
GRASP: BASIC COMPONENTS AND ENHANCEMENTS

PAOLA FESTA AND MAURICIO G.C. RESENDE

Abstract. GRASP (Greedy Randomized Adaptive Search Procedures) is a
multistart metaheuristic for producing good-quality solutions of combinato-
rial optimization problems. Each GRASP iteration is usually made up of
a construction phase, where a feasible solution is constructed, and a local
search phase which starts at the constructed solution and applies iterative im-
provement until a locally optimal solution is found. While, in general, the
construction phase of GRASP is a randomized greedy algorithm, other types
of construction procedures have been proposed. Repeated applications of a
construction procedure yields diverse starting solutions for the local search.
This chapter gives an overview of GRASP describing its basic components
and enhancements to the basic procedure, including reactive GRASP and in-
tensification strategies.

1. Introduction

Combinatorial optimization problems involve a finite number of alternatives:
given a finite solution set X and a real-valued objective function f : X → R,
one seeks a solution x∗ ∈ X with f(x∗) ≤ f(x), ∀ x ∈ X . Several combinatorial
optimization problems can be solved in polynomial time, but many of them are com-
putationally intractable since exact polynomial-time algorithms are unknown [59].
To find an optimal solution it is theoretically possible to enumerate all solutions
and evaluate each with respect to the stated objective function f . Optimal seek-
ing methods that do not explicitly require an examination of each alternative have
been developed in the last decades, such as Branch & Bound, Cutting Planes, and
Dynamic Programming. Nevertheless, most real-world problems found in industry
and government are either computationally intractable by their nature, or suffi-
ciently large so as to preclude the use of exact algorithms. In such cases, heuristic
methods are usually employed to find good, but not necessarily guaranteed optimal
solutions. The effectiveness of these methods depends upon their ability to adapt
to a particular realization, avoid entrapment at local optima, and exploit the basic
structure of the problem. Building on these notions, various heuristic search tech-
niques have been developed that have demonstrably improved our ability to obtain
good solutions to difficult combinatorial optimization problems. The most promis-
ing of such techniques include simulated annealing [79], tabu search [61, 62, 65],
genetic algorithms [70], variable neighborhood search [72], and GRASP (Greedy
Randomized Adaptive Search Procedures) [46, 47].

Date: July 1, 2008.
Key words and phrases. GRASP, hybrid heuristics, metaheuristics, path-relinking, variable

neighborhood descent, tabu search, simulated annealing, iterated local search.
AT&T Labs Research Technical Report.

1

2 P. FESTA AND M.G.C. RESENDE

A GRASP is a multi-start or iterative process [88]. Each GRASP iteration is
usually made up of a construction phase, where a feasible solution is constructed,
and a local search phase which starts at the constructed solution and applies iter-
ative improvement until a locally optimal solution is found. Repeated applications
of the construction procedure yields diverse starting solutions for the local search
and the best overall solution is kept as the result.

This chapter gives an overview of GRASP describing its basic components and
demonstrates, step by step, how to develop such heuristics for combinatorial opti-
mization problems. Alternative construction mechanisms and local search charac-
teristics are described in Subsections 2.1 and 2.2, respectively. Enhancements to
the basic procedure, including reactive GRASP and intensification strategies, are
discussed in Section 3. Section 4 reports a number of GRASP implementations
that have appeared in the literature, covering a wide range of applications. Finally,
concluding remarks are given in the last section.

2. A basic GRASP

Given a finite solution set X and a real-valued objective function f : X → R
to be minimized, a basic GRASP metaheuristic [46, 47] is a multi-start or iterative
method, in which each iteration consists of two phases: construction of a solution
and local search.

procedure GRASP(f(·), g(·), MaxIterations, Seed)
1 xbest:=∅; f(xbest):=+∞;
2 for k = 1, 2, . . . ,MaxIterations→
3 x:=ConstructGreedyRandomizedSolution(Seed, g(·));
4 if (x not feasible) then

5 x:=repair(x);
6 endif

7 x:=LocalSearch(x, f(·));
8 if (f(x) < f(xbest)) then

9 xbest:=x;
10 endif

11 endfor;
12 return(xbest);
end GRASP

Figure 1. Pseudo-code of a basic GRASP for a minimization problem.

The construction phase builds a solution x. If x is not feasible, a repair procedure
is invoked to obtain feasibility. Once a feasible solution x is obtained, its neigh-
borhood is investigated by the local search until a local minimum is found. The
best overall solution is kept as the result. An extensive survey of the literature is
given in [55]. The pseudo-code in Figure 1 illustrates the main blocks of a GRASP
procedure for minimization, in which MaxIterations iterations are performed and
Seed is used as the initial seed for the pseudorandom number generator.

Starting from an empty solution, a complete solution is iteratively constructed
in the construction phase, one element at a time (see Figure 2). The basic GRASP
construction phase is similar to the semi-greedy heuristic proposed independently

GRASP: BASIC COMPONENTS AND ENHANCEMENTS 3

procedure ConstructGreedyRandomizedSolution(Seed, g(·))
1 x:=∅;
2 Sort the candidate elements i according to their incremental

costs g(i);
3 while (x is not a complete solution)→
4 RCL:=MakeRCL();
5 v:=SelectIndex(RCL, Seed);
6 x := x ∪ {v};
7 Resort remaining candidate elements j according to their

incremental costs g(j);
8 endwhile;
9 return(x);
end ConstructGreedyRandomizedSolution;

Figure 2. Basic GRASP construction phase pseudo-code.

by [74]. At each construction iteration, the choice of the next element to be added is
determined by ordering all candidate elements (i.e. those that can be added to the
solution) in a candidate list C with respect to a greedy function g : C → R. This
function measures the (myopic) benefit of selecting each element. The heuristic is
adaptive because the benefits associated with every element are updated at each
iteration of the construction phase to reflect the changes brought on by the selection
of the previous element. The probabilistic component of a GRASP is characterized
by randomly choosing one of the best candidates in the list, but not necessarily
the top candidate. The list of best candidates is called the restricted candidate list

(RCL). This choice technique allows for different solutions to be obtained at each
GRASP iteration, but does not necessarily compromise the power of the adaptive
greedy component of the method.

procedure LocalSearch(x, f(·))
1 Let N(x) be the neighborhood of x;
2 H :={y ∈ N(x) | f(y) < f(x)};
3 while (|H | > 0)→
4 x:=Select(H);
5 H :={y ∈ N(x) | f(y) < f(x)};
6 endwhile

7 return(x);
end GRASP

Figure 3. Pseudo-code of a generic local search procedure.

As is the case for many deterministic methods, the solutions generated by a
GRASP construction are not guaranteed to be locally optimal with respect to simple
neighborhood definitions. Hence, it is almost always beneficial to apply a local
search to attempt to improve each constructed solution. A local search algorithm
works in an iterative fashion by successively replacing the current solution by a
better solution in the neighborhood of the current solution. It terminates when
no better solution is found in the neighborhood. The neighborhood structure N

4 P. FESTA AND M.G.C. RESENDE

for a problem relates a solution s of the problem to a subset of solutions N(s).
A solution s is said to be locally optimal if in N(s) there is no better solution in
terms of objective function value. The key to success for a local search algorithm
consists of the suitable choice of a neighborhood structure, efficient neighborhood
search techniques, and the starting solution. Figure 3 illustrates the pseudo-code
of a generic local search procedure for a minimization problem.

While such local optimization procedures can require exponential time [76] from
an arbitrary starting point, empirically their efficiency significantly improves as
the initial solution improves. The result is that often many GRASP solutions are
generated in the same amount of time required for the local optimization procedure
to converge from a single random start. Furthermore, the best of these GRASP
solutions is generally significantly better than the single solution obtained from a
random starting point.

It is difficult to formally analyze the quality of solution values found by using
the GRASP methodology. However, there is an intuitive justification that views
GRASP as a repetitive sampling technique. Each GRASP iteration produces a
sample solution from an unknown distribution of all obtainable results. The mean
and variance of the distribution are functions of the restrictive nature of the candi-
date list. For example, if the cardinality of the restricted candidate list is limited
to one, then only one solution will be produced and the variance of the distribution
will be zero. Given an effective greedy function, the mean solution value in this
case should be good, but probably suboptimal. If a less restrictive cardinality limit
is imposed, many different solutions will be produced implying a larger variance.
Since the greedy function is more compromised in this case, the mean solution
value should degrade. Intuitively, however, by order statistics and the fact that the
samples are randomly produced, the best value found should outperform the mean
value. Indeed, often the best solutions sampled are optimal.

An especially appealing characteristic of GRASP is the ease with which it can be
implemented. Few parameters need to be set and tuned, and therefore development
can focus on implementing efficient data structures to assure quick GRASP iter-
ations. Finally, GRASP can be trivially implemented in parallel. Each processor
can be initialized with its own copy of the procedure, the instance data, and an
independent random number sequence. The GRASP iterations are then performed
in parallel with only a single global variable required to store the best solution
found over all processors.

2.1. Construction mechamisms. The construction phase is usually an iterative
procedure. As underlined in Section 2, in the basic GRASP, at each construction
iteration, the choice of the next element to be added to the partial solution (initially
empty) is determined by ordering all candidate elements in a candidate list C with
respect to their incremental costs given by evaluating a greedy function g : C → R.
The RCL then is the list of best candidates. The heuristic is adaptive because the
incremental costs associated with every element are updated at each iteration of the
construction phase to reflect the changes brought on by the selection of the previous
element. The probabilistic component of a GRASP is characterized by randomly
choosing one element from the RCL, but not necessarily the top candidate.

In the literature, other construction methods have been proposed. For example,
in the sample greedy construction, instead of randomizing the greedy algorithm, a
greedy algorithm is applied to each solution in a random sample of candidates. At

GRASP: BASIC COMPONENTS AND ENHANCEMENTS 5

procedure ConstructGreedyRandomizedSolution(Seed, α, k, g(·))
1 x:=∅;
2 Initialize the candidate set C by all elements;
3 Evaluate the incremental cost g(i) for all i ∈ C;
4 while (|C| > 0)→
5 gmin := mini∈C g(i); gmax := maxi∈C g(i);
6 if (CB RCL is used) then

7 Sort candidate elements i ∈ C according to their
incremental costs g(i);

8 RCL:=C[1 · · ·k];
9 else RCL:={i ∈ C | g(i) ≤ gmin + α(gmax − gmin)};
10 endif;
11 v:=SelectIndex(RCL, Seed);
12 x := x ∪ {v};
13 Update the candidate set C;
14 Reevaluate the incremental costs g(i) for all i ∈ C;
15 endwhile;
16 return(x);
end ConstructGreedyRandomizedSolution;

Figure 4. Refined pseudo-code of the GRASP construction phase.

each step, a fixed-size subset of the candidates is sampled and the incremental con-
tribution to the cost of the partial solution is computed for each sampled element.
An element with the best incremental contribution is selected and added to the
partial solution. In random plus greedy construction, a partial random solution is
built and a greedy algorithm is applied to complete the construction.

In the following, we will first explain various ways to build the RCL and then we
will describe enhancements and alternative techniques for the construction phase
of GRASP. Since Mockus et al. [97] pointed out that GRASP with a fixed nonzero
RCL parameter α is not asymptotically convergent to a global optimum1, several
remedies have been proposed to get around this problem. They include Reactive
GRASP, cost perturbations in place of randomized selection, bias functions, mem-
ory and learning, and local search on partially constructed solutions.
Construction of the RCL. Without loss of generality, let us consider a minimization
problem as formulated in Section 1. At any GRASP iteration, let g(i) be the
incremental cost associated with the incorporation of element i in the solution under
construction and let gmin and gmax be the smallest and the largest incremental
costs, respectively, i.e.

gmin = min
i∈C

g(i), gmax = max
i∈C

g(i).

The restricted candidate list RCL is made up of elements i ∈ C with the best (i.e.,
the smallest) incremental costs g(i). There are two main mechamisms to build this
list: a cardinality-based (CB) and a value-based (VB) mechanism. In the CB case,
the RCL is made up of the k elements with the best incremental costs, where k is a
parameter. In the VB case, the RCL is associated with a parameter α ∈ [0, 1] and a

1During construction, a fixed RCL parameter may rule out a candidate that is present in all
optimal solutions

6 P. FESTA AND M.G.C. RESENDE

Figure 5. Distribution of construction phase solution values as a
function of the RCL parameter α (1000 repetitions were recorded
for each value of α).

threshold value µ = gmin +α(gmax − gmin). In fact, all candidate elements i whose
incremental cost g(i) is no greater than the threshold value are inserted into the
RCL, i.e. g(i) ∈ [gmin, µ]. Note that, the case α = 0 corresponds to a pure greedy
algorithm, while α = 1 is equivalent to a random construction. The pseudo-code in
Figure 4 is a refinement of the greedy randomized contruction pseudo-code shown
in Figure 2.

Each GRASP construction procedure produces a sample solution from an un-
known distribution, whose mean and variance strongly depends on the mechanism
used to build the RCL. If the RCL has only one element, then the same solution
will be produced in all iterations. The variance of the distribution will be zero
and the mean will be equal to the value of the greedy solution. Instead, when
the RCL contains more elements, many different solutions will be produced, imply-
ing a larger variance. Since greediness plays a smaller role in this case, the mean
solution value should be worse. However, the value of the best solution found out-
performs the mean value and very often is optimal. In Figure 5 we report through

GRASP: BASIC COMPONENTS AND ENHANCEMENTS 7

six histograms the results of a study conducted by Resende and Ribeiro [116]. The
histograms refer to an instance of MAXSAT with 100 variables and 850 clauses and
depicts results obtained with 1000 independent constructions using the VB mech-
anisms of the GRASP construction procedure described in [113, 114]. Since this
is a maximization problem, the purely greedy construction corresponds to α = 1,
whereas the random construction occurs with α = 0. Note that, when the value
of α increases from 0 to 1, the mean solution value increases towards the purely
greedy solution value, while the variance approaches zero.

Prais and Ribeiro in [107, 108] observed the behavior of GRASP and the quality
of the GRASP output solutions for different RCL construction mechanisms, based
on different strategies for the variation of the value of the parameter α:

(a) α is randomly chosen from a uniform discrete probability distribution;
(b) α is randomly chosen from a decreasing non-uniform discrete probability

distribution;
(c) fixed value of α, close to the purely greedy choice.

The authors incorporated these three strategies into the GRASP procedures devel-
oped for four different optimization problems: (1) matrix decomposition for traffic
assignment in communication satellite [109]; (2) set covering [46]; (3) weighted
MAX-SAT [113, 114]; and (4) graph planarization [115, 119]. The resulting heuris-
tics have been tested on a subset of state-of-the-art instances for each type of
problem. The total number of iterations performed was fixed at 10,000. The ob-
served conclusions can be summized as follows. Strategy (c) presented the shortest
average computation times for three out the four problem types. It was also the one
with the least variability in the constructed solutions and, in consequence, found
the best solution the fewest times. Strategy (a) presented a high number of hits and
this behavior also illustrates the effectiveness of strategies based on the variation
of the RCL parameter.

In [107, 109], the authors also tested GRASP with a further RCL construction
mechanism, in which the parameter α is self-tuned and its value is periodically
modified according to the quality of the obtained solutions. This extension of the
basic GRASP is called Reactive GRASP and will be described in detail in the next
paragraph.
Reactive GRASP. The results of the study conducted in [107, 109] involving varia-
tion of the value of the RCL parameter α motivated the proposal of the extension
of the basic GRASP called Reactive GRASP. Prais and Ribeiro in [109] have shown
that using a single fixed value for the value of RCL parameter α very often hinders
finding a high-quality solution, which eventually could be found if another value
was used. Moreover, one drawback of the basic GRASP is the lack of learning

from the history of solutions found in previous iterations. The basic algorithm
discards information about any solution encountered that does not improve the
incumbent. Instead, it is worth to use information gathered from good solutions
leading to memory-based procedures. Information about the quality of proviously
generated solutions can influence the construction phase, by modifying the selection
probabilities associated with each element of the RCL.

In this paragraph, we describe Reactive GRASP, the first enhancement that
incorporates a learning mechanism in the memoryless construction phase of the
basic GRASP. In Reactive GRASP, the value of the RCL parameter α is selected in
each iteration from a discrete set of possible values with a probability that depends

8 P. FESTA AND M.G.C. RESENDE

on the solution values found along the previous iterations. One way to accomplish
this is to use the rule proposed in [109]. Let A = {α1, α2, . . . , αm} be the set of
possible values for α. At the first GRASP iteration, all m values have the same
probability to be selected, i.e.

pi =
1

m
, i = 1, 2, . . . , m.

At any subsequent iteration, let ẑ be the incumbent solution and let Ai be the
average value of all solutions found using α = αi, i = 1, . . . , m. The selection
probabilities are periodically reevaluated as follows:

pi =
qi

∑m

j=1 qj

,

where qi = ẑ/Ai, i = 1, . . . , m. If values of α = αi (i ∈ {1, . . . , m}) lead to the
best solutions on average, then the value of qi is increased and larger values of qi

correspond to more suitable values for α. The probabilities associated with these
more appropriate values will then increase when they are reevaluated.

Due to greater diversification and less reliance on parameter tuning, Reactive
GRASP has lead to improvements over the basic GRASP in terms of robustness
and solution quality. In fact, it has been successfully applied in power system
transmission network planning [29] and in a capacitated location problem [41].
Cost perturbations. Another step toward an improved and alternative solution con-
struction mechanism is to allow cost perturbations. The idea is to introduce some
“noise” in the original costs in a fashion that resembles the noising method of
Charon and Hudry [36, 37]. Cost perturbations are effective in all cases when the
construction algorithm is not very sensitive to randomization, as for example in the
case of the Steiner problem in graphs. To solve this problem, the hybrid GRASP
procedure proposed by Ribeiro et al. in [122] used as one of the main building blocks
of the construction phase the shortest-path heuristic of Takahashi and Matsuyama
[131].

Another situation where cost perturbations can be effective is when there is no
greedy algorithm available for the problem to be solved, as for example in the
case of the prize-collecting Steiner tree problem. To solve this problem, the hybrid
GRASP procedure proposed by Canuto et al. in [33] used the primal-dual algorithm
of Goemans and Williamson [69] to build initial solutions using perturbed costs.
More especifically, in [33], at each iteration a new solution for the prize-collecting
Steiner tree problem is built using node prizes updated by a perturbation function,
according to the structure of the current solution. Two different prize perturbation
schemes are used to enforce search diversification, as described in the following.

Perturbation by eliminations:: The primal-dual algorithm used in the con-
struction phase is driven to build a new solution without some of the nodes
appearing in the solution constructed in the previous iteration. This is done
by changing to zero the prizes of some persistent nodes, which appeared
in the last solution built and remained at the end of the local search. A
parameter α controls the fraction of the persistent nodes whose prizes are
temporarily set to zero;

Perturbation by prize changes:: Similarly to the noising method of Charon
and Hudry [36, 37], some noise is introduced into the node prizes, resulting

GRASP: BASIC COMPONENTS AND ENHANCEMENTS 9

in a change of the objective function as well. For each node i, a perturba-
tion factor β(i) is randomly generated in the interval [1 − a, 1 + a], where
a is an implementation parameter. The original prize π(i) associated with
node i is temporarily changed to π(i) = π(i) · β(i).

Experimental results have shown that embedding a strategy of costs perturbation
into a GRASP framework improves the best overall results. The hybrid GRASP
with path-relinking proposed for the Steiner problem in graphs by Ribeiro et al.
in [122] uses this cost perturbation strategy and is among the most effective heuris-
tics currently available. Path-relinking will be described in detail in Subsection 3.1.
Bias functions. Another construction mechanism was proposed by Bresina [32].
Once built the RCL, instead of choosing with equal probability one candidate among
the RCL elements, Bresina introduced a family of probability distributions to bias
the selection toward some particular candidates. A bias function is based on a
rank r(x) assigned to each candidate x according to its greedy function value and
is evaluated only for the elements in RCL. Several different bias functions were
introduced:

i. random bias: bias(r(x)) = 1;
ii. linear bias: bias(r(x)) = 1/r(x);
iii. log bias: bias(r(x)) = log−1[r(x) + 1];
iv. exponential bias: bias(r(x)) = e−r;
v. polynomial bias of order n: bias(r(x)) = r−n.

Let bias(r(x)) be one of the bias functions defined above. Once these values have
been evaluated for all elements of the RCL, the probability px of selecting element
x is

px =
bias(r(x))

∑

y∈RCL bias(r(y))
.

A successful application of Bresina’s bias function can be found in [28], where
experimental results show that the evaluation of bias functions may be restricted
only to the elements of the RCL.

Reactive GRASP has been the first and very simple attempt to enhance the basic
GRASP in order to keep trace and use history from previous iterations. Another
very simple attempt is due to Fleurent and Glover [58] who proposed improved
constructive multistart strategies that besides defining a special bias function also
maintains a pool of elite solutions to be used in the construction phase. To become
an elite solution, a solution must be either better than the best member of the pool,
or better than its worst member and suffciently different from the other solutions
in the pool, in order to preserve not only solution quality but also the diversity
of solutions. Fleurent and Glover defined: 1) a strongly determined variable as
one that cannot be changed without eroding the objective or changing significantly
other variables; 2) a consistent variable as one that receives a particular value in
a large portion of the elite solution set, and 3) for each solution component i, a
measure I(i) of its strongly determined and consistent features that becomes larger
as i appears more often in the pool of elite solutions. The intensity function I(i) is
used in the construction phase as follows. Recall that g(i) is the greedy function,
i.e. the incremental cost associated with the insertion of element i into the solution
under construction. Let K(i) = F (g(i), I(i)) be a function of the greedy and the
intensification functions. The idea of Fleurent and Glover is to define a special bias

10 P. FESTA AND M.G.C. RESENDE

function that depends on K(·). In fact, the intensification scheme biases selection
from the RCL to those elements i with a high value of K(i) by setting its selection
probability to be

pi =
K(i)

∑

y∈RCL K(y)
.

They suggested K(i) = λg(i) + I(i), with K(i) varying with time by changing the
value of λ, e.g. initially λ may be set to a large value that is decreased when
diversification is called for. Rules and procedures for changing the value of λ are
given by Fleurent and Glover [58] and Binato et al. [28].
POP in construction. The intuitive idea behind the Proximate Optimality Principle

(POP) is that “good solutions at one level are likely to be found ’close’ to good
solutions at an adjacent level”. Fleurent and Glover [58] proposed a GRASP for
the quadratic assignment problem that applies local search not only at the end
of each construction phase, but also during the construction itself. the scope of
this further application of local search is to “iron-out” from the current solution
its “bad”components. Neverthelss, experimental investigation conducted in the
literature has shown that applying the POP idea at each construction iteration is
excessively running time consuming. One possibility to implement the idea in a
more efficient way is to apply local search during a few points in the construction
phase and not during each construction iteration. In Binato et al. [28], local search
is applied after 40% and 80% of the construction moves have been taken, as well
as at the end of the construction phase.

2.2. Local search. In this section, we focus on local search design strategies. As
underlined in Section 2, the solutions generated by a GRASP construction are not
guaranteed to be locally optimal with respect to simple neighborhood definitions.
Hence, it is almost always beneficial to apply a local search to attempt to improve
each constructed solution. A local search algorithm works in an iterative fashion by
successively replacing the current solution by a better solution in the neighborhood
of the current solution. It terminates when no better solution is found in the
neighborhood. The neighborhood structure N for a given problem relates a solution
s of the problem to a subset of solutions N(s). A solution s is said to be locally

optimal if in N(s) there is no better solution in terms of objective function value.
Let us consider, for example, the MAX-CUT problem. Given an undirected

graph G = (V, E), where V = {1, . . . , n} is the set of vertices and E is the set of
edges, and weights wij associated with the edges (i, j) ∈ E, the MAX-CUT problem
consists in finding a subset of vertices S such that the weight of the cut (S, S̄) given
by

w(S, S̄) =
∑

i∈S,j∈S̄

wij

is maximized. A feasible solution is a n-binary vector x, such that

xi =

{

1, if i ∈ S;
0, otherwise.

Generally speaking, given a feasible solution x ∈ X , the elements of the neigh-
borhood N(x) of x are those solutions that can be obtained by applying to x an
elementary modification, called move. In the case of MAX-CUT, for example, let

GRASP: BASIC COMPONENTS AND ENHANCEMENTS 11

us consider a simple graph having only three nodes and let x = (1, 0, 0) be a feasi-
ble solution. Then, the so called 1-flip neighborhood of x (in general, any feasible
solution that can be represented by a binary vector) is the set of all binary ar-
rays that differ from x by exactly one element. Therefore, if x = (1, 0, 0) , then
N(x) = {(0, 0, 0), (1, 1, 0), (1, 0, 1)}.

Formally, a local search starts from an initial solution x0 ∈ X and iteratively gen-
erates a sequence of improving solutions x1, . . . , xM , where M = MaxIterations.
At the k-th iteration, k = 1, . . . , M , xk is locally optimal respect to the neighbor-
hood N(xk−1) since N(xk−1) is searched for an improving solution xk such that
f(xk) < f(xk−1). If such a solution is found, it is made the current solution.
Otherwise, the search ends with xk−1 as a local optimum.

The effectiveness of local search depends on several factors, such as the neigh-
borhood structure, the function to be minimized, and the starting solution. A
solution x is said to be in the basin of attraction of the global optimum if local
search starting from x leads to the global optimum. Once the neighborhood and
objective function are determined, different starting solutions can be used to start
the local search in a multi-start procedure.

Randomly generated solutions are of poor quality on average. Even if a randomly
generated solution is in the basin of attraction of a good quality local optimal so-
lution, the number of moves needed to reach the local optimum can be large, even
exponential in the problem size [76]. The greedy algorithm usually produces solu-
tions of better quality than those of randomly generated solutions. Furthermore,
using greedy solutions as starting points for local search in a multi-start procedure
will usually lead to good, though, most often, suboptimal solutions. This is be-
cause the amount of variability in greedy solutions is small and it is less likely that
a greedy starting solution will be in the basin of attraction of a global optimum. A
greedy randomized construction as the one embedded in GRASP adds variability
to the greedy algorithm.

In [116], besides analyzing the quality of the solution obtained by varying be-
tween randomness and greediness in the VB mechanisms of the GRASP construc-
tion procedure, Resende and Ribeiro also analyzed the quality of the solutions
output of the local search starting from solutions obtained by applying VB mech-
anisms with different values for the α parameter. In Figure 6 we report the results
of the study conducted by Resende and Ribeiro through six histograms.

The histograms refer to the same instance of MAXSAT with 100 variables and
850 clauses and depict results obtained by applying local search to each of the
1000 constructed solutions. Overall, Resende and Ribeiro observed that the the
variance of the overall solution diversity, final solution quality, and running time
increased with the variance of the solution values obtained in the construction
phase. Moreover, it is unlikely that GRASP will find an optimal solution if the
average solution value is low, even if there is a large variance in the overall solution
values, such as is the case for α = 0. On the other hand, if there is little variance
in the overall solution values, it is also unlikely that GRASP will find an optimal
solution, even if the average solution is high, as is the case for α = 0. Good solutions
are usually obtained in the presence of relatively high average solution values and
of a relatively large variance, such as is the case for α = 0.8.

12 P. FESTA AND M.G.C. RESENDE

Figure 6. Distribution of of local search phase solution values as
a function of the RCL parameter α (1000 repetitions were recorded
for each value of α).

3. Enhancements

A number of enhancements to the basic GRASP, presented in the previous Sec-
tions, have been proposed in the literature. They include long-term memory, the
proximate optimality principle, and bias functions in a GRASP.

In this section, we review the use of path-relinking.

3.1. Path-relinking. Path-relinking is an enhancement to the basic GRASP pro-
cedure, leading to significant improvements in solution quality. Path-relinking was
originally proposed by Glover [63] as an intensification strategy exploring trajecto-
ries connecting elite solutions obtained by tabu search or scatter search [64, 66, 67].
It can be traced back to the pioneering work of Kernighan and Lin [78]. Starting
from one or more elite solutions, paths in the solution space leading towards other
guiding elite solutions are generated and explored in the search for better solu-
tions. This is accomplished by selecting moves that introduce attributes contained
in the guiding solutions. At each iteration, all moves that incorporate attributes

GRASP: BASIC COMPONENTS AND ENHANCEMENTS 13

of the guiding solution are analyzed and the move that best improves (or least
deteriorates) the initial solution is chosen.

The first proposal of a hybrid GRASP with path-relinking was in 1999 due to
Laguna and Mart́ı [85]. It was followed by several extensions, improvements, and
successful applications [4, 33, 52, 54].

Path-relinking is applied to a pair of solutions x and y, where one can be the
solution obtained from the current GRASP iteration, and the other is a solution
from an elite set of solutions. x is called the initial solution and y the guiding

solution. The set E of elite solutions has usually a fixed size that does not exceed
MaxElite. Given the pair x,y, their common elements are kept constant, and
the space of solutions spanned by these elements is searched with the objective of
finding a better solution. The size of the solution space grows exponentially with
the the distance between the initial and guiding solutions and therefore only a small
part of the space is explored by path-relinking. The procedure starts by computing
the symmetric difference ∆(x,y) between the two solutions, i.e. the set of moves
needed to reach y (target solution) from x (initial solution). A path of solutions
is generated linking x and y. The best solution x∗ in this path is returned by the
algorithm. Since there is no guarantee that x∗ is locally optimal, often local search
is applied, starting from x∗, and the resulting locally optimal solution is returned.

Let us denote the set of solutions spanned by the common elements of the n-
vectors x and y as

(1) S(x,y) := {w feasible | wi = xi = yi, i /∈ ∆(x,y)} \ {x,y}.

Clearly, |S(x,y)| = 2n−d(x,y) − 2, where d(x,y) = |∆(x,y)|. The underlying as-
sumption of path-relinking is that there exist good-quality solutions in S(x,y),
since this space consists of all solutions which contain the common elements of two
good solutions x and y. Since the size of this space is exponentially large, a greedy
search is usually performed where a path of solutions

x = x0,x1, . . . ,xd(x,y),xd(x,y)+1 = y,

is built, such that d(xi,xi+1) = 1, i = 0, . . . , d(x,y), and the best solution from
this path is chosen. Note that, since both x and y are, by construction, local optima
in some neighborhood N(·)2, then in order for S(x,y) to contain solutions which
are not contained in the neighborhoods of x or y, x and y must be sufficiently
distant from each other.

Figure 7 illustrates the pseudo-code of the path-relinking procedure applied to
the pair of solutions x (starting solution) and y (target solution). In line 1, an
initial solution x is select at random among the elite set elements and usually it
differs sufficiently from the guiding solution y. The loop in lines 6 through 14
computes a path of solutions x1,x2, . . . ,xd(x,y)−2, local search is applied in line 15,
and the solution x∗ with the best objective function value is returned in line 16.
This is achieved by advancing one solution at a time in a greedy manner. At each
iteration, the procedure examines all moves m ∈ ∆(x,y) from the current solution
x and selects the one which results in the least cost solution (line 7), i.e. the one
which minimizes f(x ⊕ m), where x ⊕ m is the solution resulting from applying
move m to solution x. The best move m∗ is made, producing solution x⊕m∗ (line
9). The set of available moves is updated (line 8). If necessary, the best solution x∗

2Where the same metric d(x, y) is usually used.

14 P. FESTA AND M.G.C. RESENDE

procedure Path-relinking(f(·),x, E)
1 Choose, at random, a pool solution y ∈ E to relink with x;
2 Compute symmetric difference ∆(x,y);
3 f∗ := min{f(x), f(y)};
4 x∗ := argmin{f(x), f(y)};
5 x := x;
6 while (∆(x,y) 6= ∅) →
7 m∗ := argmin{f(x ⊕ m) | m ∈ ∆(x,y)};
8 ∆(x ⊕ m∗,y) := ∆(x,y) \ {m∗};
9 x := x ⊕ m∗;
10 if (f(x) < f∗) then

11 f∗ := f(x);
12 x∗ := x;
13 endif ;
14 endwhile;
15 x∗ := LocalSearch(x∗, f(·));
16 return (x∗);
end Path-relinking;

Figure 7. Pseudo-code of a generic path-relinking for a minimiza-
tion problem.

is updated (lines 10–13). The procedure terminates when y is reached, i.e. when
∆(x,y) = ∅, returning the best solution found.

We now describe a possible way to hybridize with path-relinking the basic
GRASP described in Section 2. The integration of the path-relinking procedure
with the basic GRASP is shown in Figure 8. The pool E of elite solutions is ini-
tially empty, and until it reaches its maximum size no path relinking takes place.
After a solution x is found by GRASP, it is passed to the path-relinking procedure
to generate another solution. The procedure AddToElite(E , xp) attempts to add to
the elite set of solutions the solution that was just found. Since we wish to main-
tain a pool of good but diverse solutions, each solution obtained by path-relinking
is considered as a candidate to be inserted into the pool if it is sufficiently different
from every other solution currently in the pool. If the pool already has MaxElite

solutions and the candidate is better than the worst of them, then a simple strategy
is to have the former replace the latter. Another strategy, which tends to increase
the diversity of the pool, is to replace the pool element most similar to the candidate
among all pool elements with cost worse than the candidate’s.

More formally, in several papers, a solution xp is added to the elite set E if either
one of the following conditions holds:

(1) f(xp) < min{f(w) : w ∈ E},
(2) min{f(w) : w ∈ E} ≤ f(xp) < max{f(w) : w ∈ E} and d(xp,w) >

βn, ∀w ∈ E , where β is a parameter between 0 and 1 and n is the number
of decision variables.

If xp satisfies either of the above, it then replaces an elite solution z no better than xp

and most similar to xp, i.e. z = argmin{d(xp,w) : w ∈ E such that f(w) ≥ f(xp)}.

GRASP: BASIC COMPONENTS AND ENHANCEMENTS 15

procedure GRASP+PR(f(·), g(·), MaxIterations, Seed, MaxElite)
1 xbest:=∅; f(xbest):=+∞; E := ∅
2 for k = 1, 2, . . . ,MaxIterations→
3 x:=ConstructGreedyRandomizedSolution(Seed, g(·));
4 if (x not feasible) then

5 x:=repair(x);
6 endif

7 x:=LocalSearch(x, f(·));
8 if (k ≤MaxElite) then

9 E := E ∪ {x};
10 if (f(x) < f(xbest)) then

11 xbest:=x;
12 endif

13 else

14 xp:=Path-relinking(f(·),x, E);
15 AddToElite(E ,xp);
16 if (f(xp) < f(xbest)) then

17 xbest:=xp;
18 endif

19 endif

20 endfor;
21 return(xbest);
end GRASP

Figure 8. Pseudo-code of a basic GRASP with path-relinking
heuristic for a minimization problem.

Figure 8 shows the simplest way to combine GRASP with path-relinking, which
is applied as an intensification strategy to each local optimum obtained after the
GRASP local search phase.

More generally, two basic strategies can be used:

i. path-relinking is applied as a post-optimization step to all pairs of elite
solutions;

ii. path-relinking is applied as an intensification strategy to each local opti-
mum obtained after the local search phase.

Applying path-relinking as an intensification strategy to each local optimum
(strategy ii.) seems to be more effective than simply using it as a post-optimization
step [117].

3.2. Parallel GRASP. Parallel implementation of GRASP is very straightfor-
ward. Most parallel implementations of GRASP follow the multiple-walk indepen-

dent thread strategy, based on the distribution of the iterations over the processors
[10, 11, 48, 94, 101, 102]. Two strategies have been at most proposed:

1) Search space decomposition, where the search space is partitioned into sev-
eral regions and GRASP is applied to each in parallel.

2) Iteration parallelization, where the GRASP iterations are partitioned and
each partition is assigned to a processor.

16 P. FESTA AND M.G.C. RESENDE

In general, each search thread has to perform MaxIterations/p iterations, where p
is the number of processors. Each processor has a copy of the sequential algorithm,
a copy of the problem data, and an independent seed to generate its own pseudo-
random number sequence. To avoid that the processors find the same solutions,
each of them must use a different sequence of pseudorandom numbers. A single
global variable is required to store the best solution found over all processors. One
of the processors acts as the master, reading and distributing problem data, gen-
erating the seeds which will be used by the pseudorandom number generators at
each processor, distributing the iterations, and collecting the best solution found
by each processor. Since the iterations are completely independent and very little
information is exchanged, linear speedups are easily obtained provided that no ma-
jor load imbalance problems occur. The iterations may be evenly distributed over
the processors or according with their demands, to improve load balancing.

The efficiency of multiple-walk independent-thread parallel implementations of
metaheuristics, based on running multiple copies of the same sequential algorithm,
has been also addressed for a number of metaheuristics. A given target value ft for
the objective function f is broadcast to all processors which independently execute
the sequential algorithm. All processors halt immediately after one of them finds
a solution x whose objective function value f(x) is at least as good as ft. The
speedup is given by the ratio between the times needed to find x, using respectively
the sequential algorithm and the parallel implementation with p processors. For a
number of metaheuristics, these speedups are linear, such as for example simulated
annealing [43, 99] and tabu search, provided that the search starts from a local
optimum [27, 130].

Aiex et al. [7] have shown experimentally that the solution times for GRASP also
have this property, showing that they fit a two-parameter exponential distribution.
The same result holds approximately when GRASP is implemented in conjunction
with path-relinking [4]. In the case of the multiple-walk independent thread im-
plementation described in [4] for the 3-index assignment problem, each processor
applies path-relinking to pairs of elite solutions stored in a local pool. Computa-
tional results using MPI on an SGI Challenge computer with 28 R10000 processors
showed linear speedups.

Cooperative-thread strategies may be also implemented using path-relinking,
by combining elite solutions stored in a central pool with the local optima found
by each processor at the end of each GRASP iteration. Canuto et al. [33] used
path-relinking to implement a parallel GRASP for the prize-collecting Steiner tree
problem. In their strategy, pairs of elite solutions from a centralized unique central
pool are distributed to the processors which perform path-relinking in parallel.

For more detail about independent and cooperative parallelizations of GRASP,
the reader can refer to [6, 118].

3.3. GRASP in hybrid metaheuristics. The combination of the basic GRASP
with path-relinking, discussed in Subsection 3.1, is one among the first attempts
made to embed GRASP in hybrid metaheuristic schemes. Nevertheless, as enhance-
ments to its basic framework, different hybridizations of GRASP with several other
metaheuristics have been studied and proposed in the literature. In this section,
some of them are surveyed and briefly described.

Laguna and Gonzalez-Velarde in 1991 [84] have first studied hybridization of
GRASP with tabu search. Later, in 1999 Delmaire et al. [41] proposed a Reactive

GRASP: BASIC COMPONENTS AND ENHANCEMENTS 17

GRASP whose local search have been strengthened by tabu search. In particular,
they have proposed two approaches. In the first, GRASP is applied as a powerful
diversification strategy in the context of a tabu search procedure. The second
approach is an implementation of the Reactive GRASP algorithm, in which the local
search phase is strengthened by tabu search. Results reported for the capacitated
location problem show that the hybrid approaches perform better than the pure
methods previously used.

GRASP has been used also in conjunction with genetic algorithms. Basically,
the feasible solution found by using a GRASP construction phase has been used as
initial population by a genetic algorithm, as for example in [20] and in [3], where a
greedy genetic algorithm is proposed for the quadratic assignment problem.

Another interesting hybridization of GRASP involves VNS (Variable Neighbor-
hood Search) and Variable Neighborhood Descent (VND) proposed by Hansen and
Mladenović [73, 96]. Almost all randomization effort in the basic GRASP algorithm
involves the construction phase, while local search stops at the first local optimum.
On the other hand, strategies such as VNS and VND rely almost entirely on the
randomization of the local search to escape from local optima. With respect to
this issue, probabilistic strategies such as GRASP and VNS may be considered as
complementary and potentially capable of leading to effective hybrid methods.

VNS is based on the exploration of a dynamic neighborhood model. Contrary
to other metaheuristics based on local search methods, VNS allows changes of the
neighborhood structure along the search. It explores increasingly distant neigh-
borhoods of the current best found solution x. Each step has three major phases:
neighbor generation, local search, and jump. Let Nk, k = 1, . . . , kmax be a set of
pre-defined neighborhood structures and let Nk(x) be the set of solutions in the
kth-order neighborhood of a solution x. In the first phase, a neighbor x′ ∈ Nk(x)
of the current solution is applied. Next, a solution x′′ is obtained by applying local
search to x′. Finally, the current solution jumps from x to x′′ in case the latter
improved the former. Otherwise, the order of the neighborhood is increased by one
and the above steps are repeated until some stopping condition is satisfied.

A first attempt in this direction was done by Martins et al. [93]. The construction
phase of their hybrid heuristic for the Steiner problem in graphs follows the greedy
randomized strategy of GRASP, while the local search phase makes use of two
different neighborhood structures as a VND strategy. Their heuristic was later
improved by Ribeiro, Uchoa, and Werneck [121], one of the key components of the
new algorithm being another strategy for the exploration of different neighborhoods.
Ribeiro and Souza [120] also combined GRASP with VND in a hybrid heuristic for
the degree-constrained minimum spanning tree problem. Canuto, Resende, and
Ribeiro [33] used path-relinking in a GRASP for the prize collecting Steiner tree
problem.

Festa et al. [54] studied different variants and combinations of GRASP and VNS
for the MAX-CUT problem, finding and improving the best known solutions for
some open instances from the literature.

Recent surveys on randomized metaheuristics can be found in [105].

4. Applications

Applications of GRASP can be grouped into the following two categories.

(1) Operations research problems. They include:

18 P. FESTA AND M.G.C. RESENDE

(a) routing [18, 22, 26, 35, 82];
(b) logic [42, 52, 102, 111, 113];
(c) covering and partition [16, 19, 46, 60, 71, 110];
(d) location [39, 40, 1, 41, 80, 132];
(e) minimum Steiner tree [34, 94, 92, 122];
(f) optimization in graphs [2, 21, 48, 83, 100, 115];
(g) assignment [4, 45, 58, 87, 95, 103, 104, 112, 127];
(h) timetabling and scheduling [5, 9, 15, 14, 28, 44, 49, 50, 84, 90, 123,

124, 125, 126]
(2) Industrial applications. They include:

(a) manufacturing [8, 24, 25, 31, 81, 98];
(b) transportation [18, 23, 45, 128];
(c) telecommunications [12, 13, 38, 80, 89, 106, 109, 129]
(d) graph and map drawing [53, 54, 86, 91, 115];
(e) power systems [29, 30, 77];
(f) computational biology [51, 68, 75];
(g) VLSI [17, 16], among other areas of application.

The reader can refer to [55, 56, 57], which contain annotated bibliographies of
the GRASP literature from 1989 to 2008.

5. Concluding remarks

In this chapter, the basic components of GRASP methodology have been de-
scribed. Improved and alternative solution construction mechanisms have been
discussed as well as techniques proposed in literature for speeding up the search,
hybridizations with other metaheuristics, and intensification and post-optimization
strategies using path-relinking. It is difficult to formally analyze the quality of solu-
tion values found by using GRASP. However, there is an intuitive justification that
views GRASP as a repetitive sampling technique, as explained in the following.
Each GRASP iteration produces a sample solution from an unknown distribution
of all obtainable results. The mean and variance of the distribution are functions of
the restrictive nature of the candidate list. For example, if the RCL contains only
one element, then only one solution will be produced and the variance of the dis-
tribution will be zero. Given an effective greedy function, the mean solution value
in this case should be good, but probably suboptimal. If a less restrictive cardi-
nality limit is imposed, many different solutions will be produced implying a larger
variance. Since the greedy function is more compromised in this case, the mean
solution value should degrade. Intuitively, however, by order statistics and the fact
that the samples are randomly produced, the best value found should outperform
the mean value. Indeed, often the best solutions sampled are optimal.

GRASP methodology has three further attractive characteristics: 1) it can be
easily implemented; 2) contrary to other metaheuristics, in its basic version it
needs the adjustment of the only the RCL parameter α; and 3) it can be trivially
implemented in parallel. In the simplest parallel implementation of GRASP, each
processor is initialized with its own copy of the procedure, the instance data, and
an independent random number sequence.

Moreover, recent developments and hybridizations with other metaheuristics,
presented in this chapter, show that different extensions to the basic GRASP allow
further improvement to the solutions found. Among these, we highlight: Reactive

GRASP: BASIC COMPONENTS AND ENHANCEMENTS 19

GRASP, which automates the adjustments of the restricted candidate list parame-
ter; variable neighborhoods, which permit accelerated and intensified local search;
and path-relinking, which allows the implementation of intensification strategies
based on the memory of elite solutions.

The GRASP iterations can then be also performed in parallel with only a single
global variable required to store the best solution found over all processors. GRASP
has been applied to a wide range of combinatorial optimization problems, ranging
from scheduling and routing to drawing and turbine balancing.

References

[1] S. Abdinnour-Helm and S.W. Hadley. Tabu search based heuristics for multi-floor facility
layout. International J. of Production Research, 38:365–383, 2000.

[2] J. Abello, P.M. Pardalos, and M.G.C. Resende. On maximum clique problems in very large
graphs. In J. Abello and J. Vitter, editors, External memory algorithms and visualization,
volume 50 of DIMACS Series on Discrete Mathematics and Theoretical Computer Science,
pages 199–130. American Mathematical Society, 1999.

[3] R.K. Ahuja, J.B. Orlin, and A. Tiwari. A greedy genetic algorithm for the quadratic assign-
ment problem. Computers and Operations Research, 27:917–934, 2000.

[4] R. Aiex, M.G.C. Resende, P.M. Pardalos, and G. Toraldo. GRASP with path relinking for
three-index assignment. INFORMS J. on Computing, 17(2):224–247, 2005.

[5] R.M. Aiex, S. Binato, and M.G.C. Resende. Parallel GRASP with path-relinking for job
shop scheduling. Parallel Computing, 29:393–430, 2003.

[6] R.M. Aiex and M.G.C. Resende. Parallel strategies for GRASP with path-relinking. In
T. Ibaraki, K. Nonobe, and M. Yagiura, editors, Metaheuristics: Progress as Real Problem
Solvers, pages 301–331. Springer, 2005.

[7] R.M. Aiex, M.G.C. Resende, and C.C. Ribeiro. Probability distribution of solution time in
GRASP: An experimental investigation. J. of Heuristics, 8:343–373, 2002.

[8] R. Alvarez-Valdes, F. Parreño, and J.M. Tamarit. A GRASP algorithm for constrained
two-dimensional non-guillotine cutting problems. J. of the Operational Research Society,
56(4):414–425, 2005.

[9] R. Alvarez-Valdes, F. Parreño, and J.M. Tamarit. Reactive GRASP for the strip-packing
problem. Computers & Operations Research, 35(4):1065–1083, 2008.

[10] A.C.F. Alvim. Parallelization strategies for the metaheuristic GRASP. Master’s thesis, De-
partment of Computer Science, Catholic University of Rio de Janeiro, Rio de Janeiro, RJ
22453-900 Brazil. In Portuguese., April 1998.

[11] A.C.F. Alvim and C.C. Ribeiro. Load balancing in the parallelization of the metaheuristic
GRASP. In Tenth Brazilian Simposium of Computer Architecture, pages 279–282. Brazilian
Computer Society. In Portuguese., 1998.

[12] E. Amaldi, A. Capone, and F. Malucelli. Planning umts base station location: Optimization
models with power control and algorithms. IEEE Transactions on Wireless Communica-
tions, 2(5):939–952, 2003.

[13] D.V. Andrade and M.G.C. Resende. A GRASP for PBX telephone migration scheduling. In
Eighth INFORMS Telecommunication Conference, April 2006.

[14] D.V. Andrade and M.G.C. Resende. GRASP with path-relinking for network migration
scheduling. In Proceedings of the International Network Optimization Conference (INOC
2007), 2007.

[15] C. Andres, C. Miralles, and R. Pastor. Balancing and scheduling tasks in assembly lines with
sequence-dependent setup times. European J. of Operational Research, 187(3):1212–1223,
2008.

[16] S. Areibi and A. Vannelli. A GRASP clustering technique for circuit partitioning. In J. Gu
and P.M. Pardalos, editors, Satisfiability problems, volume 35 of DIMACS Series on Discrete
Mathematics and Theoretical Computer Science, pages 711–724. American Mathematical

Society, 1997.
[17] S.M. Areibi. GRASP: An effective constructive technique for VLSI circuit partitioning. In

Proc. IEEE Canadian Conference on Electrical & Computer Engineering (CCECE’99),
May 1999.

20 P. FESTA AND M.G.C. RESENDE

[18] M.F. Argüello, J.F. Bard, and G. Yu. A GRASP for aircraft routing in response to ground-
ings and delays. J. of Combinatorial Optimization, 1:211–228, 1997.

[19] M.F. Argüello, T.A. Feo, and O. Goldschmidt. Randomized methods for the number parti-
tioning problem. Computers & Operations Research, 23(2):103–111, 1996.

[20] M. Armony, J.G. Klincewicz, H. Luss, and M.B. Rosenwein. Design of stacked self-healing
rings using a genetic algorithm. J. of Heuristics, 6:85–105, 2000.

[21] J.E.C. Arroyo, P.S. Vieira, and D.S. Vianna. A GRASP algorithm for the multi-criteria
minimum spanning tree problem. Annals of Operations Research, 159:125–133, 2008.

[22] J.B. Atkinson. A greedy randomised search heuristic for time-constrained vehicle scheduling
and the incorporation of a learning strategy. J. of the Operational Research Society, 49:700–
708, 1998.

[23] J.F. Bard. An analysis of a rail car unloading area for a consumer products manufacturer.
J. of the Operational Research Society, 48:873–883, 1997.

[24] J.F. Bard and T.A. Feo. Operations sequencing in discrete parts manufacturing. Manage-
ment Science, 35:249–255, 1989.

[25] J.F. Bard and T.A. Feo. An algorithm for the manufacturing equipment selection problem.
IIE Transactions, 23:83–92, 1991.

[26] J.F. Bard, L. Huang, P. Jaillet, and M. Dror. A decomposition approach to the inventory
routing problem with satellite facilities. Transportation Science, 32:189–203, 1998.

[27] R. Battiti and G. Tecchiolli. Parallel biased search for combinatorial optimization: Genetic
algorithms and tabu. Microprocessors and Microsystems, 16:351–367, 1992.

[28] S. Binato, W.J. Hery, D. Loewenstern, and M.G.C. Resende. A greedy randomized adaptive
search procedure for job shop scheduling. In C.C. Ribeiro and P. Hansen, editors, Essays
and surveys on metaheuristics, pages 58–79. Kluwer Academic Publishers, 2002.

[29] S. Binato and G.C. Oliveira. A Reactive GRASP for transmission network expansion plan-
ning. In C.C. Ribeiro and P. Hansen, editors, Essays and surveys on metaheuristics, pages
81–100. Kluwer Academic Publishers, 2002.

[30] S. Binato, G.C. Oliveira, and J.L. Araújo. A greedy randomized adaptive search procedure
for transmission expansion planning. IEEE Transactions on Power Systems, 16:247–253,
2001.

[31] M. Boudia, M.A.O. Louly, and C. Prins. A reactive GRASP and path relinking for a com-
bined production-distribution problem. Computers and Operations Research, 34:3402–3419,
2007.

[32] J.L. Bresina. Heuristic-biased stochastic sampling. In Proceedings of the Thirteenth National
Conference on Artificial Intelligence (AAAI-96), pages 271–278, 1996.

[33] S.A. Canuto, M.G.C. Resende, and C.C. Ribeiro. Local search with perturbations for the
prize-collecting Steiner tree problem in graphs. Networks, 38:50–58, 2001.

[34] S.A. Canuto, M.G.C. Resende, and C.C. Ribeiro. Local search with perturbations for the
prize-collecting Steiner tree problem in graphs. Networks, 38:50–58, 2001.

[35] C. Carreto and B. Baker. A GRASP interactive approach to the vehicle routing problem with
backhauls. In C.C. Ribeiro and P. Hansen, editors, Essays and surveys on metaheuristics,
pages 185–200. Kluwer Academic Publishers, 2002.

[36] I. Charon and O. Hudry. The noising method: A new method for combinatorial optimization.
Operations Research Letters, 14:133–137, 1993.

[37] I. Charon and O. Hudry. The noising methods: A survey. In C.C. Ribeiro and P. Hansen,
editors, Essays and surveys on metaheuristics, pages 245–261. Kluwer Academic Publishers,
2002.

[38] C. Commander, P. Festa, C.A.S. Oliveira, P.M. Pardalos, M.G.C. Resende, and M. Tsitselis.
A greedy randomized algorithm for the cooperative communication problem on ad hoc
networks. In Eighth INFORMS Telecommunications Conference, April 2006.

[39] I.A. Contreras and J.A. Dı́az. Scatter search for the single source capacitated facility location
problem. Annals of Operations Research, 157:73–89, 2008.

[40] G.L. Cravo, G.M. Ribeiro, and L.A. Nogueira Lorena. A greedy randomized adaptive search
procedure for the point-feature cartographic label placement. Computers and Geosciences,
34(4):373–386, 2008.

[41] H. Delmaire, J.A. Dı́az, E. Fernández, and M. Ortega. Reactive GRASP and tabu search
based heuristics for the single source capacitated plant location problem. INFOR, 37:194–
225, 1999.

GRASP: BASIC COMPONENTS AND ENHANCEMENTS 21

[42] A.S. Deshpande and E. Triantaphyllou. A greedy randomized adaptive search procedure
(GRASP) for inferring logical clauses from examples in polynomial time and some extensions.
Mathematical and Computer Modelling, 27:75–99, 1998.

[43] N. Dodd. Slow annealing versus multiple fast annealing runs: An empirical investigation.
Parallel Computing, 16:269–272, 1990.

[44] T.A. Feo and J.F. Bard. Flight scheduling and maintenance base planning. Management
Science, 35:1415–1432, 1989.

[45] T.A. Feo and J.L. González-Velarde. The intermodal trailer assignment problem: Models,
algorithms, and heuristics. Transportation Science, 29:330–341, 1995.

[46] T.A. Feo and M.G.C. Resende. A probabilistic heuristic for a computationally difficult set
covering problem. Operations Research Letters, 8:67–71, 1989.

[47] T.A. Feo and M.G.C. Resende. Greedy randomized adaptive search procedures. J. of Global
Optimization, 6:109–133, 1995.

[48] T.A. Feo, M.G.C. Resende, and S.H. Smith. A greedy randomized adaptive search procedure
for maximum independent set. Operations Research, 42:860–878, 1994.

[49] T.A. Feo, K. Sarathy, and J. McGahan. A GRASP for single machine scheduling with se-
quence dependent setup costs and linear delay penalties. Computers & Operations Research,
23:881–895, 1996.

[50] T.A. Feo, K. Venkatraman, and J.F. Bard. A GRASP for a difficult single machine scheduling

problem. Computers & Operations Research, 18:635–643, 1991.
[51] P. Festa. On some optimization problems in molecular biology. Mathematical Bioscience,

207(2):219–234, 2007.
[52] P. Festa, P.M. Pardalos, L.S. Pitsoulis, and M.G.C. Resende. GRASP with path-relinking

for the weighted MAXSAT problem. ACM J. of Experimental Algorithmics, 11:1–16, 2006.
[53] P. Festa, P.M. Pardalos, and M.G.C. Resende. Algorithm 815: FORTRAN subroutines for

computing approximate solution to feedback set problems using GRASP. ACM Transactions
on Mathematical Software, 27:456–464, 2001.

[54] P. Festa, P.M. Pardalos, M.G.C. Resende, and C.C. Ribeiro. Randomized heuristics for the
MAX-CUT problem. Optimization Methods and Software, 7:1033–1058, 2002.

[55] P. Festa and M.G.C. Resende. GRASP: An annotated bibliography. In C.C. Ribeiro and
P. Hansen, editors, Essays and Surveys on Metaheuristics, pages 325–367. Kluwer Academic
Publishers, 2002.

[56] P. Festa and M.G.C. Resende. An annotated bibliography of GRASP, Part I: Algorithms.
Technical report, AT&T Labs Research, Florham Park, 2008. To appear in International
Transactions in Operational Research.

[57] P. Festa and M.G.C. Resende. An annotated bibliography of GRASP, Part II: Applications.
Technical report, AT&T Labs Research, Florham Park, 2008. To appear in International
Transactions in Operational Research.

[58] C. Fleurent and F. Glover. Improved constructive multistart strategies for the quadratic
assignment problem using adaptive memory. INFORMS J. on Computing, 11:198–204, 1999.

[59] M.R. Garey and D.S. Johnson. Computers and intractability: A guide to the theory of
NP-completeness. W.H. Freeman and Company, New York, 1979.

[60] J.B. Ghosh. Computational aspects of the maximum diversity problem. Operations Research
Letters, 19:175–181, 1996.

[61] F. Glover. Tabu search – Part I. ORSA J. on Computing, 1:190–206, 1989.
[62] F. Glover. Tabu search – Part II. ORSA J. on Computing, 2:4–32, 1990.
[63] F. Glover. Tabu search and adaptive memory programing – Advances, applications and chal-

lenges. In R.S. Barr, R.V. Helgason, and J.L. Kennington, editors, Interfaces in Computer
Science and Operations Research, pages 1–75. Kluwer, 1996.

[64] F. Glover. Multi-start and strategic oscillation methods – Principles to exploit adaptive
memory. In M. Laguna and J.L. Gonzáles-Velarde, editors, Computing Tools for Modeling,
Optimization and Simulation: Interfaces in Computer Science and Operations Research,
pages 1–24. Kluwer, 2000.

[65] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, 1997.
[66] F. Glover and M. Laguna. Tabu search. Kluwer Academic Publishers, 1997.
[67] F. Glover, M. Laguna, and R. Mart́ı. Fundamentals of scatter search and path relinking.

Control and Cybernetics, 39:653–684, 2000.

22 P. FESTA AND M.G.C. RESENDE

[68] A. Goëffon, J.-M. Richer, and J.-K. Hao. Progressive tree neighborhood applied to the
maximum parsimony problem. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 5(1):136–145, 2008.

[69] M.X. Goemans and D.P. Williamson. The primal dual method for approximation algorithms
and its application to network design problems. In D. Hochbaum, editor, Approximation
algorithms for NP-hard problems, pages 144–191. PWS Publishing Co., 1996.

[70] D.E Goldberg. Genetic algorithms in search, optimization and machine learning. Addison-
Wesley, 1989.

[71] P.L. Hammer and D.J. Rader, Jr. Maximally disjoint solutions of the set covering problem.
J. of Heuristics, 7:131–144, 2001.

[72] P. Hansen and N. Mladenović. An introduction to variable neighborhood search. In S. Voss,
S. Martello, I. H. Osman, and C. Roucairol, editors, Meta-heuristics, Advances and trends
in local search paradigms for optimization, pages 433–458. Kluwer Academic Publishers,
1998.

[73] P. Hansen and N. Mladenović. Developments of variable neighborhood search. In C.C.
Ribeiro and P. Hansen, editors, Essays and Surveys in Metaheuristics, pages 415–439.
Kluwer Academic Publishers, 2002.

[74] J.P. Hart and A.W. Shogan. Semi-greedy heuristics: An empirical study. Operations Re-
search Letters, 6:107–114, 1987.

[75] M.J. Hirsch, C.N. Meneses, P.M. Pardalos, M.A. Ragle, and M.G.C. Resende. A continuous
GRASP to determine the relationship between drugs and adverse reactions. In O. Seref, O.E.
Kundakcioglu, and P.M. Pardalos, editors, Data mining, systems analysis, and optimization
in biomedicine, volume 953 of AIP Conference Proceedings, pages 106–121. Springer, 2007.

[76] D.S. Johnson, C.H. Papadimitriou, and M. Yannakakis. How easy is local search? Journal
of Computer and System Sciences, 17:79–100, 1988.

[77] H. Faria Jr., S. Binato M.G.C. Resende, and D.J. Falcão. Power transmission network design
by a greedy randomized adaptive path relinking approach. IEEE Transactions on Power
Systems, 20(1):43–49, 2005.

[78] B.W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning problems. Bell
System Technical Journal, 49(2):291–307, 1970.

[79] S. Kirkpatrick. Optimization by simulated annealing: Quantitative studies. J. of Statistical
Physics, 34:975–986, 1984.

[80] J.G. Klincewicz. Avoiding local optima in the p-hub location problem using tabu search and
GRASP. Annals of Operations Research, 40:283–302, 1992.

[81] J.G. Klincewicz and A. Rajan. Using GRASP to solve the component grouping problem.
Naval Research Logistics, 41:893–912, 1994.

[82] G. Kontoravdis and J.F. Bard. A GRASP for the vehicle routing problem with time windows.
ORSA J. on Computing, 7:10–23, 1995.

[83] M. Laguna, T.A. Feo, and H.C. Elrod. A greedy randomized adaptive search procedure for
the two-partition problem. Operations Research, 42:677–687, 1994.

[84] M. Laguna and J.L. González-Velarde. A search heuristic for just-in-time scheduling in
parallel machines. J. of Intelligent Manufacturing, 2:253–260, 1991.

[85] M. Laguna and R. Mart́ı. GRASP and path relinking for 2-layer straight line crossing min-
imization. INFORMS J. on Computing, 11:44–52, 1999.

[86] M. Laguna and R. Mart́ı. A GRASP for coloring sparse graphs. Computaional Optimization
and Applications, 19:165–178, 2001.

[87] Y. Li, P.M. Pardalos, and M.G.C. Resende. A greedy randomized adaptive search procedure
for the quadratic assignment problem. In P.M. Pardalos and H. Wolkowicz, editors, Qua-
dratic assignment and related problems, volume 16 of DIMACS Series on Discrete Mathe-
matics and Theoretical Computer Science, pages 237–261. American Mathematical Society,
1994.

[88] S. Lin and B.W. Kernighan. An effective heuristic algorithm for the traveling-salesman
problem. Operations Research, 21:498–516, 1973.

[89] X. Liu, P.M. Pardalos, S. Rajasekaran, and M.G.C. Resende. A GRASP for frequency
assignment in mobile radio networks. In S. Rajasekaran, P.M. Pardalos, and F. Hsu, editors,
Mobile Networks and Computing, volume 52 of DIMACS Series on Discrete Mathematics
and Theoretical Computer Science, pages 195–201. American Mathematical Society, 2000.

GRASP: BASIC COMPONENTS AND ENHANCEMENTS 23

[90] H. Ramalhinho Lourenço, J.P. Paixão, and R. Portugal. Multiobjective metaheuristics for
the bus-driver scheduling problem. Transportation Science, 35:331–343, 2001.

[91] R. Mart́ı and M. Laguna. Heuristics and meta-heuristics for 2-layer straight line crossing
minimization. Discrete Applied Mathematics, 127(3):665–678, 2003.

[92] S.L. Martins, P.M. Pardalos, M.G.C. Resende, and C.C. Ribeiro. Greedy randomized adap-
tive search procedures for the Steiner problem in graphs. In P.M. Pardalos, S. Rajasekaran,
and J. Rolim, editors, Randomization methods in algorithmic design, volume 43 of DI-
MACS Series on Discrete Mathematics and Theoretical Computer Science, pages 133–145.
American Mathematical Society, 1999.

[93] S.L. Martins, M.G.C. Resende, C.C. Ribeiro, and P. Pardalos. A parallel GRASP for the
Steiner tree problem in graphs using a hybrid local search strategy. Journal of Global Opti-
mization, 17:267–283, 2000.

[94] S.L. Martins, C.C. Ribeiro, and M.C. Souza. A parallel GRASP for the Steiner problem
in graphs. In A. Ferreira and J. Rolim, editors, Proceedings of IRREGULAR’98 – 5th
International Symposium on Solving Irregularly Structured Problems in Parallel, volume
1457 of Lecture Notes in Computer Science, pages 285–297. Springer-Verlag, 1998.

[95] T. Mavridou, P.M. Pardalos, L.S. Pitsoulis, and M.G.C. Resende. A GRASP for the bi-
quadratic assignment problem. European J. of Operational Research, 105:613–621, 1998.

[96] N. Mladenović and P. Hansen. Variable neighborhood search. Computers and Operations

Research, 24:1097–1100, 1997.
[97] J. Mockus, E. Eddy, A. Mockus, L. Mockus, and G.V. Reklaitis. Bayesian discrete and

global optimization. Kluwer Academic Publishers, 1997.
[98] S.K. Monkman, D.J. Morrice, and J.F. Bard. A production scheduling heuristic for an

electronics manufacturer with sequence-dependent setup costs. European J. of Operational
Research, 187(3):1100–1114, 2008.

[99] L. Osborne and B. Gillett. A comparison of two simulated annealing algorithms applied to
the directed Steiner problem on networks. ORSA J. on Computing, 3:213–225, 1991.

[100] I.H. Osman, B. Al-Ayoubi, and M. Barake. A greedy random adaptive search procedure
for the weighted maximal planar graph problem. Computers and Industrial Engineering,
45(4):635–651, 2003.

[101] P.M. Pardalos, L.S. Pitsoulis, and M.G.C. Resende. A parallel GRASP implementation for
the quadratic assignment problem. In A. Ferreira and J. Rolim, editors, Parallel Algorithms
for Irregularly Structured Problems – Irregular’94, pages 115–130. Kluwer Academic Pub-
lishers, 1995.

[102] P.M. Pardalos, L.S. Pitsoulis, and M.G.C. Resende. A parallel GRASP for MAX-SAT prob-
lems. Lecture Notes in Computer Science, 1184:575–585, 1996.

[103] P.M. Pardalos, L.S. Pitsoulis, and M.G.C. Resende. Algorithm 769: Fortran subroutines
for approximate solution of sparse quadratic assignment problems using GRASP. ACM
Transactions on Mathematical Software, 23:196–208, 1997.

[104] P.M. Pardalos, K.G. Ramakrishnan, M.G.C. Resende, and Y. Li. Implementation of a vari-
ance reduction based lower bound in a branch and bound algorithm for the quadratic as-
signment problem. SIAM J. on Optimization, 7:280–294, 1997.

[105] P.M. Pardalos and M.G.C. Resende, editors. Handbook of Applied Optimization. Oxford
University Press, 2002.

[106] E. Pinãna, I. Plana, V. Campos, and R. Mart̀ı. GRASP and path relinking for the matrix
bandwidth minimization. European J. of Operational Research, 153(1):200–210, 2004.

[107] M. Prais and C.C. Ribeiro. Parameter variation in GRASP implementations. In Extended
Abstracts of the Third Metaheuristics International Conference, pages 375–380, 1999.

[108] M. Prais and C.C. Ribeiro. Parameter variation in GRASP procedures. ”Investigación Op-
erativa”, 9:1–20, 2000.

[109] M. Prais and C.C. Ribeiro. Reactive GRASP: An application to a matrix decomposition
problem in TDMA traffic assignment. INFORMS J. on Computing, 12:164–176, 2000.

[110] G.G. Pu, Z. Chong, Z.Y. Qiu, Z.Q. Lin, and J.F. He. A hybrid heuristic algorithm for
HW-SW partitioning within timed automata. In Proceedings of Knowledge-based Intelligent
Information and Engineering Systems, volume 4251 of Lecture Notes in Artificial Intelli-
gence, pages 459–466. Springer-Verlag, 2006.

24 P. FESTA AND M.G.C. RESENDE

[111] M.G.C. Resende and T.A. Feo. A GRASP for satisfiability. In D.S. Johnson and M.A. Trick,
editors, Cliques, Coloring, and Satisfiability: The Second DIMACS Implementation Chal-
lenge, volume 26 of DIMACS Series on Discrete Mathematics and Theoretical Computer
Science, pages 499–520. American Mathematical Society, 1996.

[112] M.G.C. Resende, P.M. Pardalos, and Y. Li. Algorithm 754: Fortran subroutines for approx-
imate solution of dense quadratic assignment problems using GRASP. ACM Transactions
on Mathematical Software, 22:104–118, 1996.

[113] M.G.C. Resende, L.S. Pitsoulis, and P.M. Pardalos. Approximate solution of weighted MAX-
SAT problems using GRASP. In J. Gu and P.M. Pardalos, editors, Satisfiability problems,
volume 35 of DIMACS Series on Discrete Mathematics and Theoretical Computer Science,
pages 393–405. American Mathematical Society, 1997.

[114] M.G.C. Resende, L.S. Pitsoulis, and P.M. Pardalos. Fortran subroutines for computing ap-
proximate solutions of MAX-SAT problems using GRASP. Discrete Applied Mathematics,
100:95–113, 2000.

[115] M.G.C. Resende and C.C. Ribeiro. A GRASP for graph planarization. Networks, 29:173–
189, 1997.

[116] M.G.C. Resende and C.C. Ribeiro. Greedy randomized adaptive search procedures. In
F. Glover and G. Kochenberger, editors, Handbook of Metaheuristics, pages 219–249. Kluwer
Academic Publishers, 2003.

[117] M.G.C. Resende and C.C. Ribeiro. GRASP with path-relinking: Recent advances and ap-
plications. In T. Ibaraki, K. Nonobe, and M. Yagiura, editors, Metaheuristics: Progress as
Real Problem Solvers, pages 29–63. Springer, 2005.

[118] M.G.C. Resende and C.C. Ribeiro. Parallel greedy randomized adaptive search procedures.
In E. Alba, editor, Parallel Metaheuristics: A new class of algorithms, pages 315–346. John
Wiley and Sons, 2005.

[119] C.C. Ribeiro and M.G.C. Resende. Fortran subroutines for approximate solution of graph
planarization problems using GRASP. ACM Transactions on Mathematical Software,
25:341–352, 1999.

[120] C.C. Ribeiro and M.C. Souza. Variable neighborhood search for the degree constrained
minimum spanning tree problem. Discrete Applied Mathematics, 118:43–54, 2002.

[121] C.C. Ribeiro, E. Uchoa, and R.F. Werneck. A hybrid GRASP with perturbations for the
Steiner problem in graphs. INFORMS Journal on Computing, 14:228–246, 2002.

[122] C.C. Ribeiro, E. Uchoa, and R.F. Werneck. A hybrid GRASP with perturbations for the
Steiner problem in graphs. INFORMS J. on Computing, 14:228–246, 2002.

[123] C.C. Ribeiro and S. Urrutia. Heuristics for the mirrored traveling tournament problem.
European J. of Operational Research, 179:775–787, 2007.

[124] R.Z. Ŕıos-Mercado and J.F. Bard. Heuristics for the flow line problem with setup costs.
European J. of Operational Research, pages 76–98, 1998.

[125] R.Z. Ŕıos-Mercado and J.F. Bard. An enhanced TSP-based heuristic for makespan mini-
mization in a flow shop with setup costs. J. of Heuristics, 5:57–74, 1999.

[126] L.I.D. Rivera. Evaluation of parallel implementations of heuristics for the course schedul-
ing problem. Master’s thesis, Instituto Tecnologico y de Estudios Superiores de Monterrey,
Monterrey, Mexico, 1998.

[127] A.J. Robertson. A set of greedy randomized adaptive local search procedure (GRASP)
implementations for the multidimensional assignment problem. Computational Optimization
and Applications, 19:145–164, 2001.

[128] D. Sosnowska. Optimization of a simplified fleet assignment problem with metaheuristics:
Simulated annealing and GRASP. In P.M. Pardalos, editor, Approximation and complexity
in numerical optimization. Kluwer Academic Publishers, 2000.

[129] A. Srinivasan, K.G. Ramakrishnan, K. Kumaram, M. Aravamudam, and S. Naqvi. Optimal
design of signaling networks for Internet telephony. In IEEE INFOCOM 2000, volume 2,
pages 707–716, March 2000.

[130] E. Taillard. Robust taboo search for the quadratic assignment problem. Parallel Computing,
7:443–455, 1991.

[131] H. Takahashi and A. Matsuyama. An approximate solution for the Steiner problem in graphs.
Mathematica Japonica, 24:573–577, 1980.

[132] T.L. Urban. Solution procedures for the dynamic facility layout problem. Annals of Opera-
tions Research, pages 323–342, 1998.

GRASP: BASIC COMPONENTS AND ENHANCEMENTS 25

(P. Festa) Department of Mathematics and Applications, University of Napoli FED-

ERICO II, Naples, Italy.

E-mail address: paola.festa@unina.it

(M.G.C. Resende) Internet and Network Systems Research, AT&T Labs Research, 180

Park Avenue, Room C241, Florham Park, NJ 07932 USA.

E-mail address, M.G.C. Resende: mgcr@research.att.com

