
PARALLEL GREEDY RANDOMIZED ADAPTIVE
SEARCH PROCEDURES

MAURICIO G.C. RESENDE AND CELSO C. RIBEIRO

ABSTRACT. A GRASP (Greedy Randomized Adaptive Search Procedure) is a metaheuris-
tic for producing good-quality solutions of combinatorial optimization problems. It is usu-
ally implemented with a construction procedure based on a greedy randomized algorithm
followed by local search. In this Chapter, we survey parallel implementations of GRASP.
We describe simple strategies to implement independent parallel GRASP heuristics and
more complex cooperative schemes using a pool of elite solutions to intensify the search
process. Some applications of independent and cooperative parallelizations are presented
in detail.

1. INTRODUCTION

Metaheuristics are high level procedures that coordinate simple heuristics, such as local
search, to find solutions that are of better quality than those found by the simple heuristics
alone. One such metaheuristic is GRASP (Greedy Randomized Adaptive Search Proce-
dure) [23, 24, 26, 55]. A GRASP is a multi-start procedure, where each iteration usually
consists of two phases: construction and local search. The construction phase produces a
feasible solution that is used as the starting point for local search. The multi-start procedure
returns the best local optimum found.

In the GRASP construction phase, a feasible solution is built, one element at a time.
For example, a spanning tree is built one edge at a time; a schedule is built one operation
at a time; and a clique is built one vertex at a time. The set of candidate elements is made
up of those elements that can be added to the current solution under construction without
causing infeasibilities. When building a spanning tree, for example, the candidate elements
are those yet unselected edges whose inclusion in the solution does not result in a cycle.
A candidate element is evaluated by a greedy function that measures the local benefit of
including that element in the partially constructed solution. The value-based restricted
candidate list (RCL) is made up of candidate elements having a greedy function value at
least as good as a specified threshold. The next element to be included in the solution is
selected at random from the RCL. Its inclusion in the solution alters the greedy function
and the set of candidate elements used to determine the next RCL. The construction proce-
dure terminates when the set of candidate elements is empty, obtaining a feasible solution.
Algorithm 1 shows a GRASP in pseudo-code form, where the objective function f (x) is
minimized over the set X . The GRASP runs for MaxIterations iterations. The best
solution returned is x∗, with f (x∗) = f ∗.

Date: December 6, 2004.
Key words and phrases. Combinatorial optimization, local search, GRASP, path-relinking, parallel algorithm.
AT&T Labs Research Technical Report TD-67EKXH. To appear in Parallel Metaheuristics, E. Alba (ed.),

John Wiley and Sons, 2005.

1

2 MAURICIO G.C. RESENDE AND CELSO C. RIBEIRO

Data : Number of iterations MaxIterations
Result : Solution x∗ ∈ X
f ∗← ∞;
for i = 1, . . . , imax do

x← GreedyRandomizedConstruction();
x← LocalSearch(x);
if f (x) < f ∗ then

f ∗← f (x);
x∗← x;

end
end

Algorithm 1: Pseudo-code of a basic GRASP for minimization.

Local search makes use of the concept of solution neighborhood. A local search algo-
rithm successively replaces the current solution by a better solution in its neighborhood,
if one exists. It terminates with a locally optimal solution when there is no better solution
in the neighborhood. Since the solutions generated by a GRASP construction phase are
usually sub-optimal, local search almost always improves the constructed solution.

GRASP has been used to find quality solutions for a wide range of combinatorial op-
timization problems [26, 27]. Many extensions and improvements with respect to the
GRASP introduced in [23, 24] have been proposed. Many of these extensions consist
in the hybridization of the method with other methaheuristics.

Parallel computers have increasingly found their way into metaheuristics [16, 20]. Most
of the parallel implementations of GRASP found in the literature consist in either partition-
ing the search space or partitioning the GRASP iterations and assigning each partition to a
processor [6, 7, 25, 19, 39, 40, 41, 43, 44, 46, 47, 51]. GRASP is applied to each partition in
parallel. These implementations can be categorized as multiple-walk independent-thread
[16, 67], where the communication among processors during GRASP iterations is limited
to the detection of program termination,

Recently, there has been much work on hydridization of GRASP and path-relinking
[57]. Parallel approaches for GRASP with path-relinking can be categorized as multiple-
walk independent-thread or multiple-walk cooperative-thread [16, 67], where processors
share information on elite solutions visited during previous GRASP iterations. Examples
of parallel GRASP with path-relinking can be found in [2, 4, 14, 42, 60].

In this Chapter, we present a survey of parallel GRASP heuristics. In Section 2, we
consider multiple-walk independent-thread strategies. Multiple-walk cooperative-thread
strategies are examined in Section 3. Some applications of parallel GRASP and paral-
lel GRASP with path-relinking are surveyed in Section 4. In Section 5, we make some
concluding remarks.

2. MULTIPLE-WALK INDEPENDENT-THREAD STRATEGIES

Most parallel implementations of GRASP follow the multiple-walk independent-thread
strategy, based on the distribution of the iterations over the processors. In general, each
search thread has to perform MaxIterations/p iterations, where p and MaxIterations
are, respectively, the number of processors and the total number of iterations. Each proces-
sor has a copy of the sequential algorithm, a copy of the problem data, and an independent
seed to generate its own pseudorandom number sequence. To avoid that the processors find
the same solutions, each of them must use a different sequence of pseudorandom numbers.

PARALLEL GRASP 3

A single global variable is required to store the best solution found over all processors.
One of the processors acts as the master, reading and distributing problem data, generating
the seeds which will be used by the pseudorandom number generators at each processor,
distributing the iterations, and collecting the best solution found by each processor. Since
the iterations are completely independent and very little information is exchanged, linear
speedups are easily obtained provided that no major load imbalance problems occur. The
iterations may be evenly distributed over the processors or according with their demands,
to improve load balancing.

Pardalos, Pitsoulis, and Resende [46] reported on results of a parallel GRASP for the
quadratic assignment problem on a Kendall Square Research KSR-1 parallel computer
with 128 processors. The implementation used the pthread mechanism, a lightweight
process that is the fundamental unit of concurrency on the KSR-1 [36]. Each pthread
executes on a separate processor and has its own memory. Twenty instances from the
QAPLIB [13] were run for 1000 GRASP iterations on each of 64 single processors. For
each instance, the best solution found over all processors was used as the stopping criterion
for solving the instance on 54, 44, 34, 24, 14, 4, and 1 processors. Speedups were computed
by averaging the running times of all instances.

Pardalos, Pitsoulis, and Resende [47] implemented a parallel GRASP for the MAX-SAT
problem on a cluster of SUN-SPARC 10 workstations, sharing the same file system, with
communication done using the Parallel Virtual Machine (PVM) [30] software package.
Each instance was run on a parallel GRASP using 1, 5, 10, and 15 processors, with a
maximum number of iterations of 1000, 200, 100, and 66, respectively. The amount of
CPU time required to perform the specified number of iterations, and the best solution
found were recorded. Since communication was kept to a minimum, linear speedups were
expected. Figure 1 shows individual speedups as well as average speedups for these runs.
Figure 2 shows that the average quality of the solution found was not greatly affected by
the number of processors used.

Martins et al. [43] implemented a parallel GRASP for the Steiner problem in graphs.
Parallelization is achieved by the distribution of 512 iterations over the processors, with the
value of the RCL parameter α randomly chosen in the interval [0.0,0.3] at each iteration.
The algorithm was tested on an IBM SP-2 machine with 32 processors, using the Message
Passing Interface (MPI) library [65] for communication. The 60 problems from series C,
D, and E of the OR-Library [10] were used for the computational experiments. The parallel
implementation obtained 45 optimal solutions over the 60 test instances. The relative devi-
ation with respect to the optimal value was never larger than 4%. Almost-linear speedups
observed for 2, 4, 8, and 16 processors with respect to the sequential implementation are
illustrated in Figure 3.

Path-relinking may also be used in conjunction with parallel implementations of GRASP.
In the case of the multiple-walk independent-thread implementation described by Aiex et
al. [4] for the 3-index assignment problem and Aiex, Binato, and Resende [2] for the job
shop scheduling problem, each processor applies path-relinking to pairs of elite solutions
stored in a local pool. Computational results using MPI on an SGI Challenge computer
with 28 R10000 processors showed linear speedups for the 3-index assignment problem,
but sub-linear for the job shop scheduling problem.

Alvim and Ribeiro [6, 7] showed that multiple-walk independent-thread approaches for
the parallelization of GRASP may benefit much from load balancing techniques, whenever
heterogeneous processors are used or if the parallel machine is simultaneously shared by
several users. In this case, almost-linear speedups may be obtained with a heterogeneous

4 MAURICIO G.C. RESENDE AND CELSO C. RIBEIRO

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16

sp
ee

du
p

number of processors

average speedup

FIGURE 1. Average speedups on 5, 10, and 15 processors for maximum
satisfiability problems.

distribution of the iterations over the p processors in q≥ p packets. Each processor starts
performing one packet of dMaxIterations/qe iterations and informs the master when it
finishes its packet of iterations. The master stops the execution of each slave processor
when there are no more iterations to be performed and collects the best solution found.
Faster or less loaded processors will perform more iterations than the others. In the case of
the parallel GRASP implemented for the problem of traffic assignment described in [49],
this dynamic load balancing strategy allowed reductions in the elapsed times of up to 15%
with respect to the times observed for the static strategy, in which the iterations were uni-
formly distributed over the processors.

The efficiency of multiple-walk independent-thread parallel implementations of meta-
heuristics, based on running multiple copies of the same sequential algorithm, has been
addressed by some authors. A given target value τ for the objective function is broadcast
to all processors which independently execute the sequential algorithm. All processors
halt immediately after one of them finds a solution with value at least as good as τ. The
speedup is given by the ratio between the times needed to find a solution with value at least
as good as τ, using respectively the sequential algorithm and the parallel implementation
with p processors. These speedups are linear for a number of metaheuristics, including
simulated annealing [18, 45]; iterated local search algorithms for the traveling salesman
problem [21]; tabu search, provided that the search starts from a local optimum [9, 66]; and
WalkSAT [64] on hard random 3-SAT problems [35]. This observation can be explained
if the random variable time to find a solution within some target value is exponentially
distributed, as indicated by the following proposition [67]:

PARALLEL GRASP 5

 0

 0.5

 1

 1.5

 2

 2.5

 0 2 4 6 8 10 12 14 16

%
 e

rr
or

 X
 1

.0
E

-0
3

number of processors

average error

FIGURE 2. Percentage error on 1, 5, 10, and 15 processors for maximum
satisfiability problems.

Proposition 1: Let Pρ(t) be the probability of not having found a given target solution value
in t time units with ρ independent processes. If P1(t) = e−t/λ with λ ∈ IR+, corresponding
to an exponential distribution, then Pρ(t) = e−ρt/λ.

This proposition follows from the definition of the exponential distribution. It implies
that the probability 1− e−ρt/λ of finding a solution within a given target value in time ρt
with a sequential algorithm is equal to the probability of finding a solution at least as good
as that in time t using ρ independent parallel processors. Hence, it is possible to achieve
linear speedups in the time to find a solution within a target value by multiple independent
processors. An analogous proposition can be stated for a two parameter (shifted) exponen-
tial distribution:
Proposition 2: Let Pρ(t) be the probability of not having found a given target solution value
in t time units with ρ independent processors. If P1(t) = e−(t−µ)/λ with λ∈ IR+ and µ∈ IR+,
corresponding to a two parameter exponential distribution, then Pρ(t) = e−ρ(t−µ)/λ.

Analogously, this proposition follows from the definition of the two-parameter exponen-
tial distribution. It implies that the probability of finding a solution within a given target
value in time ρt with a sequential algorithm is equal to 1− e−(ρt−µ)/λ, while the proba-
bility of finding a solution at least as good as that in time t using ρ independent parallel
processors is 1− e−ρ(t−µ)/λ. If µ = 0, then both probabilities are equal and correspond to
the non-shifted exponential distribution. Furthermore, if ρµ� λ, then the two probabilities
are approximately equal and it is possible to approximately achieve linear speedups in the
time to find a solution within a target value using multiple independent processors.

Aiex, Resende, and Ribeiro [5] showed experimentally that the solution times for GRASP
also have this property, i.e. that they fit a two-parameter exponential distribution. Figure 4
illustrates this result, depicting the superimposed empirical and theoretical distributions

6 MAURICIO G.C. RESENDE AND CELSO C. RIBEIRO

1

2

3

4

5

6

7

8

9

1 2 4 6 8 10 12 14 16

sp
ee

du
p

number of processors

Series C
Series D
Series E

FIGURE 3. Average speedups on 2, 4, 8, and 16 processors on Steiner
tree problem in graphs.

observed for one of the cases studied along the computational experiments reported by
the authors, which involved 2400 runs of GRASP procedures for each of five different
problems: maximum independent set [25, 51], quadratic assignment [39, 52], graph pla-
narization [54, 59], maximum weighted satisfiability [53], and maximum covering [50].
We observe that the empirical distribution plots illustrating these conclusions were origi-
nally introduced by Feo, Resende, and Smith [25]. Empirical distributions are produced
from experimental data and corresponding theoretical distributions are estimated from the
empirical distributions. The same result still holds when GRASP is implemented in con-
junction with a post-optimization path-relinking procedure [4].

A quantile-quantile plot (Q-Q plot) and a plot showing the empirical and the theoret-
ical distributions of the random variable time to target value for the sequential GRASP
and GRASP with path-relinking for the three-index assignment problem [4] are shown in
Figures 5 and 6, respectively. Analogously, Figures 7 and 8 show the same plots for the
job-shop scheduling problem [2]. These plots are computed by running the algorithms for
200 independent runs. Each run ends when the algorithm finds a solution with value less
than or equal to a specified target value. Each running time is recorded and the times are
sorted in increasing order. We associate with the i-th sorted running time (ti) a probabil-
ity pi = (i− 1

2)/200, and plot the points zi = (ti, pi), for i = 1, . . . ,200 as the empirical
distribution.

Following Chambers et al. [15], one determines the theoretical quantile-quantile plot
for the data to estimate the parameters of the two-parameter exponential distribution. To
describe Q-Q plots, recall that the cumulative distribution function for the two-parameter
exponential distribution is given by

F(t) = 1− e−(t−µ)/λ,

PARALLEL GRASP 7

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12

pr
ob

ab
ili

ty

time to target value (seconds)

Empirical distribution
Theoretical distribution

FIGURE 4. Superimposed empirical and theoretical distributions (times
to target values measured in seconds on an SGI Challenge computer with
28 processors).

where λ is the mean and standard deviation of the distribution data and µ is the shift of
the distribution with respect to the ordinate axis. For each value pi, i = 1, . . . ,200, we
associate a pi-quantile Qt(pi) of the theoretical distribution. For each pi-quantile we have,
by definition, that

F((Qt(pi)) = pi.

Hence, Qt(pi) = F−1(pi) and therefore, for the two-parameter exponential distribution, we
have

Qt(pi) =−λ ln(1− pi)+µ.

The quantiles of the data of an empirical distribution are simply the (sorted) raw data.
A theoretical quantile-quantile plot (or theoretical Q-Q plot) is obtained by plotting

the quantiles of the data of an empirical distribution against the quantiles of a theoretical
distribution. This involves three steps. First, the data (in this case, the measured times) are
sorted in ascending order. Second, the quantiles of the theoretical exponential distribution
are obtained. Finally, a plot of the data against the theoretical quantiles is made.

When the theoretical distribution is a close approximation of the empirical distribution,
the points in the Q-Q plot will have a nearly straight configuration. If the parameters λ
and µ of the theoretical distribution that best fits the measured data could be estimated a
priori, the points in a Q-Q plot would tend to follow the line x = y. Alternatively, in a plot
of the data against a two-parameter exponential distribution with λ′ = 1 and µ′ = 0, the
points would tend to follow the line y = λx + µ. Consequently, parameters λ and µ of the
two-parameter exponential distribution can be estimated, respectively, by the slope and the
intercept of the line depicted in the Q-Q plot.

8 MAURICIO G.C. RESENDE AND CELSO C. RIBEIRO

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 1 2 3 4 5 6

m
ea

su
re

d
tim

es
 (

s)

exponential quantiles

prob=B-S 26.1, look4=17

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200 1400 1600

pr
ob

ab
ili

ty

time to sub-optimal (s)

prob=B-S 26.1, look4=17

FIGURE 5. Q-Q plot and exponential distribution for GRASP for the
three-index assignment problem: instance B-S 26.1 with target value of
17.

0

50

100

150

200

250

300

350

400

0 1 2 3 4 5 6

m
ea

su
re

d
tim

es
 (

s)

exponential quantiles

prob=B-S 26.1, look4=17

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350

 p
ro

ba
bi

lit
y

time to sub-optimal (s)

prob=B-S 26.1, look4=17

FIGURE 6. Q-Q plot and exponential distribution for GRASP with path-
relinking for the three-index assignment problem: instance B-S 26.1
with target value of 17.

To avoid possible distortions caused by outliers, one does not estimate the distribution
mean by linear regression on the points of the Q-Q plot. Instead, one estimates the slope λ̂
of line y = λx+µ using the upper quartile qu and lower quartile ql of the data. The upper
and lower quartiles are, respectively, the Q(1

4) and Q(3
4) quantiles, respectively. Let

λ̂ = (zu− zl)/(qu−ql)

be an estimate of the slope, where zu and zl are the u-th and l-th points of the ordered
measured times, respectively. These estimates are used to plot the theoretical distributions
on the plots on the right side of the figures.

The lines above and below the estimated line on the Q-Q plots correspond to plus and
minus one standard deviation in the vertical direction from the line fitted to the plot. This
superimposed variability information is used to analyze the straightness of the Q-Q plots.

Aiex and Resende [3] proposed a test using a sequential implementation to determine
whether it is likely that a parallel implementation using multiple independent processors
will be efficient. A parallel implementation is said to be efficient if it achieves linear
speedup (with respect to wall time) to find a solution at least as good as a given target
value. The test consists in running K (200, for example) independent trials of the sequential
program to build a Q-Q plot and estimate the parameters µ and λ of the shifted exponential
distribution. If ρ|µ|� λ, then we predict that the parallel implementation will be efficient.

PARALLEL GRASP 9

-200

0

200

400

600

800

1000

1200

1400

1600

1800

0 1 2 3 4 5 6

m
ea

su
re

d
tim

es
 (

s)

exponential quantiles

prob=orb5, look4=910

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200 1400 1600 1800

 p
ro

ba
bi

lit
y

time to sub-optimal (s)

prob=orb5, look4=910

FIGURE 7. Q-Q plot and exponential distribution for GRASP for the job
shop scheduling problem: instance orb5 with target value of 910.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 1 2 3 4 5 6

m
ea

su
re

d
tim

es
 (

s)

exponential quantiles

prob=orb5, look4=895

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000

 p
ro

ba
bi

lit
y

time to sub-optimal (s)

prob=orb5, look4=895

FIGURE 8. Q-Q plot and exponential distribution for GRASP with path-
relinking for the job shop scheduling problem: instance orb5 with target
value of 895.

3. MULTIPLE-WALK COOPERATIVE-THREAD STRATEGIES

Path-relinking has been implemented with GRASP in multiple-walk independent-thread
strategies [4]. In this section, however, we focus on the use of path-relinking as a mecha-
nism for implementing GRASP in the multiple-walk cooperative-thread strategies frame-
work. We first briefly outline path-relinking and its hybridization with GRASP. Then, we
discuss how cooperation among the threads can be achieved by using path-relinking.

Path-relinking was originally proposed by Glover [31] as a strategy to explore trajecto-
ries connecting elite solutions obtained by tabu search or scatter search [32, 33, 34]. Paths
in the solution space connecting pairs of elite solutions are explored in the search for better
solutions. Each pair consists of a starting solution and a guiding solution. Paths emanating
from the starting solution are generated by applying moves that introduce in the current
solution attributes that are present in the guiding solution.

Algorithm 2 shows the pseudo-code of the path-relinking procedure applied between
the starting and guiding solutions. The procedure first computes the symmetric difference
∆(xs,xt) between the two solutions, which defines the moves needed to reach the guiding
solution (xt) from the initial solution (xs). A path of neighboring solutions is generated
linking xs and xt . The best solution x∗ in this path is returned. At each step, all moves
m ∈ ∆(x,xt) from the current solution x are examined and the one which results in the least

10 MAURICIO G.C. RESENDE AND CELSO C. RIBEIRO

Data : Starting solution xs and guiding solution xt

Result : Best solution x∗ in path from xs to xt

Compute symmetric difference ∆(xs,xt);
f ∗←min{ f (xs), f (xt)};
x∗← argmin{ f (xs), f (xt)};
x← xs;
while ∆(x,xt) 6= /0 do

m∗← argmin{ f (x⊕m) : m ∈ ∆(x,xt)};
∆(x⊕m∗,xt)← ∆(x,xt)\{m∗};
x← x⊕m∗;
if f (x) < f ∗ then

f ∗← f (x);
x∗← x;

end
end

Algorithm 2: Pseudo-code of path-relinking from starting solution xs to guiding
solution xt .

cost solution is selected, i.e. the move that minimizes f (x⊕m), where x⊕m is the solution
resulting from applying move m to solution x. The best move m∗ is made, producing
solution x⊕m∗. This move is taken out of the set of available moves. If necessary, the best
solution x∗ is updated. The procedure terminates when xt is reached, i.e. when ∆(x,xt) = /0.

The use of path-relinking within a GRASP procedure was first proposed by Laguna and
Martı́ [37]. It was followed by several extensions, improvements, and successful applica-
tions [1, 2, 3, 4, 11, 14, 22, 56, 57, 58, 60, 61, 62].

In its hybridization with GRASP, path-relinking is usually applied to pairs (x,y) of
solutions, where x is a locally optimal solution produced by each GRASP iteration after
local search and y is an elite solution randomly chosen from a pool with a limited number
MaxElite of elite solutions found along the search. Since the symmetric difference is a
measure of the length of the path explored during relinking, a strategy biased toward pool
elements y with high symmetric difference with respect to x is often better than one using
uniform random selection [58].

The pool is originally empty. To maintain a pool of good but diverse solutions, each
locally optimal solution obtained by local search is considered as a candidate to be inserted
into the pool if it is sufficiently different from every solution in the pool. If the pool already
has MaxElite solutions and the candidate is better than the worst of them, then a simple
strategy is to have the former replace the latter. Another strategy, which tends to increase
the diversity of the pool, is to replace the pool element most similar to the candidate among
all pool elements with cost worse than the candidate’s. If the pool is not full, the candidate
is simply inserted.

Algorithm 3 shows the pseudo-code for a hybrid GRASP with path-relinking. Each
GRASP iteration has now three main steps. In the construction phase, a greedy randomized
construction procedure is used to build a feasible solution. The local search phase takes
the solution built in the first phase and progressively improves it using a neighborhood
search strategy, until a local minimum is found. In the path-relinking phase, path-relinking

PARALLEL GRASP 11

Data : Number of iterations MaxIterations
Result : Solution x∗ ∈ X
P← /0;
f ∗← ∞;
for i = 1, . . . , imax do

x← GreedyRandomizedConstruction();
x← LocalSearch(x);
if i≥ 2 then

Randomly select an elite subset Y ⊆ P to relink with x;
for y ∈ Y do

Set one of solutions x and y as the starting solution;
Set the other as the guiding solution;
xp← PathRelinking(xs,xt);
Update the elite set P with xp;
if f (xp) < f ∗ then

f ∗← f (xp);
x∗← xp;

end
end

end
end
x∗ = argmin{ f (x),x ∈ P};

Algorithm 3: A basic GRASP with path-relinking heuristic for minimization.

is applied to the solution obtained by local search and to a randomly selected solution from
the pool. The best solution found along this trajectory is also considered as a candidate for
insertion in the pool and the incumbent is updated.

Two basic mechanisms may be used to implement a multiple-walk cooperative-thread
GRASP with path-relinking heuristic. In distributed strategies [2, 3], each thread main-
tains its own pool of elite solutions. Each iteration of each thread consists initially of a
GRASP construction, followed by local search. Then, the local optimum is combined with
a randomly selected element of the thread’s pool using path-relinking. The output of path-
relinking is finally tested for insertion into the pool. If accepted for insertion, the solution
is sent to the other threads, where it is tested for insertion into the other pools. Collabora-
tion takes place at this point. Though there may be some communication overhead in the
early iterations, this tends to ease up as pool insertions become less frequent.

The second mechanism is that used in centralized strategies [42, 60], in which a single
pool of elite solution is used. As before, each GRASP iteration performed at each thread
starts by the construction and local search phases. Next, an elite solution is requested to and
received from the centralized pool. Once path-relinking has been performed, the solution
obtained as the output is sent to the pool and tested for insertion. Collaboration takes place
when elite solutions are sent from the pool to other processors different from the one that
originally computed it.

We notice that, in both the distributed and the centralized strategies, each processor
has a copy of the sequential algorithm and a copy of the data. One processor acts as the
master, reading and distributing the problem data, generating the seeds which will be used
by the pseudo-random number generators at each processor, distributing the iterations, and
collecting the best solution found by each processor. In the case of a distributed strategy,

12 MAURICIO G.C. RESENDE AND CELSO C. RIBEIRO

each processor has its own pool of elite solutions and all available processors perform
GRASP iterations. Contrary to the case of a centralized strategy, one particular processor
does not perform GRASP iterations and is used exclusively to store the pool and to handle
all operations involving communication requests between the pool and the slaves. In the
next section, we describe three examples of parallel implementations of GRASP with path-
relinking.

4. SOME PARALLEL GRASP IMPLEMENTATIONS

In this section, we describe a comparison of multiple-walk independent-thread and
multiple-walk cooperative-thread strategies for GRASP with path-relinking for the three-
index assignment problem [4], the job shop scheduling problem [2], and the 2-path net-
work design problem [42, 60]. For each problem, we first state the problem and describe
the construction, local search, and path-relinking procedures. We then show numerical
results comparing the different parallel implementations.

The experiments described in Subsections 4.1 and 4.2 were done on an SGI Challenge
computer (16 196-MHz MIPS R10000 processors and 12 194-MHz MIPS R10000 proces-
sors) with 7.6 Gb of memory. The algorithms were coded in Fortran and were compiled
with the SGI MIPSpro F77 compiler using flags -O3 -static -u. The parallel codes
used SGI’s Message Passing Toolkit 1.4, which contains a fully compliant implementation
of version 1.2 of the Message-Passing Interface (MPI) [65] specification. In the parallel
experiments, wall clock times were measured with the MPI function MPI WT. This was
also the case for runs with a single processor that are compared to multiple-processor runs.
Timing in the parallel runs excludes the time to read the problem data, to initialize the
random number generator seeds, and to output the solution.

In the experiments described in Subsection 4.3, both variants of the parallel GRASP
with path-relining heuristic were implemented in C (version egcs-2.91.66 of the gcc
compiler) and the MPI LAM 6.3.2 implementation. Computational experiments were per-
formed on a cluster of 32 Pentium II 400MHz processors with 32 Mbytes of RAM memory
each, running under the Red Hat 6.2 implementation of Linux. Processors are connected
by a 10 Mbits/s IBM 8274 switch.

4.1. Three-index assignment.

4.1.1. Problem formulation. The NP-hard [28, 29] three-index assignment problem (AP3)
[48] is a straightforward extension of the classical two-dimensional assignment problem
and can be formulated as follows. Given three disjoint sets I, J, and K with |I| = |J| =
|K| = n and a weight ci jk associated with each ordered triplet (i, j,k) ∈ I× J×K, find
a minimum weight collection of n disjoint triplets (i, j,k) ∈ I× J×K. Another way to
formulate the AP3 is with permutations. There are n3 cost elements. The optimal solution
consists of the n smallest cost elements, such that the constraints are not violated. The
constraints are enforced if one assigns to each set I, J, and K, the numbers 1,2, . . . ,n and
none of the chosen triplets (i, j,k) is allowed to have the same value for indices i, j, and k
as another. The permutation-based formulation for the AP3 is

min
p,q∈πN

n

∑
i=1

cip(i)q(i),

where πN denotes the set of all permutations of the set of integers N = {1,2, . . . ,n}.

PARALLEL GRASP 13

4.1.2. GRASP construction. The construction phase selects n triplets, one at a time, to
form a three-index assignment S. The usual random choice in the interval [0,1] for the
RCL parameter α is made at each iteration. The value remains constant during the entire
construction phase. Construction begins with an empty solution S. The initial set C of
candidate triplets consists of the set of all triplets. Let c and c denote, respectively, the
values of the smallest and largest cost triplets in C. All triplets (i, j,k) in the candidate set
C having cost ci jk ≤ c+α(c−c) are placed in the RCL. Triplet (ip, jp,kp)∈C′ is chosen at
random and is added to the solution, i.e. S = S∪{(ip, jp,kp)}. Once (ip, jp,kp) is selected,
any triplet (i, j,k) ∈C such that i = ip or j = jp or k = kp is removed from C. After n−1
triplets have been selected, the set C of candidate triplets contains one last triplet which is
added to S, thus completing the construction phase.

4.1.3. Local search. If the solution of the AP3 is represented by a pair of permutations
(p,q), then the solution space consists of all (n!)2 possible combinations of permutations.
If p is a permutation vector, then a 2-exchange permutation of p is a permutation vector
that results from swapping two elements in p. In the 2-exchange neighborhood scheme
used in this local search, the neighborhood of a solution (p,q) consists of all 2-exchange
permutations of p plus all 2-exchange permutations of q. In the local search, the cost of
each neighbor solution is compared with the cost of the current solution. If the cost of the
neighbor is lower, then the solution is updated, the search is halted, and a search in the
new neighborhood is initialized. The local search ends when no neighbor of the current
solution has a lower cost than the current solution.

4.1.4. Path-relinking. A solution of AP3 can be represented by two permutation arrays of
numbers 1,2, . . . ,n in sets J and K, respectively, as follows:

S = {(pS
1, pS

2, . . . , pS
n),(q

S
1,q

S
2, . . . ,q

S
n)}.

Path-relinking is done between an initial solution

S = {(pS
1, pS

2, . . . , pS
n),(q

S
1,q

S
2, . . . ,q

S
n)}

and a guiding solution

T = {(pT
1 , pT

2 , . . . , pT
n),(qT

1 ,qT
2 , . . . ,qT

n)}.

Let the difference between S and T be defined by the two sets of indices

δS,T
p = {i = 1, . . . ,n

∣

∣ pS
i 6= pT

i },

δS,T
q = {i = 1, . . . ,n

∣

∣ qS
i 6= qT

i }.

During a path-relinking move, a permutation π (p or q) array in S, given by

(. . . ,πS
i ,π

S
i+1, . . . ,π

S
j−1,π

S
j , . . .),

is replaced by a permutation array

(. . . ,πS
j ,π

S
i+1, . . . ,π

S
j−1,π

S
i , . . .),

by exchanging permutation elements πS
i and πS

j , where i ∈ δS,T
π and j ∈ {1,2, . . . ,n} are

such that πT
j = πS

i .

14 MAURICIO G.C. RESENDE AND CELSO C. RIBEIRO

TABLE 1. Estimated exponential distribution parameters µ and λ ob-
tained with 200 independent runs of a sequential GRASP with path-
relinking on AP3 instances B-S 20.1, B-S 22.1, B-S 24.1, and
B-S 26.1, with target values 7, 8, 7, and 8, respectively.

estimated
parameter

Problem µ λ |µ|/λ
B-S 20.1 -26.46 1223.80 .021
B-S 22.1 -135.12 3085.32 .043
B-S 24.1 -16.76 4004.11 .004
B-S 26.1 32.12 2255.55 .014
average .020

TABLE 2. Speedups for multiple-walk independent-thread implementa-
tions of GRASP with path-relinking on instances B-S 20.1, B-S 22.1,
B-S 24.1, and B-S 26.1, with target values 7, 8, 7, and 8, respectively.
Speedups are computed with the average of 60 runs.

number of processors
2 4 8 16

Problem speedup effic. speedup effic. speedup effic. speedup effic.
B-S 20.1 1.67 0.84 3.34 0.84 6.22 0.78 10.82 0.68
B-S 22.1 2.25 1.13 4.57 1.14 9.01 1.13 14.37 0.90
B-S 24.1 1.71 0.86 4.00 1.00 7.87 0.98 12.19 0.76
B-S 26.1 2.11 1.06 3.89 0.97 6.10 0.76 11.49 0.72
average 1.94 0.97 3.95 0.99 7.3 0.91 12.21 0.77

4.1.5. Parallel independent-thread GRASP with path-relinking for AP3. We study the par-
allel efficiency of the multiple-walk independent-thread GRASP with path-relinking on
AP3 instances B-S 20.1, B-S 22.1, B-S 24.1, and B-S 26.1 of Balas and Saltzman [8]
using 7, 8, 7, and 8 as target solution values, respectively. Table 1 shows the estimated ex-
ponential distribution parameters for the multiple-walk independent-thread GRASP with
path-relinking strategy obtained from 200 independent runs of a sequential variant of the
algorithm. In addition to the sequential variant, 60 independent runs of 2-, 4-, 8-, and
16-thread variants were run on the four test problems. Average speedups were computed
dividing the sum of the execution times of the independent parallel program executing on
one processor by the sum of the execution times of the parallel program on 2, 4, 8, and 16
processors, for 60 runs. The execution times of the independent parallel program executing
on one processor and the execution times of the sequential program are approximately the
same. The average speedups can be seen in Table 2 and Figure 9.

4.1.6. Parallel cooperative-thread GRASP with path-relinking for AP3. We now study the
multiple-walk cooperative-thread strategy for GRASP with path-relinking on the AP3. As
with the independent-thread GRASP with path-relinking strategy, the target solution values
7, 8, 7, and 8 were used for instances B-S 20.1, B-S 22.1, B-S 24.1, and B-S 26.1,
respectively. Table 3 and Figure 10 show super-linear speedups on instances B-S 22.1,
B-S 24.1, and B-S 26.1 and about 90% efficiency for B-S 20.1. Super-linear speedups
are possible because good elite solutions are shared among the threads and are combined

PARALLEL GRASP 15

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16

sp
ee

du
p

number of processors

B-S 20.1
B-S 22.1
B-S 24.1
B-S 26.1

FIGURE 9. Average speedups on 2, 4, 8, and 16 processors for multiple-
walk independent-thread parallel GRASP with path-relinking on AP3
instances B-S 20.1, B-S 22.1, B-S 24.1, and B-S 26.1.

TABLE 3. Speedups for multiple-walk cooperative-thread implementa-
tions of GRASP with path-relinking on instances B-S 20.1, B-S 22.1,
B-S 24.1, and B-S 26.1, with target values 7, 8, 7, and 8, respectively.
Average speedups were computed over 60 runs.

number of processors
2 4 8 16

Problem speedup effic. speedup effic. speedup effic. speedup effic.
B-S 20.1 1.56 0.78 3.47 0.88 7.37 0.92 14.36 0.90
B-S 22.1 1.64 0.82 4.22 1.06 8.83 1.10 18.78 1.04
B-S 24.1 2.16 1.10 4.00 1.00 9.38 1.17 19.29 1.21
B-S 26.1 2.16 1.08 5.30 1.33 9.55 1.19 16.00 1.00
average 1.88 0.95 4.24 1.07 8.78 1.10 17.10 1.04

with GRASP solutions, whereas they would not be combined in an independent-thread
implementation.

Figure 11 compares average speedup of the two implementations tested in this sec-
tion, namely the multiple-walk independent-thread and multiple-walk cooperative-thread
GRASP with path-relinking implementations using target solution values 7, 8, 7, and 8, on
the same instances. The figure shows that the cooperative variant of GRASP with path-
relinking achieves the best parallelization.

16 MAURICIO G.C. RESENDE AND CELSO C. RIBEIRO

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16

sp
ee

du
p

number of processors

B-S 20.1
B-S 22.1
B-S 24.1
B-S 26.1

FIGURE 10. Average speedups on 2, 4, 8, and 16 processors for
multiple-walk cooperative-thread parallel GRASP with path-relinking
on AP3 instances B-S 20.1, B-S 22.1, B-S 24.1, and B-S 26.1.

4.2. Job shop scheduling.

4.2.1. Problem formulation. The job shop scheduling problem (JSP) is an NP-hard [38]
combinatorial optimization problem that has long challenged researchers. It consists in
processing a finite set of jobs on a finite set of machines. Each job is required to complete
a set of operations in a fixed order. Each operation is processed on a specific machine
for a fixed duration. Each machine can process at most one job at a time and once a
job initiates processing on a given machine, it must complete processing on that machine
without interruption. A schedule is a mapping of operations to time slots on the machines.
The makespan is the maximum completion time of the jobs. The objective of the JSP is to
find a schedule that minimizes the makespan.

A feasible solution of the JSP can be built from a permutation of the set of jobs J on
each of the machines in the set M , observing the precedence constraints, the restriction
that a machine can process only one operation at a time, and requiring that once started,
processing of an operation cannot be interrupted until its completion. Since each set of
feasible permutations has a corresponding schedule, the objective of the JSP is to find,
among the feasible permutations, the one with the smallest makespan.

4.2.2. GRASP construction. Consider the GRASP construction phase for the JSP, pro-
posed in Binato et al. [12] and Aiex, Binato, and Resende [2], where a single operation
is the building block of the construction phase. A feasible schedule is built by scheduling
individual operations, one at a time, until all operations have been scheduled.

While constructing a feasible schedule, not all operations can be selected at a given
stage of the construction. An operation σ j

k can only be scheduled if all prior operations

PARALLEL GRASP 17

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16

sp
ee

du
p

number of processors

Cooperative GRASP+PR
Independent GRASP+PR

FIGURE 11. Average speedups on 2, 4, 8, and 16 processors for the par-
allel algorithms tested on instances of AP3: multiple-walk independent-
thread GRASP with path-relinking and multiple-walk cooperative-
thread GRASP with path-relinking.

of job j have already been scheduled. Therefore, at each construction phase iteration, at
most |J | operations are candidates to be scheduled. Let this set of candidate operations be
denoted by Oc and the set of already scheduled operations by Os. Denote the value of the
greedy function for candidate operation σ j

k by h(σ j
k).

The greedy choice is to next schedule operation σ j
k = argmin(h(σ j

k) | σ j
k ∈ Oc). Let

σ j
k = argmax(h(σ j

k) | σ
j
k ∈ Oc), h = h(σ j

k), and h = h(σ j
k). Then, the GRASP restricted

candidate list (RCL) is defined as

RCL = {σ j
k ∈ Oc | h≤ h(σ j

k)≤ h+α(h−h)},

where α is a parameter such that 0≤ α≤ 1.
A typical iteration of the GRASP construction is summarized as follows: a partial

schedule (which is initially empty) is on hand, the next operation to be scheduled is selected
from the RCL and is added to the partial schedule, resulting in a new partial schedule. The
selected operation is inserted into the earliest available feasible time slot on machine Mσ j

k
.

Construction ends when the partial schedule is complete, i.e. all operations have been
scheduled.

The algorithm uses two greedy functions. Even numbered iterations use a greedy func-
tion based on the makespan resulting from the inclusion of operation σ j

k to the already-

scheduled operations, i.e. h(σ j
k) = Cmax for O = {Os∪σ j

k}. On odd numbered iterations,
solutions are constructed by favoring operations from jobs having long remaining process-
ing times. The greedy function used is given by h(σ j

k) =−∑σ j
l 6∈Os

p j
l , which measures the

18 MAURICIO G.C. RESENDE AND CELSO C. RIBEIRO

TABLE 4. Estimated exponential distribution parameters µ and λ ob-
tained with 200 independent runs of a sequential GRASP with path-
relinking on JSP instances abz6, mt10, orb5, and la21, with target val-
ues 943, 938, 895, and 1100, respectively.

estimated
parameter

Problem µ λ |µ|/λ
abz6 47.67 756.56 .06
mt10 305.27 524.23 .58
orb5 130.12 395.41 .32
la21 175.20 407.73 .42

average .34

remaining processing time for job j. The use of two different greedy functions produce a
greater diversity of initial solutions to be used by the local search.

4.2.3. Local search. To attempt to decrease the makespan of the solution produced in the
construction phase, we employ the 2-exchange local search used in [2, 12, 66], based on
the disjunctive graph model of Roy and Sussmann [63]. We refer the reader to [2, 12] for
a description of the implementation of the local search procedure.

4.2.4. Path-relinking. Path-relinking for job shop scheduling is similar to path-relinking
for three-index assignment. Where in the case of three-index assignment each solution is
represented by two permutation arrays, in the job shop scheduling problem, each solution
is made up of |M | permutation arrays of numbers 1,2, . . . , |J |.

4.2.5. Parallel independent-thread GRASP with path-relinking for JSP. We study the ef-
ficiency of the multiple-walk independent-thread GRASP with path-relinking on JSP in-
stances abz6, mt10, orb5, and la21 of ORLib [10] using 943, 938, 895, and 1100 as
target solution values, respectively. Table 4 shows the estimated exponential distribution
parameters for the multiple-walk independent-thread GRASP with path-relinking strategy
obtained from 200 independent runs of a sequential variant of the algorithm. In addition
to the sequential variant, 60 independent runs of 2-, 4-, 8-, and 16-thread variants were run
on the four test problems. As before, average speedups were computed dividing the sum
of the execution times of the independent parallel program executing on one processor by
the sum of the execution times of the parallel program on 2, 4, 8, and 16 processors, for 60
runs. The average speedups can be seen in Table 5 and Figure 12.

Compared to the efficiencies observed on the AP3 instances, those for these instances
of the JSP were much worse. While with 16 processors average speedups of 12.2 were
computed for the AP3, average speedups of only 5.9 were computed for the JSP. This is
consistent with the |µ|/λ values, which were on average .34 for the JSP, and 0.02 for the
AP3.

4.2.6. Parallel cooperative-thread GRASP with path-relinking for JSP. We now study the
multiple-walk cooperative-thread strategy for GRASP with path-relinking on the JSP. As
with the independent-thread GRASP with path-relinking strategy, the target solution values
943, 938, 895, and 1100 were used for instances abz6, mt10, orb5, and la21, respectively.
Table 6 and Figure 13 show super-linear speedups on instances abz6 and mt10, linear
speedup on orb5 and about 70% efficiency for la21. As before, super-linear speedups

PARALLEL GRASP 19

TABLE 5. Speedups for multiple-walk independent-thread implementa-
tions of GRASP with path-relinking on instances abz6, mt10, orb5, and
la21, with target values 943, 938, 895, and 1100, respectively. Speedups
are computed with the average of 60 runs.

number of processors
2 4 8 16

Problem speedup effic. speedup effic. speedup effic. speedup effic.
abz6 2.00 1.00 3.36 0.84 6.44 0.81 10.51 0.66
mt10 1.57 0.79 2.12 0.53 3.03 0.39 4.05 0.25
orb5 1.95 0.98 2.97 0.74 3.99 0.50 5.36 0.34
la21 1.64 0.82 2.25 0.56 3.14 0.39 3.72 0.23

average 1.79 0.90 2.67 0.67 4.15 0.52 5.91 0.37

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16

sp
ee

du
p

number of processors

linear speedup

MT10
ABZ6
LA21

ORB5

FIGURE 12. Average speedups on 2, 4, 8, and 16 processors for
multiple-walk independent-thread parallel GRASP with path-relinking
on JSP instances abz6, mt10, orb5, and la21.

are possible because good elite solutions are shared among the threads and these elite
solutions are combined with GRASP solutions whereas they would not be combined in an
independent-thread implementation.

Figure 14 compares the average speedup of the two implementations tested in this sec-
tion, namely implementations of the multiple-walk independent-thread and multiple-walk
cooperative-thread GRASP with path-relinking using target solution values 943, 938, 895,
and 1100, on instances abz6, mt10, orb5, and la21, respectively.

The figure shows that the cooperative variant of GRASP with path-relinking achieves
the best parallelization.

20 MAURICIO G.C. RESENDE AND CELSO C. RIBEIRO

TABLE 6. Speedups for multiple-walk cooperative-thread implementa-
tions of GRASP with path-relinking on instances abz6, mt10, orb5, and
la21, with target values 943, 938, 895, and 1100, respectively. Average
speedups were computed over 60 runs.

number of processors
2 4 8 16

Problem speedup effic. speedup effic. speedup effic. speedup effic.
abz6 2.40 1.20 4.21 1.05 11.43 1.43 23.58 1.47
mt10 1.75 0.88 4.58 1.15 8.36 1.05 16.97 1.06
orb5 2.10 1.05 4.91 1.23 8.89 1.11 15.76 0.99
la21 2.23 1.12 4.47 1.12 7.54 0.94 11.41 0.71

average 2.12 1.06 4.54 1.14 9.05 1.13 16.93 1.06

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16

sp
ee

du
p

number of processors

linear speedup

MT10
ABZ6
LA21

ORB5

FIGURE 13. Average speedups on 2, 4, 8, and 16 processors for
multiple-walk cooperative-thread parallel GRASP with path-relinking
on JSP instances abz6, mt10, orb5, and la21.

4.3. 2-path network design problem.

4.3.1. Problem formulation. Let G = (V,E) be a connected graph, where V is the set of
nodes and E is the set of edges. A k-path between nodes s, t ∈ V is a sequence of at most
k edges connecting them. Given a non-negative weight function w : E → R+ associated
with the edges of G and a set D of pairs of origin-destination nodes, the 2-path network
design problem (2PNDP) consists of finding a minimum weighted subset of edges E ′ ⊆ E
containing a 2-path between every origin-destination pair.

PARALLEL GRASP 21

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16

sp
ee

du
p

number of processors

Cooperative GRASP+PR
Independent GRASP+PR

FIGURE 14. Average speedups on 2, 4, 8, and 16 processors for the par-
allel algorithms tested on instances of JSP: multiple-walk independent-
thread GRASP with path-relinking and multiple-walk cooperative-
thread GRASP with path-relinking.

Applications of 2PNDP can be found in the design of communications networks, in
which paths with few edges are sought to enforce high reliability and small delays. 2PNDP
was shown to be NP-hard by Dahl and Johannessen [17].

4.3.2. GRASP construction. The construction of a new solution begins by the initialization
of modified edge weights with the original edge weights. Each iteration of the construction
phase starts by the random selection of an origin-destination pair still in D. A shortest 2-
path between the extremities of this pair is computed, using the modified edge weights.
The weights of the edges in this 2-path are set to zero until the end of the construction
procedure, the origin-destination pair is removed from D, and a new iteration resumes.
The construction phase stops when 2-paths have been computed for all origin-destination
pairs.

4.3.3. Local search. The local search phase seeks to improve each solution built in the
construction phase. Each solution may be viewed as a set of 2-paths, one for each origin-
destination pair in D. To introduce some diversity by driving different applications of the
local search to different local optima, the origin-destination pairs are investigated at each
GRASP iteration in a circular order defined by a different random permutation of their
original indices.

Each 2-path in the current solution is tentatively eliminated. The weights of the edges
used by other 2-paths are temporarily set to zero, while those which are not used by other
2-paths in the current solution are restored to their original values. A new shortest 2-
path between the extremities of the origin-destination pair under investigation is computed,

22 MAURICIO G.C. RESENDE AND CELSO C. RIBEIRO

using the modified weights. If the new 2-path improves the current solution, then the latter
is modified; otherwise the previous 2-path is restored. The search stops if the current
solution was not improved after a sequence of |D| iterations along which all 2-paths have
been investigated. Otherwise, the next 2-path in the current solution is investigated for
substitution and a new iteration resumes.

4.3.4. Path-relinking. A solution to 2PNDP is represented as a set of 2-paths connecting
each origin-destination pair. Path-relinking starts by determining all origin-destination
pairs whose associated 2-paths are different in the starting and guiding solutions. These
computations amount to determining a set of moves which should be applied to the initial
solution to reach the guiding one. Each move is characterized by a pair of 2-paths, one to
be inserted and the other to be eliminated from the current solution.

4.3.5. Parallel implementations of GRASP with path-relinking for 2PNDP. As for prob-
lems AP3 and JSP, in the case of the independent-threadparallel implementation of GRASP
with path-relinking for 2PNDP, each processor has a copy of the sequential algorithm, a
copy of the data, and its own pool of elite solutions. One processor acts as the master,
reading and distributing the problem data, generating the seeds which will be used by the
pseudo-random number generators at each processor, distributing the iterations, and col-
lecting the best solution found by each processor. All the p available processors perform
GRASP iterations.

However, in the case of the cooperative-thread parallel implementation of GRASP with
path-relinking for 2PNDP, the master handles a centralized pool of elite solutions, col-
lecting and distributing them upon request (recall that in the case of AP3 and JSP each
processor had its own pool of elite solutions). The p−1 slaves exchange the elite solutions
found along their search trajectories. In the proposed implementation for 2PNDP, each
slave may send up to three different solutions to the master at each iteration: the solution
obtained by local search, and the solutions w1 and w2 obtained by forward and backward
path-relinking [57] between the same pair of starting and guiding solutions, respectively.

4.3.6. Computational results. The results illustrated in this section concern an instance
with 100 nodes, 4950 edges, and 1000 origin-destination pairs. We use the methodology
proposed in [5] to assess experimentally the behavior of randomized algorithms. This
approach is based on plots showing empirical distributions of the random variable time
to target solution value. To plot the empirical distribution, we fix a solution target value
and run each algorithm 200 times, recording the running time when a solution with cost at
least as good as the target value is found. For each algorithm, we associate with the i-th
sorted running time ti a probability pi = (i− 1

2)/200 and plot the points zi = (ti, pi), for
i = 1, . . . ,200.

Results obtained for both the independent-thread and the cooperative-thread parallel im-
plementations of GRASP with path-relinking on the above instance with the target value
set at 683 are reported in Figure 15. The cooperative implementation is already faster than
the independent one for eight processors. For fewer processors the independent implemen-
tation is naturally faster, since it employs all p processors in the search (while only p− 1
slave processors take part effectively in the computations performed by the cooperative
implementation).

Three different strategies were investigated to further improve the performance of the
cooperative-thread implementation, by reducing the cost of the communication between
the master and the slaves when the number of processors increases:

PARALLEL GRASP 23

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 100 1000 10000 100000 1e+06

pr
ob

ab
ili

ty

time to target value

cooperative (3 solutions)
independent

(a)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 10 100 1000 10000 100000

pr
ob

ab
ili

ty

time to target value

cooperative (3 solutions)
independent

(b)

FIGURE 15. Running times for 200 runs of (a) the multiple-walk
independent-thread and (b) the multiple-walk cooperative-thread imple-
mentations of GRASP with path-relinking using two processors and with
the target solution value set at 683.

(1) Each send operation is broken in two parts. First, the slave sends only the cost of
the solution to the master. If this solution is better than the worst solution in the
pool, then the full solution is sent. The number of messages increases, but most of
them will be very small ones with light memory requirements.

(2) Only one solution is sent to the pool at each GRASP iteration.
(3) A distributed implementation, in which each slave handles its own pool of elite

solutions. Every time a processor finds a new elite solution, the latter is broadcast
to the others.

24 MAURICIO G.C. RESENDE AND CELSO C. RIBEIRO

Comparative results for these three strategies on the same problem instance are plotted
in Figure 16. The first strategy outperformed all others.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 10 100 1000 10000 100000 1e+06

pr
ob

ab
ili

ty

time to target value

cooperative (3 solutions)
(1) cooperative (3 solutions + 3 costs)

(2) cooperative (1 solution + 1 cost)
(3) distributed

FIGURE 16. Strategies for improving the performance of the centralized
multiple-walk cooperative-thread implementation on eight processors.

Table 7 shows the average computation times and the best solutions found over ten runs
of each strategy when the total number of GRASP iterations is set at 3200. There is a
clear degradation in solution quality for the independent-thread strategy when the number
of processors increases. As fewer iterations are performed by each processor, the pool
of elite solutions gets poorer with the increase in the number of processors. Since the
processors do not communicate, the overall solution quality is worse. In the case of the
cooperative strategy, the information shared by the processors guarantees the high quality
of the solutions in the pool. The cooperative implementation is more robust. Very good
solutions are obtained with no degradation in quality and significant speedups.

TABLE 7. Average times and best solutions over ten runs for 2PNDP.

independent cooperative
processors best value avg. time (s) best value avg. time (s)

1 673 1310.1 — —
2 676 686.8 676 1380.9
4 680 332.7 673 464.1
8 687 164.1 676 200.9

16 692 81.7 674 97.5
32 702 41.3 678 74.6

5. CONCLUSION

Metaheuristics, such as GRASP, have found their way into the standard toolkit of com-
binatorial optimization methods. Parallel computers have increasingly found their way into
metaheuristics.

PARALLEL GRASP 25

In this chapter, we surveyed work on the parallelization of GRASP. We first showed
that the random variable time to target solution value for GRASP heuristics fits a two-
parameter (shifted) exponential distribution. Under the mild assumption that the product of
the number of processors by the shift in the distribution is small compared to the standard
deviation of the distribution, linear speedups can be expected in parallel multiple-walk
independent-thread implementations. We illustrated with an application to the maximum
satisfiability problem a case where this occurs.

Path-relinking has been increasingly used to introduce memory in the otherwise mem-
oryless original GRASP procedure. The hydridization of GRASP and path-relinking has
led to some effective multiple-walk cooperative-thread implementations. Collaboration
between the threads is usually achieved by sharing elite solutions, either in a single central-
ized pool or in distributed pools. In some of these implementations, super-linear speedups
are achieved even for cases where little speedup occurs in multiple-walk independent-
thread variants.

Parallel cooperative implementations of metaheuristics lead to significant speedups,
smaller computation times, and more robust algorithms. However, they demand more
programming efforts and implementation skills. The three applications described in this
survey illustrate the strategies and programming skills involved in the development of ro-
bust and efficient parallel cooperative implementations of GRASP.

REFERENCES

[1] R.M. Aiex. Uma investigação experimental da distribuição de probabilidade de tempo de solução em
heurı́sticas GRASP e sua aplicação na análise de implementações paralelas. PhD thesis, Department of
Computer Science, Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil, 2002.

[2] R.M. Aiex, S. Binato, and M.G.C. Resende. Parallel GRASP with path-relinking for job shop scheduling.
Parallel Computing, 29:393–430, 2003.

[3] R.M. Aiex and M.G.C. Resende. Parallel strategies for GRASP with path-relinking. In T. Ibaraki,
K. Nonobe, and M. Yagiura, editors, Metaheuristics: Progress as real problem solvers. Springer, 2005.
To appear.

[4] R.M. Aiex, M.G.C. Resende, P.M. Pardalos, and G. Toraldo. GRASP with path relinking for three-index
assignment. INFORMS Journal on Computing, 17, 2005. In press.

[5] R.M. Aiex, M.G.C. Resende, and C.C. Ribeiro. Probability distribution of solution time in GRASP: An
experimental investigation. Journal of Heuristics, 8:343–373, 2002.

[6] A. Alvim and C.C. Ribeiro. Balanceamento de carga na paralelização da meta-heurı́stica GRASP.
In X Simpósio Brasileiro de Arquiteturas de Computadores, pages 279–282. Sociedade Brasileira de
Computação, 1998.

[7] A.C.F. Alvim. Estratégias de paralelização da metaheurı́stica GRASP. Master’s thesis, Departamento de
Informática, PUC-Rio, Rio de Janeiro, RJ 22453-900 Brazil, April 1998.

[8] E. Balas and M.J. Saltzman. An algorithm for the three-index assignment problem. Oper. Res., 39:150–161,
1991.

[9] R. Battiti and G. Tecchiolli. Parallel biased search for combinatorial optimization: Genetic algorithms and
TABU. Microprocessors and Microsystems, 16:351–367, 1992.

[10] J. E. Beasley. OR-Library: Distributing test problems by electronic mail. Journal of the Operational Re-
search Society, 41:1069–1072, 1990.

[11] S. Binato, H. Faria Jr., and M.G.C. Resende. Greedy randomized adaptive path relinking. In J.P. Sousa,
editor, Proceedings of the IV Metaheuristics International Conference, pages 393–397, 2001.

[12] S. Binato, W.J. Hery, D.M. Loewenstern, and M.G.C. Resende. A GRASP for job shop scheduling. In C.C.
Ribeiro and P. Hansen, editors, Essays and Surveys on Metaheuristics, pages 58–79. Kluwer Academic
Publishers, 2002.

[13] R. Burkard, S. Karisch, and F. Rendl. QAPLIB – A quadratic assignment problem library. European Journal
of Operations Research, 55:115–119, 1991.

[14] S.A. Canuto, M.G.C. Resende, and C.C. Ribeiro. Local search with perturbations for the prize-collecting
Steiner tree problem in graphs. Networks, 38:50–58, 2001.

26 MAURICIO G.C. RESENDE AND CELSO C. RIBEIRO

[15] J. M. Chambers, W. S. Cleveland, B. Kleiner, and P. A. Tukey. Graphical Methods for Data Analysis.
Chapman & Hall, 1983.

[16] V.-D. Cung, S.L. Martins, C.C. Ribeiro, and C. Roucairol. Strategies for the parallel implementation of
metaheuristics. In C.C. Ribeiro and P. Hansen, editors, Essays and surveys in metaheuristics, pages 263–
308. Kluwer Academic Publishers, 2002.

[17] G. Dahl and B. Johannessen. The 2-path network design problem. Networks, 43:190–199, 2004.
[18] N. Dodd. Slow annealing versus multiple fast annealing runs: An empirical investigation. Parallel Comput-

ing, 16:269–272, 1990.
[19] L.M.A. Drummond, L.S. Vianna, M.B. Silva, and L.S. Ochi. Distributed parallel metaheuristics based on

GRASP and VNS for solving the traveling purchaser problem. In Proceedings of the Ninth International
Conference on Parallel and Distributed Systems – ICPADS’02, pages 1–7. IEEE, 2002.

[20] S. Duni, P.M. Pardalos, and M.G.C. Resende. Parallel metaheuristics for combinatorial optimization. In
R. Corr êa, I. Dutra, M. Fiallos, and F. Gomes, editors, Models for Parallel and Distributed Computation –
Theory, Algorithmic Techniques and Applications, pages 179–206. Kluwer Academic Publishers, 2002.

[21] H.M.M. Ten Eikelder, M.G.A. Verhoeven, T.W.M. Vossen, and E.H.L. Aarts. A probabilistic analysis of
local search. In I.H. Osman and J.P. Kelly, editors, Metaheuristics: Theory & applications, pages 605–618.
Kluwer Academic Publishers, 1996.

[22] H. Faria Jr., S. Binato, M.G.C. Resende, and D.J. Falcão. Transmission network design by a greedy random-
ized adaptive path relinking approach. IEEE Transactions on Power Systems, 20(1), 2005. In press.

[23] T.A. Feo and M.G.C. Resende. A probabilistic heuristic for a computationally difficult set covering problem.
Operations Research Letters, 8:67–71, 1989.

[24] T.A. Feo and M.G.C. Resende. Greedy randomized adaptive search procedures. Journal of Global Opti-
mization, 6:109–133, 1995.

[25] T.A. Feo, M.G.C. Resende, and S.H. Smith. A greedy randomized adaptive search procedure for maximum
independent set. Operations Research, 42:860–878, 1994.

[26] P. Festa and M.G.C. Resende. GRASP: An annotated bibliography. In C.C. Ribeiro and P. Hansen, editors,
Essays and surveys in metaheuristics, pages 325–367. Kluwer Academic Publishers, 2002.

[27] P. Festa and M.G.C. Resende. An annotated bibliography of GRASP. Technical Report TD-5WYSEW,
AT&T Labs Research, Florham Park, NJ 07932, February 2004.

[28] A.M. Frieze. Complexity of a 3-dimensional assignment problem. European Journal of Operational Re-
search, 13:161–164, 1983.

[29] M.R. Garey and D.S. Johnson. Computers and intractability - A guide to the theory of NP-completeness.
W.H. Freeman and Company, 1979.

[30] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Mancheck, and V. Sunderam. PVM: Parallel virtual ma-
chine, A user’s guide and tutorial for networked parallel computing. Scientific and Engineering Computa-
tion. MIT Press, Cambridge, MA, 1994.

[31] F. Glover. Tabu search and adaptive memory programing – Advances, applications and challenges. In R.S.
Barr, R.V. Helgason, and J.L. Kennington, editors, Interfaces in Computer Science and Operations Re-
search, pages 1–75. Kluwer, 1996.

[32] F. Glover. Multi-start and strategic oscillation methods – Principles to exploit adaptive memory. In M. La-
guna and J.L. Gonzáles-Velarde, editors, Computing Tools for Modeling, Optimization and Simulation:
Interfaces in Computer Science and Operations Research, pages 1–24. Kluwer, 2000.

[33] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, 1997.
[34] F. Glover, M. Laguna, and R. Martı́. Fundamentals of scatter search and path relinking. Technical report,

Graduate School of Business and Administration, University of Colorado, Boulder, CO 80309-0419, 2000.
[35] H. Hoos and T. Stützle. Towards a characterisation of the behaviour of stochastic local search algorithms for

SAT. Artificial Intelligence, 112:213–232, 1999.
[36] Kendall Square Research. KSR Parallel Programming. 170 Tracer Lane, Waltham, MA, February 1992.
[37] M. Laguna and R. Martı́. GRASP and path relinking for 2-layer straight line crossing minimization. IN-

FORMS Journal on Computing, 11:44–52, 1999.
[38] J. K. Lenstra and A. H. G. Rinnooy Kan. Computational complexity of discrete optimization problems.

Annals of Discrete Mathematics, 4:121–140, 1979.
[39] Y. Li, P.M. Pardalos, and M.G.C. Resende. A greedy randomized adaptive search procedure for the qua-

dratic assignment problem. In P.M. Pardalos and H. Wolkowicz, editors, Quadratic assignment and related
problems, volume 16 of DIMACS Series on Discrete Mathematics and Theoretical Computer Science, pages
237–261. American Mathematical Society, 1994.

PARALLEL GRASP 27

[40] S.L. Martins, P.M. Pardalos, M.G.C. Resende, and C.C. Ribeiro. Greedy randomized adaptive search proce-
dures for the Steiner problem in graphs. In P.M. Pardalos, S. Rajasejaran, and J. Rolim, editors, Randomiza-
tion methods in algorithmic design, volume 43 of DIMACS Series on Discrete Mathematics and Theoretical
Computer Science, pages 133–145. American Mathematical Society, 1999.

[41] S.L. Martins, M.G.C. Resende, C.C. Ribeiro, and P.M. Pardalos. A parallel GRASP for the Steiner tree
problem in graphs using a hybrid local search strategy. Journal of Global Optimization, pages 267–283,
2000.

[42] S.L. Martins, C.C. Ribeiro, and I. Rosseti. Applications and parallel implementations of metaheuristics in
network design and routing. Lecture Notes in Computer Science, 3285:205–213, 2004.

[43] S.L. Martins, C.C. Ribeiro, and M.C. Souza. A parallel GRASP for the Steiner problem in graphs. In A. Fer-
reira and J. Rolim, editors, Proceedings of IRREGULAR’98 – 5th International Symposium on Solving Irreg-
ularly Structured Problems in Parallel, volume 1457 of Lecture Notes in Computer Science, pages 285–297.
Springer-Verlag, 1998.

[44] R.A. Murphey, P.M. Pardalos, and L.S. Pitsoulis. A parallel GRASP for the data association multidimen-
sional assignment problem. In P.M. Pardalos, editor, Parallel processing of discrete problems, volume 106
of The IMA Volumes in Mathematics and Its Applications, pages 159–180. Springer-Verlag, 1998.

[45] L.J. Osborne and B.E. Gillett. A comparison of two simulated annealing algorithms applied to the directed
Steiner problem on networks. ORSA Journal on Computing, 3:213–225, 1991.

[46] P.M. Pardalos, L.S. Pitsoulis, and M.G.C. Resende. A parallel GRASP implementation for the quadratic
assignment problem. In A. Ferreira and J. Rolim, editors, Parallel Algorithms for Irregularly Structured
Problems – Irregular’94, pages 115–133. Kluwer Academic Publishers, 1995.

[47] P.M. Pardalos, L.S. Pitsoulis, and M.G.C. Resende. A parallel GRASP for MAX-SAT problems. Lecture
Notes in Computer Science, 1184:575–585, 1996.

[48] W.P. Pierskalla. The tri-subsitution method for the three-multidimensional assignment problem. CORS Jour-
nal, 5:71–81, 1967.

[49] M. Prais and C.C. Ribeiro. Reactive GRASP: An application to a matrix decomposition problem in TDMA
traffic assignment. INFORMS Journal on Computing, 12:164–176, 2000.

[50] M.G.C. Resende. Computing approximate solutions of the maximum covering problem using GRASP. J. of
Heuristics, 4:161–171, 1998.

[51] M.G.C. Resende, T.A. Feo, and S.H. Smith. Algorithm 787: Fortran subroutines for approximate solution
of maximum independent set problems using GRASP. ACM Trans. Math. Software, 24:386–394, 1998.

[52] M.G.C. Resende, P.M. Pardalos, and Y. Li. Algorithm 754: Fortran subroutines for approximate solution of
dense quadratic assignment problems using GRASP. ACM Transactions on Mathematical Software, 22:104–
118, 1996.

[53] M.G.C. Resende, L.S. Pitsoulis, and P.M. Pardalos. Fortran subroutines for computing approximate solu-
tions of MAX-SAT problems using GRASP. Discrete Applied Mathematics, 100:95–113, 2000.

[54] M.G.C. Resende and C.C. Ribeiro. A GRASP for graph planarization. Networks, 29:173–189, 1997.
[55] M.G.C. Resende and C.C. Ribeiro. Greedy randomized adaptive search procedures. In F. Glover and

G. Kochenberger, editors, Handbook of Metaheuristics, pages 219–249. Kluwer Academic Publishers, 2002.
[56] M.G.C. Resende and C.C. Ribeiro. A GRASP with path-relinking for private virtual circuit routing. Net-

works, 41:104–114, 2003.
[57] M.G.C. Resende and C.C. Ribeiro. GRASP with path-relinking: Recent advances and applications. In

T. Ibaraki, K. Nonobe, and M. Yagiura, editors, Metaheuristics: Progress as real problem solvers. Springer,
2005. To appear.

[58] M.G.C. Resende and R.F. Werneck. A hybrid heuristic for the p-median problem. Technical report, Internet
and Network Systems Research Center, AT&T Labs Research, Florham Park, NJ, 2002.

[59] C.C. Ribeiro and M.G.C. Resende. Algorithm 797: Fortran subroutines for approximate solution of graph
planarization problems using GRASP. ACM Transactions on Mathematical Software, 25:341–352, 1999.

[60] C.C. Ribeiro and I. Rosseti. A parallel GRASP for the 2-path network design problem. Lecture Notes in
Computer Science, 2004:922–926, 2002.

[61] C.C. Ribeiro, E. Uchoa, and R.F. Werneck. A hybrid GRASP with perturbations for the Steiner problem in
graphs. INFORMS Journal on Computing, 14:228–246, 2002.

[62] I. Rosseti. Heurı́sticas para o problema de sı́ntese de redes a 2-caminhos. PhD thesis, Department of Com-
puter Science, Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil, July 2003.

[63] B. Roy and B. Sussmann. Les problèmes d’ordonnancement avec contraintes disjonctives, 1964.
[64] B. Selman, H. Kautz, and B. Cohen. Noise strategies for improving local search. In Proceedings of the

Twelfth National Conference on Artificial Intelligence, pages 337–343, Seattle, 1994. MIT Press.

28 MAURICIO G.C. RESENDE AND CELSO C. RIBEIRO

[65] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI – The complete reference, Volume 1 –
The MPI Core. The MIT Press, 1998.

[66] E.D. Taillard. Robust taboo search for the quadratic assignment problem. Parallel Computing, 17:443–455,
1991.

[67] M.G.A. Verhoeven and E.H.L. Aarts. Parallel local search. Journal of Heuristics, 1:43–66, 1995.

(Mauricio G.C. Resende) INTERNET AND NETWORK SYSTEMS RESEARCH CENTER, AT&T LABS RE-
SEARCH, FLORHAM PARK, NJ 07932 USA.

E-mail address, Mauricio G.C. Resende: mgcr@research.att.com

(Celso C. Ribeiro) UNIVERSIDADE FEDERAL FLUMINENSE, DEPARTMENT OF COMPUTER SCIENCE,
NITERÓI, RJ 24210-240 BRAZIL.

E-mail address, Celso C. Ribeiro: celso@inf.puc-rio.br

