is such that |Pm| < |P|/2. This

subpopulation is added to population P+ of the next generation in line 10.

With |Pe| + |Pm| vectors inserted in population P+, it is necessary to

generate |P| − |P2| − |Pm| new offspring to complete the |P| vectors that

form population P+. This is done in lines 11 to 20. In lines 12 and 13

parents a and b are chosen, respectively, at random from subpopulations Pe

and Pē. The generation of offspring c from parents a and b takes place in

lines 14 to 18. A biased coin (with probability ρa > 1/2 of flipping to heads)

is thrown n times. If the i-th toss is a heads, the offspring inherits the i-th

key of parent a. Otherwise, it inherits the i-th key of parent b. After the

offspring is generated, c is added to population P+ in line 19.

The generation of P+ ends when it consists of |P| elements. In line 21,

P+ is copied to P to start a new generation. The best solution in the

current population in evolution is computed in line 22 and if its value is

better than all solutions examined so far, the solution and its cost are saved

in lines 24 and 25 as χ∗ and f∗, respectively. χ∗, the best solution found

over all populations is returned by the algorithm in line 29.

4 Restarting a random-key genetic algorithm

As with most stochastic search methods, the continuous random variable

time to target solution of a RKGA has an empirical distribution that ap-

proximates a shifted exponential distribution. The discrete random variable

iterations to target solution, on the other hand, has an empirical shifted

7

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 100 1000 10000

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

iterations to target solution

Figure 2: Iteration count distribution to target solution of a BRKGA with-

out restart.

geometric distribution.

Consider, in Figure 2, the empirical distribution of number of iterations

of a BRKGA to find an optimal solution of instance of Steiner triple covering

problem stn243 [50].

The iterations-to-target-solution plot [1] is generated by running the

BRKGA 100 times, each time using a different seed for the random number

generator and recording the number of iterations that the algorithm took

to find a solution as least as good as the target (in this case an optimal

solution). The figure shows that 25% of the runs needed no more than 55

iterations to find an optimal solution, 50% took at most 74 iterations and

75% at most 245. However, 10% of the runs required more than 4597 iter-

ations, 5% more than 5532 iterations, 2% more than 7061 and the longest

run took 9903 iterations. This is the typical behavior of a random variable

com a shifted geometric distribution.

8

Let I be the random variable number of iterations to a given target

solution. For instance stn243, a visual examination of Figure 2 suggests

that Pr(I ≥ 246) ≈ 1/4. Restarting the algorithm after 246 iterations and

assuming independence of the runs, Pr(I ≥ 492 | I ≥ 246) ≈ 1/4. Therefore,

Pr(I ≥ 492) = Pr(I ≥ 246) × Pr(I ≥ 492 | I ≥ 246) ≈ 1/42. One can

easily show, by induction, that the probability that the algorithm will take

fewer than k cycles of 246 iterations is approximately 1/4k. For example,

the probability that the algorithm with restart will take more than 1230

iterations (five cycles of 246 iterations between restarts) is approximately

1/45 = 1/1024 ≈ 0.1%. This probability is considerably smaller than the

approximately 20% probability that the algorithm without restart will take

more than 1230 iterations.

The above analysis uses a restart strategy that differs slightly from the

one proposed here for random-key genetic algorithms. In the proposed strat-

egy, similar to the restart strategy for GRASP with path-relinking pro-

posed by Resende and Ribeiro [49], instead of restarting each k iterations,

it restarts after kr iterations without improvement of the value of the best

solution found since the previous restart.

Figure 3 compares a BRKGA without restart with one which restarts

every 246 iterations without improvement of the value of the best solution

found on Steiner triple covering instance stn243. The figure clearly shows

that both the average number of iterations to an optimum as well as the

corresponding standard deviation are smaller in the variant with restart

than in the one without restart.

9

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 100 1000 10000

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

iterations to target solution

restart(246)
no restart

Figure 3: Iteration count distribution to a target (optimal) solution of vari-

ants of BRKGA with and without restart on Steiner triple covering instance

stn243.

5 RKGA with multiple populations

The description of random-key genetic algorithms so far involved a single

population. However, it is possible to implement a RKGA with more than

one population [25].

Suppose that the RKGA has π populations, P1,P2, . . . ,Pπ, each with p

vectors of random keys. In this case, the π populations are initially pop-

ulated, each independently of the others, with p vectors of random-keys in

line 4 of the pseudo-code of Algorithm 1 and the loop in lines 6 to 26 is

applied to each of these π populations. The populations exchange informa-

tion every kp iterations of the loop in lines 5 to 27 of Algorithm 1. In this

exchange, the km best solutions from each population replace the (π− 1)km

worst solutions of each population.

10

6 Specifying a RKGA

The specification of a RKGA requires defining how a solution is represented,

or encoded, how decoding is done, and what are the parameters of the

algorithm.

Since each solution is represented as a vector of n random keys, it is

necessary only to specify a value for n.

The decoder is a deterministic algorithm that takes as input a vector of n

random keys and produces as output a solution of the optimization problem

as well as its corresponding cost. A decoder is, in general, a heuristic. If it

makes use of local search, then it is recommended but not strictly necessary

that a vector adjustment procedure be specified such that when the decoder

is applied to a vector of random keys corresponding to a local optimum the

decoder will produce the local optimum without applying the local search

phase of the decoder. See Resende et al. [50] for a simple example of vector

adjustment.

Several parameters need to be specified. Table 6 lists these parameters

and offers value ranges which in practice have proven to be satisfactory [24].

7 API for BRKGA

To simplify the implementation of BRKGAs, Toso and Resende [61] pro-

posed an Application Programming Interface (API), or C++ library, for

BRKGA. The API is efficient and easy to use. The library is portable

and automatically deals with several aspects of the BRKGA, such as man-

agement of the population and of the evolutionary dynamics. The API is

implemented in C++ and uses an object oriented architecture. In systems

11

Table 1: Parameters and recommended values.

Parameter Recommended value

p: size of population p = max{3, ⌊κp × n⌋},
where κp > 0

pe: size of elite partition of population pe = max{1, ⌊κe × p⌋},
where κe ∈ [0.10, 0.25]

pm: size of mutant partition of population pm = max{1, ⌊κm × p⌋},
where κm ∈ [0.05, 0.20]

ρa: probability of inheriting key from elite parent ρa > 1/2,

kr: iterations without improvement for restart kr = argmin{Pr(k iterations to
target solution) ≥ 0.75}

π: number of parallel populations π ∈ {1, . . . , 5}

kp: frequency for population interchange kp ∈ {50, . . . , 100}

km: number of exchanged solutions km ∈ {1, 2, 3}

stopping criterion (examples) running time,
maximum number of iterations,
maximum number of restarts,

finding a solutions as good
as the target.

12

with available OpenMP [44], the API enables parallel decoding of random

key vectors. The user only needs to implement the decoder and specify the

stopping criteria, restart and population exchange mechanisms, as well as

the parameters of the algorithm.

The API is open source and can be downloaded from http://github.

com/rfrancotoso/brkgaAPI.

8 Final remarks

This chapter reviewed random-key genetic algorithms, covering both their

unbiased and the biased variants. After introducing the algorithm of Bean

[6], on which the BRKGA is based, the chapter points to two small differ-

ences between the two variants that lead to improved performance of the

BRKGA with respect to Bean’s original random-key genetic algorithm. A

model for the implementation of a BRKGA is described and issues such

as restart and use of multiple populations are discussed. The chapter con-

cludes by illustrating how a BRKGA is specified and presents an C++ API

for BRKGA that allows for easy implementation of the algorithm.

The BRKGA metaheuristic has been applied to many optimization prob-

lems, such as:

• Telecommunications: Ericsson et al. [15], Buriol et al. [8], Noronha

et al. [43], Noronha et al. [43], Reis et al. [47], Ruiz et al. [53], Pedrola

et al. [46], Goulart et al. [34], Resende [48], Morán-Mirabal et al. [40],

Pedrola et al. [45], Duarte et al. [14], and Andrade et al. [2].

• Transportation: Buriol et al. [10], Grasas et al. [35], Stefanello et al.

[59], and Lalla-Ruiz et al. [36].

13

• Scheduling: Gonçalves et al. [29], Valente et al. [63], Valente and

Gonçalves [62], Gonçalves et al. [30], Mendes et al. [38], Gonçalves

et al. [31], Tangpattanakul et al. [60], Gonçalves and Resende [28],

and Marques et al. [37].

• Packing: Gonçalves [20], and Gonçalves and Resende [25, 26, 27].

• Clustering: Festa [16] and Andrade et al. [4].

• Covering: Breslau et al. [7], and Resende et al. [50].

• Network optimization: Andrade et al. [5], Buriol et al. [9], Fontes and

Gonçalves [19], Coco et al. [12], Fontes and Gonçalves [18], Ruiz et al.

[52], Andrade et al. [2], and Coco et al. [13].

• Power Systems: Roque et al. [51].

• Industrial Engineering: Gonçalves and Beirão [22], Gonçalves and

Almeida [21], Gonçalves and Resende [23], Moreira et al. [42], Morán-

Mirabal et al. [41], Gonçalves et al. [32], and Chan et al. [11].

• Automatic tuning of parameters in heuristics: Festa et al. [17], and

Morán-Mirabal et al. [39].

• Combinatorial auctions: Andrade et al. [3].

• Global continuous optimization: Silva et al. [54], Silva et al. [56, 55],

and Silva et al. [57]

Acknowledgement

The first author was partially supported by funds granted by the ERDF

through the Programme COMPETE and by the Portuguese Government

14

through FCT – Foundation for Science and Technology, project PTDC/

EGE-GES/ 117692/ 2010.

References

[1] R. M. Aiex, M. G. C. Resende, and C. C. Ribeiro. TTTPLOTS: A

perl program to create time-to-target plots. Optimization Letters, 1:

355–366, 2007.

[2] C. E. Andrade, F. K. Miyazawa, and M. G .C. Resende. Evolutionary

algorithm for the k-interconnected multi-depot multi-traveling sales-

men problem. In Proceedings of Genetic and Evolutionary Computation

Conference (GECCO). ACM, 2013.

[3] C. E. Andrade, F. K. Miyazawa, M. G. C. Resende, and R.F. Toso. Bi-

ased random-key genetic algorithms for the winner determination prob-

lem in combinatorial auctions. Technical report, AT&T Labs Research,

Florham Park, New Jersey, 2013.

[4] C.E. Andrade, M.G.C. Resende, H.J. Karloff, and F.K. Miyazawa.

Evolutionary algorithms for overlapping correlation clustering. In

Proceedings of Genetic and Evolutionary Computation Conference

(GECCO’14), pages 405–412, Vancouver, Canada, July 2014.

[5] D. V. Andrade, L. S. Buriol, M. G. C. Resende, and M. Thorup. Surviv-

able composite-link IP network design with OSPF routing. In Proceed-

ings of The Eighth INFORMS Telecommunications Conference, 2006.

[6] J. C. Bean. Genetic algorithms and random keys for sequencing and

optimization. ORSA J. on Computing, 6:154–160, 1994.

15

[7] L. Breslau, I. Diakonikolas, N. Duffield, Y. Gu, M. Hajiaghayi, D. S.

Johnson, H. Karloff, M. G. C. Resende, and S. Sen. Disjoint-path

facility location: Theory and practice. In Proceedings of the Thirteenth

Workshop of Algorithm Engineering and Experiments (ALENEX11),

pages 68–74, 2011.

[8] L. S. Buriol, M. G. C. Resende, C. C. Ribeiro, and M. Thorup. A

hybrid genetic algorithm for the weight setting problem in OSPF/IS-IS

routing. Networks, 46:36–56, 2005.

[9] L. S. Buriol, M. G. C. Resende, and M. Thorup. Survivable IP network

design with OSPF routing. Networks, 49:51–64, 2007.

[10] L. S. Buriol, M. J. Hirsch, T. Querido, P. M. Pardalos, M. G. C. Re-

sende, and M. Ritt. A biased random-key genetic algorithm for road

congestion minimization. Optimization Letters, 4:619–633, 2010.

[11] F. T. S. Chan, R. K. Tibrewal, A. Prakash, and M. K. Tiwari. A biased

random key genetic algorithm approach for inventory-based multi-item

lot-sizing problem. J. of Engineering Manufacture, 2014. Published

online March 20, 2014.

[12] A. A. Coco, T. F. Noronha, and A. C. Santos. A biased random-key

genetic algorithm for the robust shortest path problem. In Proceedings

of Global Optimization Workshop (GO2012), pages 53–56, 2012.

[13] A. A. Coco, J. C. A. Abreu Jr., T. F. Noronha, and A. C. Santos. An

integer linear programming formulation and heuristics for the minmax

relative regret robust shortest path problem. J. of Global Optimization,

2014. Published online April 22, 2014.

16

[14] A. Duarte, R. Mart́ı, M. G. C. Resende, and R.M.A. Silva. Improved

heuristics for the regenerator location problem. International Transac-

tions in Operational Research, 21:541–558, 2014.

[15] M. Ericsson, M. G .C. Resende, and P. M. Pardalos. A genetic algorithm

for the weight setting problem in OSPF routing. J. of Combinatorial

Optimization, 6:299–333, 2002.

[16] P. Festa. A biased random-key genetic algorithm for data clustering.

Mathematical Biosciences, 245:76–85, 2013.

[17] P. Festa, J. F. Gonçalves, M. G. C. Resende, and R. M. A. Silva. Au-

tomatic tuning of GRASP with path-relinking heuristics with a biased

random-key genetic algorithm. In P. Festa, editor, Experimental Al-

gorithms, volume 6049 of Lecture Notes in Computer Science, pages

338–349. Springer, 2010.

[18] D. B. M. M. Fontes and J. F. Gonçalves. A multi-population hybrid

biased random key genetic algorithm for hop-constrained trees in non-

linear cost flow networks. Optimization Letters, 2012. Publicado online

13 de junho.

[19] D. B. M. M. Fontes and J. F. Gonçalves. Heuristic solutions for general

concave minimum cost network flow problems. Networks, 50:67–76,

2007.

[20] J. F. Gonçalves. A hybrid genetic algorithm-heuristic for a two-

dimensional orthogonal packing problem. European J. of Operational

Research, 183:1212–1229, 2007.

17

[21] J. F. Gonçalves and J. Almeida. A hybrid genetic algorithm for assem-

bly line balancing. J. of Heuristics, 8:629–642, 2002.

[22] J. F. Gonçalves and N. C. Beirão. Um algoritmo genético baseado

em chaves aleatórias para sequenciamento de operações. Revista Asso-

ciação Portuguesa de Desenvolvimento e Investigação Operacional, 19:

123–137, 1999.

[23] J. F. Gonçalves and M. G. C. Resende. An evolutionary algorithm for

manufacturing cell formation. Computers and Industrial Engineering,

47:247–273, 2004.

[24] J. F. Gonçalves and M. G. C. Resende. Biased random-key genetic

algorithms for combinatorial optimization. J. of Heuristics, 17:487–

525, 2011.

[25] J. F. Gonçalves and M. G. C. Resende. A parallel multi-population

genetic algorithm for a constrained two-dimensional orthogonal packing

problem. J. of Combinatorial Optimization, 22:180–201, 2011.

[26] J. F. Gonçalves and M. G. C. Resende. A parallel multi-population

biased random-key genetic algorithm for a container loading problem.

Computers and Operations Research, 29:179–190, 2012.

[27] J. F. Gonçalves and M. G. C. Resende. A biased random-key genetic

algorithm for a 2D and 3D bin packing problem. International J. of

Production Economics, 145:500–510, 2013.

[28] J. F. Gonçalves and M. G. C. Resende. An extended Akers graphi-

cal minimization method with a biased random-key genetic algorithm

18

for job-shop scheduling. International Transactions in Operational Re-

search, 21:215–246, 2014.

[29] J. F. Gonçalves, J. J. M. Mendes, and M. G. C. Resende. A hybrid

genetic algorithm for the job shop scheduling problem. European J. of

Operational Research, 167:77–95, 2005.

[30] J. F. Gonçalves, J. J. M. Mendes, and M. G. C. Resende. A genetic al-

gorithm for the resource constrained multi-project scheduling problem.

European J. of Operational Research, 189:1171–1190, 2008.

[31] J. F. Gonçalves, M. G. C. Resende, and J. J. M. Mendes. A biased

random-key genetic algorithm with forward-backward improvement for

the resource constrained project scheduling problem. J. of Heuristics,

17:467–486, 2011.

[32] J. F. Gonçalves, M. G. C. Resende, and M. D. Costa. A biased random-

key genetic algorithm for the minimization of open stacks problem.

International Transactions in Operational Research, 2014. Published

online July 2, 2014.

[33] J.F. Gonçalves, M.G.C. Resende, and R.F. Toso. An experimental com-

parison of biased and unbiased random-key genetic algorithms. Pesquisa

Operacional, 34:143–164, 2014.

[34] N. Goulart, S. R. de Souza, L. G. S. Dias, and T. F. Noronha. Biased

random-key genetic algorithm for fiber installation in optical network

optimization. In IEEE Congress on Evolutionary Computation (CEC

2011), pages 2267–2271. IEEE, 2011.

19

[35] A. Grasas, H. R. Lourenço, L. S. Pessoa, M. G. C. Resende, I. Caballé,

and N. Barba. On the improvement of blood sample collection at clinical

laboratories. BMC Health Services Research, 14, 2014. Article 12.

[36] E. Lalla-Ruiz, J. L. González-Velarde, B. Melián-Batista, and J. M.

Moreno-Vega. Biased random key genetic algorithm for the tactical

berth allocation problem. Applied Soft Computing, 22:60–76, 2014.

[37] I. Marques, M. E. Captivo, and M. Vaz Pato. Scheduling elective surg-

eries in a portuguese hospital using a genetic heuristic. Operations

Research for Health Care, 3:59–72, 2014.

[38] J. J. M. Mendes, J. F. Gonçalves, and M. G. C. Resende. A random key

based genetic algorithm for the resource constrained project scheduling

problem. Computers & Operations Research, 36:92–109, 2009.

[39] L. F. Morán-Mirabal, J. L. González-Velarde, and M. G. C. Resende.

Automatic tuning of GRASP with evolutionary path-relinking. In Pro-

ceedings of Hybrid Metaheuristics 2013 (HM 2013), volume 7919 of Lec-

ture Notes in Computer Science, pages 62–77. Springer, Ischia, Italy,

2013.

[40] L. F. Morán-Mirabal, J. L. González-Velarde, M. G. C. Resende, and

R. M. A. Silva. Randomized heuristics for handover minimization in

mobility networks. J. of Heuristics, 19:845–880, 2013.

[41] L. F. Morán-Mirabal, J. L. González-Velarde, and M. G. C. Resende.

Randomized heuristics for the family traveling salesperson problem.

International Transactions in Operational Research, 21:41–57, 2014.

20

[42] M. C. O. Moreira, M. Ritt, A. M Costa, and A. A. Chaves. Simple

heuristics for the assembly line worker assignment and balancing prob-

lem. J. of Heuristics, 18:505–524, 2012.

[43] T. F. Noronha, M. G. C. Resende, and C. C. Ribeiro. A biased random-

key genetic algorithm for routing and wavelength assignment. J. of

Global Optimization, 50:503–518, 2011.

[44] OpenMP, 2013. http://openmp.org/wp/, last visted on May 11, 2013.

[45] O. Pedrola, D. Careglio, M. Klinkowski, L. Velasco, K. Bergman, and

J. Solé-Pareta. Metaheuristic hybridizations for the regenerator place-

ment and dimensioning problem in sub-wavelength switching optical

networks. European J. of Operational Research, 224:614–624, 2013.

[46] O. Pedrola, M. Ruiz, L. Velasco, D. Careglio, O. González de Dios, and

J. Comellas. A GRASP with path-relinking heuristic for the surviv-

able IP/MPLS-over-WSON multi-layer network optimization problem.

Computers and Operations Research, 40:3174–3187, 2013.

[47] R. Reis, M. Ritt, L. S. Buriol, and M. G. C. Resende. A biased random-

key genetic algorithm for OSPF and DEFT routing to minimize network

congestion. International Transactions in Operational Research, 18:

401–423, 2011.

[48] M. G. C. Resende. Biased random-key genetic algorithms with appli-

cations in telecommunications. TOP, 20:120–153, 2012.

[49] M. G. C. Resende and C. C. Ribeiro. Restart strategies for GRASP

with path-relinking heuristics. Optimization Letters, 5:467–478, 2011.

21

[50] M. G. C Resende, R. F. Toso, J. F. Gonçalves, and R. M. A Silva.

A biased random-key genetic algorithm for the Steiner triple covering

problem. Optimization Letters, 6:605–619, 2012.

[51] L. A. C. Roque, D. B. M. M. Fontes, and F. A. C. C. Fontes. A hybrid

biased random key genetic algorithm approach for the unit commitment

problem. J. of Combinatorial Optimization, 28:140–166, 2014.

[52] E. Ruiz, M. Albareda-Sambola, E. Fernández, and M.G.C. Resende.

A biased random-key genetic algorithm for the capacitated minimum

spanning tree problem. Technical report, AT&T Labs Research Tech-

nical, Florham Park, New Jersey, 2013.

[53] M. Ruiz, O. Pedrola, L. Velasco, D. Careglio, J. Fernández-Palacios,

and G. Junyent. Survivable IP/MPLS-over-WSON multilayer network

optimization. J. of Optical Communications and Networking, 3:629–

640, 2011.

[54] R. M. A. Silva, M. G. C. Resende, P. M. Pardalos, and J. F. Gonçalves.

Biased random-key genetic algorithm for bound-constrained global op-

timization. In Proceedings of Global Optimization Workshop (GO2012),

pages 133–136, 2012.

[55] R. M. A. Silva, M. G. C. Resende, and P. M. Pardalos. Finding multiple

roots of box-constrained system of nonlinear equations with a biased

random-key genetic algorithm. J. of Global Optimization, 2013. Pub-

lished online September 13, 2013.

[56] R. M. A. Silva, M. G. C. Resende, and P.M. Pardalos. A Python/C++

library for bound-constrained global optimization using biased random-

22

key genetic algorithm. J. of Combinatorial Optimization, 2013. Pub-

lished online October 5, 2013.

[57] R.M.A. Silva, M.G.C. Resende, P.M. Pardalos, and J.L.D. Facó. Biased

random-key genetic algorithm for non-linearly constrained global opti-

mization. In Proceedings of the 2013 IEEE Congress on Evolutionary

Computation (CEC), pages 2201–2206, Cancun, June 2013.

[58] W. M. Spears and K. A. DeJong. On the virtues of parameterized uni-

form crossover. In Proceedings of the Fourth International Conference

on Genetic Algorithms, pages 230–236, 1991.

[59] F. Stefanello, L. S. Buriol, M. J. Hirsch, P. M. Pardalos, T. Querido,

M.G.C. Resende, and M. Ritt. On the minimization of traffic congestion

in road networks with tolls. Technical report, AT&T Labs Research,

Florham Park, New Jersey, 2013.

[60] P. Tangpattanakul, N. Jozefowiez, and P. Lopez. Multi-objective op-

timization for selecting and scheduling observations by agile earth ob-

serving satellites. In Parallel Problem Solving from Nature – PPSN

XII, volume 7492 of Lecture Notes in Computer Science, pages 112–

121. Springer, 2012.

[61] R. F. Toso and M. G. C. Resende. A C++ application programming

interface for biased random-key genetic algorithms. Optimization Meth-

ods and Software, 2014. Published online March 13, 2014.

[62] J. M. S. Valente and J. F. Gonçalves. A genetic algorithm approach

for the single machine scheduling problem with linear earliness and

23

quadratic tardiness penalties. Computers and Operations Research, 35:

3696–3713, 2008.

[63] J. M. S. Valente, J. F. Gonçalves, and R. A. F. S. Alves. A hybrid

genetic algorithm for the early/tardy scheduling problem. Asia-Pacific

J. of Operational Research, 23:393–405, 2006.

24

