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Abstract. GRASP, or greedy randomized adaptive search procedure, is a
multi-start metaheuristic that repeatedly applies local search starting from
solutions constructed by a randomized greedy algorithm. In this chapter we
review the basic building blocks of GRASP. We cover solution construction
schemes, local search methods, and the use of path-relinking as a memory
mechanism in GRASP.

Combinatorial optimization can be defined by a finite ground set E = {1, . . . , n},
a set of feasible solutions F ⊆ 2E , and an objective function f : 2E → R, all three
defined for each specific problem. In this chapter, we consider the minimization
version of the problem, where we seek an optimal solution S∗ ∈ F such that
f(S∗) ≤ f(S), ∀S ∈ F . Combinatorial optimization finds applications in many
settings, including routing, scheduling, inventory and production planning, and
facility location.

While much progress has been made in finding provably optimal solutions to com-
binatorial optimization problems employing techniques such as branch and bound,
cutting planes, and dynamic programming, as well as provably near-optimal solu-
tions using approximation algorithms, many combinatorial optimization problems
arising in practice benefit from heuristic methods that quickly produce good-quality
solutions. Many modern heuristics for combinatorial optimization are based on
guidelines provided by metaheuristics. Among these, we find genetic algorithms,
simulated annealing, tabu search, variable neighborhood search, scatter search,
path-relinking, iterated local search, ant colony optimization, swarm optimization,
and greedy randomized adaptive search procedures (GRASP).

In this chapter, we review the basic building blocks of GRASP, including so-
lution construction schemes, local search methods, and use of path-relinking as a
memory mechanism in GRASP. The chapter is organized as follows. In Section 1,
we introduce a basic local search scheme. In Section 2 we examine the relationship
between the metaheuristic GRASP and local search. Section 3 covers construction
schemes while In Section 4, we introduce a memory mechanism in GRASP through
path-relinking. Concluding remarks are made in Section 5.

1. Local search

Local search is a fundamental operator in GRASP heuristics. It is fully specified
by a feasible starting solution s0 ∈ F , an objective function f(·), for which we seek
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t← s0;
while there exists s ∈ N(t) such that f(s) < f(t) do

t← s;
end

return t;

Algorithm 1: Basic local search algorithm.

a local optimum, and a local neighborhood structure N(·) that restricts feasible
moves in the search space. Local search in GRASP is applied from many distinct
feasible starting solutions. Each application of local search in a GRASP heuristic
results in a locally optimal solution, the best of which is output as the GRASP
solution.

Consider the neighborhood solution space graph X = (S, M), where the node
set S represents all feasible solutions of a combinatorial optimization problem and
the edge set M corresponds to moves connecting neighboring solutions. A solution
s ∈ S is in the neighborhood N(t) of a solution t ∈ S if s can be obtained from t
by making a small predefined change in t. If a solution s ∈ N(t), then t ∈ N(s),
(s, t) ∈ M , and (t, s) ∈ M . Different neighborhood structures can be defined for a
given combinatorial optimization problem.

The basic local search schemes take an initial solution, make it the current
solution, and search the current solution’s neighborhood for an improving solution.
If one is found, it is made the current solution and local search is recursively applied
to the current solution. The procedures terminate when no better solution exists
in the current solution’s neighborhood. Such local search schemes require that the
size of the neighborhood be such that its exploration can be done efficiently.

The Algorithm 1 shows pseudo-code for a basic local search algorithm. Local
search starts at some node s0 ∈ S and makes it the current solution t, i.e. t = s0.
At each iteration, it seeks a neighboring solution having a better objective function
value than the current solution, i.e. a solution s ∈ N(t) such that f(s) < f(t).
If such a solution is found, it becomes the current solution, i.e. t = s. These
iterations are repeated until there is no better solution in the neighborhood N(t)
of the current solution t. In this case, solution t is called a local optimum.

Local search can be thought of as starting at a node s ∈ S and examining
adjacent nodes in graph X for an improving solution. In the first-improving variant,
local search moves to the first improving solution that it finds, whereas in the best-

improving all neighboring solutions are evaluated and the local search moves to
one of the best found. A compromise solution is used in sampled local search [48]
where the neighborhood is sampled and the local search moves to the best of the
sampled neighbors. One can think of this part of the search as intensification, since
we concentrate on a small portion of the solution space.

Several approaches have been proposed to extend the basic local search scheme
described above. These include methods such as variable neighborhood descent
[5, 36, 47, 64, 65, 67], variable neighborhood search [9, 11, 17, 23, 36, 51], short-
term memory tabu search [1, 15, 16, 29, 30, 40, 42, 43, 49, 55, 68, 69], simulated
annealing [14, 39, 44], iterated local search [6, 7, 8, 38, 45, 46, 66], and very-large
scale neighborhood search [2, 3, 28], that explore beyond the current solution’s
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x∗ ←∞;
while stopping criterion not satisfied do

x← RandomizedGreedy(·);
if x is not feasible then

x← repair(x);
end

x← LocalSearch(x);
if f(x) < f(x∗) then

x∗ ← x;
end

end

return x∗;

Algorithm 2: A basic GRASP in pseudo-code.

neighborhood by allowing cost-increasing moves, by exploring multiple neighbor-
hoods, or by exploring very large neighborhoods.

2. Greedy Randomized Adaptive Search Procedures

An effective search method needs to enable diversification. In carrying out local
search, a good strategy should not focus the search on one particular region of the
solution space, for example around a solution built with a greedy algorithm. One
alternative is to start local search from many randomly generated solutions with
the expectation that there is a cost-improving path in X from one of those solutions
to an optimal or near-optimal solution.

A GRASP, or greedy randomized adaptive search procedure, repeatedly applies
local search, starting from solutions that are constructed using a randomized greedy
algorithm. The best local optimum found over all local searches is returned as
the solution of the heuristic. The Algorithm 2 shows pseudo-code for a generic
GRASP heuristic. At the completion of the randomized greedy phase the solution
on hand is, for many problem instances, feasible. However, for some problem
instances, it may be infeasible and requires that a repair procedure is applied to
restore feasibility. Examples of GRASP implementations where repair procedures
are needed to restore feasibility of the constructed solution can be found in Duarte,
Ribeiro, and Urrutia [18], Duarte et al. [19], Nascimento, Resende, and Toledo [50],
and Mateus, Resende, and Silva [48].

An especially appealing characteristic of GRASP is the ease with which it can be
implemented. Few parameters need to be set and tuned, and therefore development
can focus on implementing algorithms and data structures to assure efficiency. As
we will see later, basic implementations of GRASP rely exclusively on two param-
eters. The first controls the number of construction / local search iterations that
will be applied and the second controls the blend of randomness and greediness in
the solution construction procedure. In spite of its simplicity and ease of imple-
mentation, GRASP is a very effective metaheuristic and produces the best known
solutions for many problems.

GRASP was first introduced by Feo and Resende [20]. See Feo and Resende [21],
Pitsoulis and Resende [53], Resende and Ribeiro [58], and Resende [56] for surveys
of GRASP and Festa and Resende [24, 25, 26] for annotated bibliographies.
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S ← ∅; C ← E;
while |C| > 0 do

For all c ∈ C compute greedy function value g(c);
Define RCL(C)← {c ∈ C | g(c) has a low value};
Select at random c∗ ∈ RCL(C);
Add c∗ to partial solution: S ← S ∪ {c∗};
Let C be the set of ground set elements that can

be added to S;
end

return S;

Algorithm 3: Greedy randomized construction: Randomizing the greedy
algorithm – semi-greedy algorithm.

3. Greedy randomized construction

The greedy randomized construction methods of GRASP seek to produce a di-
verse set of good-quality starting solutions from which to start local search. This
is achieved by adding randomization to the greedy algorithm. We illustrate here
eight ways to do this. Solutions are built by adding one ground set element at a
time to a partially constructed solution.

3.1. Semi-greedy construction. In the first construction scheme, called semi-

greedy algorithm by Hart and Shogan [37], at each step let the candidate set C
denote all of the remaining ground set elements that can be added to the partial
solution and let RCL(C) be a restricted candidate list made up of high-quality
candidate elements. The quality of a candidate element is determined by its con-
tribution, at that point, to the cost of the solution being constructed. A greedy

function g(c) measures this contribution for each candidate c ∈ C. Membership
can be determined by rank or by quality relative to other candidates. Member-
ship by rank, also called cardinality based, is achieved if the candidate is one of
the q candidates with smallest greedy function value, where q is an input param-
eter that determines how greedy or random the construction will be. Membership
by quality relative to other candidates determines a greedy function cutoff value
and only considers candidates with a greedy value no greater than the cutoff. To
implement this, one usually makes use of a real-valued RCL parameter α ∈ [0, 1].
Let ǵ = max{g(c) | c ∈ C} and g̀ = min{g(c) | c ∈ C}. A candidate c ∈ C is
placed in the RCL only if g̀ ≤ g(c) ≤ g̀ + α · (ǵ− g̀). Input parameter α determines
how greedy or random the construction will be. Of these restricted candidates,
one is selected at random and added to the partial solution. The construction is
repeated until there are no further candidates. Algorithm 3 shows pseudo-code for
this construction procedure.

3.2. Sample greedy construction. In the second construction scheme, called
sample greedy by Resende and Werneck [61], instead of randomizing the greedy
algorithm, a greedy algorithm is applied to each solution in a random sample of
candidates. At each step a fixed-size subset of the candidates in C is sampled
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S ← ∅; C ← E;
while |C| > 0 do

Randomly sample min{p, |C|} elements from C
and put them in RCL(C);

Select c∗ = argmin{g(c) | c ∈ RCL(C)};
Add c∗ to partial solution: S ← S ∪ {c∗};
Let C be the set of ground set elements that can

be added to S;
end

return S;

Algorithm 4: GRASP greedy randomized construction: sample greedy.

and the incremental contribution to the cost of the partial solution is computed
for each sampled element. An element with the best incremental contribution is
selected and added to the partial solution. This process is repeated until, as before,
the construction terminates when no further candidate exists. Algorithm 4 shows
pseudo-code for this construction procedure. Sample greedy uses a parameter p to
control the balance between greediness and randomness in the construction. Small
values of p lead to more random solutions, while large values lead to more greedy
solutions.

3.3. Random plus greedy construction. A possible shortcoming of the greedy
randomized construction based on restricted candidate list is its complexity. At
each step of the construction, each yet unselected candidate element has to be
evaluated by the greedy function. In cases where the difference between the number
of elements in the ground set and the number of elements that appear in a solution
is large, this may not be very efficient. The third construction scheme, random

plus greedy, was introduced in Resende and Werneck [61]. As is the case with the
sample greedy construction scheme, the random plus greedy scheme also addresses
this shortcoming.

In random plus greedy, a portion of the solution is constructed by randomly
choosing p candidate elements and the remaining solution is completed in a greedy
fashion. The resulting solution is randomized greedy. The value of p determines
how greedy or random the construction will be. Small values of p lead to more
greedy solutions where large values lead to ones that are more random.

3.4. Proportional greedy construction. The fourth construction scheme is the
proportional greedy construction scheme. It was also introduced in Resende and
Werneck [61]. In each iteration of proportional greedy, we compute the greedy
function g(c) for every candidate element c ∈ C and then pick a candidate at
random, but in a biased way: the probability of a given candidate c′ ∈ C being
selected is inversely proportional to g(c′)−min{g(c)|c ∈ C}.

3.5. Reactive GRASP construction. The fifth construction scheme is Reactive

GRASP. In randomized greedy construction procedures, the algorithm designer
must decide how to balance greediness and randomness. A simple approach is to
balance at random. For example, in the semi-greedy construction with membership
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in the RCL by quality relative to the other candidates, the parameter α can be
selected uniformly at random from the interval [0, 1] so that each GRASP iteration
uses a different α value and therefore has a different balance between greediness
and randomness.

Prais and Ribeiro [54] showed that using a single fixed value for the value of RCL
parameter α in the membership by quality relative to other candidates of the semi-
greedy algorithm often hinders finding a high-quality solution, which eventually
could be found if another value was used. They proposed an extension of the basic
GRASP procedure, which they call Reactive GRASP, in which the parameter α is
not fixed, but instead is selected at each iteration from a discrete set of possible
values. The solution values found along the previous iterations serve as a guide for
the selection process.

Prais and Ribeiro [54] define Ψ = {α1, . . . , αm} to be the set of possible values for
α. The probabilities associated with the choice of each value are all initially made
equal to pi = 1/m, i = 1, . . . , m. Furthermore, let z∗ be the incumbent solution
and let Ai be the average value of all solutions found using α = αi, i = 1, . . . , m.
The selection probabilities are periodically reevaluated by taking pi = qi/

∑m

j=1
qj ,

with qi = z∗/Ai for i = 1, . . . , m. The value of qi will be larger for values of
α = αi leading to the best solutions on average. Larger values of qi correspond to
more suitable values for the parameter α. The probabilities associated with these
more appropriate values will then increase when they are reevaluated. This reactive
strategy is not limited to semi-greedy procedures where membership in the RCL
depends on relative quality. It can be extended to the other greedy randomized
construction schemes, all of which need to balance greediness with randomization.

3.6. Long-term memory in construction. The sixth construction scheme in-
troduces long-term memory structures. Though reactive GRASP uses long-term
memory (information gathered in previous iterations) to adjust the balance of greed-
iness and randomness, Fleurent and Glover [27] observed that the basic GRASP
does not and proposed a long-term memory scheme to address this issue in multi-
start heuristics. Long-term memory is one of the fundamentals on which tabu
search [29, 30] relies. Their scheme maintains a pool of elite solutions to be used in
the construction phase. Later in this chapter we discuss pools of elite solutions in
detail. For now, all we need to know is that to become an elite solution, a solution
must be either better than the best member of the pool, or better than its worst
member and sufficiently different from the other solutions in the pool.

Fleurent and Glover [27] define a strongly determined variable to be one that
cannot be changed without eroding the objective or changing significantly other
variables and a consistent variable to be one that receives a particular value in
a large portion of the elite solution set. Let I(e) be a measure of the strongly
determined and consistent features of solution element e from the ground set E.
I(e) becomes larger as e appears more often in the pool of elite solutions. It is used
in the construction phase as follows. Recall that g(e) is the greedy function value
for candidate e ∈ C, i.e. the incremental cost associated with the incorporation of
element e ∈ C into the solution under construction. Let K(e) = F (g(e), I(e)) be
a function of the greedy and the intensification functions. For example, K(e) =
λg(e)+I(e). The intensification scheme biases selection from the set C of candidate
solutions to those elements e ∈ C with a high value of K(e) by setting their selection
probability to be p(e) = K(e)/

∑
s∈RCL K(s). The function K(e) can vary with
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time by changing the value of λ, e.g. initially λ may be set to a large value that is
decreased when diversification is called for.

3.7. Biased sampling construction. The seventh construction scheme was in-
troduced by Bresina [10] as heuristic-biased stochastic sampling. It is another way
to depart from the uniform selection of candidate elements in the construction of a
greedy randomized solution. Instead of choosing the next candidate element to add
to the partial solution uniformly at random, heuristic-biased stochastic sampling
suggests that any probability distribution can be used to bias the selection toward
some particular candidates.

In the construction mechanism proposed by Bresina [10], a family of such prob-
ability distributions is introduced. They are based on the rank r[σ] assigned to
each candidate element σ, according to its greedy function value. The element with
the smallest greedy function value has rank 1, the second smallest has rank 2, and
so on. Several bias functions b(·) are introduced by Bresina, such as random bias

where b(r) = 1, linear bias where b(r) = 1/r, log bias where b(r) = log−1(r+1), ex-
ponential bias where b(r) = e−r, and polynomial bias of order n where b(r) = r−n.
Once all elements of the RCL have been ranked, the probability π(σ) of selecting
element σ ∈ RCL can be computed as π(σ) = b(r[σ])/(

∑
σ′∈RCL

b(r[σ′])). In this
scheme one can restrict candidates to be selected from the RCL or from the entire
set of candidates, i.e. make RCL = C.

3.8. Construction with cost perturbation. In the eighth construction scheme,
called construction with cost perturbation, random perturbations are introduced
in the original problem as a way of achieving randomness. The idea of introduc-
ing noise into the original costs to randomize a solution construction procedure is
similar to that in the so-called noising method of Charon and Hudry [12, 13].

Construction with cost perturbation can be more effective than the greedy ran-
domized construction of the basic GRASP procedure in circumstances where the
construction algorithms are insensitive to standard randomization strategies, such
as selecting an element at random from a restricted candidate list. Ribeiro, Uchoa,
and Werneck [65] showed that this is the case for the shortest-path heuristic of
Takahashi and Matsuyama [70], used as one of the main building blocks of the
construction phase of a hybrid GRASP they proposed for the Steiner problem in
graphs.

Another situation where cost perturbations can be effective arises when no greedy
algorithm is available for straightforward randomization as was the case of the
hybrid GRASP developed by Canuto, Resende, and Ribeiro [11] for the prize-
collecting Steiner tree problem, which makes use of the primal-dual approximation
algorithm of Goemans and Williamson [35] to build initial solutions using perturbed
costs.

4. Adding memory to GRASP through path-relinking

Path-relinking was originally proposed by Glover [31] as an intensification strat-
egy exploring trajectories connecting elite solutions obtained by tabu search or
scatter search [32, 33, 34]. Starting from one or more elite solutions, paths in the
solution space graph leading toward other elite solutions are generated and explored
in the search for better solutions. To generate paths, moves are selected to intro-
duce attributes in the current solution that are present in the elite guiding solution.
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Compute symmetric differences ∆(xs, xt) and ∆(xt, xs);
f∗ ← min{f(xs), f(xt)};
x∗ ← argmin{f(xs), f(xt)};
x← xs; y ← xt;
while |∆(x, y)| > 1 do

m∗ ← argmin{f(x⊕m) : m ∈ ∆(x, y)};
x← x⊕m∗;
Update ∆(x, y) and ∆(y, x);
if f(x) < f∗ then

f∗ ← f(x);
x∗ ← x;

end

t← y; y ← x; x← t;
end

x∗ ← LocalSearch(x∗);
return x∗;

Algorithm 5: Mixed path-relinking procedure between solutions xs and xt.

Path-relinking may be viewed as a strategy that seeks to incorporate attributes of
high quality solutions, by favoring these attributes in the selected moves.

The pseudo-code in Algorithm 5 illustrates the mixed path-relinking procedure
applied to a pair of solutions xs and xt. Mixed path-relinking [63] interchanges the
roles of starting and guiding solutions after each move.

The procedure starts by computing the symmetric differences ∆(xs, xt) and
∆(xt, xs) between the two solutions, i.e. the set of moves needed to reach xt from
xs and vice-versa. Two paths of solutions are generated, one starting at xs and
the other at xt. These paths grow out and meet to form a single path between
xt from xs. Local search is applied to the best solution x∗ in this path and the
local minimum is returned by the algorithm. Initially, x and y are set to xs and xt,
respectively. At each step, the procedure examines all moves m ∈ ∆(x, y) from the
current solution x to solutions that that contain an additional attribute of y and
selects the one which results in the least cost solution, i.e. the one which minimizes
f(x⊕m), where x⊕m is the solution resulting from applying move m to solution x.
A best move m∗ is made, producing solution x⊕m∗. If necessary, the best solution
x∗ is updated. The sets of available moves are updated and the roles of x and y
are interchanged. The procedure terminates when x and y are in each other’s local
neighborhood, i.e. when |∆(x, y)| = 1.

Path-relinking is a major enhancement to the basic GRASP procedure, leading
to significant improvements in solution time and quality. The use of path-relinking
in GRASP was first proposed by Laguna and Mart́ı [41]. It was followed by several
extensions, improvements, and successful applications [4, 11, 22, 52, 57, 58, 61, 62,
65]. A survey of GRASP with path-relinking is presented in Resende and Ribeiro
[59]. Two basic strategies are used. In one, path-relinking is applied to all pairs of
elite solutions, either periodically during the GRASP iterations or after all GRASP
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P ← ∅;
f∗ ←∞;
for i = 1, . . . , imax do

x← GreedyRandomizedConstruction();
if x is not feasible then

x← repair(x);
end

x← LocalSearch(x);
if i ≥ 2 then

Randomly choose pool solutions Y ⊆ P to relink with x;
for y ∈ Y do

xp ← PathRelinking(x, y);
Update the elite set P with xp;
if f(xp) < f∗ then

f∗ ← f(xp);
x∗ ← xp;

end

end

end

end

P ← PostOptimize{P};
x∗ ← argmin{f(x), x ∈ P};
return x∗;

Algorithm 6: A basic GRASP with path-relinking heuristic.

iterations have been performed as a post-optimization step. In the other, path-
relinking is applied as an intensification strategy to each local optimum obtained
after the local search phase.

Applying path-relinking as an intensification strategy to each local optimum
seems to be more effective than simply using it only as a post-optimization step. In
general, combining intensification with post-optimization results in the best strat-
egy. In the context of intensification, path-relinking is applied to pairs (x, y) of
solutions, where x is a locally optimal solution produced by each GRASP iteration
after local search and y is one of a few elite solutions randomly chosen from a pool
with a limited number Max Elite of elite solutions found along the search. Uniform
random selection is a simple strategy to implement. Since the symmetric difference
is a measure of the length of the path explored during relinking, a strategy biased
toward pool elements y with large symmetric difference with respect to x is usually
better than one using uniform random selection [61].

The pool is originally empty. Since we wish to maintain a pool of good but diverse
solutions, each locally optimal solution obtained by local search is considered as a
candidate to be inserted into the pool if it is sufficiently different from every other
solution currently in the pool. If the pool already has Max Elite solutions and the
candidate is better than the worst of them, then a simple strategy is to have the
former replaces the latter. Another strategy, which tends to increase the diversity
of the pool, is to replace the pool element most similar to the candidate among
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all pool elements with cost worse than the candidate’s. If the pool is not full, the
candidate is simply inserted.

Post-optimization is done on a series of pools. The initial pool P0 is the pool
P obtained at the end of the GRASP iterations. The value of the best solution
of P0 is assigned to f∗

0 and the pool counter is initialized k = 0. At the k-th
iteration, all pairs of elements in pool Pk are combined using path-relinking. Each
result of path-relinking is tested for membership in pool Pk+1 following the same
criteria used during the GRASP iterations. If a new best solution is produced,
i.e. f∗

k+1 < f∗

k , then k ← k + 1 and a new iteration of post-optimization is done.
Otherwise, post-optimization halts with x∗ ∈ argmin{f(x) | x ∈ Pk+1} as the
result.

The pseudo-code in Algorithm 6 illustrates such a procedure. Each GRASP
iteration has now three main steps. In the construction phase a greedy randomized
construction procedure is used to build a feasible solution. In the local search phase

the solution built in the first phase is progressively improved by a neighborhood
search strategy, until a local minimum is found. In the path-relinking phase the
path-relinking algorithm is applied to the solution obtained by local search and
to a randomly selected solution from the pool. The best solution found along
this trajectory is also considered as a candidate for insertion in the pool and the
incumbent is updated. At the end of the GRASP iterations, a post-optimization

phase combines the elite solutions in the pool in the search for better solutions.
For some combinatorial optimization problems, a move m∗ guided by the target

solution is not guaranteed to result in a feasible solution x ⊕ m∗ and the above
described scheme fails. Mateus, Resende, and Silva [48] proposed a new variant of
GRASP with path-relinking suitable for such problems.

5. Concluding remarks

This chapter considered basic building blocks needed to engineer heuristics based
on the guiding principles of GRASP. These include randomized solution construc-
tion schemes, local search procedures, and the introduction of memory structures
by way of path-relinking. One important topic that was left out of this chapter is
that of parallel GRASP. The interested reader is directed to the survey of Resende
and Ribeiro [60].
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[40] M. Laguna and J.L. González-Velarde. A search heuristic for just-in-time scheduling in parallel

machines. Journal of Intelligent Manufacturing, 2:253–260, 1991.
[41] M. Laguna and R. Mart́ı. GRASP and path relinking for 2-layer straight line crossing mini-

mization. INFORMS Journal on Computing, 11:44–52, 1999.
[42] Z. Li, S. Guo, F. Wang, and A. Lim. Improved GRASP with tabu search for vehicle routing

with both time window and limited number of vehicles. In B. Orchard, C. Yang, and M. Ali,
editors, Innovations in Applied Artificial Intelligence – Proceedings of the 17th International
Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert
Systems (IEA/AIE 2004), volume 3029 of Lecture Notes in Computer Science, pages 552–
561. Springer-Verlag, 2004.

[43] A. Lim and F. Wang. A smoothed dynamic tabu search embedded GRASP for m-VRPTW. In
Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence
(ICTAI 2004), pages 704–708, 2004.

[44] X. Liu, P.M. Pardalos, S. Rajasekaran, and M.G.C. Resende. A GRASP for frequency assign-
ment in mobile radio networks. In B.R. Badrinath, F. Hsu, P.M. Pardalos, and S. Rajasejaran,
editors, Mobile Networks and Computing, volume 52 of DIMACS Series on Discrete Mathe-
matics and Theoretical Computer Science, pages 195–201. American Mathematical Society,
2000.

[45] O. Martin and S.W. Otto. Combining simulated annealing with local search heuristics. Annals
of Operations Research, 63:57–75, 1996.

[46] O. Martin, S.W. Otto, and E.W. Felten. Large-step Markov chains for the traveling salesman
problem. Complex Systems, 5:299–326, 1991.

[47] S.L. Martins, P.M. Pardalos, M.G.C. Resende, and C.C. Ribeiro. Greedy randomized adaptive
search procedures for the Steiner problem in graphs. In P.M. Pardalos, S. Rajasejaran, and
J. Rolim, editors, Randomization Methods in Algorithmic Design, volume 43 of DIMACS
Series on Discrete Mathematics and Theoretical Computer Science, pages 133–145. American
Mathematical Society, 1999.

[48] G.R. Mateus, M.G.C. Resende, and R.M.A. Silva. GRASP with path-relinking for the gen-
eralized quadratic assignment problem. Technical report, AT&T Labs Research, Shannon
Laboratory, Florham Park, New Jersey, January 2009.

[49] A. Moura and J.F. Oliveira. A GRASP approach to the container-loading problem. IEEE
Intelligent Systems, 20:50–57, 2005.

[50] M.C.V. Nascimento, M.G.C. Resende, and F.M.B. Toledo. GRASP with path-relinking for
the multi-plant capacitated plot sizing problem. European J. of Operational Research, 2008.
To appear.



GREEDY RANDOMIZED ADAPTIVE SEARCH PROCEDURES 13

[51] L.S. Ochi, M.B. Silva, and L. Drummond. GRASP and VNS for solving traveling purchaser
problem. In Proceedings of The Fourth Metaheuristics International Conference (MIC2001),
pages 489–494, 2001.

[52] C.A. Oliveira, P.M. Pardalos, and M.G.C. Resende. GRASP with path-relinking for the
quadratic assignment problem. In C.C. Ribeiro and S.L. Martins, editors, Proceedings of
III Workshop on Efficient and Experimental Algorithms (WEA2004), volume 3059, pages
356–368. Springer, 2004.

[53] L.S. Pitsoulis and M.G.C. Resende. Greedy randomized adaptive search procedures. In P.M.
Pardalos and M.G.C. Resende, editors, Handbook of Applied Optimization, pages 168–183.
Oxford University Press, 2002.

[54] M. Prais and C.C. Ribeiro. Reactive GRASP: An application to a matrix decomposition
problem in TDMA traffic assignment. INFORMS Journal on Computing, 12:164–176, 2000.

[55] G.G. Pu, Z. Chong, Z.Y. Qiu, Z.Q. Lin, and J.F. He. A hybrid heuristic algorithm for
HW-SW partitioning within timed automata. In Proceedings of Knowledge-based Intelligent
Information and Engineering Systems, volume 4251 of Lecture Notes in Artificial Intelligence,
pages 459–466. Springer-Verlag, 2006.

[56] M.G.C. Resende. Metaheuristic hybridization with Greedy Randomized Adaptive Search Pro-
cedures. In Zhi-Long Chen and S. Raghavan, editors, TutORials in Operations Research,
pages 295–319. INFORMS, 2008.

[57] M.G.C. Resende, R. Mart́ı, M. Gallego, and A. Duarte. GRASP and path relinking for the
max-min diversity problem. Computers and Operations Research, 2008. To appear.

[58] M.G.C. Resende and C.C. Ribeiro. Greedy randomized adaptive search procedures. In
F. Glover and G. Kochenberger, editors, Handbook of Metaheuristics, pages 219–249. Kluwer
Academic Publishers, 2003.

[59] M.G.C. Resende and C.C. Ribeiro. GRASP with path-relinking: Recent advances and appli-
cations. In T. Ibaraki, K. Nonobe, and M. Yagiura, editors, Metaheuristics: Progress as Real
Problem Solvers, pages 29–63. Springer, 2005.

[60] M.G.C. Resende and C.C. Ribeiro. Parallel Greedy Randomized Adaptive Search Procedures.
In E. Alba, editor, Parallel Metaheuristics: A new class of algorithms, pages 315–346. John
Wiley and Sons, 2005.

[61] M.G.C. Resende and R.F. Werneck. A hybrid heuristic for the p-median problem. J. of
Heuristics, 10:59–88, 2004.

[62] M.G.C. Resende and R.F. Werneck. A hybrid multistart heuristic for the uncapacitated fa-
cility location problem. European J. of Operational Research, 174:54–68, 2006.

[63] C.C. Ribeiro and I. Rosseti. A parallel GRASP for the 2-path network design problem. Lecture
Notes in Computer Science, 2004:922–926, 2002.

[64] C.C. Ribeiro and M.C. Souza. Variable neighborhood search for the degree constrained min-
imum spanning tree problem. Discrete Applied Mathematics, 118:43–54, 2002.

[65] C.C. Ribeiro, E. Uchoa, and R.F. Werneck. A hybrid GRASP with perturbations for the
Steiner problem in graphs. INFORMS Journal on Computing, 14:228–246, 2002.

[66] C.C. Ribeiro and S. Urrutia. Heuristics for the mirrored traveling tournament problem. Eu-
ropean Journal of Operational Research, 127:775–787, 2007.

[67] C.C. Ribeiro and D.S. Vianna. A GRASP/VND heuristic for the phylogeny problem using
a new neighborhood structure. International Transactions in Operational Research, 12:325–
338, 2005.
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