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Abstract. GRASP, or greedy randomized adaptive search procedure, is a
multi-start metaheuristic that repeatedly applies local search starting from
solutions constructed by a randomized greedy algorithm. In this chapter we
consider ways to hybridize GRASP to create new and more effective meta-
heuristics. We consider several types of hybridizations: constructive proce-
dures, enhanced local search, memory structures, and cost reformulations.

1. Introduction

Combinatorial optimization can be defined by a finite ground set E = {1, . . . , n},
a set of feasible solutions F ⊆ 2E, and an objective function f : 2E → R. Through-
out this chapter, we consider the minimization version of the problem, where we
search for an optimal solution S∗ ∈ F such that f(S∗) ≤ f(S), ∀S ∈ F . The
ground set E, the cost function f , and the set of feasible solutions F are defined for
each specific problem. For instance, in the case of the traveling salesman problem,
the ground set E is that of all edges connecting the cities to be visited, f(S) is
the sum of the costs of all edges e ∈ S, and F is formed by all edge subsets that
determine a Hamiltonian cycle.

Combinatorial optimization finds applications in many settings, including rout-
ing, scheduling, inventory and production planning, and facility location. These
problems arise in real-world situations such as in transportation (air, rail, trucking,
shipping), energy (electrical power, petroleum, natural gas), and telecommunica-
tions (design, location, operation).

While much progress has been made in finding provably optimal solutions to com-
binatorial optimization problems employing techniques such as branch and bound,
cutting planes, and dynamic programming, as well as provably near-optimal solu-
tions using approximation algorithms, many combinatorial optimization problems
arising in practice benefit from heuristic methods that quickly produce good-quality
solutions. Many modern heuristics for combinatorial optimization are based on
guidelines provided by metaheuristics.

Metaheuristics are high level procedures that coordinate simple heuristics, such
as local search, to find solutions that are of better quality than those found by
the simple heuristics alone. Many metaheuristics have been introduced in the last
thirty years [40]. Among these, we find genetic algorithms, simulated annealing,
tabu search, variable neighborhood search, scatter search, path-relinking, iterated
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Traveling Salesman Problem: Given a directed graph G(V, E) with costs
associated with its edges, and a starting vertex v0 ∈ V , find a least-cost route
that starts in v0, visits each other vertex exactly once, and then returns to v0.

local search, ant colony optimization, swarm optimization, and greedy randomized
adaptive search procedures (GRASP).

In the last few years, many heuristics that do not follow the concepts of a single
metaheuristic have been proposed. These heuristics combine one or more algo-
rithmic ideas from different metaheuristics and sometimes even from outside the
traditional field of metaheuristics. These approaches are commonly referred to as
hybrid metaheuristics. The main motivation to hybridize metaheuristics is to make
up for the shortcomings of one metaheuristic with special characteristics of the
other. As we will see later, pure GRASP lacks a memory mechanism that enables
good solutions found in earlier iterations of the search to influence the search later.
GRASP hybridized with path-relinking, however, overcomes this shortcoming by
using a very effective memory mechanism to intensify the search near good-quality
solutions. As a result, GRASP with path-relinking is more effective than simple
GRASP or simple path-relinking. It is also more efficient. In this chapter we il-
lustrate hybrid metaheuristics by looking at ways to hybridize GRASP with other
metaheuristics and optimization strategies for finding optimal or near-optimal so-
lutions of combinatorial optimization problems. Of course, hybridizations can be
made with metaheuristics other than GRASP, as is discussed in Raidl [70], where
a unified view of hybrid metaheuristics is presented.

The chapter is organized as follows. In Section 2 we review the metaheuristic
GRASP. Hybrid construction schemes are considered in Section 3 and hybrid local
search schemes in Section 4. Section 5 discusses hybridization of GRASP with path-
relinking. Other types of hybridizations are considered in Section 6. Concluding
remarks are made in Section 7.

2. A review of GRASP

A GRASP, or greedy randomized adaptive search procedure, repeatedly applies
local search, starting from solutions that are constructed using a randomized greedy
algorithm. The best local optimum found over all local searches is returned as
the solution of the heuristic. An especially appealing characteristic of GRASP
is the ease with which it can be implemented. Few parameters need to be set
and tuned, and therefore development can focus on implementing algorithms and
data structures to assure efficiency. As we will see later, basic implementations
of GRASP rely exclusively on two parameters. The first controls the number of
construction / local search iterations that will be applied and the second controls
the blend of randomness and greediness in the solution construction procedure.
In spite of its simplicity and ease of implementation, GRASP is a very effective
metaheuristic and produces the best known solutions for many problems.

GRASP was first introduced by Feo and Resende [26]. See Feo and Resende [27],
Pitsoulis and Resende [67], and Resende and Ribeiro [75] for surveys of GRASP
and Festa and Resende [31, 32] for annotated bibliographies.

This section is organized as follows. We first discuss the concept of neighborhood
solution space, needed to understand the basics of local search. This is followed



METAHEURISTIC HYBRIDIZATION WITH GRASP 3

Figure 1. 1-flip neighborhood solution space graph X of dimen-
sion 3.

by an examination of local search and the tradeoffs observed by using different
neighborhood structures in local search. Then we discuss how to add diversification
into local search by using procedures that blend randomness and greediness to
construct a diverse set of good starting solutions for local search.

2.1. Neighborhood solution space. Consider the neighborhood solution space

graph X = (S, M), where the node set S represents all feasible solutions of a
combinatorial optimization problem and the edge set M corresponds to moves con-
necting neighboring solutions. A solution s ∈ S is in the neighborhood N(t) of a
solution t ∈ S if s can be obtained from t by making a small predefined change
in t. If a solution s ∈ N(t), then t ∈ N(s), (s, t) ∈ M , and (t, s) ∈ M . Differ-
ent neighborhood structures can be defined for a given combinatorial optimization
problem. For example, suppose a solution is represented as an indicator n-vector
of zeroes and ones. Let the distance d(s, t) between two solutions s and t be their
Hamming distance, i.e. the number of components where the two solutions differ.
The 1-flip neighborhood of s is the set of all solutions t such that d(s, t) = 1.
The size of the 1-flip neighborhood is n. Figure 1 shows the 1-flip neighborhood
solution space graph for [0, 1]3. Neighborhood sizes vary from small, such as the
1-flip neighborhood, to neighborhood that are exponentially large. For example,
the k-flip neighborhood of s, the set of all solutions t such that d(s, t) = k, has
size

(

n
k

)

. Later in this chapter, we consider other very large neighborhoods that are
incorporated into a local search scheme called very large neighborhood search [3].

begin LocalSearch(s0 ∈ S)
1 t← s0;
2 while there exists s ∈ N(t) such that f(s) < f(t) do

3 t← s;
4 end-while;
5 return t;
end

Figure 2. Standard local search algorithm.
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begin RandomizedGreedy
1 S ← ∅;
2 C ← E = { ground set };
3 while |C| > 0 do

4 For all c ∈ C compute greedy function value g(c);
5 Define RCL(C)← {c ∈ C | g(c) has a low value};
6 Select at random c∗ ∈ RCL(C);
7 Add c∗ to partial solution: S ← S ∪ {c∗};
8 Let C be the set of ground set elements that can

be added to S;
9 end-while;
end

Figure 3. GRASP greedy randomized construction: randomizing
the greedy algorithm, or semi-greedy algorithm.

2.2. Local search. Local search (see Figure 2) starts at some node s0 ∈ S and
makes it the current solution t, i.e. t = s0. At each iteration, it seeks a neighboring
solution having a better objective function value than the current solution, i.e. a
solution s ∈ N(t) such that f(s) < f(t). If such a solution is found, it becomes the
current solution, i.e. t = s. These iterations are repeated until there is no better
solution in the neighborhood N(t) of the current solution t. In this case, solution
t is called a local optimum. Local search can be thought of as starting at a node
s ∈ S and examining adjacent nodes in graph X for an improving solution. In the
first-improving variant, local search moves to the first improving solution that it
finds, whereas in the best-improving version, it examines all of the neighbors and
moves to the best one. Clearly, the complexity of carrying out one step of local
search depends on the size of the neighborhood. Likewise, the likelihood that an
improving solution will be found also depends on the size of the neighborhood.
There is a tradeoff that needs to be explored. Small neighborhoods, such as the
1-flip, can be explored quickly but may not lead to optimal solutions, while large
neighborhoods, such as k-flip, are more likely to contain an optimal solution, or
lead to one, but are often exponentially large and expensive to explore. In this
chapter we will examine this tradeoff. One can think of this part of the search as
intensification, since we concentrate on a small portion of the solution space.

2.3. Diversification of starting solutions for local search. An effective search
method also needs to enable diversification. In carrying out local search, a good
strategy should not focus the search on one particular region of the solution space,
for example around a solution built with a greedy algorithm. One alternative is
to start local search from many randomly generated solutions with the expectation
that there is a cost-improving path in X from one of those solutions to an optimal
or near-optimal solution. A downside to starting at randomly generated solutions
is the average low quality of such solutions and the large average length of cost-
improving paths in X from them to optimal or near-optimal solutions. Long paths
imply many steps and consequently long running times, as well as many places to
make mistakes and take a detour to a bad local optimum.
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begin SampleGreedy(p)
1 S ← ∅;
2 C ← E = { ground set };
3 while |C| > 0 do

4 Randomly sample min{p, |C|} elements from C
and put them in RCL(C);

5 Select c∗ = argmin{g(c) | c ∈ RCL(C)};
6 Add c∗ to partial solution: S ← S ∪ {c∗};
7 Let C be the set of ground set elements that can

be added to S;
8 end-while;
end

Figure 4. GRASP greedy randomized construction: sample greedy.

2.4. Greedy randomized construction. The greedy randomized construction
methods of GRASP seek to produce a diverse set of good-quality starting solutions
from which to start local search. This is achieved by adding randomization to the
greedy algorithm. We illustrate here two ways to do this. Solutions are built by
adding one ground set element at a time to a partially constructed solution. In the
first construction scheme, called semi-greedy algorithm by Hart and Shogan [47], at
each step let the candidate set C denote all of the remaining ground set elements
that can be added to the partial solution and let RCL(C) be a restricted candidate

list made up of high-quality candidate elements. The quality of a candidate element
is determined by its contribution, at that point, to the cost of the solution being
constructed. A greedy function g(c) measures this contribution for each candidate
c ∈ C. Membership can be determined by rank or by quality relative to other
candidates. Membership by rank, also called cardinality based, is achieved if the
candidate is one of the q candidates with smallest greedy function value, where
q is an input parameter that determines how greedy or random the construction
will be. Membership by quality relative to other candidates determines a greedy
function cutoff value and only considers candidates with a greedy value no greater
than the cutoff. To implement this, one usually makes use of a real-valued RCL
parameter α ∈ [0, 1]. Let ǵ = max{g(c) | c ∈ C} and g̀ = min{g(c) | c ∈ C}. A
candidate c ∈ C is placed in the RCL only if g̀ ≤ g(c) ≤ g̀ + α · (ǵ − g̀). Input
parameter α determines how greedy or random the construction will be. Of these
restricted candidates, one is selected at random and added to the partial solution.
The construction is repeated until there are no further candidates. Figure 3 shows
pseudo-code for this construction procedure.

In the second construction scheme, called sample greedy by Resende and Werneck
[77], instead of randomizing the greedy algorithm, a greedy algorithm is applied to
each solution in a random sample of candidates. At each step a fixed-size subset
of the candidates in C is sampled and the incremental contribution to the cost
of the partial solution is computed for each sampled element. An element with
the best incremental contribution is selected and added to the partial solution.
This process is repeated until, as before, the construction terminates when no fur-
ther candidate exists. Figure 4 shows pseudo-code for this construction procedure.



6 MAURICIO G. C. RESENDE

Calling RandomizedGreedy the chosen randomized greedy construction procedure,
Figure 8 shows pseudo-code for a generic GRASP. At the completion of the ran-
domized greedy phase the solution on hand is, for many problem instances, feasible.
However, for some problem instances, it may be infeasible and require that a repair
procedure be applied to restore feasibility. Examples of GRASP implementations
where repair procedures were needed to restore feasibility of the constructed so-
lution can be found in Duarte, Ribeiro, and Urrutia [24], Duarte et al. [25], and
Nascimento, Resende, and Toledo [63].

GRASP may be viewed as a repetitive sampling technique. Each iteration pro-
duces a sample solution from an unknown distribution, whose mean and variance
are functions of the restrictive nature of the RCL. For example, if the RCL is re-
stricted to a single element, then the same solution will be produced at all iterations.
The variance of the distribution will be zero and the mean will be equal to the value
of the greedy solution. If the RCL is allowed to have more elements, then many
different solutions will be produced, implying a larger variance. Since greediness
plays a smaller role in this case, the mean solution value should be worse. However,
the value of the best solution found outperforms the mean value and very often
is optimal. The histograms in Figure 5 illustrate this situation on an instance of
MAXSAT with 100 variables and 850 clauses, depicting results obtained with 1000
independent constructions using the first phase of the GRASP described in [73, 74].
Since this is a maximization problem, the purely greedy construction corresponds
to α = 1, whereas the random construction occurs with α = 0. We notice that when
the value of α increases from 0 to 1, the mean solution value increases towards the
purely greedy solution value, while the variance approaches zero.

For each value of α, we present in Figure 6 histograms with the results ob-
tained by applying local search to each of the 1000 constructed solutions. Figure 7
summarizes the values observed for the total processing time and the local search
time. We notice that both time measures considerably decrease as α tends to 1,
approaching the purely greedy choice. In particular, we observe that the average
local search time taken by α = 0 (purely random) is approximately 2.5 times that
taken in the case α = 0.9 (almost greedy). In this example, two to three greedily
constructed solutions can be investigated in the same time needed to apply local
search to one single randomly constructed solution. The appropriate choice of the
value of the RCL parameter α is clearly critical and relevant to achieve a good
balance between computation time and solution quality. It is unlikely that GRASP
will find an optimal solution if the average solution value is low, even if there is
a large variance in the overall solution values, such as is the case for α = 0. On
the other hand, if there is little variance in the overall solution values, it is also
unlikely that GRASP will find an optimal solution, even if the average solution is
high, as is the case for α = 1. What often leads to good solutions are relatively
high average solution values in the presence of a relatively large variance, such as is
the case for α = 0.8. Very often, many GRASP solutions are generated in the same
amount of time required for the local optimization procedure to converge from a
single random start.

To show some solutions produced by GRASP, consider the maximum indepen-
dent set problem. Feo, Resende, and Smith [28, 71] describe a GRASP for this
problem where the independent set is built, one vertex at a time until a maximal
independent set is produced. At each step of the construction, the set of candidate
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(d) RCL parameter alpha = 0.6
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(e) RCL parameter alpha = 0.8
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Figure 5. Distribution of construction phase solutions as a func-
tion of the RCL parameter α (1000 repetitions were recorded for
each value of α).
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(a) RCL parameter alpha = 0.0 (random)
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(c) RCL parameter alpha = 0.4
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(d) RCL parameter alpha = 0.6
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(f) RCL parameter alpha = 1.0 (greedy)

Figure 6. Distribution of local search phase solutions as a func-
tion of the RCL parameter α (1000 repetitions for each value of
α).
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Figure 7. Total CPU time and local search CPU time as a func-
tion of the RCL parameter α (1000 repetitions for each value of α)
for a maximization problem.

begin GRASP
1 x∗ ←∞;
2 while stopping criterion not satisfied do

3 x← RandomizedGreedy(·);
4 if x is not feasible then

5 x← repair(x);
6 end-if

7 x← LocalSearch(x);
8 if f(x) < f(x∗) then

9 x∗ ← x;
10 end-if

11 end-while;
end

Figure 8. A basic GRASP in pseudo-code.

Maximum Independent Set Problem: Given an undirected graph, find
the largest subset of mutually nonadjacent vertices.

vertices to be added to the partial solution is made up of vertices that are nonad-
jacent to all vertices in the partial solution and the greedy function is the degree of
the candidate vertex with respect to the other candidate vertices. The local search
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is a (k, l)-exchange where k vertices are removed from the independent set and l > k
vertices are added to it. Figure 9 shows solutions produced by the construction and
local search phases of GRASP on a ten-node instance of the maximum independent
set problem where the local search used is a (2, 3)-exchange.

3. Hybrid construction schemes

As discussed in Section 2, the central idea behind GRASP is the repeated appli-
cation of local search starting from a diverse set of good-quality starting solutions.
We illustrated the starting solution generation with two schemes for generating
such starting solutions: randomized greedy and sample greedy. In this section, we
consider a few other schemes that can be hybridized within a GRASP.

3.1. More randomized greedy schemes. A possible shortcoming of the greedy
randomized construction based on restricted candidate list is its complexity. At
each step of the construction, each yet unselected candidate element has to be
evaluated by the greedy function. In cases where the difference between the number
of elements in the ground set and the number of elements that appear in a solution
is large, this may not be very efficient. Resende and Werneck [77] introduced the
random plus greedy and the sample greedy construction schemes to address this
shortcoming.

In random plus greedy, a portion of the solution is constructed by randomly
choosing p candidate elements and the remaining solution is completed in a greedy
fashion. The resulting solution is randomized greedy. The value of p determines
how greedy or random the construction will be. Small values of p lead to more
greedy solutions where large values lead to ones that are more random. Sample
greedy was presented in Subsection 2.4. It also uses a parameter p to control the
balance between greediness and randomness in the construction. Small values of p
lead to more random solutions, while large values lead to more greedy solutions.

Resende and Werneck [77] also introduced the proportional greedy construction
scheme. In each iteration of proportional greedy, we compute the greedy function
g(c) for every candidate element c ∈ C and then pick a candidate at random, but in
a biased way: the probability of a given candidate c′ ∈ C being selected is inversely
proportional to g(c′)−min{g(c)|c ∈ C}.

3.2. Reactive GRASP. In randomized greedy construction procedures, the algo-
rithm designer must decide how to balance greediness and randomness. A simple
approach is to balance at random. For example, in the semi-greedy construction
with membership in the RCL by quality relative to the other candidates, the pa-
rameter α can be selected uniformly at random from the interval [0, 1] so that each
GRASP iteration uses a different α value and therefore has a different balance
between greediness and randomness. Prais and Ribeiro [68] showed that using a
single fixed value for the value of RCL parameter α in the membership by quality
relative to other candidates of the semi-greedy algorithm often hinders finding a
high-quality solution, which eventually could be found if another value was used.
They proposed an extension of the basic GRASP procedure, which they call Re-

active GRASP, in which the parameter α is not fixed, but instead is selected at
each iteration from a discrete set of possible values. The solution values found
along the previous iterations serve a guide for the selection process. Prais and
Ribeiro [68] define Ψ = {α1, . . . , αm} to be the set of possible values for α. The
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Figure 9. Four iterations of GRASP for maximum independent
set. The solutions on the left are maximal and were constructed
with a randomized greedy algorithm. The corresponding solutions
on the right are produced by applying a (2, 3)-exchange local search
on the constructed solution. Since the size of the maximum inde-
pendent set for this instance is four, all locally optimal solutions
found are also globally optimal.

probabilities associated with the choice of each value are all initially made equal
to pi = 1/m, i = 1, . . . , m. Furthermore, let z∗ be the incumbent solution and let
Ai be the average value of all solutions found using α = αi, i = 1, . . . , m. The
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selection probabilities are periodically reevaluated by taking pi = qi/
∑m

j=1 qj , with

qi = z∗/Ai for i = 1, . . . , m. The value of qi will be larger for values of α = αi lead-
ing to the best solutions on average. Larger values of qi correspond to more suitable
values for the parameter α. The probabilities associated with these more appropri-
ate values will then increase when they are reevaluated. This reactive strategy is
not limited to semi-greedy procedures where membership in the RCL depends on
relative quality. It can be extended to the other greedy randomized construction
schemes, all of which need to balance greediness with randomization.

3.3. Long-term memory in construction. Though reactive GRASP uses long-
term memory (information gathered in previous iterations) to adjust the balance
of greediness and randomness, Fleurent and Glover [33] observed that the basic
GRASP does not and proposed a long-term memory scheme to address this issue in
multi-start heuristics. Long-term memory is one of the fundamentals on which tabu
search [36, 37] relies. Their scheme maintains a pool of elite solutions to be used in
the construction phase. Later in this chapter we discuss pools of elite solutions in
detail. For now, all we need to know is that to become an elite solution, a solution
must be either better than the best member of the pool, or better than its worst
member and sufficiently different from the other solutions in the pool. Fleurent
and Glover [33] define a strongly determined variable to be one that cannot be
changed without eroding the objective or changing significantly other variables and
a consistent variable to be one that receives a particular value in a large portion
of the elite solution set. Let I(e) be a measure of the strongly determined and
consistent features of solution element e from the ground set E. I(e) becomes larger
as e appears more often in the pool of elite solutions. It is used in the construction
phase as follows. Recall that g(e) is the greedy function value for candidate e ∈ C,
i.e. the incremental cost associated with the incorporation of element e ∈ C into
the solution under construction. Let K(e) = F (g(e), I(e)) be a function of the
greedy and the intensification functions. For example, K(e) = λg(e) + I(e). The
intensification scheme biases selection from the set C of candidate solutions to those
elements e ∈ C with a high value of K(e) by setting their selection probability to
be p(e) = K(e)/

∑

s∈RCL K(s). The function K(e) can vary with time by changing
the value of λ, e.g. initially λ may be set to a large value that is decreased when
diversification is called for.

3.4. Biased sampling. Another way to depart from the uniform selection of can-
didate elements in the construction of a greedy randomized solution is to follow
the strategy proposed in the heuristic-biased stochastic sampling scheme of Bresina
[14]. Instead of choosing the next candidate element to add to the partial solution
uniformly at random, heuristic-biased stochastic sampling suggests that any prob-
ability distribution can be used to bias the selection toward some particular can-
didates. In the construction mechanism proposed by Bresina [14], a family of such
probability distributions is introduced. They are based on the rank r[σ] assigned to
each candidate element σ, according to its greedy function value. The element with
the smallest greedy function value has rank 1, the second smallest has rank 2, and
so on. Several bias functions b(·) are introduced by Bresina, such as random bias
where b(r) = 1, linear bias where b(r) = 1/r, log bias where b(r) = log−1(r+1), ex-
ponential bias where b(r) = e−r, and polynomial bias of order n where b(r) = r−n.
Once all elements of the RCL have been ranked, the probability π(σ) of selecting
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Steiner Problem in Graphs: Given an undirected graph G(V, E) with
costs associated with its edges and a subset S ⊆ V of the vertices, find a tree
of minimum weight which spans all vertices in S, where the weight of the tree
is the sum of the costs of the edges in the tree.

Prize-Collecting Steiner Problem in Graphs: Given an undirected
graph with penalties associated with its vertices and costs associated with its
edges, find a tree of minimum weight, where the weight of the tree is the sum of
the costs of its edges plus the sum of the penalties of the vertices not spanned
by the tree.

element σ ∈ RCL can be computed as π(σ) = b(r[σ])/(
∑

σ′∈RCL b(r[σ′])). In this
scheme one can restrict candidates to be selected from the RCL or from the entire
set of candidates, i.e. make RCL = C.

3.5. Cost perturbation. The idea of introducing noise into the original costs as
a way of randomizing a solution construction procedure is similar to that in the
so-called noising method of Charon and Hudry [16, 17]. It can be more effec-
tive than the greedy randomized construction of the basic GRASP procedure in
circumstances where the construction algorithms are insensitive to standard ran-
domization strategies, such as selecting an element at random from a restricted
candidate list. Ribeiro, Uchoa, and Werneck [81] showed that this is the case for
the shortest-path heuristic of Takahashi and Matsuyama [88], used as one of the
main building blocks of the construction phase of a hybrid GRASP they proposed
for the Steiner problem in graphs. Another situation where cost perturbations can
be effective arises when no greedy algorithm is available for straightforward ran-
domization as was the case of the hybrid GRASP developed by Canuto, Resende,
and Ribeiro [15] for the prize-collecting Steiner tree problem, which makes use of
the primal-dual approximation algorithm of Goemans and Williamson [43] to build
initial solutions using perturbed costs.

The cost perturbation methods used in the GRASP for the minimum Steiner
tree problem incorporate learning mechanisms associated with intensification and
diversification strategies, originally proposed in the context of tabu search. Let we

denote the weight of edge e. Three distinct weight randomization methods (D, I,
U) are applied. At a given GRASP iteration i, the modified weight wi

e of each
edge e is randomly selected from a uniform distribution between we and ri(e) ·we,
where the coefficient ri(e) depends on the selected weight randomization method
applied at iteration i. Let ti−1(e) be the number of locally optimal solutions in
which edge e appeared, after i− 1 iterations of the hybrid GRASP procedure have
been performed. Clearly, 0 ≤ ti−1(e) ≤ i− 1.

In method D, values of the coefficients ri(e) = 1.25 + 0.75 · ti−1(e)/(i − 1) are
larger for edges which appeared more frequently in previously found local optima.
This scheme leads to a diversification strategy, since more frequently used edges
are likely to be penalized with stronger augmentations. Contrarily, method I is
an intensification strategy penalizing less frequent edges with larger coefficients
ri(e) = 2 − 0.75 · ti−1(e)/(i− 1). Finally, the third randomization method U uses
a uniform penalization strategy, independent of frequency information, i.e. it uses
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ri(e) = 2. The original weights without any penalization are used in the first
three iterations, combined with three different construction heuristics. The weight
randomization methods are then cyclically applied, one at each of the remaining
iterations, starting with method I, next D, then U , then I again, and so on. The
alternation between diversifying (method D) and intensifying (method I) iterations
characterizes a strategic oscillation approach [39].

In the case of the GRASP for the prize-collecting Steiner tree problem, a new
solution is built at each iteration using node penalties updated by a perturbation
function, according to the structure of the current solution. Two penalty perturba-
tion schemes are used. Perturbation by eliminations enforces search diversification
by forcing the approximation algorithm to build a new solution without some of
the nodes appearing in the solution constructed in the previous iteration. This is
done by changing to zero the penalties of some persistent nodes, which appeared in
the last solution built and remained at the end of the local search. A parameter ρ
controls the fraction of the persistent nodes whose penalties are temporarily set to
zero. Perturbation by penalty changes forces the approximation algorithm to build
different, but still good, solutions by introducing noise into the node penalties in a
way similar to what is proposed in Charon and Hudry [16, 17]. For each node i, a
perturbation factor β(i) is randomly generated in the interval [1−a, 1+a], where a
is an implementation parameter. The penalty associated with node i is temporarily
changed to π′(i) = π(i) · β(i), where π(i) is its original penalty.

4. Hybrid local search schemes

The basic local search schemes described in Section 2 take an initial solution,
make it the current solution, and search the current solution’s neighborhood for an
improving solution. If one is found, it is made the current solution and local search
is recursively applied to the current solution. The procedures terminate when no
better solution exists in the current solution’s neighborhood. Such local search
schemes require that the size of the neighborhood be such that its exploration can
be done efficiently.

Several approaches have been proposed to extend the above local search scheme.
These include methods that explore beyond the current solution’s neighborhood
by allowing cost-increasing moves, by exploring multiple neighborhoods, and by
exploring very large neighborhoods.

4.1. Variable neighborhood descent. Variable neighborhood descent (VND)
allows the systematic exploration of multiple neighborhoods [45]. As opposed to
variable neighborhood search, which we examine later in this section and for which
the neighborhoods are parameterized, the neighborhoods in VND need not be re-
lated. VND is based on the facts that a local minimum with respect to one neigh-
borhood is not necessarily a local minimum with respect to another and that a
global minimum is a local minimum with respect to all neighborhoods. VND also
is based on the empirical observation that, for many problems, local minima with
respect to one or more neighborhoods are relatively close to each other [46]. Since
a global minimum is a local minimum with respect to all neighborhoods, it should
be easier to find a global minimum if more neighborhoods are explored.

Let Nk(t), for k = 1, . . . , K be K neighborhood structures of solution t ∈ S. The
pseudo-code in Figure 10 illustrates this scheme. As usual, the search begins with
a given starting solution s0 ∈ S which is made the current solution t. Each major
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begin VND(s0 ∈ S)
1 t← s0; flag← true;
2 while flag do

3 flag← false;
4 for k = 1, . . . , K do

5 if there exists s ∈ Nk(t) such that f(s) < f(t) then

6 t← s; flag← true; break;
7 end-if

8 end-for

9 end-while;
10 return t;
end

Figure 10. Variable neighborhood descent (VND) on K neigh-
borhood structures N1, N2, . . . , Nk.

iteration (lines 2 to 9) searches for an improving solution s in up to K neighborhoods
of t. If no improving solution is found in any of the K neighborhoods, the search
ends. Otherwise, s is made the current solution and the search is applied starting
from the current solution.

GRASP with VND is the result of replacing the standard local search in a
GRASP by a VND with two or more neighborhood structures. Applications of
VND within GRASP include Martins et al. [61], Ribeiro and Souza [80], Ribeiro,
Uchoa, and Werneck [81], Ribeiro and Vianna [83], and Andrade and Resende [7].

4.2. Variable neighborhood search. Another strategy based on searching mul-
tiple neighborhoods is variable neighborhood search, or VNS [45]. Whereas in vari-
able neighborhood descent, the neighborhoods may be unrelated, in VNS the K
neighborhoods are parameterized such that |N1(s)| ≤ |N2(s)| ≤ · · · ≤ |NK(s)|, for
all s ∈ S. The 1-flip, 2-flip, . . ., K-flip neighborhoods constitute an example of K
such neighborhoods.

The standard VNS combines deterministic and stochastic elements to search the
K neighborhoods. The pseudo-code in Figure 11 illustrates this method. In the
k-th step of the inner loop of VNS, a solution s′ is chosen at random from the
Nk(t) neighborhood of the incumbent t ∈ S. This operation is often referred to
as shaking. The standard local search is done on the N1(s

′) neighborhood of s′ in
search for a solution that is better than the incumbent solution t. If an improving
solution is found, it is made the incumbent and the process restarts with k = 1.
Otherwise, k is incremented and a new step begins. The process stops when all K
neighborhoods have been searched without producing a new incumbent solution.

Whereas in VND we require that the neighborhoods be small enough so they
can be searched efficiently, in VNS only neighborhood N1 should be small since it
is the only neighborhood that is searched. The only practical requirement is that
it be easy to randomly select a solution from each neighborhood N2, N3, . . . , NK .

Examples of GRASP with VNS include Canuto, Resende, and Ribeiro [15], Ochi,
Silva, Drummond [64], Drummond et al. [23], Festa et al. [30], and Beltrán et al.
[13].
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begin VNS(s0 ∈ S)
1 t← s0; flag← true;
2 while flag do

3 flag← false;
4 for k = 1, . . . , K do

5 s′ ← a randomly selected solution ∈ Nk(t);
6 if there exists s ∈ N1(s

′) such that f(s) < f(t) then

7 t← s; flag← true; break;
8 end-if

9 end-for

10 end-while;
11 return t;
end

Figure 11. Variable neighborhood search (VNS) on K neighbor-
hood structures N1, N2, . . . , Nk.

begin TS(s0 ∈ S)
1 t← s0; f∗ ←∞; T ← ∅;
2 while stopping criterion not satisfied do

3 Ñ(t)← N(t) \ {s ∈ N(t) | s can be reached from t by move in tabu list T };

4 s← a least-cost solution ∈ Ñ(t);
5 Add to tabu list T the reverse move from s to t;
6 Remove from tabu list T the oldest entry if needed;
7 if f(s) < f∗ then

8 f∗ ← f(s); t∗ ← s;
9 end-if

10 t← s;
11 end-while;
12 return t∗;
end

Figure 12. Short memory tabu search (TS).

4.3. Short-term memory tabu search. Tabu search [36, 37] is a search strategy
that makes use of memory structures to enable escape from local minima by allowing
cost-increasing moves. Short-term memory tabu search makes use of the short-term
memory structure tabu list. The process starts from a given solution and moves
in steps from the current solution s ∈ S to some solution t ∈ N(s). To avoid
returning to a just-visited local minimum, reverse moves that lead back to that
local minimum are forbidden, or made tabu, for a number of steps. This is usually
implemented by making tabu all moves that reverse the effect of recent moves [34].

Figure 12 shows pseudo-code for a short-term tabu search procedure that can
be used as a substitute for the standard local search in a GRASP. This type of
search allows the exploration beyond the neighborhood of the greedy randomized
solution. By using the number of cost-increasing moves as a stopping criterion one
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begin SA(s0 ∈ S)
1 t← s0; f∗ ←∞; k ← 1; T1 ← T0;nf ← 0;
2 while nf < F̄ do

3 nc ← 0; nt ← 0;
4 while nc < C̄ and nt < T̄ do

5 nt ← nt + 1;
6 Select s at random from N(t);
7 if f(s) ≤ f(t) then

8 t← s; nc ← nc + 1;
9 else

10 With probability e−(f(s)−f(t))/Tk :
11 t← s; nc ← nc + 1;
12 end-if

13 if f(t) ≤ f∗ then

14 t∗ ← t; f∗ ← f(t);
15 end-if

16 end-while;
17 Tk+1 ← Tk · γ;
18 k ← k + 1;
19 if nc < C

¯
then nf ← nf + 1;

20 end-while;
21 return t∗;
end

Figure 13. Simulated annealing (SA).

can balance the amount of time that GRASP allocates to constructing a greedy
randomized solution and exploring around that solution with tabu search.

Examples of GRASP with tabu search include Laguna and González-Velarde
[53], Delmaire et al. [21], Abdinnour-Helm and Hadley [1], Serra and Colomé [86],
Souza, Maculan, and Ochi [87], Souza, Duhamel, and Ribeiro [20], Li et al. [55],
Lim and Wang [56], Moura and Oliveira [62], and Pu et al. [69].

4.4. Simulated annealing. Simulated annealing [52] can also be used to extend
the reach of the standard local search. Simulated annealing is given a starting
solution s0 ∈ S which is used to initialize the current solution t← s0. At each step,
it randomly selects a trial solution s ∈ N(t). If f(s) ≤ f(t), then s is made the
current solution, i.e. t← s. On the other hand, if f(s) > f(t), then with probability
e−(f(s)−f(t))/Tk it is made the current solution, where Tk is a control parameter
called the temperature. There are many ways to implement simulated annealing.
Johnson et al. [49, 50] propose running simulated annealing in cycles. In each
cycle the temperature remains constant. A cooling schedule, such as Tk+1 ← Tk · γ,
where 0 < γ < 1, adjusts the temperature from one cycle to the next. In each cycle,
at most T̄ trial solutions are sampled. A change takes place if a trial solution is
accepted. At most C̄ changes are allowed for a fixed temperature. The algorithm
terminates when F̄ temperature cycles go by with less than C

¯
changes in the current

solution t. The pseudo-code in Figure 13 shows this implementation of simulated
annealing.
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begin ILS(s0 ∈ S)
1 t← LocalSearch(s0);
2 while stopping criterion not satisfied do

3 t̂← Perturbation(t, history);
4 t̂∗ ← LocalSearch(t̂);
5 t← AcceptanceCriterion(t, t̂∗, history);
6 end-while;
7 return t;
end

Figure 14. Iterated local search (ILS).

Simulated annealing usually starts with a high temperature, i.e. one that makes
it accept, in the initial cycles, most non-improving solutions. The initial cycles con-
stitute a diversification phase, where a large part of the solution space is explored.
As the temperature cools, fewer non-improving solutions are accepted and those
cycles can be considered intensification cycles. To make use of simulated annealing
as a substitute for the standard local search in GRASP, one should limit the search
to the intensification part. This can be done by starting with a cool temperature.
Load balancing with the construction procedure can be achieved by adjusting the
simulated annealing parameters T0, F̄ , C̄, C

¯
, and T̄ .

Examples of GRASP with simulated annealing include Liu et al. [57] and de la
Peña [19].

4.5. Iterated local search. Iterated local search (ILS) iteratively builds a se-
quence of solutions generated by the repeated application of local search and per-
turbation of the local optima found by local search [11]. Lourenço, Martin, and
Stützle [58] point out that ILS has been rediscovered many times and is also known
as iterated descent [9, 10], large step Markov chains [60], iterated Lin-Kernighan
[48], and chained local optimization [59].

Figure 14 shows pseudo-code for ILS. Applying local search from the starting
solution s0 ∈ S, results in a local optimum t. The loop from line 2 to line 6 is re-
peated until some stopping criterion is satisfied. The current solution t is perturbed,
becoming t̂, which is used as the starting solution for local search. Perturbation
needs to be done with some care. A perturbation that is too small may cause local
search to lead back to the starting solution t̂. On the other hand, a perturbation
that is too large may cause the search to resemble random multi-start. The local
optimum resulting from local search is t̂∗. An acceptance rule determines if t̂∗ is
accepted to be the new current solution. Such acceptance criterion resemble sim-
ulated annealing, i.e. t̂∗ is accepted if t̂∗ < t. Otherwise, it is accepted with some
positive probability.

ILS can be hybridized with GRASP by replacing the standard local search. The
GRASP construction produces the solution s0 ∈ S which is passed to the ILS
procedure. Ribeiro and Urrutia [82] present a GRASP with ILS for the mirrored
traveling tournament problem. Perturbation is achieved by randomly generating
a solution in the game rotation ejection chain neighborhood. The acceptance rule
makes use of a threshold parameter β. In the beginning of each GRASP iteration
β is initialized to 0.001 and it is reinitialized to the same value each time the best
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Mirrored Traveling Tournament Problem: Given an even number n
of teams, each with a home venue, and the cost of travel between venues, a
double-round robin tournament is organized in rounds, where in each round
there are n/2 games and each team plays exactly once. The tournament is
made up of n − 1 rounds, where each team plays each other team exactly
once, followed by another n − 1 rounds with the same games as in the first
n − 1 rounds, but with reversed venues. Each team starts at its home venue
before the tournament and finishes there at the end of the tournament. Find
a tournament schedule having the least travel cost.

Capacitated Minimum Spanning Tree Problem: Given an undirected
graph with demands associated with its vertices, edge costs, a fixed capacity,
equal for all edges, and a source vertex, find a minimum-cost spanning tree
rooted at the source vertex such that all the demand can be routed from
the source to the demand vertices without violating any of the edge capacity
constraints.

solution changes in the ILS. Solution t̂∗ is accepted if its cost is less than (1 + β)
times the cost of the current solution t. If the current solution does not change after
a fixed number of iterations, then the value of β is doubled. The stopping criterion
used was to allow at most 50 cost-deteriorating moves without improvement in the
current best solution.

4.6. Very-large scale neighborhood search. The standard local search proce-
dure described in Section 2 searches for an improving solution in the neighborhood
of the current solution. In the first-improving variant of local search, solutions in
the neighborhood are scanned until an improving solution is found. In the best-
improving variant, the entire neighborhood is scanned to determine the best neigh-
bor solution. To efficiently apply such local search requires that neighborhoods be
small, i.e. that their growth be bounded by a polynomial function in the dimension
of the problem. Many neighborhoods are of this type. The 1-flip neighborhood of
a solution represented as a binary n-vector has size O(n). The swap neighborhood
of a solution represented as a permutation vector of size n has size O(n2).

It is easy to design neighborhoods that are much larger. Neighborhoods whose
sizes grow exponentially as a function of problem size are called very large scale

neighborhoods. Even neighborhoods with O(n4) solutions can be too large to search
efficiently even for small values of n. These neighborhoods require efficient search
techniques to be explored. Ahuja et al. [3] present a survey of methods called
very-large scale neighborhood (VLSN) search. Three classes of VLSN methods are
considered. The first are variable-depth methods where exponentially large neigh-
borhoods are searched with heuristics. The second uses network flow techniques
to identify improving neighborhood solutions. The third class consist of neighbor-
hoods for NP-hard problems induced by restrictions of the problems that are solved
in polynomial time.

We illustrate two examples of GRASP with VLSN search. In both instances
VLSN search was used in a GRASP in place of the standard local search. Ahuja,
Orlin, and Sharma [2] examine the capacitated minimum spanning tree problem.
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Capacitated Warehouse Routing Problem: Consider a warehouse with
a depot and n locations where from each a good is to be picked up by a vehicle.
The vehicle is limited to traveling on a given road network in the warehouse
and has a given capacity C so it may not be able to pick up all of the goods
alone. Suppose we are provided K vehicles, a number sufficient to pickup all
of the goods. Find K tours starting and ending at the depot, where in each
tour no more than C goods are picked up, such that the sum of the K tour
lengths in minimized and all goods are picked up.

They use multi-exchange neighborhood structures. Even though the sizes of these
neighborhoods grow exponentially with problem size, the effort to find an improving
solution in them grows insignificantly. Their search is based on the cyclic transfer
neighborhood structure [89, 90] that transforms a cost-reducing exchange into a
negative cost subset-disjoint cycle in an improving graph. A modified shortest
path label-correcting algorithm is used to identify these cycles. Geng, Li, and
Lim [35] consider the capacitated warehouse routing problem. They consider two
neighborhoods, path-exchange and cyclic exchange and use an improvement graph
to identify cost-improving cyclic- and path-exchanges.

5. Hybridization with path-relinking

Path-relinking was originally proposed by Glover [38] as an intensification strat-
egy exploring trajectories connecting elite solutions obtained by tabu search or
scatter search [39, 41, 42]. Starting from one or more elite solutions, paths in the
solution space graph leading toward other elite solutions are generated and explored
in the search for better solutions. To generate paths, moves are selected to intro-
duce attributes in the current solution that are present in the elite guiding solution.
Path-relinking may be viewed as a strategy that seeks to incorporate attributes of
high quality solutions, by favoring these attributes in the selected moves.

The pseudo-code in Figure 15 illustrates the mixed path-relinking procedure
applied to a pair of solutions xs and xt. Mixed path-relinking [79] interchanges
the roles of starting and guiding solutions after each move. The procedure starts
by computing the symmetric differences ∆(xs, xt) and ∆(xt, xs) between the two
solutions, i.e. the set of moves needed to reach xt from xs and vice-versa. Two
paths of solutions are generated, one starting at xs and the other at xt. These
paths grow out and meet to form a single path between xt from xs. Local search
is applied to the best solution x∗ in this path and the local minimum is returned
by the algorithm. Initially, x and y are set to xs and xt, respectively. At each
step, the procedure examines all moves m ∈ ∆(x, y) from the current solution x to
solutions that that contain an additional attribute of y and selects the one which
results in the least cost solution, i.e. the one which minimizes f(x⊕m), where x⊕m
is the solution resulting from applying move m to solution x. A best move m∗ is
made, producing solution x ⊕ m∗. If necessary, the best solution x∗ is updated.
The sets of available moves are updated and the roles of x and y are interchanged.
The procedure terminates when x and y are in each other’s local neighborhood, i.e.
when |∆(x, y)| = 1.
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Path-relinking is a major enhancement to the basic GRASP procedure, leading
to significant improvements in solution time and quality. The hybridization of path-
relinking and GRASP was first proposed by Laguna and Mart́ı [54]. It was followed
by several extensions, improvements, and successful applications [15, 75, 77, 81, 65,
5, 78, 29, 72]. A survey of GRASP with path-relinking is presented in Resende
and Ribeiro [76]. Two basic strategies are used. In one, path-relinking is applied
to all pairs of elite solutions, either periodically during the GRASP iterations or
after all GRASP iterations have been performed as a post-optimization step. In the
other, path-relinking is applied as an intensification strategy to each local optimum
obtained after the local search phase.

Applying path-relinking as an intensification strategy to each local optimum
seems to be more effective than simply using it only as a post-optimization step. In
general, combining intensification with post-optimization results in the best strat-
egy. In the context of intensification, path-relinking is applied to pairs (x, y) of
solutions, where x is a locally optimal solution produced by each GRASP iteration
after local search and y is one of a few elite solutions randomly chosen from a pool
with a limited number Max Elite of elite solutions found along the search. Uniform
random selection is a simple strategy to implement. Since the symmetric difference
is a measure of the length of the path explored during relinking, a strategy biased
toward pool elements y with large symmetric difference with respect to x is usually
better than one using uniform random selection [77].

The pool is originally empty. Since we wish to maintain a pool of good but diverse
solutions, each locally optimal solution obtained by local search is considered as a
candidate to be inserted into the pool if it is sufficiently different from every other
solution currently in the pool. If the pool already has Max Elite solutions and the

begin PathRelinking(xs ∈ S, xt ∈ S)
1 Compute symmetric differences ∆(xs, xt) and ∆(xt, xs);
2 f∗ ← min{f(xs), f(xt)};
3 x∗ ← argmin{f(xs), f(xt)};
4 x← xs; y ← xt;
5 while |∆(x, y)| > 1 do

6 m∗ ← argmin{f(x⊕m) : m ∈ ∆(x, y)};
7 x← x⊕m∗;
8 Update ∆(x, y) and ∆(y, x);
9 if f(x) < f∗ then

10 f∗ ← f(x);
11 x∗ ← x;
12 end-if;
13 t← y; y ← x; x← t;
14 end-while;
15 x∗ ← LocalSearch(x∗);
16 return x∗;
end

Figure 15. Mixed path-relinking procedure between solutions xs

and xt.
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candidate is better than the worst of them, then a simple strategy is to have the
former replaces the latter. Another strategy, which tends to increase the diversity
of the pool, is to replace the pool element most similar to the candidate among
all pool elements with cost worse than the candidate’s. If the pool is not full, the
candidate is simply inserted.

Post-optimization is done on a series of pools. The initial pool P0 is the pool
P obtained at the end of the GRASP iterations. The value of the best solution
of P0 is assigned to f∗

0 and the pool counter is initialized k = 0. At the k-th
iteration, all pairs of elements in pool Pk are combined using path-relinking. Each
result of path-relinking is tested for membership in pool Pk+1 following the same
criteria used during the GRASP iterations. If a new best solution is produced,
i.e. f∗

k+1 < f∗

k , then k ← k + 1 and a new iteration of post-optimization is done.
Otherwise, post-optimization halts with x∗ ∈ argmin{f(x) | x ∈ Pk+1} as the
result.

The pseudo-code in Figure 16 illustrates such a procedure. Each GRASP iter-
ation has now three main steps. In the construction phase a greedy randomized
construction procedure is used to build a feasible solution. In the local search phase

the solution built in the first phase is progressively improved by a neighborhood
search strategy, until a local minimum is found. In the path-relinking phase the
path-relinking algorithm is applied to the solution obtained by local search and to
a randomly selected solution from the pool. The best solution found along this
trajectory is also considered as a candidate for insertion in the pool and the incum-
bent is updated. At the end of the GRASP iterations, a post-optimization phase

combines the elite solutions in the pool in the search for better solutions.

6. Other hybridizations

In the previous sections of this chapter, we have reviewed some important hy-
bridizations of GRASP. In this section, we briefly review other, more recent, hy-
bridizations. These include the use of GRASP in Lagrangian heuristics, GRASP
with data mining, and the use of GRASP to generate initial solutions for population-
based heuristics, such as genetic algorithms and scatter search.

6.1. GRASP in Lagrangian heuristics. Pessôa, Resende, and Ribeiro [66] pro-
posed a hybrid Lagrangian heuristic with GRASP and path-relinking for the k-set
covering problem, a variant of the classical set covering problem. Pessôa, Resende,
and Ribeiro [66] extend the Lagrangian relaxation scheme of Beasley [12] for set
covering to solve k-set covering. Sub-gradient optimization is used to solve the
so-called Lagrangian Dual Problem which starts with an initial set of Lagrange
multipliers and iteratively generates further multipliers and corresponding lower
bounds. Each step of the sub-gradient optimization produces a primal (usually
infeasible) solution to the Lagrangian dual problem. This solution corresponds to
a partial cover that, if necessary, is made feasible by a so-called basic heuristic.
The objective function value of the feasible cover produced by the basic heuristic
is given back to the Lagrangian heuristic as an upper bound and is used to adjust
the step-size of the procedure that updates the multipliers.

Two basic heuristics were proposed by Pessôa, Resende, and Ribeiro [66]. The
first is a greedy algorithm similar to the one proposed by Beasley [12] for the set
covering problem. A local search procedure that removes redundant sets from the
cover is applied after the greedy algorithm. The other basic heuristic is a GRASP
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begin GRASP+PR()
1 P ← ∅;
2 f∗ ←∞;
3 for i = 1, . . . , imax do

4 x← GreedyRandomizedConstruction();
5 if x is not feasible then

6 x← repair(x);
7 end-if

8 x← LocalSearch(x);
9 if i ≥ 2 then

9 Choose, at random, pool solutions Y ⊆ P to relink with x;
10 for y ∈ Y do

11 xp ← PathRelinking(x, y);
12 Update the elite set P with xp;
13 iff(xp) < f∗ then

14 f∗ ← f(xp);
15 x∗ ← xp;
16 end-if;
17 end-for;
18 end-if

19 end-for;
20 end-while;
21 P ← PostOptimize{P};
22 x∗ ← argmin{f(x), x ∈ P};
23 return x∗;
end

Figure 16. A basic GRASP with path-relinking heuristic for minimization.

K-Set Covering Problem: Given n finite sets P1, P2, . . . , Pn, let cj be the
cost associated with set Pj , for j = 1, . . . , n. Denote sets I =

⋃n
j=1 Pj =

{1, . . . , m} and J = {1, . . . , n}. An element of set I is called an object. A

subset Ĵ ⊆ J is called a cover if
⋃

j∈Ĵ Pj = I. The cost of cover Ĵ is
∑

j∈Ĵ cj .

The set covering problem is to find a cover of minimum cost. The k-set covering

problem is a generalization of the set covering problem where each object i ∈ I
must be covered by at least k sets.

with path-relinking which uses a randomized version of Beasley’s greedy algorithm
and the same local search. The path-relinking procedure is similar to the mixed
scheme described in Section 5.

Computational results show that both Lagrangian heuristics find solutions that
are much closer to the optimal than those found by the pure GRASP with path-
relinking. Furthermore, they are much faster. Comparing the two basic heuristics
shows that the one based on GRASP with path-relinking on average finds solu-
tions within 1% of optimal while the one based on the greedy algorithm finds
solutions between 1% and 2% of optimal. However, the Lagrangian heuristic based
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Quadratic Assignment Problem: Given n facilities, represented by the set
F = {w1, . . . , wn}, and n locations, represented by the set L = {l1, . . . , ln}, let
An×n = (aij) be a matrix where aij ∈ R

+ is the required flow between facilities
wi and wj and Bn×n = (bij) be a matrix where bij ∈ R

+ is the distance
between locations li and lj. Find a permutation π : {1 . . . n} → {1 . . . n}, i.e.
assign each facility to a different location, such that

∑n
i=1

∑n
j=1 aijbπ(i)π(j) is

minimized.

on GRASP with path-relinking takes about twice as long as the one based on the
greedy algorithm.

6.2. GRASP with data mining. Data mining techniques have recently begun to
find their way into metaheuristics [51]. DM-GRASP, or GRASP with data mining,
was introduced by Ribeiro, Plastino, and Martins [84]. This scheme uses data min-
ing techniques to search for solution patterns that reoccur in high-quality solutions.
In a initial phase, called the elite set generation phase, DM-GRASP builds a set
of elite solutions as it would, for example, for path-relinking. Once a large enough
pool of elite solutions is on hand, in the second phase of DM-GRASP data mining
techniques are applied to mine the pool for frequently occurring solution patterns.
This process is known in the data mining community as frequent itemset mining,
or FIM [44], a subproblem of association rule mining.

In a third phase of DM-GRASP, called the hybrid phase, the mined patterns
serve as a guide for GRASP construction. Instead of building the randomized
greedy solution from scratch, the construction procedure starts from a solution
pattern (a partial solution) that was mined in the second phase.

A survey of applications of DM-GRASP can be found in Santos, Martins, and
Plastino [85].

6.3. GRASP as initial solutions of population-based heuristics. Population-
based heuristics, such as genetic algorithms, scatter search, and evolutionary path-
relinking require the generation of an initial population. Often, these initial popu-
lations are randomly generated. Another way to generate initial solutions is to use
a GRASP.

Ahuja, Orlin, and Tiwari [4] used GRASP to generate the initial population
of a genetic algorithm for the quadratic assignment problem. Alvarez, Gonzalez-
Velarde, and Alba [6], Dı́az and Fernández [22], and Contreras and Dı́az [18] used
GRASP to initialize the reference set of scatter search.

In Section 5 we discussed using path-relinking in a post-optimization phase. This
process, call Evolutionary Path-relinking by Andrade and Resende [8] has been used
in Resende and Werneck [77, 78] and Resende et al. [72].

7. Concluding remarks

In this chapter, we surveyed hybridizations of GRASP and other metaheuristics.
The chapter considered a wide range of topics but by no means was it exhaustive.
The field of hybrid metaheuristics is one that currently enjoys much activity. Many
important contributions to this field have come about recently and the field promises
important developments in the near future. Hybridizations involving GRASP will
hopefully be part of these developments.
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