
GRAPH PLANARIZATION

MAURICIO G.C. RESENDE AND CELSO C. RIBEIRO

1. Introduction

A graph is said to be planar if it can be drawn on the plane in such a way
that no two of its edges cross. Given a graph G = (V,E) with vertex set V and
edge set E, the objective of graph planarization is to find a minimum cardinality
subset of edges F ⊆ E such that the graph G′ = (V,E \ F), resulting from the
removal of the edges in F from G, is planar. This problem is also known as the
maximum planar subgraph problem. A related and simpler problem is that of finding
a maximal planar subgraph, which is a planar subgraph G′ = (V,E′) of G such that
the addition of any edge e ∈ E \ E′ to G′ destroys its planarity.

Graph planarization is known to be NP-hard [15]. The proof of NP-completeness
of its decision version is based on a transformation from the Hamiltonian path
problem restricted to bipartite graphs. Although exact methods for solving the
maximum planar subgraph problem have been recently proposed, most algorithms
to date attempt to find good approximate solutions.

In this article, we survey graph planarization and related problems. In the
next section, we describe variants and applications of the basic problem formulated
above. Next, we describe the branch-and-cut algorithm of Jünger and Mutzel [11].
We then review work on heuristics based on planarity testing and those based on
two-phase procedures. Finally, computational results are considered.

2. Variants and applications

An application of graph planarization arises in the design of integrated circuits,
in which a graph describing the circuit has to be decomposed into a minimum
number of layers, each of which is a planar graph [13]. Other applications arise
from variants of the basic graph planarization problem.

One such variant is the maximum weighted planar graph problem, in which pos-
itive weights are associated with the edges of the graph and one seeks a planar
subgraph of maximum weight. Note that the basic graph planarization problem is
a special case of the maximum weighted planar graph problem, in which all edge
weights are equal to one. An application of this problem to facility layout is de-
scribed in [9]. A graph is built in which the vertices represent the facilities and
the edges define the relationships between them. The weight of each edge is the
desirability that the two facilities that define the edge be adjacent in the design.
A maximum weighted planar subgraph corresponds to a feasible layout with maxi-
mum benefit. In this paper, the authors also propose simulated annealing and tabu
search heuristics for the approximate solution of the maximum weighted planar

Date: June 1998. Cite as M.G.C. Resende and C.C. Ribeiro, Graph planarization, in Ency-

clopaedia of Optimization, C.A. Floudas and P.M. Pardalos (Eds.), Kluwer Academic Publishers,
vol. 2, pp. 373–382, 2001. DOI:10.1007/978-0-387-74759-0 254.

1

2 M. G. C. RESENDE AND C. C. RIBEIRO

graph problem. Constructive heuristics based on maintaining a triangulated sub-
graph while making node and edge insertions are given in Foulds and Robinson [7],
Eades, Foulds, and Giffin [4], and Leung [14].

Another related variant is that of drawing a given graph such that the num-
ber of edge crossings is minimized. The crossing number problem has practical
applications in circuit design and graph drawing, such as in CASE tools [20] and
automated graphical display systems. One particular case is that of minimizing
straight-line crossings in layered graphs. A GRASP and path relinking approach
for the two-layer case is given in Laguna and Mart́ı [12], where one can also find
a survey of the literature. Algorithms for graph drawing are reviewed in Battista,
Eades, Tamassia, and Tollis [3].

In the planar augmentation problem, one wants to determine the minimum num-
ber of edges that need to be added to a planar graph such that the resulting graph
is still planar and at least k-connected, where k is usually fixed to two or three.
This variant has applications in automatic graph drawing, as well as in the design
of survivable networks [17].

3. An exact algorithm

An exact branch-and-bound algorithm for the weighted graph planarization
problem was introduced by Foulds and Robinson [6], but was limited to small
dense graphs. Only recently has there been a leap in the performance of exact
methods for graph planarization with the branch-and-cut algorithm of Jünger and
Mutzel [11], which we describe next.

Given a graph G = (V,E), their approach uses facet-defining inequalities for the
planar subgraph polytope PLS(G). Let xe be a 0-1 variable associated with each
edge e ∈ E, such that xe = 1 if and only if edge e appears in the maximum planar
subgraph of G. Furthermore, let x(F) =

∑
e∈F xe, for F ⊆ E.

Trivial inequalities 0 ≤ xe ≤ 1 are implicitly handled by the linear programming
(LP) solver. The inequality x(E) ≤ 3|V | − 6 is added to the initial linear program.
Let x be the optimal solution of the LP relaxation associated with some node of
the enumeration tree. For 0 ≤ ε ≤ 1, let Eε = {e ∈ E | xe ≥ 1 − ε} and consider
the graph Gε = (V,Eε), to which the planarity-testing algorithm of Hopcroft and
Tarjan [10] is applied. The algorithm stops if it finds an edge set F which induces
a nonplanar graph in G. If the inequality x(F) ≤ |F | − 1 is violated, it is added to
the set of constraints of the current LP. The back edge of the path which proved
the nonplanarity of the graph induced in G by F is removed and the planarity-
testing algorithm proceeds, eventually identifying other forbidden subgraphs of the
graph Gε. Although these forbidden subgraphs do not necessarily define facets of
PLS(G), they must contain facet-defining subgraphs. Facet-defining inequalities
are identified as follows. Once a forbidden set F is found, where the inequality
x(F) ≤ |F |−1 is violated, one successively deletes each edge f ∈ F and applies the
planarity-testing algorithm. If the graph induced by F \{f} is planar, then edge f is
returned to F . In at most |F | steps, F is reduced to a smaller edge set which induces
a minimal planar subgraph, leading to the facet-defining inequality x(F) ≤ |F | − 1
still violated by the current LP solution. Another simple heuristic searches for
violated Euler facet-defining inequalities x(F) ≤ 3|V ′| − 6 or x(F) ≤ 2|V ′| − 4,
where (V ′, F) is, respectively, a clique or a complete bipartite subgraph of G.

GRAPH PLANARIZATION 3

After an LP has been solved, its solution is exploited by the planarity-testing
algorithm, to produce a feasible solution for the graph planarization problem. Such
feasible solutions are used as lower bounds that are used not only for fathoming
nodes in the branch-and-cut tree, but also for fixing variables using their reduced
costs during a cutting plane phase. Other heuristics are implemented to enhance
the practical performance of the algorithm.

Branching is done if no cutting plane has been found for the current infeasible
solution. The variable chosen for branching is one with fractional value closest to
1/2, among those with maximum cost coefficient in the objective function.

4. Two-phase heuristics

The heuristics described in this section are based on the separation of the com-
putation into two phases. The first phase consists in devising a linear permutation
of the nodes of the input graph, followed by placing them along a line. The second
phase determines two sets of edges that may be represented without crossings above
and below that line, respectively. Takefuji and Lee [19] were the first to propose a
heuristic using this idea. They use an arbitrary sequence of nodes in the first phase
and apply a parallel heuristic using a neural network for the second phase. Take-
fuji, Lee, and Cho [18] claimed superior performance of the two-phase approach of
Takefuji and Lee [19] with respect to the heuristics described in he previous section.

Their approach was later extended and improved by Goldschmidt and Takvo-
rian [8]. In the first phase, these authors attempt to use a linear permutation of
the nodes associated with an Hamiltonian cycle of G. Two strategies are used: (i)
a randomized algorithm [1] that almost certainly finds a Hamiltonian cycle if one
exists, and (ii) a greedy deterministic algorithm that seeks a Hamiltonian cycle. In
the latter, the first node in the linear permutation is a minimum degree node in G.
After the first k nodes of the permutation have been determined, say v1, v2, · · · , vk,
the next node vk+1 is selected from the nodes adjacent to vk in G having the least
adjacencies in the subgraph Gk of G induced by V \ {v1, v2, · · · , vk}. If there is no
node of Gk adjacent to vk in G, then vk+1 is selected as a minimum degree node
in Gk.

Let H = (E, I) be a graph where each of its nodes corresponds to an edge of the
input graph G. Nodes e1 and e2 of H are connected by an edge if the corresponding
edges of G cross with respect to linear permutation of the nodes established during
the first phase. A graph is called an overlap graph if its nodes can be placed in
one-to-one correspondence with a family of intervals on a line. Two intervals are
said to overlap if they cross and none is contained in the other. Two nodes of the
overlap graph are connected by an edge if and only if their corresponding intervals
overlap. Hence, the graph H as constructed above is the overlap graph associated
with the representation of G defined by the linear permutation of its nodes.

The second phase of the heuristic of Goldschmidt and Takvorian consists in two-
coloring a maximum number of the nodes of the overlap graph H, such that each of
the two color classes B (blue) and R (red) forms an independent set. Equivalently,
the second phase seeks a maximum bipartite subgraph of the overlap graph H, i.e. a
bipartite subgraph having the largest number of nodes. This problem is equivalent
to drawing the edges of the input graph G above or below the line where its nodes
have been placed, according to their linear permutation. A greedy algorithm is used
to construct a maximal bipartite subgraph of the overlap graph. This algorithm

4 M. G. C. RESENDE AND C. C. RIBEIRO

finds a maximum independent set B ⊆ E of the overlap graph H = (E, I), reduces
the overlap graph by removing from it the nodes in B and all edges incident to
nodes in B, and then finds a maximum independent set R ⊆ E \B in the remaining
overlap graph H ′ = (E \ B, I ′). The two independent sets so obtained induce a
bipartite subgraph of the original overlap graph, not necessarily with a maximum
number of nodes.

The linear permutation obtained in the first phase affects the size of the pla-
nar subgraph found in the second phase of the above heuristic. Moreover, it is
not clear that the permutation produced by the greedy algorithm is the best. To
produce possibly better permutations, randomization and local search have been
introduced in the greedy algorithm by Resende and Ribeiro [16] in the form of a
greedy randomized adaptive search procedure (GRASP).

A GRASP [5] is an iterative process, in which each iteration consists of two
phases: construction and local search. The construction phase builds a feasible
solution, whose neighborhood is explored by local search. The best solution over
all GRASP iterations is returned as the result.

In the construction phase, a feasible solution is built, one element at a time. At
each construction iteration, the next element to be added is determined by ordering
all elements in a candidate list with respect to a greedy function that estimates
the benefit of selecting each element. The adaptive component of the heuristic
arises from the fact that the benefits associated with every element are updated
at each iteration of the construction phase to reflect the changes brought on by
the selection of the previous elements. The probabilistic component of a GRASP
is characterized by randomly choosing one of the best candidates in the list, but
usually not the top candidate. This way of making the choice allows for different
solutions to be obtained at each iteration, but does not necessarily jeopardize the
power of GRASP’s adaptive greedy component.

The solutions generated by a GRASP construction are not guaranteed to be
locally optimal, even with respect to simple neighborhood definitions. Hence, it
is almost always beneficial to apply a local search to attempt to improve each
constructed solution. A local search algorithm works in an iterative fashion by suc-
cessively replacing the current solution by a better solution from its neighborhood.

Resende and Ribeiro [16] propose an extension of the above described heuristic
of Goldschmidt and Takvorian, in which a GRASP is used for finding a linear
permutation of the nodes. In the construction phase of this GRASP, the greedy
algorithm used in the first phase by Goldschmidt and Takvorian is randomized:
instead of selecting the node of minimum degree among those yet unselected, the
selection is made from a set of low degree nodes. The local search phase of this
GRASP explores the neighborhood of the current permutation by swapping the
positions of two nodes at a time, attempting to reduce the number of possible edge
crossings.

Incorporating the second phase of the Goldschmidt-Takvorian heuristic to the
above GRASP for finding a linear permutation of the nodes results in a GRASP
for graph planarization.

Each iteration of this GRASP produces three edge sets: B (blue edges), R (red
edges), and P (the remaining edges, which are referred to as the pale edges). By
construction, B, R, and P are such that no red or pale edge can be colored blue.
Likewise, pale edges cannot be colored red. However, if there exists a pale edge

GRAPH PLANARIZATION 5

p ∈ P such that all blue edges that cross with p (let B̂p ⊆ B be the set of those

blue edges) do not cross with any red edge r ∈ R, then all blue edges b ∈ B̂p
can be colored red and p can be colored blue. In case this reassignment of colors
is possible, then the size of the planar subgraph is increased by one edge. This
post-optimization procedure is incorporated at the end of each GRASP iteration.

5. Computational Results

Detailed results on a set of 75 test problems described in the literature [2, 8]
are reported in [16]. Here, we summarize computational results illustrating the
effectiveness of the two-phase heuristics described in the previous section, as well
as that of the exact branch-and-cut algorithm. These results are based on a Fortran
implementation of the GRASP heuristic of Resende and Ribeiro [16], on the original
code of the branch-and-cut algorithm of Jünger and Mutzel [11], and on published
results for the heuristics of Takefuji and Lee [19] and Goldschmidt and Takvorian
[8] (using the greedy algorithm for building the linear permutation) of the nodes.

Problem Nodes Edges T-L G-T R-R J-M

G1 10 22 20 20 20 20

G2 45 85 80 80 82 82

G3 10 24 21 21 24 24
G4 10 25 22 21 24 24

G5 10 26 22 21 24 24

G6 10 27 22 21 24 24
G7 10 34 23 22 24 24

G8 25 69 58 60 69 69

G9 25 70 59 60 69 69
G10 25 71 58 59 69 69

G11 25 72 60 59 69 69

G12 25 90 61 62 67 68

G13 50 367 70 131 135 125

G14 50 491 100 136 143 133
G15 50 582 101 142 144 138

G16 100 451 92 180 196 187

G17 100 742 116 219 236 213
G18 100 922 115 237 246 223

G19 150 1064 127 297 311 290

We give, in the table above, results comparing the four approaches on a subset
of the test problems described in [8]. For each instance, the table lists the number
of nodes, the number of edges, and the size of the planar subgraphs produced by
each algorithm. A time limit of 1000 seconds (on a SUN SPARCstation 10/41) was
imposed on the runs of the branch-and-cut algorithm and the best solution found
was returned as a heuristic solution when optimality was not attained in that time
limit. This time limit was reached on instances G12 to G19.

The results in this table show that the Goldschmidt-Takvorian algorithm is a
substantial improvement over the neural network approach of Takefuji and Lee.
The GRASP consistently outperforms both other two-phase heuristics, not only
for the problems reported in this table, but also for all of the remaining instances
considered in [16].

A comparison of GRASP with the branch-and-cut algorithm depends heavily on
the instances. The results reported in [16] can be separated into two groups. On
49 of the 55 instances in the first group, the GRASP either matched or produced
better solutions than the branch-and-cut algorithm. On 30 of those 55 instances, the

6 M. G. C. RESENDE AND C. C. RIBEIRO

GRASP solution was strictly better than the branch-and-cut solution. Note that,
on these instances, the branch-and-cut algorithm was forced to stop because of the
1000 second time limit. However, on all the remaining 20 instances, the branch-
and-cut algorithm performs remarkably well and outperforms all other algorithms.

References

[1] D. Angluin and L.G. Valiant. Probabilistic algorithms for Hamiltonian circuits and matchings.

J. Comp. Sys. Sci., 18:155–190, 1979.
[2] R.J. Cimikowski. An analysis of heuristics for the maximum planar subgraph problem. In

Proceedings of the 6th ACM-SIAM Symposium on Discrete Algorithms, pages 322–331, 1995.

[3] G. Di Battista, P. Eades, R. Tamassia, and I.G. Tollis. Algorithms for drawing graphs: An an-
notated bibliography. Computational Geometry: Theory and Applications, 1:235–282, 1994.

[4] P. Eades, L.R. Foulds, and J.W. Giffin. An efficient heuristic for identifying a maximum
weight planar subgraph. Lecture Notes in Mathematics, 952:239–251, 1982.

[5] T.A. Feo and M.G.C. Resende. Greedy randomized adaptive search procedures. Journal of

Global Optimization, 6:109–133, 1995.
[6] L.R. Foulds and R.W. Robinson. A strategy for solving the plant layout problem. Operational

Research Quarterly, 27:845–855, 1976.

[7] L.R. Foulds and R.W. Robinson. Graph theoretic heuristics for the plant layout problem. Int.
J. Production Research, 16:27–37, 1978.

[8] O. Goldschmidt and A. Takvorian. An efficient graph planarization two-phase heuristic. Net-

works, 24:69–73, 1994.
[9] M. Hasan and I.H. Osman. Local search algorithms for the maximal planar layout problem.

International Transactions in Operational Research, 2:89–106, 1995.

[10] J. Hopcroft and R.E. Tarjan. Efficient planarity testing. J. ACM, 21:549–568, 1974.
[11] M. Jünger and P. Mutzel. Maximum planar subgraphs and nice embeddings: Practical layout

tools. Algorithmica, 16:33–59, 1996.

[12] M. Laguna and R. Mart́ı. Grasp and path relinking for 2-layer straight line crossing mini-
mization. INFORMS Journal on Computing, 1998. to appear.

[13] T. Lengauer. Combinatorial algorithms for integrated circuit layout. John Wiley, 1990.
[14] J. Leung. A new graph-theoretic heuristic for facility layout. Management Science, 38:594–

605, 1992.

[15] P.C. Liu and R.C. Geldmacher. On the deletion of nonplanar edges of a graph. In Proceedings
of the 10th SE Conf. on Comb., Graph Theory, and Comp., pages 727–738, Boca Raton, 1977.

[16] M.G.C. Resende and C.C. Ribeiro. A GRASP for graph planarization. Networks, 29:173–189,

1997.
[17] M. Stoer. Design of survivable networks, volume 1531 of Lecture Notes in Mathematics.

Springer-Verlag, 1992.

[18] Y. Takefuji, K.-C. Lee, and Y.B. Cho. Comments on “An O(n2) algorithm for graph pla-
narization”. IEEE Transactions on Computer Aided Design, 10:1582–1583, 1991.

[19] Y. Takefuji and K.C. Lee. A near-optimum parallel planarization algorithm. Science,

245:1221–1223, 1989.
[20] R. Tamassia and G. Di Battista. Automatic graph drawing and readability of diagrams. IEEE

Trans. Sys., Man., and Cyber., 18:61–79, 1988.

Information Sciences Research, AT&T Labs Research, Florham Park, NJ 07932 USA.
E-mail address: mgcr@research.att.com

Department of Computer Science, Catholic University of Rio de Janeiro, Rio de
Janeiro, RJ 22453-900 Brazil.

E-mail address: celso@inf.puc-rio.br

