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Abstract. Experience has shown that a crafted combination of concepts
of different metaheuristics can result in robust combinatorial optimization
schemes and produce higher solution quality than the individual metaheuristics
themselves, especially when solving difficult real-world combinatorial optimiza-
tion problems. This chapter gives an overview of different ways to hybridize
GRASP (Greedy Randomized Adaptive Search Procedures) to create new and
more effective metaheuristics. Several types of hybridizations are considered,
involving different constructive procedures, enhanced local search algorithms,
and memory structures.

1. Introduction

Combinatorial optimization problems involve a finite number of alternatives:
given a finite solution set X and a real-valued objective function f : X → R,
one seeks a solution x∗ ∈ X with f(x∗) ≤ f(x), ∀ x ∈ X . Several combinatorial
optimization problems can be solved in polynomial time, but many of them are
computationally intractable in the sense that no polynomial time algorithm exists
for solving it unless P = NP [27]. Due to the computational complexity of hard
combinatorial problems, there has been an extensive research effort devoted to the
development of approximation and heuristic algorithms, especially because many
combinatorial optimization problems, including routing, scheduling, inventory and
production planning, and facility location, arise in real-world situations such as in
transportation (air, rail, trucking, shipping), energy (electrical power, petroleum,
natural gas), and telecommunications (design, location).

To deal with hard combinatorial problems, heuristic methods are usually em-
ployed to find good, but not necessarily guaranteed optimal solutions. The effec-
tiveness of these methods depends upon their ability to adapt to a particular re-
alization, avoid entrapment at local optima, and exploit the basic structure of the
problem. Building on these notions, various heuristic search techniques have been
developed that have demonstrably improved our ability to obtain good solutions to
difficult combinatorial optimization problems. One of the most promising of such
techniques are usually called metaheuristics and include, but are not restricted to,
simulated annealing [43], tabu search [28, 29, 32], evolutionary algorithms like ge-
netic algorithms [36], ant colony optimization [19], scatter search [35, 45, 47], path-
relinking [30, 31, 33, 34], iterated local search [8, 49], variable neighborhood search
[37], and GRASP (Greedy Randomized Adaptive Search Procedures) [21, 22].
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Metaheuristics are a class of methods commonly applied to suboptimally solve
computationally intractable combinatorial optimization problems. The term meta-
heuristic derives from the composition of two Greek words: meta and heuriskein.
The suffix ‘meta’ means ‘beyond’, ‘in an upper level’, while ‘heuriskein’ means ‘to
find’. In fact, metaheuristics are a family of algorithms that try to combine basic
heuristic methods in higher level frameworks aimed at efficiently exploring the set
of feasible solution of a given combinatorial problem. In [72] the following definition
has been given:

“A metaheuristic is an iterative master process that guides and
modifies the operations of subordinate heuristics to efficiently pro-
duce high-quality solutions. It may manipulate a complete (or in-
complete) single solution or a collection of solutions at each itera-
tion. The subordinate heuristics may be high (or low) level proce-
dures, or a simple local search, or just a construction method.”

Osman and Laporte [52] in their metaheuristics bibliography define a metaheuris-
tics as follows:

“A metaheuristic is formally defined as an iterative generation pro-

cess which guides a subordinate heuristic by combining intelligently
different concepts for exploring and exploiting the search space,
learning strategies are used to structure information in order to
find efficiently near-optimal solutions. ”

In the last few years, many heuristics that do not follow the concepts of a single
metaheuristic have been proposed. These heuristics combine one or more algorith-
mic ideas from different metaheuristics and sometimes even from outside the tradi-
tional field of metaheuristics. Experience has shown that a crafted combination of
concepts of different metaheuristics can result in robust combinatorial optimization
schemes and produce higher solution quality than the individual metaheuristics
themselves. These approaches combining different metaheuristics are commonly
referred to as hybrid metaheuristics.

This chapter gives an overview of different ways to hybridize GRASP to create
new and more effective metaheuristics. Several types of hybridizations are consid-
ered, involving different constructive procedures, enhanced local search algorithms,
and memory structures.

In Section 2 the basic GRASP components are briefly reviewed. Hybrid con-
struction schemes and hybridization with path-relinking are considered in Sections 3
and 4, respectively.

Hybridization schemes of GRASP with other metaheuristics are explained in
Section 5. Concluding remarks are given in the last section.

2. A basic GRASP

A basic GRASP metaheuristic [21, 22] is a multi-start or iterative method. Given
a finite solution set X and a real-valued objective function f : X → R to be
minimized, each GRASP iteration is usually made up of a construction phase,
where a feasible solution is constructed, and a local search phase which starts at
the constructed solution and applies iterative improvement until a locally optimal
solution is found. Repeated applications of the construction procedure yields diverse
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starting solutions for the local search and the best overall solution is kept as the
result.

procedure GRASP(f(·), g(·), MaxIterations, Seed)
1 xbest:=∅; f(xbest):=+∞;
2 for k = 1, 2, . . . ,MaxIterations→
3 x:=ConstructGreedyRandomizedSolution(Seed, g(·));
4 if (x not feasible) then

5 x:=repair(x);
6 endif

7 x:=LocalSearch(x, f(·));
8 if (f(x) < f(xbest)) then

9 xbest:=x;
10 endif

11 endfor;
12 return(xbest);
end GRASP

Figure 1. Pseudo-code of a basic GRASP for a minimization problem.

The construction phase builds a solution x. If x is not feasible, a repair procedure
is invoked to obtain feasibility. Once a feasible solution x is obtained, its neigh-
borhood is investigated by the local search until a local minimum is found. The
best overall solution is kept as the result. An extensive survey of the literature is
given in [26]. The pseudo-code in Figure 1 illustrates the main blocks of a GRASP
procedure for minimization, in which MaxIterations iterations are performed and
Seed is used as the initial seed for the pseudorandom number generator.

Starting from an empty solution, in the construction phase, a complete solution
is iteratively constructed, one element at a time (see Figure 2). The basic GRASP
construction phase is similar to the semi-greedy heuristic proposed independently
by [39]. At each construction iteration, the choice of the next element to be added is
determined by ordering all candidate elements (i.e. those that can be added to the
solution) in a candidate list C with respect to a greedy function g : C → R. This
function measures the (myopic) benefit of selecting each element. The heuristic is
adaptive because the benefits associated with every element are updated at each
iteration of the construction phase to reflect the changes brought on by the selection
of the previous element. The probabilistic component of a GRASP is characterized
by randomly choosing one of the best candidates in the list, but not necessarily
the top candidate. The list of best candidates is called the restricted candidate list

(RCL). In other words, the RCL is made up of elements i ∈ C with the best (i.e.,
the smallest) incremental costs g(i). There are two main mechanisms to build this
list: a cardinality-based (CB) and a value-based (VB) mechanism. In the CB case,
the RCL is made up of the k elements with the best incremental costs, where k is
a parameter. In the VB case, the RCL is associated with a parameter α ∈ [0, 1]
and a threshold value µ = gmin + α(gmax − gmin). In fact, all candidate elements i
whose incremental cost g(i) is no greater than the threshold value are inserted into
the RCL, i.e. g(i) ∈ [gmin, µ]. Note that, the case α = 0 corresponds to a pure
greedy algorithm, while α = 1 is equivalent to a random construction.
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procedure ConstructGreedyRandomizedSolution(Seed, g(·))
1 x:=∅;
2 Sort the candidate elements i according to their incremental

costs g(i);
3 while (x is not a complete solution)→
4 RCL:=MakeRCL();
5 v:=SelectIndex(RCL, Seed);
6 x := x ∪ {v};
7 Resort remaining candidate elements j according to their

incremental costs g(j);
8 endwhile;
9 return(x);
end ConstructGreedyRandomizedSolution;

Figure 2. Basic GRASP construction phase pseudo-code.

procedure LocalSearch(x, f(·))
1 Let N(x) be the neighborhood of x;
2 H :={y ∈ N(x) | f(y) < f(x)};
3 while (|H | > 0)→
4 x:=Select(H);
5 H :={y ∈ N(x) | f(y) < f(x)};
6 endwhile

7 return(x);
end LocalSearch

Figure 3. Pseudo-code of a generic local search procedure.

Solutions generated by a GRASP construction are not guaranteed to be locally
optimal with respect to simple neighborhood definitions. Hence, it is almost always
beneficial to apply a local search to attempt to improve each constructed solution.
A local search algorithm iteratively replaces the current solution by a better solution
in the neighborhood of the current solution. It terminates when no better solution
is found in the neighborhood. The neighborhood structure N for a problem relates
a solution s of the problem to a subset of solutions N(s). A solution s is said to be
locally optimal if in N(s) there is no better solution in terms of objective function
value. The key to success for a local search algorithm consists of the suitable
choice of a neighborhood structure, efficient neighborhood search techniques, and
the starting solution. Figure 3 illustrates the pseudo-code of a generic local search
procedure for a minimization problem.

It is difficult to formally analyze the quality of solution values found by using
the GRASP methodology. However, there is an intuitive justification that views
GRASP as a repetitive sampling technique. Each GRASP iteration produces a sam-
ple solution from an unknown distribution of all obtainable results. The mean and
variance of the distribution are functions of the restrictive nature of the candidate
list, as experimentally shown by Resende and Ribeiro in [56].

An especially appealing characteristic of GRASP is the ease with which it can be
implemented either sequentially or in parallel, where only a single global variable
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is required to store the best solution found over all processors. Moreover, few
parameters need to be set and tuned, and therefore development can focus on
implementing efficient data structures to assure quick GRASP iterations.

3. Hybrid construction mechanisms

In this Section, we briefly describe enhancements and alternative techniques for
the construction phase of GRASP.
Reactive GRASP. Reactive GRASP is the first enhancement that incorporate a
learning mechanism in the memoryless construction phase of the basic GRASP.

The value of the RCL parameter α is selected at each iteration from a discrete
set of possible values with a probability that depends on the solution values found
along the previous iterations. One way to accomplish this is to use the rule proposed
in [53]. Let A = {α1, α2, . . . , αm} be the set of possible values for α. At the first
GRASP iteration, all m values have the same probability to be selected, i.e.

pi =
1

m
, i = 1, 2, . . . , m.

At any subsequent iteration, let ẑ be the incumbent solution and let Ai be the
average value of all solutions found using α = αi, i = 1, . . . , m. The selection
probabilities are periodically reevaluated as follows:

pi =
qi∑m

j=1 qj

,

where qi = ẑ
Ai

, i = 1, . . . , m.
Reactive GRASP has been successfully applied in solving several combinatorial

optimization problems arising in real-world applications [11, 18].
Cost perturbations. Another step toward an improved and alternative solution con-
struction mechanism is to allow cost perturbations. The idea to introduce some
“noise” in the original costs in a fashion resembles the noising method of Charon
and Hudry [15, 16] and can be usefully applied in all cases when the construction
algorithm is not very sensitive to randomization or for the problem to be solved
there is available no greedy algorithm for randomization.

Experimental results in the literature have shown that embedding a strategy of
costs perturbation into a GRASP framework improves the best overall results. The
hybrid GRASP with path-relinking proposed for the Steiner problem in graphs by
Ribeiro et al. in [62] uses this cost perturbation strategy and is among the most
effective heuristics currently available. Path-relinking will be in detail described in
Section 4.
Bias functions. Another construction mechanism has been proposed by Bresina [12].
Once the RCL is built, instead of choosing with equal probability one candidate
among the RCL elements, Bresina introduced a family of probability distributions
to bias the selection toward some particular candidates. A bias function is based
on a rank r(x) assigned to each candidate x according to its greedy function value
and is evaluated only for the elements in RCL. Several different bias functions have
been introduced:

i. random bias: bias(r(x)) = 1;
ii. linear bias: bias(r(x)) = 1

r(x) ;

iii. log bias: bias(r(x)) = log−1[r(x) + 1];
iv. exponential bias: bias(r(x)) = e−r;
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procedure ConstructSampleGreedySolution(Seed, g(·), k)
Let C be the set of candidate elements.
1 x:=∅;
2 while (x is not a complete solution)→
3 RCL:=select-randomly(Seed,k,C); /*k candidates at random*/
4 Evaluate incremental costs of candidates in RCL;
5 v :=argmin{g(i) | i ∈ RCL};
6 x := x ∪ {v};
7 C := C \ {v};
8 endwhile;
9 return(x);
end ConstructSampleGreedySolution;

Figure 4. Sample greedy GRASP construction phase pseudo-code.

v. polynomial bias of order n: bias(r(x)) = r−n.

Let bias(r(x)) be one of the bias function defined above. Once these values have
been evaluated for all elements of the RCL, the probability px of selecting element
x is

px =
bias(r(x))

∑
y∈RCL bias(r(y))

.

A successful application of Bresina’s bias function can be found in [10], where
experimental results show that the evaluation of bias functions may be restricted
only to the elements of the RCL.
Other hybrid construction proposals. Resende and Werneck [57] proposed the fol-
lowing further construction methods:

i. Sample greedy construction.
Instead of randomizing the greedy algorithm, a greedy algorithm is ap-

plied to each solution in a random sample of candidates. At each step,
a fixed-size subset of the candidates is sampled and the incremental con-
tribution to the cost of the partial solution is computed for each sampled
element. An element with the best incremental contribution is selected and
added to the partial solution. This process is repeated until, as before, the
construction terminates when no further candidate exists. Resende and
Werneck in [57] proposed for the p-median problem a sample greedy con-
struction scheme, whose general framework for a minimization problem is
shown in Figure 4.

ii. Random plus greedy construction. A partial random solution is built and
a greedy algorithm is then applied to complete the construction. The size
k of the randomly built portion determines how greedy or random the
construction will be. The pseudo-code is reported in Figure 5.

iii. Proportional greedy construction.
In each iteration of proportional greedy, the incremental cost g(c) for

every candidate element c ∈ C is computed and then a candidate is picked
at random, but in a biased way. In fact, the probability of a given candidate
v ∈ C being selected is inversely proportional to g(v) − min{g(c) | c ∈ C}.
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procedure ConstructRand+GreedySolution(Seed, g(·), k)
Let C be the set of candidate elements.
1 x:=select-randomly(Seed,k,C); /*k candidates at random*/
2 C := C \ x;
3 while (x is not a complete solution)→
4 Evaluate incremental costs of candidates in C;
5 v :=argmin{g(i) | i ∈ C};
6 x := x ∪ {v};
7 C := C \ {v};
8 endwhile;
9 return(x);
end ConstructRand+GreedySolution;

Figure 5. Random plus greedy GRASP construction phase
pseudo-code.

4. GRASP and path-relinking

Path-relinking is a heuristic proposed in 1996 by Glover [30] as an intensification
strategy exploring trajectories connecting elite solutions obtained by tabu search
or scatter search [31, 33, 34]. It can be traced back to the pioneering work of
Kernighan and Lin [42].

The result of the combination of the basic GRASP with path-relinking is a
hybrid technique, leading to significant improvements in solution quality. The first
proposal of a hybrid GRASP with path-relinking is in 1999 due to Laguna and
Mart́ı [46]. It was followed by several extensions, improvements, and successful
applications [5, 13, 24, 25].

Starting from one or more elite solutions, paths in the solution space leading
towards other guiding elite solutions are generated and explored in the search for
better solutions. This is accomplished by selecting moves that introduce attributes
contained in the guiding solutions. At each iteration, all moves that incorporate
attributes of the guiding solution are analyzed and the move that best improves (or
least deteriorates) the initial solution is chosen.

Path-relinking is applied to a pair of solutions x,y, where one can be the solution
obtained from the current GRASP iteration, and the other is a solution from an
elite set of solutions. x is called the initial solution and y the guiding solution.
The set E of elite solutions has usually a fixed size that does not exceed MaxElite.
Given the pair x,y, their common elements are kept constant, and the space of
solutions spanned by these elements is searched with the objective of finding a
better solution. The size of the solution space grows exponentially with the the
distance between the initial and guiding solutions and therefore only a small part
of the space is explored by path-relinking. The procedure starts by computing
the symmetric difference ∆(x,y) between the two solutions, i.e. the set of moves
needed to reach y (target solution) from x (initial solution). A path of solutions
is generated linking x and y. The best solution x∗ in this path is returned by the
algorithm.
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procedure Path-relinking(f(·),x, E)
1 Choose, at random, a pool solution y ∈ E to relink with x;
2 Compute symmetric difference ∆(x,y);
3 f∗ := min{f(x), f(y)};
4 x∗ := argmin{f(x), f(y)};
5 x := x;
6 while (∆(x,y) 6= ∅) →
7 m∗ := argmin{f(x ⊕ m) | m ∈ ∆(x,y)};
8 ∆(x ⊕ m∗,y) := ∆(x,y) \ {m∗};
9 x := x ⊕ m∗;
10 if (f(x) < f∗) then

11 f∗ := f(x);
12 x∗ := x;
13 endif ;
14 endwhile;
15 x∗ := LocalSearch(x∗, f(·));
16 return (x∗);
end Path-relinking;

Figure 6. Pseudo-code of a generic path-relinking for a minimiza-
tion problem.

Let us denote the set of solutions spanned by the common elements of the n-
vectors x and y as

(1) S(x,y) := {w feasible | wi = xi = yi, i /∈ ∆(x,y)} \ {x,y}.

Clearly, |S(x,y)| = 2n−d(x,y) − 2, where d(x,y) = |∆(x,y)|. The underlying as-
sumption of path-relinking is that there exist good-quality solutions in S(x,y),
since this space consists of all solutions which contain the common elements of two
good solutions x and y. Since the size of this space is exponentially large, a greedy
search is usually performed where a path of solutions

x = x0,x1, . . . ,xd(x,y),xd(x,y)+1 = y,

is built, such that d(xi,xi+1) = 1, i = 0, . . . , d(x,y), and the best solution from
this path is chosen. Note that, since both x and y are, by construction, local optima
in some neighborhood N(·)1, in order for S(x,y) to contain solutions which are not
contained in the neighborhoods of x or y, x and y must be sufficiently distant.

Figure 6 illustrates the pseudo-code of the path-relinking procedure applied to
the pair of solutions x (starting solution) and y (target solution). In line 1, an initial
solution x is selected at random among the elite set elements and it usually differs
sufficiently from the guiding solution y. The loop in lines 6 through 14 computes a
path of solutions x1,x2, . . . ,xd(x,y)−2, and the solution x∗ with the best objective
function value is returned in line 15. This is achieved by advancing one solution at
a time in a greedy manner. At each iteration, the procedure examines all moves
m ∈ ∆(x,y) from the current solution x and selects the one which results in the
least cost solution (line 7), i.e. the one which minimizes f(x ⊕ m), where x ⊕ m is

1The same metric d(x, y) is usually used.
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the solution resulting from applying move m to solution x. The best move m∗ is
made, producing solution x ⊕ m∗ (line 9). The set of available moves is updated
(line 8). If necessary, the best solution x∗ is updated (lines 10–13 ). ∆(x,y) = ∅.
Since x∗ is not guaranteed to be locally optimal, a local search is usually applied
and the locally optimal solution is returned.

procedure GRASP+PR(f(·), g(·), MaxIterations, Seed, MaxElite)
1 xbest:=∅; f(xbest):=+∞; E := ∅
2 for k = 1, 2, . . . ,MaxIterations→
3 x:=ConstructGreedyRandomizedSolution(Seed, g(·));
4 if (x not feasible) then

5 x:=repair(x);
6 endif

7 x:=LocalSearch(x, f(·));
8 if (k ≤MaxElite) then

9 E := E ∪ {x};
10 if (f(x) < f(xbest)) then

11 xbest:=x;
12 endif

13 else

14 xp:=Path-relinking(f(·),x, E);
15 AddToElite(E ,xp);
16 if (f(xp) < f(xbest)) then

17 xbest:=xp;
18 endif

19 endif

20 endfor;
21 return(xbest);
end GRASP

Figure 7. Pseudo-code of a basic GRASP with path-relinking
heuristic for a minimization problem.

We now describe a possible way to hybridize the basic GRASP described in
Section 2 with path-relinking. The integration of the path-relinking procedure with
the basic GRASP is shown in Figure 7. The pool E of elite solutions is initially
empty, and until it reaches its maximum size no path relinking takes place. After
a solution x is found by GRASP, it is passed to the path-relinking procedure to
generate another solution. The procedure AddToElite(E , xp) attempts to add to
the elite set of solutions the currently found solution. Since we wish to maintain
a pool of good but diverse solutions, each solution obtained by path-relinking is
considered as a candidate to be inserted into the pool if it is sufficiently different
from every other solution currently in the pool. If the pool already has MaxElite

solutions and the candidate is better than the worst of them, then a simple strategy
is to have the former replace the latter. Another strategy, which tends to increase
the diversity of the pool, is to replace the pool element most similar to the candidate
among all pool elements with cost worse than the candidate’s.

More formally, in several papers, a solution xp is added to the elite set E if either
one of the following conditions holds:
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(1) f(xp) < min{f(w) : w ∈ E},
(2) min{f(w) : w ∈ E} ≤ f(xp) < max{f(w) : w ∈ E} and d(xp,w) >

βn, ∀w ∈ E , where β is a parameter between 0 and 1 and n is the number
of decision variables.

If xp satisfies either of the above, it then replaces an elite solution z no better than xp

and most similar to xp, i.e. z = argmin{d(xp,w) : w ∈ E such that f(w) ≥ f(xp)}.
Figure 7 shows the simplest way to combine GRASP with path-relinking, which

is applied as an intensification strategy to each local optimum obtained after the
GRASP local search phase.

In general, two basic strategies can be used:

i. path-relinking is applied as a post-optimization step to all pairs of elite
solutions;

ii. path-relinking is applied as an intensification strategy to each local opti-
mum obtained after the local search phase.

Applying path-relinking as an intensification strategy to each local optimum
(strategy ii.) seems to be more effective than simply using it as a post-optimization
step [58].

Several further alternatives have been recently considered and combined, all in-
volving the trade-offs between computation time and solution quality. They include:

a. do not apply path-relinking at every GRASP iteration, but only periodi-
cally;

b. explore only one path, starting from either x (forward path-relinking) or y

(backward path-relinking);
c. explore two different paths, using first x, then y as the initial solution

(forward and backward path-relinking);
d. do not follow the full path, but instead only part of it (truncated path-

relinking).

Ribeiro et al. [61] observed that exploring two different paths for each pair (x,y)
takes approximately twice the time needed to explore only one of them, with very
marginal improvements in solution quality. They have also observed that if only
one path is to be investigated, better solutions are found when path-relinking starts
from the best among x and y. Since the neighborhood of the initial solution is much
more carefully explored than that of the guiding one, starting from the best of them
gives the algorithm a better chance to investigate in more detail the neighborhood
of the most promising solution. For the same reason, the best solutions are usually
found closer to the initial solution than to the guiding solution, allowing pruning
the relinking path before the latter is reached.

Resende and Ribeiro [55] performed extensive computational experiments, run-
ning implementations of GRASP with several different variants of path-relinking.
They analyzed the results and illustrated the trade-offs between the different strate-
gies.

5. GRASP and other metaheuristics

In this section, we describe and comment on some enhancements of the basic
GRASP obtained by hybridization with other approaches and optimization strate-
gies. We also report on experience showing that a crafted combination of concepts
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of different metaheuristics/techniques can result in robust combinatorial optimiza-
tion schemes and produce higher solution quality than the individual metaheuristics
themselves, especially when solving difficult real-world combinatorial optimization
problems.

Most of the GRASP hybrid approaches involve other metaheuristics in the basic
local search scheme described in Section 2. They include methods that explore
beyond the current solution’s neighborhood by allowing cost-increasing moves, by
exploring multiple neighborhoods, and by exploring very large neighborhoods.

5.1. GRASP and tabu search. Tabu search (TS) is a metaheuristic strategy
introduced by Glover [28, 29, 30, 32, 33] that makes use of memory structures to
enable escape from local minima by allowing cost-increasing moves. During the
search, short-term memory TS uses a special data structure called tabu list to store
information about solutions generated in the last iterations2. The process starts
from a given solution and, as any local search heuristic, it moves in iterations from
the current solution s to some solution t ∈ N(s). To avoid returning to a just-
visited local minimum, reverse moves movt that lead back to that local minimum
are forbidden, or made tabu, for a number of iterations that can be a priori fixed
(fixed sized tabu list) or adaptively varying (variable sized tabu list).

procedure TS(x, f(·), k)
1 Let N(x) be the neighborhood of x;
2 s := x; T := ∅; xb := x;
3 while (stopping criterion not satisfied)→

4 N̂(s) := N(s) \ T ;

5 t :=argmin{f(w) | w ∈ N̂(s)};
6 if (|T | ≥ k) then

7 Remove from T the oldest entry;
8 endif

9 T := T ∪ {t};
10 if (f(t) < f(xb)) then

11 xb := t;
12 endif

13 s := t;
14 endwhile

15 return(xb);
end TS

Figure 8. Short memory TS pseudo-code for a minimization problem.

Figure 8 shows pseudo-code for a short-term TS using a fixed k sized tabu
list T , that, for ease of handling, stores the complete solutions t instead of the
corresponding moves movt.

It is clear that TS can be used as a substitute for the standard local search in
a GRASP. This type of search allows the exploration beyond the neighborhood of
the greedy randomized solution. By using the number of cost-increasing moves as
a stopping criterion one can balance the amount of time that GRASP allocates to

2Usually, the tabu list stores all moves that reverse the effect of recent local search steps.
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procedure simulated-annealing (x, f(·), T , Seed)
1 s := x; xb := x;
2 while (T > 0 and stopping criterion not satisfied)→
3 t :=select-randomly(Seed, N(s));
4 if (f(t) − f(s) < 0) then

5 s := t;
6 if (f(t) < f(xb)) then xb := t;
7 endif

8 else s := t with probability e−(f(t)−f(s))/(K·T ));
9 endif

10 Decrement T according to a defined criterion;
11 endwhile

12 return (xb);
end simulated-annealing

Figure 9. SA pseudo-code for a minimization problem.

constructing a greedy randomized solution and exploring around that solution with
tabu search.

Examples of GRASP with tabu search include [18] for the single source capaci-
tated plant location problem, [1] for multi-floor facility layout, [71] for the capac-
itated minimum spanning tree problem, [48] for the m-VRP with time windows,
and [20] for the maximum diversity problem.

5.2. GRASP and simulated annealing. Simulated annealing (SA) [43] is based
on principles of mechanical statistics and on the idea of simulating the annealing
process of a mechanical system.

It offers a further possibility to enhance the basic GRASP local search phase and
pseudo-code in Figure 9 shows how SA can be used as a substitute for the standard
local search in a GRASP.

As any stochastic local search procedure, SA is also given a starting solution x
which is used to initialize the current solution s. At each iteration, it randomly
selects a trial solution t ∈ N(s). In perfect correspondence of mechanical systems
state change rules, if t is an improving solution, then t is made the current solution.
Otherwise, t is made the current solution with probability given by

e−
f(t)−f(s)

K·T ,

where f(x) is interpreted as the energy of the system in state x, K is the Boltzmann
constant, and T a control parameter called the temperature.

There are many ways to implement SA, depending on the adopted stopping
criterion and on the rule (cooling schedule) applied to decrement the temperature
parameter T (line 10). Note that, the higher is the temperature T the higher is the
probability of moving on a not improving solution t. Usually, starting from a high
initial temperature T0, at iteration k the cooling schedule changes the temperature
by setting Tk+1 := Tk · γ, where 0 < γ < 1.

Therefore, initial iterations can be thought of as a diversification phase, where
a large part of the solution space is explored. As the temperature cools, fewer
non-improving solutions are accepted and those cycles can be thought of as inten-
sification cycles.
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To make use of SA as a substitute for the standard local search in GRASP, one
should limit the search to the intensification part, since the diversification is already
guaranteed by the randomness of the GRASP construction phase. Limitation to
only intensification part can be done by starting already with a cool temperature
T0.

Examples of hybrid GRASP with SA include [70] for a simplified fleet assignment
problem and [17] for the rural postman problem.

5.3. GRASP, genetic algorithms, and population-based heuristics. Evolu-
tionary metaheuristics such as genetic algorithms (GA) [36], ant colony optimiza-
tion [19], scatter search [35, 45, 47], and evolutionary path-relinking [57] require
the generation of an initial population of solutions.

Rooted in the mechanisms of evolution and natural genetics and therefore derived
from the principles of natural selection and Darwin’s evolutionary theory, the study
of heuristic search algorithms with underpinnings in natural and physical processes
began as early as the 1970s, when Holland [40] first proposed genetic algorithms.
This type of evolutionary technique has been theoretically and empirically proven
to be a robust search method [36] having a high probability of locating the global
solution optimally in a multimodal search landscape.

In nature, competition among individuals results in the fittest individuals sur-
viving and reproducing. This is a natural phenomenon called the survival of the

fittest: the genes of the fittest survive, while the genes of weaker individuals die
out. The reproduction process generates diversity in the gene pool. Evolution is
initiated when the genetic material (chromosomes) from two parents recombines
during reproduction. The exchange of genetic material among chromosomes is
called crossover and can generate good combination of genes for better individu-
als. Another natural phenomenon called mutation causes regenerating lost genetic
material. Repeated selection, mutation, and crossover cause the continuous evo-
lution of the gene pool and the generation of individuals that survive better in a
competitive environment.

procedure GA(f(·))
1 Let N(x) be the neighborhood of a solution x;
2 k := 0;
3 Initialize population P (0); xb :=argmin{f(x) | x ∈ P (0)};
4 while (stopping criterion not satisfied)→
5 k := k + 1;
6 Select P (k) from P (k − 1);
7 t :=argmin{f(x) | x ∈ P (k)};
8 if (f(t) < f(xb)) then

9 xb := t;
10 endif

11 Alter P (k);
12 endwhile

13 return(xb);
end GA

Figure 10. Pseudo-code of a generic GA for a minimization problem.
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In complete analogy with nature, once encoded each possible point in the search
space of the problem into a suitable representation, a GA transforms a population
of individual solutions, each with an associated fitness (or objective function value),
into a new generation of the population. By applying genetic operators, such as
crossover and mutation [44], a GA successively produces better approximations to
the solution. At each iteration, a new generation of approximations is created by
the process of selection and reproduction. In Figure 10 a simple genetic algorithm
is described by the pseudo-code, where P (k) is the population at iteration k.

In solving a given optimization problem P , a GA consists of the following basic
steps.

(1) Randomly create an initial population P (0) of individuals, i.e. solutions
for P .

(2) Iteratively perform the following substeps on the current generation of the
population until the termination criterion has been satisfied.
(a) Assign fitness value to each individual using the fitness function.
(b) Select parents to mate.
(c) Create children from selected parents by crossover and mutation.
(d) Identify the best-so-far individual for this iteration of the GA.

Scatter Search (SS) operates on a reference set of solutions, that are combined
to create new ones. One way to obtain a new solution is to linearly combine two
reference set solutions. Unlike a GA, the reference set of solutions is relatively
small, usually consisting of less than 20 solutions. At the beginning, a starting set
of solutions is generated to guarantee a critical level of diversity and some local
search procedure is applied to attempt to improve them. Then, a subset of the best
solutions is selected as reference set, where the quality of a solution is evaluated
both in terms of objective function and diversity with other reference set candidates.
At each iteration, new solutions are generated by combining reference set solutions.
One criterion used to select reference solutions for combination takes into account
the convex regions spanned by the reference solutions.

Evolutionary path-relinking (EvPR) has been introduced by Resende and Wer-
neck [57] and applied as a post-processing phase for GRASP with PR. In EvPR,
the solutions in the pool are evolved as a series of populations P (1), P (2), . . . of
equal size. The initial population P (0) is the pool of elite solutions produced by
GRASP with PR. In iteration k, PR is applied between a set of pairs of solutions in
population P (k) and, with the same rules used to test for membership in the pool
of elite solutions, each resulting solution is tested for membership in population
P (k + 1). This evolutionary process is repeated until no improvement is seen from
one population to the next.

As just described, all above techniques are evolutionary metaheuristics requiring
the generation of an initial population of solutions. Usually, these initial solutions
are randomly generated, but another way to generate them is to use a GRASP.

Ahuja et al. [4] used a GRASP to generate the initial population of a GA for the
quadratic assignment problem. Alvarez et al. [6] proposed a GRASP embedded
scatter search for the multicommodity capacitated network design problem. Very
recently, Contreras and Dı́az used GRASP to initialize the reference set of scatter
search for the single source capacitated facility location problem. GRASP with
EvPR has been recently used in [59] for the uncapacitated facility location problem
and in [54] for the max-min diversity problem.
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5.4. GRASP and variable neighborhood search. Almost all randomization
effort in implementations of the basic GRASP involves the construction phase.
On the other hand, strategies such as Variable Neighborhood Search (VNS) and
Variable Neighborhood Descent (VND) [38, 51] rely almost entirely on the random-
ization of the local search to escape from local optima. With respect to this issue,
probabilistic strategies such as GRASP and VNS may be considered as complemen-
tary and potentially capable of leading to effective hybrid methods.

The variable neighborhood search (VNS) metaheuristic, proposed by Hansen
and Mladenović [38], is based on the exploration of a dynamic neighborhood model.
Contrary to other metaheuristics based on local search methods, VNS allows changes
of the neighborhood structure along the search.

VNS explores increasingly distant neighborhoods of the current best found so-
lution. Each step has three major phases: neighbor generation, local search, and
jump. Let Nk, k = 1, . . . , kmax be a set of pre-defined neighborhood structures and
let Nk(x) be the set of solutions in the kth-order neighborhood of a solution x. In
the first phase, a neighbor x′ ∈ Nk(x) of the current solution is applied. Next, a
solution x′′ is obtained by applying local search to x′. Finally, the current solution
jumps from x to x′′ in case the latter improved the former. Otherwise, the order of
the neighborhood is increased by one and the above steps are repeated until some
stopping condition is satisfied.

procedure VNS(x, f(·), kmax, Seed)
1 xb := x; k := 1;
2 while (k ≤ kmax)→
3 x′ :=select-randomly(Seed, Nk(x));
4 x′′ :=LocalSearch(x′, f(·));
5 if (f(x′′) < f(x′)) then

6 x := x′′; k := 1;
7 if (f(x′′) < f(xb)) then xb := x′′;
8 endif

9 else k := k + 1;
10 endif

11 endwhile

12 return(xb);
end VNS

Figure 11. Pseudo-code of a generic VNS for a minimization problem.

Usually, until a stopping criterion is met, VNS generates at each iteration a
solution x at random. In hybrid GRASP with VNS, where VNS is applied as local
search, the starting solution is the output x of the GRASP construction procedure
and the pseudo-code of a generic VNS local search is illustrated in Figure 11.

Examples of GRASP with VNS include [14] for the prize-collecting Steiner tree
problem in graphs, [25] for the MAX-CUT problem, and [9] for the strip packing
problem.

VND allows the systematic exploration of multiple neighborhoods and is based on
the facts that a local minimum with respect to one neighborhood is not necessarily
a local minimum with respect to another and that a global minimum is a local
minimum with respect to all neighborhoods. VND also is based on the empirical
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observation that, for many problems, local minima with respect to one or more
neighborhoods are relatively close to each other. Since a global minimum is a local
minimum with respect to all neighborhoods, it should be easier to find a global
minimum if more neighborhoods are explored.

procedure VND(x, f(·), kmax)
1 xb := x; s := x; flag:=true;
2 while (flag)→
3 flag:=false;
4 for k = 1, . . . , kmax →
5 if (∃t ∈ Nk(s) | f(t) < f(s)) then

6 if (f(t) < f(xb)) then xb := t;
7 endif

8 s := t; flag:=true; break;
9 endif

10 endfor

11 endwhile

12 return(xb);
end VND

Figure 12. Pseudo-code of a generic VND for a minimization problem.

Let Nk(x), for k = 1, . . . , kmax, be kmax neighborhood structures of solution
x. The search begins with a given starting solution x which is made the current
solution s. Each major iteration (lines 2–11) searches for an improving solution t
in up to kmax neighborhoods of s. If no improving solution is found in any of the
neighborhoods, the search ends. Otherwise, t is made the current solution s and
the search is applied starting from s.

In hybrid GRASP with VND, where VND is applied as local search, the starting
solution is the output x of the GRASP construction procedure and the pseudo-
code of a generic VND local search is illustrated in Figure 12. A first attempt
in the direction of hybridizing GRASP with VNS has been done by Martins et
al. [50]. The construction phase of their hybrid heuristic for the Steiner problem
in graphs follows the greedy randomized strategy of GRASP, while the local search
phase makes use of two different neighborhood structures as a VND strategy. Their
heuristic was later improved by Ribeiro, Uchoa, and Werneck [61], one of the key
components of the new algorithm being another strategy for the exploration of
different neighborhoods. Ribeiro and Souza [60] also combined GRASP with VND
in a hybrid heuristic for the degree-constrained minimum spanning tree problem. In
the more recent literature, Ribeiro and Vianna [64] and Andrade and Resende [7]
proposed a hybrid GRASP with VND for the phylogeny problem and for PBX
telephone migration scheduling problem, respectively.

5.5. GRASP and iterated local search. Iterated Local Search (ILS) [49] is a
multistart heuristic that at each iteration k finds a locally optimal solution searched
in the neighborhood of an initial solution obtained by perturbation of the local
optimum found by local search at previous iteration k − 1.

The efficiency of ILS strongly depends on the perturbation (line 3) and accep-
tance criterion (line 5) rules. A “light” perturbation may cause local search to lead
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procedure ils (x, f(·), history)
1 t :=LocalSearch(x, f(·)); xb := t;
2 while (stopping criterion not satisfied)→
3 s :=perturbation(t, history);
4 ŝ :=LocalSearch(s, f(·));
5 t :=AcceptanceCriterion(t, ŝ, history);
6 if (f(t) < f(xb)) then xb := t;
7 endif

8 endwhile

9 return (xb);
end ils

Figure 13. ILS pseudo-code for a minimization problem.

back to the starting solution t, while a “strong” perturbation may cause the search
to resemble random multi-start. Usually, the acceptance criterion resembles SA,
i.e. ŝ is accepted if it is an improving solution; otherwise, it is accepted with some
positive probability.

ILS can be applied to enhance the basic GRASP local search phase and pseudo-
code in Figure 13 shows how it can be used as a substitute for the standard local
search in a GRASP. The procedure LocalSearch can also be the basic GRASP
local search as defined in Figure 3.

Ribeiro and Urrutia [63] designed a hybrid GRASP with ILS for the mirrored
traveling tournament problem, where the acceptance rule makes use of a threshold
parameter β, initialized to 0.001. Then, each time the best solution changes (line
6), it is reinitialized to the same value, while it is doubled if the current solution
does not chance after a fixed number of iterations. Finally, a solution ŝ is accepted
if f(ŝ) < (1+β) ·f(t) and the adopted stopping criterion has been to allow at most
50 cost-deteriorating moves without improvement in the current best solution.

5.6. GRASP and very-large scale neighborhood search. As for any local
search procedure, to efficiently search in the neighborhood of a solution, it is re-
quired that the neighborhood have a small size. Nevertheless, the larger the neigh-
borhood, the better the quality of the locally optimal solution. Neighborhoods
whose sizes grow exponentially as a function of problem dimension are called very

large scale neighborhoods and they necessarily require efficient search techniques to
be explored.

Ahuja et al. [2] presented a survey of methods called very-large scale neighbor-
hood (VLSN) search. The following three classes of VLSN methods are described:

(1) variable-depth methods where exponentially large neighborhoods are searched
with heuristics;

(2) a VLSN method that uses network flow techniques to identify improving
neighborhood solutions;

(3) a VLSN method that explores neighborhoods for NP-hard problems induced
by restrictions of the problems that are solved in polynomial time.

In particular, with respect to class 2, they define special neighborhood structures
called multi-exchange neighborhoods. The search is based on the cyclic transfer
neighborhood structure that transforms a cost-reducing exchange into a negative
cost subset-disjoint cycle in an improving graph and then a modified shortest path
label-correcting algorithm is used to identify these negative cycles.
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Ahuja et al. in [3] present two generalizations of the best known neighborhood
structures for the capacitated minimum spanning tree problem. The new neighbor-
hood structures defined allow cyclic exchanges of nodes among multiple subtrees
simultaneously. To judge the efficacy of the neighborhoods, local improvement and
tabu search algorithms have been developed. Local improvement uses a GRASP
construction mechanism to generate repeated starting solutions for local improve-
ment.

5.7. Other hybridizations. In the previous sections of this chapter, we have re-
viewed some important hybridizations of GRASP, mostly involving the GRASP
local search phase. More recently, several further hybridizations have been pro-
posed. They include the use of GRASP in Branch & Bound framework and the
combination of GRASP with data mining techniques.
GRASP and branch & bound. In 2004, Rocha et al. [66] proposed a hybridization
of GRASP as an upper bound for a branch and bound (B&B) procedure to solve
a scheduling problem with non-related parallel machines and sequence-dependent
setup times. In 2007, Fernandes and Lourenço [23] proposed a hybrid GRASP
and B&B for the job-shop scheduling problem. The B&B method is used within
GRASP to solve subproblems of one machine scheduling subproblem obtained from
the incumbent solution.
GRASP and data mining. In 2006, Jourdan et al. [41] presented a short survey
enumerating opportunities to combine metaheuristics and data mining (DM) tech-
niques. By using methods and theoretical results from statistics, machine learning,
and pattern recognition, DM automatically explores large volumes of data (in-
stances described according to several attributes) with the objective of discovering
patterns. In fact, DM is also known as Knowledge-Discovery in Databases.

In GRASP with data mining (DM-GRASP), after executing a significant num-
ber of GRASP iterations, the data mining process extracts patterns from an elite
set of solutions which will guide the GRASP construction procedure in the subse-
quent iterations. In fact, instead of building the randomized greedy solution from
scratch, the construction procedure starts from a solution pattern (a partial solu-
tion) that was previously mined. Computational experiments have shown that the
hybridization has benefited in both running time and quality of the solutions found.

DM-GRASP has been introduced in 2005 by Santos et al [69] for the maximum
diversity problem. In 2006, Ribeiro et al. [65] also proposed a hybrid GRASP with
DM and tested it the set packing problem as a case study and Santos et al. [68]
solved a real world problem, called server replication for reliable multicast.

Very recently, s survey of applications of DM-GRASP has been published by
Santos et al. [67].

6. Concluding remarks

Simulated annealing, tabu search, ant colony, genetic algorithms, scatter search,
path-relinking, GRASP, iterated local search, and variable neighborhood search
are often listed as examples of “classical” metaheuristics. In the last few years,
several different algorithms have been designed and proposed in the literature that
do not purely apply the basic ideas of one single “classical” metaheuristic, but
they combine various algorithmic ideas of different metaheuristic frameworks. The
design and implementation of hybrid metaheuristics are emerging as one of the
most exciting field.
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In this chapter, we have surveyed hybridizations of GRASP and other meta-
heuristics. Among these, we highlight: path-relinking, tabu search, simulated an-
nealing, genetic algorithms and population-based heuristics, variable neighborhood
search and variable neighborhood descent, iterated local search, very large scale
neighborhood local search, and very recent hybrids, such as GRASP with data
mining and GRASP with branch and bound.
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[49] H.R. Lourenço, O.C. Martin, and T. Stützle. Iterated local search. In F. Glover and
G. Kochenberger, editors, Handbook of Metaheuristics, pages 321–353. Kluwer Academic
Publishers, 2003.

[50] S.L. Martins, M.G.C. Resende, C.C. Ribeiro, and P. Pardalos. A parallel GRASP for the
Steiner tree problem in graphs using a hybrid local search strategy. Journal of Global Opti-
mization, 17:267–283, 2000.
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